

The whole FlagShip 7 manual consist of following sections:

Section Content Pages

GEN General information: License agreement & warranty,
installation and de-installation, registration and support 18

LNG
FlagShip language: Specification, database, files,
language elements, multiuser, multitasking, FlagShip
extensions and differences

176

FSC Compiler & Tools: Compiling, linking, libraries, make,
run-time requirements, debugging, tools and utilities 90

CMD Commands and statements: Alphabetical reference of
FlagShip commands, declarators and statements 486

FUN Standard functions: Alphabetical reference of FlagShip
functions 640

OBJ
Objects and classes: Standard classes for Get,
Tbrowse, Error, Application, GUI, as well as other
standard classes

368

RDD Replaceable Database Drivers 38

EXT
C-API: FlagShip connection to the C language, Extend
C System, Inline C programs, Open C API, Modifying
the intermediate C code

160

FS2 Alphabetical reference of FS2 Toolbox functions 376

QRF Quick reference: Overview of commands, functions and
environment 40

PRE Preprocessor, includes, directives 30

SYS
System info, porting: System differences to DOS, porting
hints, data transfer, terminals and mapping, distributable
files

42

REL Release notes: Operating system dependent informa-
tion, predefined terminals 8

APP Appendix: Inkey values, control keys, ASCII-ISO table,
error codes, dBase and FoxPro notes, forms 34

IDX Index of all sections 42

fsman The on-line manual contains all above sections, search
function, and additionally last changes and extensions variable

multisoft Datentechnik, Munich, Germany

Copyright (c) 1992..2009
All rights reserved

Object Oriented Database Development System,
Cross-Compatible to UNIX, Linux and MS-Windows

Section OBJ

Manual release: 7.1

For the current program release see label on distribution disk and
your Activation Card, or check on-line by issuing FlagShip -version

Copyright
Copyright © 1992..2009 by multisoft Datentechnik, D-81545 Munich, Germany. All rights
reserved worldwide. Manual authors: Jan V. Balek, Ibrahim Tannir, Sven Koester

No part of this publication may be copied or distributed, transmitted, transcripted, stored in a
retrieval system, or translated into any human or computer language, in any form or by any
means, electronic, mechanical, magnetic, manual, or otherwise; or disclosed to third parties
without the express written permission of multisoft Datentechnik. Please see also "License
Agreement", section GEN.2

Made in Germany. Printed in Germany.

Trademarks
FlagShip™ is trademark of multisoft Datentechnik. Other trademarks: dBASE is trademark
of Borland/Ashton-Tate, Clipper of CA/Nantucket, FoxBase of Microsoft/Fox, UNIX of
AT&T/USL/SCO, AIX of IBM, MS-DOS and MS-Windows of Microsoft. Other products
named herein may be trademarks of their respective manufacturers.

Headquarter Address
Headquarter:

multisoft Datentechnik
Harthauser Str. 85
81545 München
Germany

Telephone: (+49-89) 6490040
Fax: (+49-89) 6412974

E-mail: support@flagship.de
support@multisoft.de
sales@multisoft.de

Web/Ftp: http://www.fship.com
ftp://mult-soft.de/pub

Call or e-mail multisoft for your local dealer or distributor

OBJ 1

OBJ: Objects and Classes
1. Overview ..5
1.1 Objects..5
1.2 Classes ...6
1.3 FlagShip Classes Sorted By Groups ..8
1.4 FlagShip extensions ...9
1.5 Instance Variables ..10
1.6 Methods ..10
1.7 Notation...10

Application Class..13
Application Basic Class...13
Application Basic Class Index...14
Application Basic Class Properties ...15

Application Window Class...19
Application Window Class Index...19
Application Window Class Properties ...21

Basic Classes..36

Color Class ..37

ColorPair Class ...39

Dimension Class ...40

Mouse Class ..41

Point Class ..42

Rectangle Class ..44

Size Class ..45

CheckBox Class..47
CheckBox Class Index..48
CheckBox Class Instantiation ...49
CheckBox Class Properties ..51

ComboBox Class ..63
ComboBox Class Index ..63

ComboBox Class Instantiation..66
ComboBox Class Properties...66

Error Class...67
1. Error handling strategy ...67
2. Error Blocks and Functions...67
ErrorNew () ...71
Error Class Properties...73

OBJ 2

ErrorBox Class..76
ErrorBox Class Index..76
ErrorBox Class Instantiation ...77
ErrorBox Class Properties ..77

InfoBox Class..78
InfoBox Class Index..78
InfoBox Class Instantiation ...79
InfoBox Class Properties ..80

MessageBox Class ...81
MessageBox Class Index ...82

MessageBox Class Instantiation...83
MessageBox Class Properties..85

TextBox Class ...90
TextBox Class Index...90
TextBox Class Instantiation ..91
TextBox Class Properties ...91

WarningBox Class ..92
WarningBox Class Index ..92

WarningBox Class Instantiation..93
WarningBox Class Properties...93

Font Class..94
Font Class Index...95
Font Class Instantiation ..96
Font Class Properties ...97

GET Class ..105
GETNEW()..106
Get Class Index ..108
GET Instance Variables..110
GET Init & Status Methods ...117
GET Editing Methods..120

ListBox Class ..123
ListBox Class Index ..123
ListBox Class Instantiation..126
ListBox Class Properties...128

MenuItem Class...154
MenuItem Class Index ..155
MenuItem Class Instantiation ...156
MenuItem Class Properties ..157

PopUp Class..161
PopUp Class Index ...162
PopUp Class Instantiation ..163
PopUp Class Properties ...165

OBJ 3

TopBar Class...172
TopBar Class Index ..173
TopBar Class Instantiation..174
TopBar Class Properties...175

Printer Class..183
Printer Class Index..183
Printer Class Instantiation...185
Printer Class Properties ..185

Push Button Class ..198
PushButton Class Index..199
PushButton Class Instantiation...201
PushButton Class Properties..203

RadioButton Class..213
RadioButton Class Index ..215
RadioButton Class Instantiation..216
RadioButton Class Properties...217

RadioGroup Class...227
RadioGroup Class Index...229
RadioGroup Class Instantiation ..231
RadioGroup Class Properties ...233

TBROWSE Class ...249
1. Creating an Object ..249
2. Specifying the Columns ..249
3. Stabilizing the Display...249
4. Data Movement...251
5. Handling a User Request..254
6. Editing Data ..256
Tbrowse Class Instantiation..257
TbrowseNew ()..257
TbrowseArr () ..261
TbrowseDB ()..263
Tbrowse Class Index ..266
Tbrowse Class Properties...269

TbColumn Class..287
TbColumnNew ()...288
TbColumn Class Index..290
TbColumn Class Properties ..291

DataServer and DBserver Class..296
1. Scope and Filters ..298
2. Summary of Properties ...299
DBSERVERNEW() and DBFIDXNEW() ...303
DataServer and DBserver Properties ...308

Index: OBJ ...365

OBJ 4

OBJ 5

1. Overview
FlagShip fully supports Clipper's and Vow’s implementation of OOP (object oriented
programming) classes. FlagShip also provides facilities for defining and manipulating user-
defined objects as a data type. In this section, only the predefined (standard) classes (and
their compatibility to CA-Clipper and VisualObjects) are described. See section LNG.11 for a
general description of OOP (object oriented programming).

The Visual FlagShip (FlagShip release 5 and later) is heavily based on OOP classes. In fact
there are three different classes in the FlagShip library for each specific i/o operation. The
decision which class should be taken is done either by the compiler when the -io=g/t/b
switch was used, or at run-time from the system environment or via command-line switch.
The run- time setup is available in the source <FlagShip_dir>/system/initio.prg. See also
section LNG.1.2

1.1 Objects
Objects in FlagShip are complex data structures with predefined instance variables and
methods to access them. The object variable has some similarity to an array variable,
whereby the object elements contains both data and code. The data element is named
instance, and the code element is a method.

The objects themselves are passive. They never initiate an action, process a user keystroke
or overtake program control. Instead, the application controls the action by sending
messages to the object, usually by assigning values to object instances or invoking a method
function.

Since the objects are stored in regular FlagShip variables, there may coexist as many
objects simultaneously, as required. The objects have the same life time, as the variable
scope storing the object.

OBJ 6

1.2 Classes
A class is a declaration of the object structure. It contains encapsulated data and code from
the rest of your application. You may establish a tree- like hierarchy among the classes by
using inheritance, see also section LNG.2.11 and CMD.CLASS.

