Object Oriented
Database
Development System

Cross-Compatible to Unix,
Linux and MS-Windows

000

occ FTNULTISOFT

00

Release 7.1 Section RDD

The whole FlagShip 7 manual consist of following sections:

Section Content Pages

GEN General information: License agreement & warranty, 18
installation and de-installation, registration and support
FlagShip language: Specification, database, files,

LNG language elements, multiuser, multitasking, FlagShip 176
extensions and differences
Compiler & Tools: Compiling, linking, libraries, make,

FSC .) . - 90
run-time requirements, debugging, tools and utilities
Commands and statements: Alphabetical reference of

CMD : 486
FlagShip commands, declarators and statements

FUN StanQard functions: Alphabetical reference of FlagShip 640
functions
Objects and classes: Standard classes for Get,

OBJ Tbrowse, Error, Application, GUI, as well as other 368
standard classes

RDD Replaceable Database Drivers 38
C-API: FlagShip connection to the C language, Extend

EXT C System, Inline C programs, Open C API, Modifying 160
the intermediate C code

FS2 Alphabetical reference of FS2 Toolbox functions 376

QRF Qupk reference: Overview of commands, functions and 40
environment

PRE Preprocessor, includes, directives 30
System info, porting: System differences to DOS, porting

SYS hints, data transfer, terminals and mapping, distributable 42
files
Release notes: Operating system dependent informa-

REL 8
tion, predefined terminals
Appendix: Inkey values, control keys, ASCII-ISO table,

APP 34
error codes, dBase and FoxPro notes, forms

IDX Index of all sections 42

fsman The on-line manual contains all above sections, search variable

function, and additionally last changes and extensions

000 -
sss FTMULTISOFT
multisoft Datentechnik, Munich, Germany

Copyright (c) 1992..2009
All rights reserved

FlagShip

Object Oriented Database Development System,
Cross-Compatible to UNIX, Linux and MS-Windows

Section RDD

Manual release: 7.1

For the current program release see label on distribution disk and
your Activation Card, or check on-line by issuing FlagShip -version

Copyright

Copyright © 1992..2009 by multisoft Datentechnik, D-81545 Munich, Germany. All rights
reserved worldwide. Manual authors: Jan V. Balek, Ibrahim Tannir, Sven Koester

No part of this publication may be copied or distributed, transmitted, transcripted, stored in a
retrieval system, or translated into any human or computer language, in any form or by any
means, electronic, mechanical, magnetic, manual, or otherwise; or disclosed to third parties
without the express written permission of multisoft Datentechnik. Please see also "License
Agreement", section GEN.2

Made in Germany. Printed in Germany.

Trademarks

FlagShip™ is trademark of multisoft Datentechnik. Other trademarks: dBASE is trademark
of Borland/Ashton-Tate, Clipper of CA/Nantucket, FoxBase of Microsoft/Fox, UNIX of
AT&T/USL/SCO, AIX of IBM, MS-DOS and MS-Windows of Microsoft. Other products
named herein may be trademarks of their respective manufacturers.

Headquarter Address

Headquarter:
multisoft Datentechnik E-mail: support@flagship.de
Harthauser Str. 85 support@multisoft.de
81545 Munchen sales@multisoft.de
Germany

Web/Ftp: http://www.fship.com

Telephone: (+49-89) 6490040 ftp://mult-soft.de/pub

Fax: (+49-89) 6412974

Call or e-mail multisoft for your local dealer or distributor

RDD: Replaceable Database Drivers

1. The basics Of RDDS ... ms s 2
1.1 Why Different Database DIVEIS?cocuiiiiiiiiie ettt 2
1.2 Working Areas, Databasesuuueeiiiiiiiiiiiiiiiiieieee ettt eeaeeeaeeeeeeeeeeenneee 2
1.3 The ArchiteCture Of RDD.........coociiiiiiie ettt e e e e e e e ree e e e e e e e ennnreaeees 3
1.4 ChoOSING @N RDDoiiiiiiie ettt e et e e et e e e e st e e e e snbeeeeennneas 4
1.5 Relationships between RDDSuuuiiiiiiiiiiiiiiiiiieieieseeeeeeeeeseseeeeesesesssesessseesssssssesssesasereaeee 5
1.6 INVOKING the RDDttt e e e e e e e e e e e e e e e e e enneeeeeeas 5
1.7 EXample Of RDD USAQE ...cceiiieiiiiiiiieie ettt e e et e e e e e e e e ee e e e e e e e e ennnneeeeas 6
2. Writing NeW RDDSooiiiiiiiieeiin e 8
2.1 Structure of the RDD ...t e e e e eeaae e 8
2.2 FlagShip Communication With RDDS.........ccccuuiiiiiiiiieiiee e 8
2.3 Required RDD MeEthOAS. ... 10
b2 Tt T [0 I, =1 T Yo SRS 10
2.3.2 ClOSE() MELNOM ...t et e e et e e et e e e bee e e e neeas 11
2.3.3 AXIt() MEENOM. ...t e e e e e e et e e e e e e e e ra e e e e e nraaaees 11
2.3.4 FieldGet() MEthOdooi i e e e e e e e e e e e earnaae s 11
2.3.5 Access Method USED ...t e e e e 12
2.4 Example of minimal, hybrid RDD for SDF ..o 13
2.5 RDD methods used in std. fUNCLONSooiiiii e 16
3. Standard RDD dFiVEIScccccecrrirriiisscsssmeresssssssssssssssesssssssssssssessssssssssssnsensessssssssssnnsnnens 19
3.1 Available properties of DbfldX..............c 19
3.2 Notes for RDD ProgrammeErs.........oooi i ieeieeie et e et ee e e e e e e et ee e e e e e e anneeeeeeaaean 24
4. Third Party RDDS ... s s s s amn e e e e e s 30
3 T = 32

RDD 1

1. The basics of RDDs

FlagShip fully supports the Replaceable Database Driver (RDD) architecture. This means,
you may use another (e.g. your own) RDDs instead, or in coexistence with the FlagShip
standard database driver named "DBFIDX".

The following description generally assumes, you are already familiar with the basics of
FlagShip or Xbase programming (section LNG) and often refers to standard database
commands (section CMD), functions (section FUN) and objects (section OBJ). Please read
these chapters first.

1.1 Why Different Database Drivers?

Although the database file (.dbf) is common for a wide range of Xbase systems (FlagShip,
VO, Clipper, FoxBase, FoxPro, dBase), the internal structure of memo files (.dbt, .fpt) may
vary between the systems (e.g. FoxPro and dBase IV use their own structures). The most
significant difference and incompatibility is noticeable on the index structure and the used
locking algorithm.

As long as you use a single database system, you don't need to care about the internal file
structure, and about the internal algorithms used to interchange information, if and how the
database is locked. All professional database systems are smart enough to manage this
information automatically also in a local network, some of them (like FlagShip) also in wide
area and heterogeneous networks.

When you need access (or even need the simultaneous access) to databases and indices,
created from, and also managed by an other Xbase system, you need a mechanism to
simulate this access, an interface to the "other" system. Also, if you need to manage a non-
Xbase databases, such as SQL (or ASCII files) are, you do not have to access them at the
low level via C/ESQL, or via FREAD(), but may handle them as "usual" databases. All these
interfaces are realized by the Replaceable Database Driver RDD.