There are many standard, predefined classes of objects, many of them are backward
compatible to Clipper 5.x or VO:

Class Used for Backward
compatible to

Applic }
AppWindow } Application class, instantiated in initio.prg

CheckBox Check box widget handling @..GET CHECKBOX CL5.3
Color Color basic class
ColorPair Color basic class
ComboBox Combo box widget handling @..GET COMBOBOX,

LISTBOX
DbServer Database RDD CL5.3
Error Information on run-time errors FS4,CL5.2
ErrorBox Error box widget handling Alert()
Font Font basic class handling SET FONT
Get GET/READ system, user modifiable, handling @..GET FS4,CL5.2
InfoBox Info box widget handling InfoBox()
ListBox List box widget handling Achoice(), @..GET LISTBOX CL5.3,VO
MenuItem Subclass of menu structure CL5.3
MessageBox Message box widget
Mouse Mouse basic class handling Mcol(), Mrow()
Point Point basic class VO
PopUp Subclass of menu structure CL5.3
Printer Class handling printers
Prompt Class handling @..PROMPT, MENU TO
PushButton Push button widget handling @..GET PUSHBUTTON CL5.3,VO
RadioButton Radio button widget, handling @..GET RADIOBUTTON CL5.3,VO
RadioGroup Radio group widget, handling @..GET RADIOGROUP CL5.3,VO
Rectangle Rectangle basic class VO
Size Size basic class VO
StatusBar Status bar class handling StatBarMsg(), StatusMessage()
TBColumn Column definitions for TBROWSE FS4,CL5.2
TBrowse Browsing table-oriented data FS4,CL5.2
TextBox Text box widget
TopBar Subclass of menu structure CL5.3
WarningBox Warning box widget

OBJ 7

In addition to the above generic and i/o classes, FlagShip provides you with predefined
database server classes (RDD), generally compatible to CA/VO (VisualObjects):

Class, RDD Used for Supports Note
DataServer inherited by other RDDs RDD specific files
DbServer standard FlagShip's RDD .dbf, .dbt, .idx
DbfIdx standard FlagShip's RDD .dbf, .dbt, .idx
AsciRdd RDD for ASCII files text file, import
Cb4cdx RDD for FoxBase, FoxPro .dbf, .fpt, .cdx *
Cb4ntx RDD for Clipper .dbf, .dbt, .ntx *
Cb4ndx RDD for dBASE III .dbf, .dbt, .ndx *
Cb4mdx RDD for dBASE IV .dbf, .dbt, .mdx *

* Note: The additional replaceable database drivers (RDD) comprise an interface for other
Xbase systems on heterogeneous networks. It is available for experimental purposes in
source code in <FlagShip_dir>/ system/RDDcb4.tar.Z, and additionally require the
CodeBase package. You may acquire Multiplatform CodeBase from Sequiter Software
Inc, or other sources.

OBJ 8

1.3 FlagShip Classes Sorted By Groups
Application class

Applic } Application class, instantiated in initio.prg
AppWindow }

Basic classes
Color Color basic class
ColorPair Color basic class
Dimension Dimension basic class
Font Font basic class handling SET FONT
Mouse Mouse basic class handling Mcol(), Mrow()
Point Point basic class
Rectangle Rectangle basic class
Size Size basic class

Error class
Error Information on run-time errors

Basic input/output
CheckBox Check box widget handling @..GET CHECKBOX
PushButton Push button widget handling @..GET OUSHBUTTON
RadioButton Radio button widget handling @..GET RADIOBUTTON
RadioGroup Radio group widget handling @..GET RADIOGROUP
RadioButton Radio button widget handling @..GET RADIOBUTTON
RadioGroup Radio group widget handling @..GET RADIOGROUP

Extended input/output
Get GET/READ system, user modifiable, handling @..GET
Prompt Class handling @..PROMPT, MENU TO
TBrowse Browsing table-oriented data
TBColumn Column definitions for TBROWSE

Select widgets
ComboBox Combo box widget handling @..GET COMBOBOX, LISTBOX
ListBox List box widget handling Achoice(), @..GET LISTBOX

Pop-up messages
ErrorBox Error box widget handling Alert()
InfoBox Info box widget handling InfoBox()
MessageBox Message box widget
TextBox Text box widget
WarningBox Warning box widget

OBJ 9

Menu bar, Status bar
TopBar Subclass of menu structure
PopUp Subclass of menu structure
MenuItem Subclass of menu structure
StatusBar Status bar class handling StatBarMsg(), StatusMessage()

Printer
Printer Class handling printers

Database drivers
AsciRdd RDD for ASCII files
DataServer inherited by other RDDs
DbServer standard FlagShip's RDD
DbfIdx standard FlagShip's RDD
Cb4cdx RDD for FoxBase, FoxPro
Cb4ntx RDD for Clipper
Cb4ndx RDD for dBASE III
Cb4mdx RDD for dBASE IV

1.4 FlagShip extensions
FlagShip provides you also with the facility for

• defining your own classes,
• manipulating the predefined classes by inheriting it into own class, and
• handling the user defined objects as a usual data type,

known as OOP (object oriented programming).

To create an object, or instantiate a class, you name the class followed by the instantiation
operators in braces { } , or alternatively invoke the (predefined or by compiler automatically
generated) creator function named classNameNEW followed by parameters in parentheses
() :

<oVar> := <className> { } -or-
<oVar> := <className> {<argumentList>} -or-
<oVar> := <className>New () -or-
<oVar> := <className>New (<argumentList>)

The use of the instantiation operator { } is compatible to CA/VO, whereas creating the object
via the <className>NEW() function is compatible to CA/Clipper 5.x.

When executing the creator function, or instantiating a class, the required amount of space is
allocated and assigned to a FlagShip variable, called an object variable. Thereafter, the
class and its objects are addressed by using the object variable, a send operator ":" and the

OBJ 10

associated method or instance variable name, called a selector. See detailed description in
section LNG.2.11 and CMD.CLASS.

1.5 Instance Variables
Each instance variable has a defined place in the object structure and holds the internal
object data. The name of the instance variable is used to access its contents by means of
the "send" operator. The use of the instance variable is similar to a predefined element
number of an array when using a #define manifest.

At object creation time, the instance variables are predefined to default values (mostly NIL,
see description of each object).

There are several visibility modes of instances, specified during class declaration. Since this
section describes the predefined classes only, following references are given for the visible,
external instances only.

1.6 Methods
Methods are predefined functions to perform an action on the object. They too are accessed
by name via the send operator, and executed using the optionally given arguments. Access
and Assign are special cases of methods, which refer to non-exported instances, mostly
used as read-only and/or write-only "virtual instance variable" with optional validation
checking. They are accessed in the same way, as the instance variables.

1.7 Notation
Each instance variable or object method is referenced using the object (variable), a send
operator, and the selector, which specifies a predefined name of the instance variable or a
method. The capitalization (upper/lower case) is not significant.

Send operator: The ":" operator sends or receives messages to and from a selector of the
specified object. Such messages access a variable or perform a special object action. The
general syntax is

<object>:<assignable instance> := <expression>
[<value> :=] <object>:<instance>
[<value> :=] <object>:<method> ([<argumentList>])

FlagShip checks the availability of the instance variables or methods both at compile-time as
well as at run-time. The compile-time check is possible only if class prototyping is used
(specified e.g. in the stdclass.fh file, which may be invoked from std.fh). Refer also to
sections LNG.2.11.1 and CMD.PROTOTYPE. If the instance or method is unknown at
compile-time, the slower run-time addressing is used. If the instance or method is unknown,

OBJ 11

NoiVarGet(), NoiVarPut() or NoMethod() will be invoked if available, or otherwise a run-time
error occur.

Naming convention: the names of instances (and access/assign methods) are significant
up to the first 10 characters, names of methods are significant in the full length. The
capitalization is not significant. See also LNG.2.11.4 for details.

OBJ 12

OBJ 13

Application Class
Definition Application Window:

+---+
| name, text |_|=|X| title bar
|---|
| File Edit Options Window Help | menu bar (opt)
|---|
|Img|Img|Img|.... | tool bar (opt)
|===|
| :^|
| :x|
| vert. :x|
| <-----user window-----> scroll :M|
| (SDI or MDI) bar :M|
| auto :x|
| :x|
| :x|
|_________hor.scroll bar,auto______________________ :v|
|<xxxxxMMMxx>| |
|===|
| text |....|Num|Shft|Ins|Time|//| status bar (opt),
+---+ resizing edge (opt)

Application Basic Class
This class provides the basic application functionality and is supported mainly for VO
compatibility, as a superset of the App class. In FlagShip, you may instantiate _gAppWindow
(or _tAppWindow or _bAppWindow) directly instead, see also <FlagShip_dir>/system/
initio.prg.

There are three different application classes: _gApp for GUI (graphical i/o), _tApp for
terminal (curses oriented) i/o and _bApp for basic i/o. Before using any of the GUI classes,
you need to instantiate the application by _gApp{} or _gAppWindow{} first.

Note, you should use this App class in special cases only, since it will not initialize the GUI
window at all and allows basic i/o only. In the most cases, you will need additionally (or only)
instantiate the AppWindow class as well.

OBJ 14

Application Basic Class Index
Class App = _gApp, _tApp, _bApp
Inherits from: no ancestor
Inherited by: AppWindow
Class prototype: appclass.fh

AppType ACC Returns the type of the application
Col2Pixel() METH Re-calculate column coordinates to pixels
ColSize ACC/ASS Returns or set the pixel size of one column
ColSizeDef() METH calculates the def size of 1 column in pixel
DesktopHeight ACC Returns the height of the used desktop in pixel
DesktopHeight() METH Set/get the height of the used desktop in units
DesktopWidth ACC Returns the width of the used desktop in pixel
DesktopWidth() METH Set/get the width of the used desktop in units
DesktopSize() METH Returns the height and width of desktop
DesktopXDpi ACC Returns desktop horiz. DPI (dot/pixel per inch)
DesktopYDpi ACC Returns desktop vertical DPI (dot/pixel per inch)
DesktopSizeAvail() METH Returns the height and width of available desktop
Font ACC/ASS Returns or set the default application font obj
FontWindow ACC/ASS Returns or set the default window font object
Init() Creator For internal purposes only
Pixel2Col() METH Re-calculate given pixels to column coordinates
Pixel2Row() METH Re-calculate given pixels to row coordinates
PrgArgs() METH Returns an array containing the given arguments
Row2Pixel() METH Re-calculate given row coordinates to pixels
RowSize ACC/ASS Returns or set pixel size (height) of one row
RowSizeDef() METH calculates the default size of 1 row in pixel

OBJ 15

Application Basic Class Properties

_gApp { } ─> oApp CREATOR
_bApp { } ─> oApp CREATOR
_tApp { } ─> oApp CREATOR

_gAppNew () ─> oApp CREATOR, alternative syntax
_bAppNew () ─> oApp CREATOR, alternative syntax
_tAppNew () ─> oApp CREATOR, alternative syntax

Instantiates the basic GUI application functionality. Note, you may instantiate an
application only once, so use either _gApp{} for GUI or _bApp{} for basic i/o or
_tApp{} for terminal i/o, you may determine the currently used environment via the
standard IsGuiMode() function. See example in AppWindow class.

oApp:AppType ─> cType ACCESS

Returns or type of this application object: G = GUI, B = basic, T=terminal i/o, or "-"
on error.

oApp:PrgArgs() ─> aArgs

Returns an array containing the name of the executable and the given
arguments/parameters at startup. The command line parameters are splitted in
elements of the array, all of type character. If no additional parameters were given,
the array contains one element with the name of the executable only. To determine
the number of given parameters, use: len(oApp:PrgArgs())-1, see also example in
AppWindow class.

oApp:ColSize ─> iSize ACCESS
oApp:ColSize := iSize ASSIGN

Returns or set the pixel size (width) of one column. This value is automatically
calculated at the time of gAppWindow instantiation or reset when a new font is
assigned. To be able to handle the whole character set size, the value is set to the
maximal char width of the current font, see also gFont:Width() for details. You may
re- calculate the required char size by e.g.

oApp:Font := gFont { "Times", 12 }
? "current default column size = ", oApp:ColSize
oApp:ColSize := oApp:Font:WidthMaxChar("45890_AEGMQSTWXZ")
?? " using = ", oApp:ColSize

OBJ 16

which sets the default font to "Times" and its largest alphanumeric characters width
to be used as an average column size, instead if the largest font character used per
default, which mostly is larger. See also examples in the AppWindow and Font
class.

oApp:DesktopHeight ─> iVertPixelSize ACCESS

Returns the height (vertical size) of the used desktop in pixel, i.e. 1200 if the current
display mode is 1600x1200. This is a shortcut for the equivalent iVertPixelSize :=
DesktopHeight(UNIT_PIXEL)

oApp:DesktopHeight([unit],[userSize]) ─> nSize

Returns the height (vertical size) of the used desktop size in units, and/or sets the
user specified desktop height.

<unit> is either numeric value (UNIT_ROWCOL, UNIT_PIXEL, UNIT_MM,
UNIT_CM, UNIT_INCH) or logical (.T. = pixel, .F. = rows). If not specified, current
SET COORD UNIT is used (default is UNIT_ROWCOL).

<userSize> is optional new user-defined value in <units>. You may set different
desktop height values for rows, pixel and mm. The cm and inch values are related
to mm and supported for your convenience.

Returns : current desktop height in <units> (before new setting, if <userSize> was
specified). Zero or -1 is returned on error.

The desktop height in pixel, mm and rows are used also internally for conversion
between different units (pixels, rows, mm, cm and inches). These values are
determined by system call, but in some operating systems or virtual machines,
some of these values may be inaccurate or not available at all (the returned value is
<= 0). If required, you may fix/set it manually by corresponding assignment of
<userSize>. The new value(s) is/are then taken for the returned value and
corresponding unit conversion. Zero or negative <userSize> value disables the user
setting and triggers again system call at next invocation.

Valid only for GUI environment, i.e. when the Xserver (on Unix) is already running,
or when the application is started in MS-Windows environment.

oApp:DesktopWidth ─> iHorizPixelSize ACCESS

Returns the width (horizontal size) of the used desktop in pixel, i.e. 1600 if the
current display mode is 1600x1200 Valid only for GUI environment, i.e. when the
Xserver (on Unix) is running or when invoked in MS-Windows environment.

OBJ 17

oApp:DesktopSize([lPixel]) ─> aRowCol

Returns an array with two numeric values containing the height and width of
desktop. If <lPixel> if true(.T.), the returned row and column data are in pixel, i.e. in
the most cases equivalent to oApp:DesktopHeight and :DesktopWidth. If <lPixel> is
false (.F.), the data are in row/col coordinates, otherwise the current SET PIXEL is
used.

oApp:DesktopSizeAvail([lPixel]) ─> aRowCol

Returns an array with two numeric values containing the height and width of the
available desktop size. In some operating systems, where determinable, this size
may be smaller than :DesktopSize() considering the reduced physical desktop size
by the window taskbar etc. If <lPixel> is true(.T.), the returned row and column data
are in pixel, if <lPixel> is false (.F.), the data are in row/col coordinates, otherwise
the current SET PIXEL is used.

oApp:DesktopXDpi ─> iPixel ACCESS

Returns the horizontal resolution of the desktop device, in dots per inch (in fact, in
pixel per inch), that is used when computing font sizes width and for recalculation of
pixel coordinates to LPI for printer output. Apply for GUI mode only. For terminal
and basic i/o, the returned value is 0.

oApp:DesktopYDpi ─> iPixel ACCESS

Returns the vertical resolution of the desktop device, in dots per inch (in fact, in
pixel per inch), that is used when computing font sizes height and for recalculation
of pixel coordinates to LPI for printer output. Apply for GUI mode only. For terminal
and basic i/o, the returned value is 0.

oApp:DesktopXmm ─> nSizeXmm ACCESS

Returns the horizontal size of the desktop device in mm. Apply for GUI mode only.
For terminal and basic i/o, the returned value is 0. Note that this value is returned
from the system API self, and may be inaccurate on some systems, or with generic
desktop driver, or with VM (virtual machine).

oApp:DesktopYmm ─> nSizeYmm ACCESS

Returns the vertical size of the desktop device in mm. Apply for GUI mode only. For
terminal and basic i/o, the returned value is 0. Note that this value is returned from
the system API self, and may be inaccurate on some systems, or with generic
desktop driver, or with VM (virtual machine).