Since the database driver is tied to a working area, you may theoretically use up to 65,000
different drivers, each supporting another kind of database. On the other hand, if only one
driver is used, up to 65,000 databases of the same type may be open simultaneously.

1.2 Working Areas, Databases

The FlagShip database system (including the database and index access commands and
functions) is designed around the working area. It specifies slots, each of which can handle
one database (also called a table) with several memo files, indexes and relations at a time.
FlagShip supports up to 65534 such slots (working areas). You may select the working area

RDD 2

explicitly by the SELECT command and DBSELECTAREA() function, or implicitly via the
NEW clause in the USE command or DBUSEAREA() function.

A working area is occupied or unoccupied, depending on whether a file is opened in it. At
program startup, all areas are unoccupied and the slot (work area) one is the current.

A database (table) consists of a variable nhumber of rows, called records. Each record has
the same number of columns, called fields. Each field is identified by a unique name within
the table. The RDD knows the name, type and the size of each field, usually stored in the
database header.

The supported size of the table depends on the RDD used. The default FlagShip's RDD
named "DBFIDX" supports up to 2 billion records, each with up to 64000 fields, or up to 2
Gbytes of size.

Each working area manages (at run-time) its own pointer to the current record and the
access to fields of this record in the same way as access to a variable, or through field
access functions and methods. You move the record pointer (also named "cursor" in some
systems) explicitly by e.g. GOTO, SKIP and DBGOTO(), or implicitly via SEEK, relation
movement etc. See additional details in sections LNG, CMD, FUN and OBJ.

1.3 The Architecture of RDD

In FlagShip, each Replaceable Database Driver is independent of other RDDs. The only
communication between the RDD and the application is performed via the RDD interfaces,
namely the object methods (and exported instances).

You will access the standard or selected RDD in the current (or new) working area by
invoking the standard command USE, the function DBUSEAREA(), or by instantiating the
RDD object itself.

The RDD stores the internal data (instances) of the object (the database) in the
corresponding working area slot, but always uses the same, common program code. In
other words: the program code of the RDD is loaded once only, whilst each occupied
working area manages only its own, internal data.

FlagShip fully supports the hybrid (intermixed) usage of all standard database commands,
functions and object methods. So it is your choice, to use the Xbase common commands like
USE, SKIP, GOTO, INDEX, SEEK etc, the Clipper-like functions DBUSEAREA(), DBSKIP(),
DBGOTO(), DBCREATEINDEX(), DBSEEK() etc., or the RDD object methods oRdd:SKIP(),
oRdd:GOTO(), oRdd:SEEK() etc. Each of these programming techniques is described in
detail in sections CMD, FUN or OBJ, respectively.

In fact, all the commands (e.g. SKIP) are translated by the preprocessor to high-level
database functions (e.g. DBSKIP()) according to #command directives specified in the std.fh
file. These database functions call then the equivalent RDD method (e.g. oRdd:SKIP()) of

RDD 3

the driver, associated with the current working area. Some commands or functions may
access several RDD methods.

The same is valid for an access of database fields. You may access them directly by name,
by using the FIELGET() function, or via the oRdd:FIELDGET() method.

In some cases, a database command or function acts globally on all open database files (for
example, CLOSE ALL or DBCOMMITALL()), or access two different RDDs at a time (e.g.
COPY TO...VIA...), and is therefore a superset of the underlying RDD method. In other
cases, some RDD methods provide you with more flexibility and information about the driver
(e.g. oRdd:INFO()), not available as a high-level database function.

Usually, the high-level commands and functions are preferred by most programmers,
because of simple notation, clearer syntax and higher degree of portability, whilst the RDD
methods are invoked for special information or actions only. In FlagShip (as opposed to
some other systems), there is no significant difference in the execution speed between the
high-level and the method invocation (assuming, the RDD invocation uses prototypes for an
early binding).

For programmers, who wish to build their own RDDs, details are given in chapter RDD.2.

1.4 Choosing an RDD

To use an RDD, the corresponding driver has to be linked in with your application. You can
then select and activate the driver in several ways.

The default database DBFIDX driver, (which supports the .dbf, .dbt and .idx files), is
available in the FlagShip library. Usually, this driver is linked automatically via the RddlInit
procedure, which is also included in the library. Since this is an INIT procedure, it is invoked
automatically at the application startup.

You may freely modify the behavior of the RddInit procedure, e.g. to disable the automatic
DBFIDX linking (to shrink the application size, when it does not handle database access at
all), or to predefine another (e.g. 3rd party) or additional RDD driver(s) to be linked
automatically. The source code of Rddlnit is available in the <FlagShip_dir>/system/
rddsys.prg file.

If you need to change this file, the best method is to copy it into your local directory, make
the changes, compile it separately according to the instructions in the file header, and then
simply link the object file (rddsys.o) with your application.

Of course, it is not required to change the rddsys.prg file, whenever you need to use an
additional RDD driver. Instead, a simple statement EXTERN <rddName>NEW (or
REQUEST <rddName>NEW) somewhere in your program code does the same and will also
link the <rddName> driver of your choice.

RDD 4

To select an RDD to be used by default for all subsequent USE commands and
DBUSEAREA() functions, regardless of the working area, identify the (linked) RDD via the
RDDSETDEFAULT() or DBSETDRIVER() function. Since the DBFIDX driver is already set to
default in the RddlInit function, you do not need this to use it.

You may also specify another RDD (than the default), which should explicitly be used in the
current (or new) working area. To do so, identify the driver using the VIA clause of the USE
command, or the equivalent parameter of the DBUSEAREA() function. Of course,
instantiating the selected RDD object does the same.

1.5 Relationships between RDDs

As stated earlier, each RDD is tied to the occupied working area. Many database commands
and functions support access to RDDs, other than the current one. For example, you may
insert records into the current (e.g. a .dbf) database from other table types (e.g. SQL) by
simply using the VIA clause of the APPEND FROM command. In such a case, the "other"
driver reads the records, while the local driver adds them into the current database. This is
similar to reading fields from one database (into memory variables), switch the working area,
and replace the other database or table through those. Also, using relations to databases,
driven by other RDDs is possible.

Of course, such a tight coexistence of two (or more) RDD drivers requires, that both drivers
support the same data types and own the standard methods for such data exchange. Also,
both have to be inherited from the DataServer class.

For simple read/write operations on the current database, the RDD may be simplified and
can support only a subset of the standard commands and functions. If so, you will receive a
run-time error "method ... not available" if you try to invoke an unsupported feature of the
RDD. To avoid the RTE, you may check the availability of methods (e.g. in a unknown RDD)
by using the ISOBJPROPERTY() function.

1.6 Invoking the RDD

The RDDs may be supplied in the standard FlagShip library (e.g. DBFIDX), in additional,
user or 3rd party libraries (e.g. CB4CDX), in object form (*.0), or in source code.

You may link the RDD supplied in object code directly with your application, for example $
FlagShip myappli*.prg myRdd*.o

The same applies, if the RDD is supplied in source code. You will first compile the RDD
sources according to the supplied instructions, and then link the object code with your
application.

If the RDD is available in (any) library, you have to tell the linker, to search the library for the
required modules. The simplest method is to use the EXTERN or REQUEST statement, as

RDD 5

described in chapter 1.4. Of course, this may also be performed automatically in an INIT
procedure or function (e.g. the RddInit). Then, link the corresponding library (e.g. the
libMyRdd.a) by

$ Flagship myappli*.prg -L/usr/mylibs -TMyRdd

It is of course not necessary to explicitly specify the standard FlagShip library
(<FlagShip_dir>/libFlagShip*.a) in the command line to use default RDD drivers, since this
library is used automatically.