OBJ 18

oApp:Font ─> oFont ACCESS
oApp:Font := oFont ASSIGN

Returns or set the default application font object. See details in the gFont class
description. When a new font is assigned, the ColSize and RowSize data are re-
calculated, but not the window size which may be set by oAppWindow:DefSizes()
method thereafter.

oApp:FontWindow ─> oFont ACCESS
oApp:FontWindow := oFont ASSIGN

Returns or set the default application font object, used mainly for window frames
and for message boxes (like Achoice(), InfoBox() and other widgets) without
specified font.

oApp:RowSize ─> iSize ACCESS
oApp:RowSize := iSize ASSIGN

Returns or set the pixel size (height) of one row. This value is automatically
calculated at the time of gAppWindow instantiation or reset when a new font is
assigned corresponding to the gFont:LineHeight, see details in the Font class
description.

oApp:col2pixel(expN1) ─> iColPix
oApp:row2pixel(expN1) ─> iRowPix

These methods are for your convenience and are equivalent to standard functions
Col2pixel(9 and Row2pixel(). They re-calculate the given row/column coordinates
(also a fraction of) to pixels, independent on the SET PIXEL setting. Argument:

<expN1> the column or row coordinates respectively which should be converted to
pixels.

Returns : the <expN1> multiplied by oAppWindow:ColSize or oAppWindow:
RowSize and rounded to integer.

oApp:pixel2col(expN1) ─> nCol
oApp:pixel2row(expN1) ─> nRow

These methods are for your convenience and are equivalent to standard functions
Pixel2col() and Pixel2row(). They re-calculate the given pixels to row/column
coordinates, independent on the SET PIXEL setting. Argument:

<expN1> the pixel value which should be converted to column or row respectively.

Returns : the <expN1> divided by oAppWindow:ColSize or oAppWindow: RowSize
and rounded to three decimal places.

OBJ 19

Application Window Class
The Application Window is usually the top-most class in FlagShip and defines the main
window of the application. It is per default instantiated automatically, and assigned to global
constants oApplic and oAppWindow, see the user modifiable functions _<g|b|t>InitIo() in
<FlagShip_dir>/system/initio.prg. You may freely use (access) both of them in your
application.

Compatibility: The AppWindow class is a superset of AppWindow and TopAppWindow
classes of VO. As opposite to VO where the AppWindow is a virtual class and the
TopAppWindow inherits it, is the AppWindow in FlagShip a real class. The TopAppWindow
is supported in FlagShip too, but for compatibility purposes only.

Application Window Class Index
Class AppWindow = _gAppWindow, _gAppWindow, _gAppWindow
Inherits from: App
Inherited by: TopAppWindow
Class prototype: appclass.fh
Constants, manifests: applic.fh

ApplicFont ACC Default window font object
AppType ACC Returns the type of the application
Attrib ACC/ASS Returns or sets the mode of the applic window
Caption ACC/ASS Returns/set the text displayed in the title bar
ColorBackground ACC/ASS Returns/set the standard window background

color
ColorRgbBackground ACC/ASS Returns/set the standard window background

color
ColSize ACC/ASS Returns or set the pixel size of one column
Col2Pixel() METH Re-calculate column coordinates to pixels
CurrSize() METH Returns the current application window sizes
CurrWinID() METH Returns current screenID
DefSize() METH Sets/returns the default applic window sizes
DesktopHeight ACC Returns the height of the used desktop in pixel
DesktopWidth ACC Returns the width of the used desktop in pixel
Display() METH (Re-) Displays the application window
EnableHorizontalScroll() METH Enable/disable horizontal scroll bar
EnableVerticalScroll() METH Enable/disable vertical scroll bar
EnableMaxBox() METH Enable/disable a maximize box (icon)
EnableMinBox() METH Enable/disable a minimize box (icon)
ErrorMessage() METH Display error box, equivalent to ALERT()
Font ACC/ASS Returns/set the default application font object

OBJ 20

Font() METH Same as the Font access/assign
FontApply() METH Set the current ::font as application font
Handle() METH Returns the handle of the application window
Hide() METH Hide this window so it is not visible
IsMdi() METH Returns .T. for MDI application, .F. for SDI
Mcol() METH Get mouse position on user window
McolApp() METH Get mouse position on applic window
MouseAppTrap() METH Set mouse trapping on/off
MouseTrap() METH Set mouse trapping on/off
Move() METH Moves the application window to new position
Mrow() METH Get mouse position on user window
MrowApp() METH Get mouse position on applic window
NotifyAll ACC/ASS user code block, executed for all events
NotifyClose ACC/ASS user code block, executed on closing the applic
NotifyMdiClose ACC/ASS user code block, executed on closing the MDI
NotifyMove ACC/ASS user code block, executed on window movement
NotifyResize ACC/ASS user code block, executed on window resizing
Pixel2Col() METH Re-calculate given pixels to column coordinates
Pixel2Row() METH Re-calculate given pixels to row coordinates
PrgArgs() METH Returns an array containing the given arguments
ProcessEvents() METH Process pending events for a given time
Resize() METH Resizes the application window
Row2Pixel() METH Re-calculate given row coordinates to pixels
RowSize ACC/ASS Returns or set pixel size (height) of one row
RowSizeDef() METH calculates the default size of 1 row in pixel
Show() METH Show minimized/maximized/normal
StatusBar ACC Returns the StatusBar object
Style ACC/ASS Returns or set the common Look and Feel
WinData() METH Returns an array containing window data

OBJ 21

Application Window Class Properties

_gAppWindow { [exp1...exp7] } ─> oAppWindow CREATOR
_bAppWindow { [exp1...exp7] } ─> oAppWindow CREATOR
_tAppWindow { [exp1...exp7] } ─> oAppWindow CREATOR

_gAppWindowNew ([exp1...exp7]) ─> oAppWindow CREATOR, altern syntax
_bAppWindowNew ([exp1...exp7]) ─> oAppWindow CREATOR, altern syntax
_tAppWindowNew ([exp1...exp7]) ─> oAppWindow CREATOR, altern syntax

Instantiates the GUI application functionality, which includes the application window
(including scroll bars, menu's etc.) and the user window in SDI or MDI mode at
given coordinates and with the given or default window size. This class is for GUI
(graphical interface) environment only. For other environment, use either
_bAppWindow{} for basic i/o or _tAppWindow{} for terminal i/o. You may determine
the currently used environment via the standard IsGuiMode() function.

Note, you may instantiate an application only once, so if you have already
instantiated gApp class, you need to pass the used gApp object as the 1st
parameter. This class is usually instantiated and assigned to a global constant
oAppWindow in the user modifiable InitIo() function, which is called automatically at
start-up of the FlagShip application just before other INIT functions or procedures or
the main .prg module is invoked. The source code of InitIo() is available in the
<FlagShip_dir>/system/initio.prg file.

Arguments (all optional):

<expO1> : Owner (parent) object of the application. If you have already instantiated
gApp class, you need to pass the used gApp object in this parameter. If the
gAppWindow is instantiated alone as a top- most object, pass NIL (or no entry)
instead.

<expN2> : horizontal coordinate (row) of the application window (top left edge) in
either pixel coordinates or rows, depending on current SET PIXEL setting. Note, the
default SET PIXEL is OFF for a backward compatibility, so the default entry is the
row number, also as a decimal fraction. The horizontal pixel position is determined
from the default window font. If not given, 0 is the default. May be changed by
oAppWindow:DefSize()

<expN3> : vertical coordinate (column) of the application window (top left edge) in
either pixel coordinates or columns, depending on SET PIXEL setting. If not given,
0 is the default. May be changed by oAppWindow:DefSize()

<expN4> : vertical size of the application window (pixels or rows, see above). If not
given, the size is calculated to fit 25 rows when using the default font. May be
changed by oAppWindow:DefSize()

OBJ 22

<expN5> : horizontal size of the application window (pixels or rows, see above). If
not given, the size is calculated to fit 80 columns when using the default font. May
be changed by oAppWindow:DefSize()

<expC6> : string with the title of the application, displayed at the top bar. If not
given, the name of the application is used. May be retrieved or changed by
oAppWindow:Caption later.

<expN7> : attributes specifying the appearance of the application window. The
attributes are specified in the applic.fh header file, the default setting is
APP_SDI + APP_ALLBARS + APP_SBAR_AUTO which means: SDI (single
document interface) behavior, menu bar, status bar, tool bar and tool tips are
enabled, automatic horizontal and vertical scroll bars. These settings (except
the SDI or MDI mode) can also be changed later.