In the application, the RDD is then invoked automatically through the VIA clause of the USE
or APPEND FROM etc. command, the corresponding parameter of the equivalent standard
function, or explicitly by instantiation of the RDD via the oRdd := rddName{...} or oRdd :=
rddNameNEW(...) statement.

RDD 6

1.7 Example of RDD usage

The following example demonstrates the usage of different RDDs and the hybrid
programming techniques. Many additional examples are given in sections LNG, CMD, FUN
and OBJ.

#include "fspreset.fh" // use files in lower case
#include "dbfidx.fh" // prototypes of the DBFIDX class
#include "cb4cdx.fh" // prototypes of the CB4CDX class
#include "rddsys.fh" // constants or RDDs used

LOCAL ok AS LOGICAL
LOCAL oRddl AS Object, oRdd2 AS DbfIdx, oRdd3 AS cb4cdx

SELECT 597
USE Address INDEX adrl, adr2 ALIAS addr
if ltused() .or. Neterr(Q)

? "sorry..."
endif
oRddl := DBOBJECT() // typed for Tate binding
? SELECT(), ALIAS(), oRddl:ALIAS // 597 ADDR ADDR

// USE Article Index Article NEW SHARED VIA DbfIdx
if (ok := DBUSEAREA (.T., "DbfIdx", "Article", NIL, .T., .F.))
ok := DBSETINDEX("Article")

endif
if lok

? "sorry..."
endif
oRdd2 := DBOBJECT() // typed for early binding
? SELECT(), ALIAS(), oRdd2:ALIAS // 1 ARTICLE ARTICLE
EXTERN Cb4CdxNEW // force to 1link it

// USE FoxData NEW SHARED VIA ("Cb4cdx™)
oRdd3 := cb4cdx {"Foxbata", .T., .F., NIL, NIL, .T.}
if !'oRdd:USED

? "sorry..."
endif
ORdd3:ALIAS := "FoxAli"
? SELECT(), ALIAS(), oRdd3:ALIAS // 2 FOXALI FOXALI

? oRdd1:INFO(DBI_ACCESSRIGHTS), oRdd2:INFO(DBI_ISDBF), ;
oRdd3 :RDDINFO(_SET_MEMOEXT), oRdd3:INFO(DBI_MEMOBLOCKSIZE)
CLOSE DATABASES

RDD 7

2. Writing New RDDs

This chapter handles the basics for programming Replaceable Database Drivers. You may
skip to chapter 3, if the programming of RDDs is not relevant for you.

2.1 Structure of the RDD

As mentioned in chapter 1, all RDDs in FlagShip are encapsulated objects. The RDD
methods perform all the required database actions, independent from the rest of the
application. The programming follows the FlagShip OOP programming rules, described in
section OBJ. Your programming language is FlagShip (.prg), Extend and Open C API (.c), or
a combination of both.

It's your choice, to specify your own CLASS for the RDD, or inherit your class from the
default DataServer (or Dbfldx) class. The user specific class may sometimes be smaller, or
more suitable, than the inherited one.

The advantage of the inherited classes is, that all standard methods (including Access and
Assign) are already predefined. In the DataServer class, all of them are empty, but point to
functions, similar to NoiVarGet(), NoiVarPut() and NoMethod() object methods. This may
simplify your object significantly.

All these techniques are demonstrated in the supplied source code files. The "smallrdd.prg"
is a small driver for .dbf based databases, inheriting the DataServer class and fully written in
.prg language. The rddcb4*.* sources demonstrates hybrid programming of .prg and .c
language, whereby its class also inherits the DataServer one. The "ascirdd.c" RDD performs
a special, limited functionality to (read only) handle ASCII files. It also inherits DataServer
class (and announces the fields to FlagShip), in order to enable the FOR/ WHILE scoping
on, and named access to the field variables.

2.2 FlagShip Communication with RDDs

From the view of an application programmer, the only direct communication with the RDD is
via the supplied properties (methods, exported instances) of the RDD. As stated earlier, he
may also use the standard FlagShip commands and functions instead; these high-level
functions then manage the messages sent to the RDD.

From the view of the RDD programmer, there are three independent pre- requirements,
which should be met for the full support of the hybrid (or high level, procedural)
programming:

a. The invocation of the RDD methods from FlagShip database high-level commands and
functions (e.g. via SKIP, DBGOTO() etc.) is only possible, if the RDD class inherits the

RDD 8

general DataServer class, or any child (e.g. Dbfldx) thereof. This is because the FlagShip
functions use an early binding, which can properly work on a known class only.

. The RDD must announce the occupying and freeing of a working area to FlagShip, when
the object is instantiated or closed (usually in the INIT and CLOSE method). Otherwise,
you have to avoid using the USE command and the DBUSEAREA() function in the same
working area. This is because the working areas (and their occupying) are managed by
FlagShip (e.g. by SELECT), not by the RDD itself.

. To be able to use field names in the same way as memory variables, the RDD must
announce these names to FlagShip, usually done in the INIT method. Also, the CLOSE
or AXIT method has to retire this announcement. Otherwise, the FIELDGET() and
FIELDPUT () functions and/or methods have to be used instead.

If one of these pre-requirements is not met by the RDD, only partial hybrid programming is
possible. If none is met, only the object invocation of the RDD is possible.

Additionally, the RDD may contain

d. an INIT procedure or function (of any name, e.g. INIT PROC _rddName) which calls

AnnNewRdd("rddName") to announce the driver name for the standard RDDLIST()
function.

RDD 9

2.3 Required RDD methods

The RDD must supply the INIT, CLOSE and AXIT methods, and should mostly also support
at least FIELDGET and USED, see also LNG.2.11.3 and OBJ.1.2.

2.3.1 Init() Method

The INIT method of the RDD is called automatically from the object creator function
rddNameNEW, which is invoked during the object instantiation, or from the DBUSEAREA()
function. All parameters from rddNameNEW(...) are passed to the INIT method. It has to
perform all required parameter checking, initialize the instances, open the given file name
(with the associated memo files, if any) and return the object SELF.

For hybrid usage, the INIT method may announce the occupancy of the current working area
to FlagShip, see 2.2.b. To do it, invoke the (.prg callable) function

cNewAlias := RDDannAlias (oSelf, cSuggAlias)

where <oSelf> is the object SELF, <cSuggAlias> is the new Alias name desired and
<cNewAlias> is the Alias name granted and used by FlagShip. RddannAlias() will
confirm the passed <cNewAlias> in the returned <cNewAlias>, or will build it from the
supplied file name. If the resulting alias already exists, a new unique name is created.

You may use the TRUEPATH() standard function to adopt the supplied file name according
to the current SET PATH and FS_SET() settings, if required.

To announce the field names to be usable as usual variables (see 2.2.c), create an empty
array (for internal FlagShip and for FIELDGET() use), the size of which is at least the number
of passed field names. Assign this array to a STATIC variable or an object instance. Then
invoke for each used field the function

Tok := RddAnnField (cName, nPos, cType, iAccess, nLength, nDeci, aMyArr)

where <cName>, <cType>, <nLength> and <nDeci> describes the field according to
DBSTRUCT(), <nPos> is the consecutive field number, <iAccess> specifies the access
type, and <nMyArr> is the internally used array (which will contain pointers to
corresponding field variables). The <iAccess> is either 0 or 1. Zero specifies, that all
fields and the corresponding field variables are updated by the RDD on every record
movement. Specifying One allows an optimized record access, it announces FlagShip to
invoke the oRdd:FIELDGET() method only if the field value is required.

This all may sound a little bit complicated, but is quite easy, see example in chapter 2.4
below and in the smallrdd.prg file, available in <FlagShip_dir>/system/smalirdd. For a C
invocation, see example in the rddcb4*.c files, available in <FlagShip_dir>/system/cb4rdd
directory.

RDD 10

2.3.2 Close() Method

The CLOSE method of the RDD is automatically invoked only on hybrid usage from the
USE, CLOSE DATABASE and CLOSE ALL commands or equivalent functions, and at the
termination of the application. The automatic invocation requires at least the announcing of
the working area occupancy, according to 2.2.b. A forced invocation of this method is also
opportune from the AXIT method.

The CLOSE method should reverse the announcement of occupying the working area and
the database fields, which is done in the INIT method. First, free the announced fields by
invoking

RDDretField (SELF, cName)
for all announced fields in INIT. Then free the working area by
RDDretAlias (SELF)

Note, that this statement may also destroy the object (if no other object variable additionally
refers to it) and is therefore the last valid operation on the instances.

2.3.3 Axit() Method

Normally, the AXIT method, if available in an object, is invoked automatically by the FlagShip
variable system, if the lifetime of the carrying object expires (e.g. for a LOCAL object at the
end of UDF). AXIT may return any value, except SELF.

With an RDD however, even if the LOCAL variable lifetime expires, the carrying object is not
destroyed automatically, if the RDD was announced to FlagShip via RDDannAlias(). In such
a case, the object is not destroyed before explicitly invoking oRdd:CLOSE(), CLOSE or
DBCLOSEAREA(). You may therefore regain access to an object of an occupied working
area by the means of DBOBJECTY().

The AXIT method should free all manually allocated memory space (e.g. malloc() assigned
to a SPECIAL variable via _xalloc() etc). All usual FlagShip variables are freed automatically
by the FlagShip garbage collector.

2.3.4 FieldGet() Method

The FIELDGET (or QUICKFIELDGET, if available) method allows to access fields of the
current selected RDD record. The method receives the consecutive field number (starting by
one), or optionally the field name, and returns the value of the field.

On hybrid usage, this method should also fill the FIELD variable to allow the application to
use fields in the same way, as usual memory variables, see also 2.2.c. To do so, invoke

RDD 11

varPtr := AssignFldvalue (@xMyArrElem, value)

where <xMyArrElem> is an element of the in INIT by RddAnnAlias() allocated array, and
<value> is the field value, already converted to the expected variable (field) type. The
function returns the pointer to the field variable, available in the application.

The FIELDGET() method should return the field variable. The best is to use RETURN
@AssignFldValue(...). The difference to the usual RETURN <value> is, that the memory
variable <value> would not contain the type "M" but "C", and numerics would be displayed in
variable, rather than fixed length.

2.3.5 Access Method USED

This access method is generally used after the instantiation (or in DBUSEAREA()) to
determine, if the RDD is usable, i.e. if the database was open successfully. See example
below in chapter 2.4.

RDD 12

2.4 Example of minimal, hybrid RDD for SDF

The following example is a fully usable RDD driver for ASCII files in SDF format. To avoid
the overhead for the purpose of this overview, only very minimal parameter checking is
performed and only forward skipping is supported. As you may also conclude by yourself,
additional performance optimizing and validity checks of the file are possible. For a more
featured RDD, see the <FlagShip_dir>/system/smallrdd/smallrdd.prg program file. For RDD
written in C, inspect the <FlagShip_dir>/system/ascirdd/ascirrd.c and <FlagShip_dir>/sys-

tem/cb4rdd/cb4cdx?.c files.

* file minirdd.prg
#include "dataserv.fh"
#include "dbstruct.fh"

CLASS MyRdd INHERIT DataServer
PROTECT aFieldvars AS Array
PROTECT aStruct AS Array

PROTECT iHandle := 0 AS Intvar
PROTECT iRecBeg := 0 AS Intvar
PROTECT iRecLen := 0 AS intvar
PROTECT TuUsed := .F. AS Logical
EXPORT myAlias AS Character
EXPORT myEof := .F. AS Logical

METHOD INIT (cName, aDbStru) CLASS MyRdd

Local ii AS intvar

if valtype(cName) != "C"
return SELF

endif

jHandle := FOPEN(cName, 0)

if iHandle <= 0 .or. len(abbStru) = 0

return SELF
endif
astruct := ACLONE (aDbStru)

myAlias := RDDannAlias (self, cName)

aFieldvars := ARRAY(len(abbStru))

for ii := 1 to len(abDbStru)

RDDannField (abDbStrul[ii,DBS_NAME],

i1,
abbstru[ii,DBS_TYPE],
1,
abbstru[ii,DBS_LEN],
abbstru[ii,DBS_DEC],
aFieldvars)

next

Tused := .T.

return SELF

METHOD Close CLASS MyRdd

Local ii AS int

if iHandle = 0 .or.
return .F.

endif

Mused

DataServer prototype
defines DBS_xxx

ptr's to field vars
suppled structure
Fopen() handle
posit of rec begin
record length

RDD usable ?

alias

eof ?

note spec. parameters,
different from std.
USE and DataServer

open the file r/o

error, not usable

Announce WA to FS
used in FieldGet()
Announce FIELD vars:
field name
field pos
field type
late field access
field length
field deci length
FIELD vars ptr

assign instance

// file open?

RDD 13

FCLOSE (iHandTe) // close file

Tused = .F. // reset instances
iHandle := 0
for ii := 1 to len(aFieldvars) // free FIELD vars
RDDretField (self, astruct[ii,DBS_NAME]) // in FlagsShip
next
RDDretAlias (self) // free WA in FS
return .T.
METHOD Axit CLASS MyRdd // here: forces also
if iHandle > 0 .and. TuUsed // closing the file
SELF:Close() // to be able free
endif // the object
return .T.
ACCESS METHOD Used CLASS MyRdd // is the RDD usable?

return lUsed

METHOD FieldGet (nPos) CLASS MyRdd
Local value, 1ii, iFldpPos := 0, buff, iLen, cType
if !Tused .or. iHandle <= 0 .or. nPos <= 0 .or. nPos > len(aStruct)

return NIL
endif
iLen astruct[nPos,DBS_LEN]

cType:= upper(left(astruct[nPos,DBS_TYPE],1))
for ii := 1 to nPos -1
iF1dPos += aStruct[ii,DBS_LEN] // determine field begin
next
buff := space(iLen)
FSEEK (iHandle, iRecBeg + iFldPos, 0) // posit to field begin
FREAD (iHandle, @buff, iLen) // read flat ASCII file
if cType == "C"
value := buff
elseif cType $ "NIF" // convert ascii to var
value := val(alltrim(buff)) // accord to field type
elseif cType == "D"
value := stod(buff)
elseif cType == "L"
value := upper(left(buff,1)) $ "vyT"
else
value := NIL
endif
return @ AssignFldvalue(@aFieldvars[nPos], value)

METHOD Skip (nRec) CLASS MyRdd // very simplified
Local 1ii AS 1int // for flat ASCII file
if iRecLen == // in SDF format

for ii := 1 to Ten(aStruct) // Determine the

iRecLen += aStruct[ii,DBS_LEN] // record size

next

iRecLen ++ // assumed LF byte,
endif // but should be checked
myEof := .F.
for ii := 1 to abs(nRec) // here forward only!