The instantiation does not display the window yet, to be able to customize your
application window by invoking of oAppWindow methods. To display the window,
use the ::Display() or ::Show() methods. Life time of the object and application:
when the last instantiated object of the _?AppWindow class is destroyed, the
application will automatically terminate. This is usually not the case when setting it
as public constant in InitIo(), where the application terminates at the usual QUIT
command or RETURN from the main .prg module.

Example: instantiation of gAppWindow:

oAppWindow := _gAppWindow { }
oAppWindow:Display()

Example: instantiation of gApp and then gAppWindow:

if ! IsGuiMode()
? "-- sorry, cannot start GUI application, invoke startx first"
quit

endif

oApp := gApp { } // instantiate gApp class first
? "desktop size = ", Ltrim(oApp:DesktopHeight), "x", ;

Ltrim(oApp:DesktopWidth)
? "start-up parameters (including the executable name): "
aeval(oApp:PrgArgs(), {|x| qqout("'" + x + "' ") })
if len(oApp:PrgArgs()) <= 2

? "sorry, I need at least the two first command line parameters"
?
quit

endif
oAppWindow := _gAppWindow { oApp } // now, instantiate the class
oAppWindow:Display()

OBJ 23

oAppWindow:Attrib ─> iUsedMode ACCESS
oAppWindow:Attrib := iUsedMode ASSIGN

Returns or sets the binary or-ed mode of the application window (GUI mode), set
during the instantiation or by oAppWindow:Enable*Scroll(), oAppWindow:
EnableMaxBox(), oAppWindow:EnableMinBox(). For setting the attributes, you may
add or BinOR() the constants from applic.fh, the new attributes overrides the old
one. When redefining the SDI to MDI and vice versa, the old user window(s) are
closed and destroyed. You can determine the single settings by BinAND() the
returning value with the attributes from the applic.fh header file, e.g.

local iMode := oApp:Attrib
? "this is a", if(BinAND(iMode, APP_MDI), "MDI", "SDI"), ;

"based application"
? "the toolbar is", if (BinAND(iMode, APP_TOOLBAR), "", "not "), ;

"enabled"

oAppWindow:Caption ─> cTitle ACCESS
oAppWindow:Caption := cTitle ASSIGN

Returns or set the caption (title), i.e. the text displayed in the title bar of the
application window (GUI mode). The default is the name of the executable.

oAppWindow:ColorBackground ─> cColor ACCESS
oAppWindow:ColorBackground := cColor ASSIGN

Returns or sets the standard background color. The default value is set at
application start and corresponds to main window background color in GUI mode,
or "N" otherwise. This value is used when "?" is available in the color specification.

<cColor> is character string in SET COLOR notification, i.e. either combination of
"N,W,R,G,B,+" symbols or as RGB string "#RRGGBB" where RR, GG and BB are
hexadecimal values (00 to FF) specifying the triplet color.

oAppWindow:ColorRgbBackground ─> aRgbValue ACCESS
oAppWindow:ColorRgbBackground := aRgbValue ASSIGN

Returns or sets the standard background color. The default value is set at
application start and corresponds to main window background color in GUI mode,
or {0,0,0} otherwise. This value is used when "?" is available in the color
specification. This property corresponds to :ColorBackground and is provided for
convenience to set or return color via RGB triplet.

<aRgbValue> is an array of three numeric elements in the range of 0 to 255
specifying each color triplet {red,green,blue}

OBJ 24

oAppWindow:CurrSize(expN1, [expL2]) ─> nValue

Retrieves the current application window sizes (GUI mode). Arguments:

<expN1> : is a constant (specified in the applic.fh header file) representing the
request mode:

APP_Y_TOP = return top edge of the window in rows coordinates or a vertical pixel size
(see also <expL2>)

APP_X_TOP = return left edge of the window in columns coordinates or a horizontal pixel
size

APP_Y_SIZE = return vertical size of the application window (pixels or rows)
APP_X_SIZE = return horizontal size of the application window (pixels or columns)
APP_Y_USER = on visible window only: return vertical size of the inner part of the

application window (pixels or rows)
APP_X_USER = on visible window only: return horizontal size of the inner part of the applic

window (pixels or columns)

The *_SIZE is the outlined box size, the *_USER values represents the inner
canvas of the application window, used for the MDI or SDI window. The _USER
value is computed from the outer size *_SIZE and the window attributes
(enabled/disabled menu bar, tool bar, scroll bar, status bar etc.).

<expL2> : (optional) if not specified or is NIL, the returned values represents the
row/cols or pixels, depending on the current state of SET PIXEL on/OFF. If
specified .T., the returned values are in pixels. If specified .F., the returned values
are in row/col coord.

Returns the requested value according to <expN1> and <expL2>, or -1 on error. On
program start-up, the windows coordinates are set to defaults or to by
oAppWindow:DefSize() specified values, so e.g. oAppWindow:CurrSize
(APP_Y_TOP) == oAppWindow:DefSize() [APP_Y_TOP]. When the user
resizes or moves the window by a mouse, the current coordinates and size
changes, whereby the current values can be determined by this method and
may differ from the program defaults.

See also oAppWindow:DefSize(), oAppWindow:NotifyMove,

oAppWindow: NotifyResize, oAppWindow:Attrib, oAppWindow:WinData()

OBJ 25

oAppWindow:DefSize([expA1], [expL2]) ─> aOldSize

Sets and/or returns the default application window sizes (GUI mode). The optional
<expA1> argument is an array of numeric (or NIL) elements, representing

[1 = APP_Y_TOP] default top edge of the window in rows or vertical pixel coordinates (see
also <expL2>)

[2 = APP_X_TOP] default left edge of the window in columns or horizontal pixel
coordinates

[3 = APP_Y_SIZE] default vertical size of the application window (pixels or rows)
[4 = APP_X_SIZE] default horizontal overall size of the application window (pixels or

columns)
[5 = APP_Y_MIN] minimal allowed vertical size of the application window (pixels or rows).
[6 = APP_X_MIN] minimal allowed horizontal size of the application window (pixels or

columns)
[7 = APP_Y_MAX] maximal allowed vertical size of the application window (pixels or rows)
[8 = APP_X_MAX] maximal allowed horizontal size of the application window (pixels or

columns)

The constants representing the array elements are specified in the applic.fh header
file.

The *_TOP and *_SIZE values are used when oAppWindow:Display() is executed
for the first time. When the user resizes or moves the window by a mouse, the
current coordinates and size will not match to these defaults; the current values can
be determined by oAppWindow:Curr- Size(). You may programmatically re-move or
re-size the window to these defaults by using e.g. oAppWindow:Move(
oAppWindow:DefSize()[1], oAppWindow:DefSize()[2]) and/or oAppWindow:Resize
(...) methods at any time.

The *_MIN and *_MAX values restricts both the user and the program not to re-size
the window below or beyond these values. On attempt to under/oversize the
window, its size is corrected automatically to the allowed minimum or maximum. If
the <expA1> argument is not specified or is NIL, only the current default values are
returned. If the array element of <expA1> is not numeric type, out of range, or if the
array size is shorter, the corresponding element remains unchanged.

<expL2>: is an optional logical value. If not specified or is NIL, the given and
returned values represents the row/cols or pixels, depending on the current state of
SET PIXEL on/OFF. If specified .T., the given and returning values are in pixels. If
specified .F., the given and returning values are in row/col coordinates.

Returns: an array of 8 numeric elements in the same order of <expA1> with the
default settings (determined at the time of the method entry) in either row/column or
pixel values, depending on the current SET PIXEL setting or the <expL2> value. If
the coordinates or sizes were changed by <expA1>, the application window is
moved or resized accordingly.

OBJ 26

In Terminal i/o mode (-io=t), the values cannot be translated to row/col, therefore
elements 1...4 are always in pixel.

Example: set the topmost window position and minimal horizontal size in pixel:

oAppWindow:DefSize({20, 50, NIL, NIL, NIL, ;
oAppWindow:DesktopWidth-200}, .T.)

oAppWindow:Display()

Example: set the max available window height to desktop size:

#include "applic.fh"
local aDefa := array(APP_ROWCOL_ARR)
aDefa[APP_ROWS_MAX] := m->oApplic:DesktopHeight -120
aDefa[APP_COLS_MAX] := min(m->oApplic:DesktopWidth, ;

Col2Pixel(80) + 40)
aDefa[APP_ROWS_AVAIL] := aDefa[APP_ROWS_MAX]
aDefa[APP_COLS_AVAIL] := aDefa[APP_COLS_MAX]

@ aDefa[APP_ROWS_MAX], 0 say " " PIXEL
m->oApplic:DefSize(adefa, .T.)

Example: see also oAppWindow:Resize()

oAppWindow:Display() ─> self

(Re-) Displays the application window and all used sub-windows (i.e. user windows)
in GUI mode. Ignored when the window is minimized or hidden.

oAppWindow:EnableHorizontalScroll([expNL1]) ─> lnEnabled
oAppWindow:EnableVerticalScroll ([expNL1]) ─> lnEnabled

Enable/disable/check horizontal or vertical scroll bar in an application window (GUI
mode). Note: You may use either this method, or the corresponding flag in the
<expN7> parameter during the gAppWindow instantiation.

<expNL1> is either optional logical value signaling on or off, or optional numeric
value (APP_HSBAR_ON, APP_HSBAR_OFF, APP_HSBAR_AUTO or
APP_VSBAR_ON, APP_VSBAR_OFF, APP_VSBAR_AUTO) whereby the
constants are defined in the applic.fh file. If the parameter is not specified or is
invalid, only current setting is returned. The return value <lnEnabled> depends on
the <expNL1> parameter: if logical, the current on/off status is returned as logical
value (.T. signals "always enabled" scrollbar), otherwise numeric value
APP_HSBAR_* or APP_VSBAR_* signals the current state.

OBJ 27

oAppWindow:EnableMaxBox([expL1]) ─> lCurrState

Enable/disable a maximize box (icon) in an application window (GUI mode).

<expL1>: TRUE enables the maximize box; FALSE disables it. The default is
TRUE. The maximize box is automatically enabled when you start your application,
i.e. during the _gAppWindow instantiation Specify FALSE only to disable this
feature. The default state is set by attribute during the window instantiation.

Returns: the current state of the maximize box (at the time of entering this method)

See also oAppWindow:Show()

oAppWindow:EnableMinBox([expL1]) ─> lCurrState

Enable/disable a minimize box (icon) in an application window (GUI mode).

<expL1>: TRUE enables the minimize box; FALSE disables it. The default is
TRUE. The minimize box is automatically enabled when you start your application,
i.e. during the _gAppWindow instantiation. Specify FALSE only to disable this
feature. The default state is set by attribute during the window instantiation.

Returns: the current state of the minimize box (at the time of entering this method)

See also oAppWindow:Show()

oAppWindow:ErrorMessage(expC1, [expN2], [expNCA3], [...]) ─> nChoice

Display a message in an error box. This method is equivalent to the ALERT(expC1,
expA2) standard function. The arguments are equivalent to those of MessageBox
class:

<expC1> : The description text to be displayed in the error box.

<expN2> : Type of the message box. One of the constants MBOX_INFO,
MBOX_WARNING, MBOX_ERROR, MBOX_QUEST or MBOX_NONE from
dialog.fh, specifying the type of the box and the used icon. If omitted,
MBOX_WARNING is the default here.

<expNCA3> : Type and caption of the used push button(s). Either numeric
constant(s) or a string or an array with numeric or character elements specifying the
response buttons. If not specified, a single "OK" option is presented.

<expC4>...<expO6> according to the MessageBox class are supported as well.

Returns: a numeric value indicating which option was chosen, same as
MessageBox:Exec() .

OBJ 28

oAppWindow:Font([expO1]) ─> oFont

Returns or set the default application font object (GUI mode). This method is for
your convenience only and is equivalent to oAppWindow:Font Access/Assign.

<expO1>: If specified, this font object will be set as the font of the current window.

Returns: The font object used in the current window.

oAppWindow:Hide() ─> self

Hides the application window so it is not visible (GUI mode). To re-display, use
oAppWindow:Display()

oAppWindow:IsMDI() ─> lMdiMode

Returns .T. for MDI application, .F. for SDI (default). The MDI mode for Multiple
Document Interface let you open additional user windows within the same
application. Available in GUI mode only. Initialized by the -mdi compiler switch.
When the -mdi switch was not specified during the link phase, or with non-GUI
applications, the common SDI (for Single Document Interface) application mode is
created.

oAppWindow:Move([expN1], [expN2], [expL3]) ─> self

Moves the application window to the default or a new position. Arguments (all
optional):

<expN1> : the new row number (also decimal fraction) or a vertical position of the
top left edge in pixel (depending on the current SET PIXEL setting and the <expL3>
argument). If not given, the default value from the object instantiation or from
oAppWindow: DefSizes() invocation is used.

<expN2> : the new column number (also decimal fraction) or a horizontal position
of the top left edge in pixel (depending on the current SET PIXEL setting and/or
<expL3>). If not given, the default setting from the object instantiation or from
oAppWindow:DefSizes() is used.

<expL3>: an optional logical value. If not specified or is NIL, the given values
represent the row/cols or pixels, depending on the current state of SET PIXEL
on/OFF. If specified .T., the given values are in pixels. If specified .F., the given
values are in row/col coordinates.

oAppWindow:Move(...) is designed mainly for GUI mode. It however moves also
Terminal i/o (MS-Windows only) similar to ConsoleSize(). In Linux, use xterm
settings by newfswin.

Example: center application on desktop:

OBJ 29

#include "applic.fh"
if AppIoMode() == "G"

local xDesktop := oApplic:DesktopWidth
local yDesktop := oApplic:DesktopHeight
local xApplic := oApplic:CurrSize(APP_X_SIZE, .T.)
local yApplic := oApplic:CurrSize(APP_Y_SIZE, .T.)

oApplic:Move((yDesktop - yApplic) /2, ;
(xDesktop - xApplic) /2, .T.)

endif

oAppWindow:NotifyAll ─> cBlock ACCESS
oAppWindow:NotifyAll := cBlock ASSIGN

Event handler callback (GUI mode). Returns or set a user-supplied code block
which should handle all events not handled previously by the
oAppWindow:NotifyClose, oAppWindow:NotifyMove or oAppWindow:Notify- Resize
event handler. The code block receives three arguments: the event number
(APP_EV_* according to applic.fh), window-ID number (usually 0), and a string
specifying the event origin (e.g. "Screen" or "EventHandler" or "Tbrowse" or
"WindowAbort" etc.). If the code block returns .T. the event should be processed
further by the default event handler. When the code block return .F., the default
event handler will ignore further processing of this event. Assigning a NIL value
resets this event handler.

Example:

oAppWindow:NotifyAll := ;
{ |iEvent,iWin,cWhere| myEventNotif(iEvent,iWin,cWhere) }

...
FUNCTION myEventNotif(eventNo,iWin,cWhere)
??## time(1), "Event#" + ltrim(iEvent), "occured in window#" + ;

ltrim(iWin), "from", cWhere
return .T. // process it

oAppWindow:NotifyClose ─> cBlock ACCESS
oAppWindow:NotifyClose := cBlock ASSIGN

Event handler callback (GUI mode). Returns or set a user-supplied code block
which handles the Applic.Window close event, sent by a mouse click on the (X) icon
top right in main window. This event is sent just before the window (hence also the
application) is closed. As with all other Notify* handlers, the code block receives the
event number (here APP_EV_CLOSE) as a parameter. The code block itself or an
UDF invoked from the code block may e.g. display an alert or message window
asking the user if the application should really be closed. If the code block return
.T., the event is accepted and the application closed. Otherwise the attempt for
closing the window is rejected. Assigning a NIL value resets this event handler,
further APP_EV_CLOSE events are sent to the general oAppWindow:NotifyAll
handler, if any. If not so, the application is silently closed.