FSEEK (iHandle, iRecBeg + iRecLen, 0) // posit of the first

iRecBeg := FSEEK(iHandle, 0, 1) // field per record

RDD 14

if iRecBeg >= FSEEK (iHandle, 0, 2) // EOFQ) ?
myEof := .T. // set export inst.
exit
endif
next
return !myEeof

INIT PROCEDURE _myRdd // for RDDLIST()
AnnNewRdd ("myRdd") // purpose only
return

FUNCTION start()

* extern myRAdANEW // not required here
Local aStru, oRdd
if file(minirdd. txt") // create the file

? "Creating SDF ascii file:" ; ? // used below

set printer to minirdd.txt
set printer on

?? "AlaaaaaaaA 1 B1bbB19950101"
? "A2 2.2 b2 00020202"
? "A3aaaaaaaA3333333.3B3bbB19951231"
? // last LF expected

set printer off
set printer to
endif

aStr’u f= {{"'Fl","C",l0,0}, {"fZ","n",9,l}, ;
{II.F3"’"CII’ 5’0}’ {llf4","dll’8’0}}
oRdd:= myRdd {"minirdd.txt", astru} // instantiate RDD
if !oRdd:used
? "Cannot open ASCII database 'minirdd.txt'"

quit
endif
? "select, Used, Alias=", select(), used(), oRdd:myAlias
while !'oRdd:myEof
? f1, f2, 3, f4, " == ", oRdd:FieldGet(1l), oRdd:FieldGet(2)
skip 1
enddo
use
use minirdd.txt via MyRdd
if ltused(Q
? "Cannot invoke MyRdd via USE ..."
? " This is an expected error, since myRdd:INIT() parameters"
? " do NOT match those of DataServer:INIT() passed from USE"
endif
quit
* eof

ER

Compile: FlagsShip minirdd.prg -na -Mstart

RDD 15

2.5 RDD methods used in std. functions

The following cross reference demonstrates the dependence standard FlagShip database
functions of the RDD methods. Note, that this is for your information purposes only, and may
be changed without notice.

FS function used RDD method or standard database functions
__DbApp() DbEval(), DbSelectAr(), DbStruct(), Fcount(), FieldPos(), NetErr(), elect(),
Used()

__DbAppDel() rdd:AppendDelimited()

__DbAppSdf() rdd:AppendSDF()

__DbContin() DbEval(), DbSkip(), Found(), Used()

___DbCopy() __DbCopySt(), Afields(), Alias(), DbEval(), DbSelectAr(), DbUseArea(),
Fcount(), RddName(), Select(), Used()

__DbCopyDe() Afields(), DbEval(), Used()

__DbCopySd() Afields(), DbEval(), Used()

__DbCopySt() DbCreate(), DbStruct(), FieldPos(), Used(), rdd:Info(DBI_FILEHANDLE)

__DbCopyXs() _ DbCreate(), DbCloseAre(), DbSelectAr(), DbStruct(), DbUseArea(),
Select(), Used(), rdd:Info(DBI_FILEHANDLE)

__DbCreate() DbCloseAre(), DbSelectAr(), DbSkip(), DbUseArea(), Eof(), NetErr(),
RddName(), rdd:Info(DBI_FILEHANDLE)

__DblList() Afields(), DbEval(), Deleted(), RecNo(), Used()

__Dblocate() DbEval(), Found(), Used()

___DbPack() rdd:Pack()

__DbSort() __DbCopy(), DbCreateln(), DbSelectAr(), DbUseArea(), FieldBlock()

__DbTotal() Alias(), DbAppend(), DbCloseAre(), DbCreate(), DbGoto(), DbGotop(),
DbSkip(), DbStruct(), DbUseArea(), Eof(), FieldGet(), FieldPut(), Select(),
Used(), rdd:Info(DBI_FILEHANDLE)

__DbUpdate() Alias(), DbSkip(), Eof(), Found(), Seek(), Select(), Used()

__DbZap() rdd:Zap()

_DbFind() DbSeek(), rdd:Orderinfo(DBOI_KEYTYPE)

_DbJoin() Afields(), Alias(), DbCloseAre(), DbCreate(), DbEval(), DbSelectAr(),
DbSkip(), DbStruct(), DbUseArea(), Eof(), Fcount(), FieldPos(),
FieldWblock(), NetErr(), Select(), rdd:Info(DBI_FILEHANDLE)

_SeekEval() rdd:SeekEval()

AFields() rdd:Fcount[acc], rdd:FieldName(), rdd:FieldInfo(DBS_LEN),
rdd:Fieldinfo(DBS_DEC), rdd:FieldInfo(DBS_TYPE)
Alias() rdd:Alias[acc]

AutoxLock() rdd:Commit(), rdd:Flock() or rdd:Rlock(), rdd:Used[acc], Dbf() or
rdd:Info(DBI_FULLPATH),

Bof() rdd:Bof[acc]

DbAppend() rdd:Append()

DbClearFil() rdd:ClearFilter()

DbClearind() OrdListCle()

DbClearRel() rdd:ClearRelation()

DbClose() rdd:Close()

RDD 16

DbCloseAre() rdd:Close()

DbCommit() rdd:Commit()

DbCommitAl() rdd:Commit(), rdd:RecNo[acc/ass], rdd:Relation[acc/ass]

DbCommitAl() rdd:Commit()

DbCreate() rdd:CreateDb()

DbCreateln() OrdCreate()

DbDelete() rdd:Delete()

DbEdit() Bof(), DbGoBottom(), DbGoto(), DbGoTop(), DbSkip(), DbStruct(), Eof(),
IndexOrd(), IsDbExcI(), LastRec(), Recno(), Select(), Used()

DbEval() rdd:Eval()

Dbf() rdd:FileSpec[acc]

DbFilter() rdd:Filter[acc]

DbGetLocat() rdd:GetLocate[acc]

DbGoBottom() rdd:GoBottom()

DbGoto() rdd:GoTo()

DbGoTop() rdd:GoTop()

DbObject()

DbRecall() rdd:Recall()

DbReindex() OrdListReb()

DbRelation() rdd:Relation()

DbRlockLis() rdd:RLockList[acc]

DbRselect() rdd:RelationObject()

DbRselect() rdd:SetRelation()

dbRunlock() rdd:unlock()

DbSeek() rdd:Seek()

DbSelectAr() rdd:Used[acc]

dbSetDefa()

DbSetFilte() rdd:Filter[ass], rdd:FilterString[ass]

DbSetindex() OrdListAdd()

DbSetLocat() rdd:Info(DBI_GETSCOPE)

DbSetOrder() OrderSetFocu()

DbSetRelat() rdd:SetRelation()

DbSkip() rdd:Skip()

DbStruct() rdd:DBStruct()

DbUnlock() rdd:Unlock()

DbUnlockAl() rdd:Unlock()

DbUseArea() RddSetDefa(), rdd:Alias[ass], rdd:Close(), rdd:FieldGet(), rdd:FieldPut(),
rdd:Used[acc]