OBJ 30

Example:

oAppWindow:NotifyClose := { |iEvent| myCloseHandle(iEvent) }
...
FUNCTION myCloseHandle(eventNo)
if ALERT("Do you want to close application?", {"No", "Yes"}) == 2

CLOSE ALL
return .T.

endif
return .F.

oAppWindow:NotifyMove ─> cBlock ACCESS
oAppWindow:NotifyMove := cBlock ASSIGN

Event handler callback (GUI mode). Returns or set a user-supplied code block
which handles the move event. This event is sent just before the window is moved
by mouse. As with all other Notify* handlers, the code block receives the event
number (here APP_EV_MOVE) as a parameter. If the code clock return .T., the
event is accepted and the application window moved. Otherwise the attempt for
moving the window is rejected. A NIL value resets this event handler, further
APP_EV_MOVE events are sent to the general oAppWindow:NotifyAll handler, if
any.

oAppWindow:NotifyResize ─> cBlock ACCESS
oAppWindow:NotifyResize := cBlock ASSIGN

Event handler callback (GUI mode). Returns or set a user-supplied code block
which handles the resizing event. This event is sent just before the window is
resized by mouse. As with all other Notify* handlers, the code block receives the
event number (here APP_EV_RESIZE) as a parameter. If the code clock return .T.,
the event is accepted and the application window resized, otherwise the attempt is
rejected. A NIL value resets this event handler, further APP_EV_RESIZE events
are sent to the general oAppWindow:NotifyAll handler, if any.

oAppWindow:ProcessEvents([expN1]) ─> self

Process pending events for a given time in milliseconds or until there are no more
events to process. You will usually not need to call this method from your .prg code
(although you can), since it is invoked periodically by FlagShip run-time. You only
will need to frequently call it (at least within 1-3 seconds) from a large or a time
consuming C source (which is not handled automatically by the run-time) to allow
the event manager to handle all the user events done in the meantime, like window
resizing, movement, refresh, close, key and mouse trapping etc. Argument
(optional):

<expN1> : Time period or mode. If specified 0 (zero) or not given, process all
pending events but for max. 3000 milliseconds (3 sec). If > 0, process all pending

OBJ 31

events but max for the given time period <expN1> in milliseconds. If < 0, waits for
one event to process it.

For your convenience, there is a function named ProcessEvents() which perform
the same task. For source parts written in C, corresponding C callable function 'int
ProcessEvents()' and 'int ProcesEventsClock (int milliSec)' are available as well,
where the first checks only for pending output, and the second checks for output
and displays clock. The milliSec parameter is usually 3000.

oAppWindow:Resize([expN1],[expN2],[expL3],[expL4],[expL5]) ─> self

Resizes the application window to the default or a new size. See also
oAppWindow:Size for an alternative setting. Arguments (all optional):

<expN1> : the new size in rows (also decimal fraction) or a vertical size of the
application window in pixel (depending on the current SET PIXEL setting and the
<expL3> value). If not given, the default setting from the object instantiation or from
oAppWindow:defSizes() is used.

<expN2> : the new size in columns (also decimal fraction) or a horizontal size of the
application window in pixel (depending on the current SET PIXEL setting and the
<expL3> value). If not given, the default setting from the object instantiation or from
oAppWindow:DefSizes() is used.

<expL3> : an optional logical value = pixels. If not specified or is NIL, the given
values represents the row/cols or pixels, depending on the current state of SET
PIXEL on/OFF. If specified .T., the given values are in pixels. If specified .F., the
given values are in row/col coordinates. Applicable for GUI mode only.

<expL4> : an optional logical value = auto-resize. If not given or is true (.T.), the
Resize() method will increase the application window automatically so, that at least
the number of given rows and/ or columns are available and visible. With auto-
resizing, the <expN1> and <expN2> coordinates are the inner window frame. The
MaxRow() and MaxCol() will be set accordingly. Note: the auto-resizing may
produce slightly inaccurate results in some windows manager. If <expL4> is false
(.F.), the coordinates are outer application window frame and the programmer will
control the visibility manually, see example 2 and 4 below. Best also to set
MaxRow() and MaxCol().

<expL5> : an optional logical value = resize also status bar. If not given or is .T.,
the status bar items are resized accordingly to the size of the application
window. False (.F.) value permits resizing of the status bar items. Applicable for
GUI mode only.

oAppWindow:Resize(...) is designed mainly for GUI mode. It however resizes also
Terminal i/o (MS-Windows only) similar to ConsoleSize(), i.e. it may decrease
current window, but cannot increase it. In Linux, use xterm settings by newfswin.

OBJ 32

Example 1: At application start, the window is sized to 25 rows by 80 columns,
where the size of the largest character is used (which is usually a semi-graphic
character like chr(215)). If you wish to have smaller window, you may resize the
applic window e.g. to an average of an upper/lower letter width by:

m->oApplic:Resize(25, StrLen2Col(replicate("Xx",40)))

Example 2: To set screen height of the whole, current desktop less 40 pixel at
bottom, and a width of 80-times the "X" character, use:

nRows := int(Pixel2row(m->oApplic:DesktopHeight - 40 - 80))
m->oApplic:Resize(nRows, StrLen2Col(replicate("X",80)))

or ditto manually:

iSizeX := StrLen2pix(replicate("X",80)) + 15 // add frame
iSizeY := m->oApplic:DesktopHeight - 40
MaxCol(.T., StrLen2pix(replicate("X",80)))
MaxRow(.T., iSizeY - 80) // subtract frame
m->oApplic:Resize(iSizeY, iSizeX, .T., .F.)

where both work fine for either proportional or fixed fonts. With fixed font set, see
also the next example.

Example 3: set fixed font, resize to 25x80 rows/columns corresponding to the used
font

SET FONT "courier" SIZE 12

m->oApplic:Resize(25, 80) // auto-resize

// display test grid
line80 := "0....:....1....:....2....:....3....:...." + ;

"4....:....5....:....6....:....7....:...."
for ii := 0 to 24

@ ii,0 say line80
@ ii,0 say ltrim(ii)

next
m->oApplic:WinData(.T.) // display windows data on stderr
setpos(0,0)
wait "before exit..."

OBJ 33

Example 4: same as example 3, but the programmer controls the visibility and have
specified also the max resizable area. Note that the window coordinates specify
here outer frame, so add frame displacement (may vary in dependence on used
window manager).

#include "applic.fh"

#define DISPL_Y 80
#define DISPL_X 35

m->oApplic:Font:FontName("courier")
m->oApplic:Font:SizePoint(12)

// set max app.window sizes
aDefa := array(APP_ROWCOL_ARR)
aDefa[APP_ROWS_MAX] := m->oApplic:DesktopHeight -50 // screen
size
* aDefa[APP_ROWS_MAX] := Row2Pixel(25) + DISPL_Y // or 25
rows

aDefa[APP_COLS_MAX] := min(m->oApplic:DesktopWidth, ;
Col2Pixel(80) + DISPL_X)

@ aDefa[APP_ROWS_MAX], 0 say " " PIXEL // ensure auto-resize
m->oApplic:DefSize(adefa, .T.) // set defaults

// resize to 25x80
m->oApplic:Resize(Row2pixel(25) + DISPL_Y, ;

Col2pixel(80) + DISPL_X, ;
.T., .F.) // manual resize

m->oApplic:display()

// display test grid 25x80
setpos(0,0)
wait "before say..."
line80 := "0....:....1....:....2....:....3....:...." + ;

"4....:....5....:....6....:....7....:...."
for ii := 0 to 24

@ ii,0 say line80
@ ii,0 say ltrim(ii)

next
setpos(0,0)
wait "before exit..."

OBJ 34

oAppWindow:Show([expN1]) ─> nStatus

Set and/or get the window visibility (GUI mode). Argument (optional): <expN1> a
constant defined in applic.fh that represents how the window is shown:

APP_NORMSIZE (= SHOWNORMAL) : Shows the window on its owner (usually a
desktop), in a size before minimizing or maximizing

APP_MINSIZE (= SHOWICONIZED) : Iconize, i.e. minimize the window. Available
only when not disabled by oAppWindow:EnableMinBox(.F.)

APP_MAXSIZE (= SHOWZOOMED) : Shows the window at the maximum size
allowed by its owner. The Application window occupies the whole desktop.
Available only when not disabled by oAppWindow: EnableMaxBox(.F.)

The window visibility will only be changed when a valid argument was passed. Note
that also the user may iconize (minimize), maximize or reset the normal window
visibility by a mouse click on the corresponding icon in the top right corner of the
window.