Deleted() rdd:Deleted[acc]

Eof() rdd:Eof[acc]

Fcount() rdd:FCount[acc]

Field() rdd:FieldName()

FieldDeci() rdd:Fieldinfo(DBS_DEC)

FieldGet() rdd:FieldGet()

FieldGetAr() DbGoto(), Fcount(), FieldGet(), Recno(), Used()

FieldLen() rdd:Fieldinfo(DBS_LEN)

FieldName() rdd:FieldName()

RDD 17

FieldPos()
FieldPut()
FieldPutAr()
FieldType()
Flock()
Found()
Header()
IdDbFlock()
IndexCheck()
IndexCount()
IndexDbf()
IndexExt()
IndexKey()
IndexNames()
IndexOrd()
IsDbExcl()
IsDbRIock()
LastRec()
LUpdate()
MemoExt()
NetErr()
OrdCondSet()
OrdCreatte()
OrdDestroy()
OrdListAdd()
OrdListCle()
OrdListReb()
OrdSetFocu()
RddAnnAlia()
RddAnnFiel()
RddName()
RddRetAlia()
RddRetFiel()
RecCount()
RecNo()
RecSize()
Rlock()
Select()
Used()
UsersDbf()

rdd:FieldPos()

rdd:FieldPut()

DbGoto(), Fcount(), FieldPut(), Recno(), Used()
rdd:FieldInfo(DBS_TYPE)

rdd:FLock()

rdd:Info(DBI_FOUND), rdd:Found[acc]
rdd:Header[acc]

rdd:Info(DBI_ISFLOCK)
rdd:Orderinfo(DBOI_INDEXCHECK)
rdd:IndexCount
rdd:Orderinfo(DBOI_DBFNAME)
rdd:IndexExt[acc]

rdd:IndexKey()
rdd:Orderinfo(DBOI_ORDERCOUNT), rdd:Orderinfo(DBOI_NAME)
rdd:IndexOrd()

rdd:Shared[acc]

Recno(), Used(), rdd:RlockList
rdd:LastRec[acc]

rdd:LUpdate[acc]

rdd:Info(DBI_MEMOEXT)

rdd:SetOrderCondition()
rdd:CreateOrder()
rdd:DeleteOrder()
rdd:Setindex()
rdd:Clearlndex()
rdd:Reindex()
rdd:SetOrder()

rdd:Driver[acc]

rdd:LastRec[acc]
rdd:RecNo[acc]
rdd:RecSize[acc]
rdd:Unlock(), rdd:Rlock()

rdd:Used[acc]
rdd:UsersDbf()

RDD 18

3. Standard RDD drivers

3.1 Available properties of Dbfldx

The standard DBFIDX database driver (RDD) support:

DataServer Name oRdd:

Alias

AliasSym
Append()
AppendDB()
AppendDelimited()
AppendSDF()
AsString()
Average()

Axit()
BlobDirectExport()
BlobDirectGet()
BlobDirectimport()
BlobDirectPut()
BlobExport()
BlobGet()
Bloblmport()
BlobRootGet()
BlobRootLock()
BlobRootPut()
BlobRootUnlock()
BOF

ClearfFilter()
ClearIndex()
ClearLocate()
ClearRelation()
ClearScope()
Close()

Commit()
ConcurrencyControl
Continue()
CopyDB()
CopyDelimited()
CopySDF()
CopyStructure()
Count()
CreateDB()
Createlndex()

Type
Access,Assign
Access
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Access
Method
Method
Method
Method
Method
Method
Method
Access,Assign
Method
Method
Method
Method
Method
Method
Method
Method

DBFIDX Note Dbf/ldx part

yes
no
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no
no
no
no
no
no
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

dbf

dbf, uses idx
dbf, uses idx
dbf, uses idx
dbf, uses idx

dbf, uses idx
dbf, uses idx

dbf and idx
dbf

idx

dbf

dbf

dbf

dbf, uses idx
dbf

dbf

dbf, uses idx
dbf, uses idx
dbf, uses idx
dbf, uses idx
dbf

dbf, uses idx
dbf

idx

RDD 19

CreateOrder()
DataField()
DBStruct()
Delete()
DeleteAll()
Deleted
DeleteOrder()
Driver

EOF

Errinfo

Error()

Eval()

FCount
FieldGet()

FieldGetFormatted()

FieldHyperLabel()
FieldInfo()
FieldName()
FieldPos()
FieldPut()
FieldSpec()
FieldStatus()
FieldSym()
FieldValidate()
FileSpec
Filter

FLock()
ForBlock
Found
GetArray()
GetArrFields()
GetLocate()
GetLookupTable()
GoBottom()
GoTo()
GoTop()
Header
IndexCheck()
IndexCount
IndexExt
IndexKey
IndexKey()
IndexOrd()
Info()

Init()
IsRelation
Join()

Method
Method
Method
Method
Method
Access
Method
Access
Access
Access
Method
Method
Access
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Access
Access,Assign
Method
Access,Assign
Access
Method
Method
Method
Method
Method
Method
Method
Access
Access
Access
Access
Access
Method
Method
Method
Method
Access,Assign
Method

yes
no

yes
yes
yes
yes
no

yes
yes
yes
yes
yes
yes
yes
no

no

yes
yes
yes
yes
no

no

no

no

no

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

idx

dbf
dbf
dbf
dbf

dbf

dbf, idx

dbf

dbf

dbf, uses idx
dbf

dbf

dbf
dbf
dbf
dbf, notifies idx

dbf

dbf

dbf

dbf, idx

dbf, uses idx
dbf, uses idx
dbf

dbf, uses idx
dbf, uses idx
dbf

dbf, uses idx
dbf

dbf, idx

idx

idx

idx

idx

idx

dbf

dbf

dbf

dbf, uses idx

RDD 20

LastRec

Locate()
LockCurrentRecord()
LockSelection()
LUpdate

Name
NoiVarGet()
NoiVarPut()
NoMethod()
Notify()
OrderBottomScope
OrderDescend()
Orderlnfo()
OrderlsUnique()
OrderKeyAdd()
OrderKeyCount()
OrderKeyDel()
OrderKeyGoTo()
OrderKeyNo
OrderKeyNo()
OrderKeyVal
OrderScope()
OrderSkipUnique()
OrderTopScope
Pack()
QuickFieldGet() *
QuickFieldPut() *
RDDInfo()
RDDName
ReadOnly
Recall()
RecallAll()
RecCount
RecNo
RecordInfo()
RecSize
Refresh()
RegisterClient()
Reindex()
Relation()
RelationObject()
Replace()
ResetNotification()
RLock()
RLockList
RLockVerify()
RollBack()

Access
Method
Method
Method
Access
Access
Method
Method
Method
Method
Access,Assign
Method
Method
Method
Method
Method
Method
Method
Access,Assign
Method
Access
Method
Method
Access,Assign
Method
Method
Method
Method
Access
Access
Method
Method
Access
Access,Assign
Method
Access
Method
Method
Method
Method
Method
Method
Method
Method
Access
Method
Method

yes
yes
yes
no
yes
yes
yes
yes
yes
no
no
no
yes
yes
no
yes
no
no
yes/no
yes
yes
no
no
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
yes
yes
yes
yes
no
yes
yes
yes
no

dbf
dbf, uses idx
dbf
dbf
dbf
dbf
dbf
dbf
dbf

idx

idx

idx

idx

idx

idx

idx

idx

idx

idx

idx

idx

idx

dbf, uses idx
dbf

dbf, notifies idx
dbf

dbf

dbf

dbf

dbf

dbf

dbf, may notify
dbf

dbf

dbf, notifies idx

idx
dbf
dbf
dbf, uses idx

dbf
dbf
dbf

idx

RDD 21

Scope Access,Assign yes dbf

Seek() Method yes dbf, uses idx
SeekEval() Method yes dbf, uses idx
SetDataField() Method no

SetFilter() Method yes dbf
Setindex() Method yes idx
SetOrder() Method yes idx
SetOrderCondition() Method yes idx
SetRelation() Method yes dbf
SetSelectiveRelation() Method no

Shared Access yes dbf

Skip() Method yes dbf, uses idx
Sort() Method yes dbf, uses idx
Status Access no

Sum() Method yes dbf, uses idx
SuspendNotification() Method no

Total() Method yes dbf, uses idx
Unlock() Method yes dbf

Update() Method yes dbf, uses idx
Used Access yes dbf
UsersDbf() Method yes dbf
WhileBlock Access,Assign yes dbf

Zap() Method yes dbf, uses idx
IndexAppend() Prot.Method yes see sect. 3.2
IndexGoBottom() Prot.Method yes see sect. 3.2
IndexGoTop() Prot.Method yes see sect. 3.2
IndexReplace() Prot.Method yes see sect. 3.2
IndexSkip() Prot.Method yes see sect. 3.2
IndexSeek() Prot.Method yes see sect. 3.2
IndexSeekCompare() Prot.Method yes see sect. 3.2
IndexSeekEval() Prot.Method yes see sect. 3.2
IndexSynchronize() Prot.Method yes see sect. 3.2
BOF Prot.Instance yes see sect. 3.2
EOF Prot.Instance yes see sect. 3.2
RECNO Prot.Instance yes see sect. 3.2
LASTREC Prot.Instance yes see sect. 3.2
INDEXCOUNT Prot.Instance yes see sect. 3.2
ORDERNUM Prot.Instance yes see sect. 3.2
Notes:

1 oRdd:AppendDB(), expO1 is not supported, use expC1 instead

2 oRdd:CopyDB(), expO1 is not supported, use expC1 instead

3 oRdd:Join(), expO1 and expO2 are not supported, use expC1 and expC2 instead
4 oRdd:NoiVarGet(), NoiVarPut() and NoMethod() are inherited from the DataServer class
5 oRdd:Seek(), expL3 is not supported

RDD 22

6 oRdd:SeekEval(), expL2 is not supported
7 oRdd:Update(), expO1 is not supported, use expC1 instead

RDD 23

3.2 Notes for RDD Programmers

The default DBFIDX driver consist of two independent parts: the database handling and the,
on it depending, index part. You may therefore inherit the Dbfldx class into your own class,
use the database part and supply/ replace the required index part only.

The index part contains and handles all the exported methods Index*(), Order*(), Setindex(),
SetOrder*(), Clearindex(), Createlndex(), CreateOrder(), Reindex() for itself. The database
part handles the rest. It communicates with the index part via the protect Bof, Eof, Found,
Recno and Lastrec instances, the *Info() methods, as well as via protected methods listed
below:

oRdd:IndexAppend () —> retL Prot.Method

Notifies the idx part, that a new, empty record has been written to the database file.
Returns: the return value is not used by the dbf part.

Description: The method may now append a new, empty key to all open index files,
or wait until the IndexSynchronize() message is sent.

Related: IndexSynchronize()

oRdd:IndexGoTop () —> retL Prot.Method

The idx part determines the first logical record number.

Returns: the return value is not used by the dbf part. The method must set the
RECNO instance, corresponding to the physical record number, to which the
database pointer should be moved. On error, e.g. for an empty database or index,
RECNO should be set to LASTREC+1 and and both EOF and BOF to TRUE.

Description: This method is invoked only, if both the INDEXCOUNT and
ORDERNUM instances are greater than zero. It has to consider the index scope
criteria. Before returning to the application, the dbf part considers all the general
scopes and filters, which may result in additional invocations of the IndexSkip()
method. If so, no additional IndexSynchronize() messages are sent, since the
database is internally locked for the duration of the operation.

Related: IndexGoBottom(), IndexSkip()

oRdd:IndexGoBottom () —> retL Prot.Method

The idx part determines the last logical record number.

Returns: the return value is not used by the dbf part. The method must set the
RECNO instance, corresponding to the physical record number, to which the

RDD 24

database pointer should be moved. On error, e.g. for an empty database or index,
RECNO should be set to LASTREC+1 and and both EOF and BOF to TRUE.

Description: This method is invoked only, if both the INDEXCOUNT and
ORDERNUM instances are greater than zero. It has to consider the index scope
criteria. Before returning to the application, the dbf part considers all the general
scopes and filters, which may result in additional invocations of the IndexSkip()
method. If so, no additional IndexSynchronize() messages are sent, since the
database is internally locked for the duration of the operation.

Related: IndexGoTop(), IndexSkip()

oRdd:IndexSkip (expl1) —> retl Prot.Method

Forces the idx part, to skip to the next or previous logical record.
retl = oRdd:IndexNext (expl1)

Arguments: <expl1> is the number of records to skip forward if positive, or
backward for negative values. Values greater than 1, or smaller than -1 apply only,
if no additional scopes of filters are set.

Returns: <retl> is the number or records skipped. On success, this value is
equivalent to the <expl1> argument. The method must set the RECNO instance,
corresponding to the physical record number, to which the database pointer should
be moved. On error, e.g. if Eof() or Bof() is reached, the RECNO should be set to
LASTREC+1 or to the first logical record respectively, and the EOF or BOF instance
correspondingly.

Description: This method is invoked only, if both the INDEXCOUNT and
ORDERNUM instances are greater than zero. Before its invocation, the
IndexSynchronize(1) message is sent. The IndexSkip() method has to consider the
index scope criteria. Before returning to the application, the dbf part considers all
the general scopes and filters, which may result in additional invocations of the
IndexSkip() method, but without additional IndexSynchronize() messages, since the
database is already synchronized and internally locked for the duration of the
operation.

Related: IndexGoBottom(), IndexGoTop(), IndexSynchronize()

oRdd:IndexSeek (exp1, expL2) —> retL Prot.Method

Seeks the index key for the given value.
retL = oRdd:IndexSeek (exp1, expL2)

Arguments: <exp1> is the key value, corresponding to <exp1> parameter of the
oRdd:Seek() method.

<explL2> is equivalent to the SoftSeek clause. It represents the <explL2> parameter
of oRdd:Seek() or the current value of SET(_SET_SOFTSEEK) otherwise.

RDD 25

Returns: <retL> signals success, equivalent to FOUND. The method must set the
RECNO instance, corresponding to the physical record number, to which the
database pointer should be moved. On error, the RECNO and EOF should be set
according to the <expL2> SoftSeek state.

Description: This method is invoked only, if both the INDEXCOUNT and
ORDERNUM instances are greater than zero. Before its invocation, the
IndexSynchronize(2) message is sent. The IndexSeek() method has to considers
the index scope criteria. Before returning to the application, the dbf part consider all
the general scopes and filters, which may result in additional invocations of the
IndexSkip() method, but without additional IndexSynchronize() messages, since the
database is already synchronized and internally locked for the duration of the
operation.

Related: IndexSeekCompare(), IndexSeekEval(), IndexSkip(), Index- Synchronize(),
Seek()

oRdd:IndexSeekCompare (exp1) —> retl Prot.Method

Determines whether the current index key is still the SEEKed one.
retl = oRdd:IndexSeekCompare (exp1)

Arguments: <exp1> is the value to compare with the current index key. It is
equivalent to <exp1> parameter of the oRdd:Seek() or IndexSeek() method.

Returns: <retl> signals the result of the comparison: -1: the <exp1> is lower than
the current index key 0: the <exp1> is equal to the current index key +1: the <exp1>
is greater than the current index key

Description: After a successful IndexSeek(), additional SKIPs may be required
when global scopes or filters are set for this working area. If the returned record
from IndexSeek() does not fulfill the scopeffilter criteria, the dbf part search for the
next matching record (if any) via repeated IndexSkip() invocation. To avoid the
(relatively slow) macro evaluation of the index key thereafter, the
IndexSeekCompare() method is invoked for this comparison. The
IndexSynchronize() message is not sent, since the database is already
synchronized and internally locked for the duration of the operation.

Related: IndexSeek(), IndexSkip()

oRdd:IndexSeekEval (expB1, expL2) —> retL Prot.Method

Skips through the index, starting at the current position, searching for the next key
for which the given code block returns TRUE.

retL = oRdd:IndexSeekEval (expB1, expL2)

RDD 26

Arguments: <expB1> is the code block, corresponding to the <expB1> parameter
of the oRdd:SeekEval() method.

<expL2> is equivalent to the <expL2> parameter of oRdd:SeekEval() or TRUE if
not given there.

Returns: <retL> signals success, equivalent to FOUND. The method must set the
RECNO instance, corresponding to the physical record number, to which the
database pointer should be moved. On error, the RECNO and EOF should be set
accordingly.

Description: This method is invoked only, if both the INDEXCOUNT and
ORDERNUM instances are greater than zero. Before its invocation, the
IndexSynchronize(3) message is sent. The IndexSeekEval() method has to
consider the index scope criteria. When <explL2> is set to TRUE, the
oRdd:GoTo(Recno) method has to be invoked and the RECNO instance updated
for every index key movement. Before returning to the application, the dbf part
considers all the general scopes and filters, which may result in additional
invocations of the IndexSkip() method, but without additional IndexSynchronize()
messages, since the database is already synchronized and internally locked for the
duration of the operation.

Related: IndexSeek(), IndexSkip(), IndexSynchronize(), SeekEval()

oRdd:IndexReplace () —> NIL Prot.Method

Notifies the idx part, that the current record has been changed and written to the
database file. The method should now check and update the index keys of all open
index files/orders.

Description: Before its invocation, the IndexSynchronize(4) message is sent,
whereby the fields correspond to the original database values, before replacement.
At the time of the IndexReplace() invocation, the current field contents (available via
the oRdd:FieldGet() method or by accessing the field name) corresponds to the
new state of the database. The IndexReplace() method has to consider the index
scope criteria, such are conditional index and the descend flag.

Multiuser hint: you may store the original index key values when
IndexSynchronize(4) is received, to compare them with the newly evaluated values
here. If the key value remains unchanged, the index file/order does not need to be
changed.

Related: IndexSynchronize(), IndexAppend()

oRdd:IndexSynchronize (expl1) —> NIL Prot.Method

Notifies the idx part of the RDD, that an index pointer synchronization is required for
a subsequent index movement or key replacement. Designed to support optimized
index access.

RDD 27

oRdd:IndexSynchronize (expl1)

Arguments: <expl1> announces a forthcoming index action 1: IndexSkip() follows,
must synchronize.lnvoked only if INDEXCOUNT > 0 and the ORDERNUM instance
is not 0. 2: IndexSeek() follows, may synchronize. Invoked only if INDEXCOUNT >
0 and the OrderNum instance is not 0. 3: IndexSeekEval() follows, must
synchronize. Invoked only if INDEXCOUNT > 0 and the ORDERNUM instance is
not 0. 4: IndexReplace() follows, may/must synchronize. Invoked if INDEXCOUNT >
0, regardless of the ORDERNUM value.

Description: It is not required, that the index pointer always corresponds to the
database pointer, especially when SET ORDER is set TO 0 and the database is
skipped in natural record order, or when several GOTO statements are performed.
The synchronization is required before an index movement request at latest, or
before an index key replacement. The IndexSynchronize() message notifies the idx
part, that the current field values exactly reflect to the database record contents.

The body of the IndexSynchronize() method may determine the new index values
(e.g. by evaluating the IndexKey() string) for all open indices, and perform an
internal seek for this value/ record in the index file(s) to synchronize the index
pointer, if required.

Where necessary in your idx methods, you may force the synchronization, including
the replacement of pending changes, via oRdd:Skip(0) or oRdd:Commit(). The latter
will not send any IndexSynchronize() message, except if a replacement is pending.

Related: IndexReplace(), IndexAppend(), IndexSkip()

oRdd:Bof <—> expL Prot.Instance

Begin-of-file flag, set by the dbf part of the RDD or the Index- GoTop(),
IndexGoBottom(), IndexSkip() methods.

oRdd:Eof <—> expL Prot.Instance

End-of-file flag, set by the dbf part of the RDD or the IndexGoTop(),
IndexGoBottom(), IndexSkip(), IndexSeek(), IndexSeekEval() methods.

oRdd:Recno <—> expl Prot.Instance

Current physical record number (1...LASTREC+1), set by the dbf part of the RDD or
the IndexGoTop(), IndexGoBottom(), IndexSkip(), IndexSeek(), IndexSeekEval()
methods.

oRdd:LastRec <—> expl Prot.Instance

The last valid physical record number (greater than or equal to 0), set by the dbf
part of the RDD.

RDD 28

oRdd:IndexCount <—> expl Prot.Instance
Number of open indices (0..15) being used in this RDD. Managed by the idx part of
the RDD in oRdd:Ord*() and used also e.g. in the IndexCount() function.

oRdd:OrderNum <—> expl Prot.Instance

Ordinal number of the currently controlling index (0..15) in the list of open indices for
this RDD. Managed by the idx part of the RDD in oRdd:Ord*() and used also e.g. in
the IndexOrd() function.

RDD 29

4. Third Party RDDs

If you own additional 3rd party RDDs, you may insert the description here.

RDD 30

RDD 31

Index

c

Class
- DataServer
-- default properties RDD-19
- Dbfldx
-- default properties RDD-19

R

RDD
- architecturecccoeevivveeeieenn RDD-3

- baSICS .eeeeiii RDD-2
-databaseccccciiiiiiii RDD-3
- default properties RDD-19
-example......cccccvvviiiiiiiiiiii RDD-7
-hybriduse......cccccooiiiiiiii RDD-3
- Programmingccceeeeeveveeeeenenn. RDD-8

——example.......coooeiiii RDD-13
- reference to functions RDD-16
-seleCt...iii RDD-4
-table e RDD-3
-WOork areaooevvvveiiiiieieeeeeeee RDD-3

RDD 32

RDD 33

00

so FATMULTISOFT

multisoft Datentechnik http://www.fship.com

Harthauser Str. 85 sales@multisoft.de
D-81545 Miinchen support@flagship.de