Returns: a constant (see <expN1>) representing the current status (at the time of
entering the method) set either by the application via this Show() method, or set
by the user via mouse click.

oAppWindow:Style ─> nStyle ACCESS
oAppWindow:Style := nStyle ASSIGN

Returns or set the appearance style, i.e. the common Look and Feel of a GUI
application. The <nStyle> constant is APP_STYLE_MOTIF (Motif alike style),
APP_STYLE_CDE (Common Desktop Environment alike) or
APP_STYLE_WINDOWS (MS-Windows alike), all defined in applic.fh file. Per
default, the style corresponds to the used environment, i.e. APP_STYLE_MOTIF in
Unix and APP_STYLE_WINDOWS in MS-Windows.

oAppWindow:WinData([expL1]) ─> aStatus

Determine and optionally print significant application window (GUI mode) data as an
extract from other oAppWindow methods, e.g. :Desktop*(), :Font*(), :CurrSize() etc.
Argument (optional):

<expL1> is a logical value. If set .T., the <aStatus> data are printed in human
readable form to stderr device.

Returns: <aStatus> is three-dimensional array describing important application
window data. The array elements corresponds to APP_WINDATA_* constants
defined in applic.fh and the sub-array in each element is a textual description,
row/height and column/width in pixel, in that order.

OBJ 35

Example:

#include "applic.fh"
aData := m->oAppWindow:WinData()
yUserPix := aData[APP_WINDATA_USERSIZE,2] // pixel
xUserCol := Pixel2col(aData[APP_WINDATA_USERSIZE,3]) // columns
? aData[APP_WINDATA_USERSIZE,1], "=", ;
ltrim(yUserPix),"(in pixel) *", ltrim(xUserCol),"(in cols)"

Example: display data on screen

aeval(m->oAppWindow:WinData(), ;
{|x| Qout(x[1], "=", ltrim(x[2]), "/", ltrim(x[3])) })

Example: print data to stderr

m->oAppWindow:WinData(.T.)

OBJ 36

Basic Classes
These basic classes are often used to carry information for other classes.

The basic classes are:

•Color Class

•ColorPair Class

•Dimension Class

•Font Class

•Mouse Class

•Point Class

•Rectangle Class

•Size Class

OBJ 37

Color Class
creates a Color object, which is used to describe color settings via RGB values. It can
contain either the foreground or background color specification.

Class Color
Inherits from: - (none)
Inherited by: ColorPair
Class prototype: basclass.fh
Defines: color.fh

Color { [expNA1], [expN2], [expN3] } ─> oColor CREATOR
ColorNew ([expN1], [expN2], [expN3]) ─> oColor CREATOR, altern syntax

Instantiates a Color object by the RGB triplet values, or by RGB(0,0,0) = black. The
triplet specify your own mix of red, green, and blue components, each can be a
value between 0 (lowest intensity) and 255 (highest intensity). Arguments (all
optional):

<expA1> : An array of three elements {red,green,blue}. If the 1st argument is
detected as array, the <expN2> and <expN3> arguments will be ignored.

<expN1> : The red component of the color in range of 0 to 255

<expN2> : The green component of the color in range of 0 to 255

<expN3> : The blue component of the color in range of 0 to 255

oColor:Blue ─> iVal ACCESS
oColor:Blue := iVal ASSIGN

Access or assign the blue triplet of the color as a value from 0 to 255

oColor:Green ─> iVal ACCESS
oColor:Green := iVal ASSIGN

Access or assign the green triplet of the color as a value from 0 to 255

oColor:Red ─> iVal ACCESS
oColor:Red := iVal ASSIGN

Access or assign the red triplet of the color as a value from 0 to 255

oColor:Rgb ([aTrippl]) ─> aTrippl METHOD
oColor:Rgb ([iRed], [iGreen], [iBlue]) ─> aTrippl METHOD

OBJ 38

Returns or set the corresponding color. If no arguments are given, only the array of
2 numeric elements (red, green, blue) with values in the range 0 to 255 is returned.

OBJ 39

ColorPair Class
creates a ColorPair object, containing two Color objects as a pair for foreground and
background.

Class ColorPair
Inherits from: Color
Inherited by: - (none)
Class prototype: basclass.fh
Defines: color.fh

ColorPair { [expO1], [expO2] } ─> oColorPair CREATOR
ColorPairNew ([expO1], [expO2]) ─> oColorPair CREATOR, altern syntax

Instantiates a ColorPair objects.

<expO1> is the foreground Color object. If not given, the default is black = Color{ 0,
0, 0}

<expO2> is the background Color object. If not given, the default is white =
Color{255,255,255}

oColorPair:Background ─> oColor ACCESS
oColorPair:Background := oColor ASSIGN

Set or return the background color part of the object. Example:
? oPair:Background:Red // 127 }
? oPair:Background:Green // 127 } a gray color
? oPair:Background:Blue // 127 }

oColorPair:Foreground ─> oColor ACCESS
oColorPair:Foreground := oColor ASSIGN

Set or return the foreground color part of the object.

OBJ 40

Dimension Class
This class is provided for compatibility purposes and is equivalent to the Size class.

Class Dimension
Inherits from: Size
Inherited by: - (none)
Class prototype: basclass.fh
Defines: - (none)

oDimension := Dimension {[expN1], [expN2], [expL3]} CREATOR
oDimension := DimensionNew ([expN1], [expN2], [expL3]) CREATOR alter.syntax

See description and properties of the Size class

OBJ 41

Mouse Class
This class is used to hold the mouse information. It is available in all i/o modes, but a
meaningful information is given in the GUI mode only.

The mouse class is instantiated automatically in the InitIo() start-up function (see
<FlagShip_dir>/system/initio.prg) to a global constant named "_oMouse" and should not be
instantiated extra.

Class Mouse = _gMouse, _bMouse, _tMouse
Inherits from: - (none)
Inherited by: - (none)
Class prototype: mouseclass.fh
Defines: - (none)

Mcol() METHOD Determine the mouse cursor's screen column position
Mhide() METHOD Hide the mouse pointer
MLeftDown() METHOD Determine the press status of the left mouse button
MPresent() METHOD Determine if a mouse is present
MRestState() METHOD Re-establish the previous state of a mouse
MRightDown() METHOD Determine the status of the right mouse button
Mrow() METHOD Determine the mouse cursor's screen row position
MSaveState() METHOD Save the current state of a mouse
MSetBounds() METHOD Define an inclusion region (*)
MSetClip() METHOD Define an inclusion region (*)
MSetCursor() METHOD Determine a mouse's visibility
MSetPos() METHOD Set a new position for the mouse cursor
MShow() METHOD Display the mouse pointer
MState() METHOD Return the current mouse state

OBJ 42

Point Class
This class is used to hold information about specific coordinate.

Class Point
Inherits from: -
Inherited by: -
Class prototype: basclass.fh
Defines: -

Point { [expN1], [expN2], [expL3] } ─> oPoint CREATOR
PointNew ([expN1], [expN2], [expL3]) ─> oPoint CREATOR, altern. syntax

Instantiates a point object. Arguments (all optional):

<expN1> : The x (column) coordinate of the widget. If not given, 0 is the default.
See also oPoint:x and oPoint:x()

<expN2> : The y (row) coordinate of the widget. If not given, 0 is the default. See
also oPoint:y and oPoint:y()

<expL3> : an optional logical value. If not specified or is NIL, the given values
represent the row/cols or pixels, depending on the current state of SET PIXEL
on/OFF. If specified .T., the given values are in pixels. If specified .F., the given
values are in row/col coordinates.

oPoint:X ─> iColPixel ACCESS
oPoint:X := iColPixel ASSIGN

The x (column) coordinate of the widget in pixels. See also oPoint:X() for an
alternative syntax.

oPoint:X([expN1], [expL2]) ─> nColumn

Set and/or return the x (column) coordinate of the widget. Arguments (optional):

<expN1> : The x (column) coordinate of the widget. If not given or is NIL, the X
value remain unchanged and only the current size is returned.

<expL2> : an optional logical value. If not specified or is NIL, the <expN1> and
<returnN> represents a value either in row/cols or in pixels, depending on the
current state of SET PIXEL on/OFF. If specified .T., the given and returned value is
in pixels (and thus equivalent to oPoint:X acc/ass). If specified .F., the given and
returned value is in row/col coordinates.

<returnN> : The x (column) coordinate of the widget at the time of entering this
method, either in pixel or col/row coordinates, depending on <expL2> argument.

OBJ 43

oPoint:Y ─> iRowPixel ACCESS
oPoint:Y := iRowPixel ASSIGN

The y (row) coordinate of the widget in pixels. See also oPoint:Y() for an alternative
syntax.

oPoint:Y([expN1], [expL2]) ─> nRow

Set and/or return the y (row) coordinate of the widget. Arguments (optional):

<expN1> : The y (row) coordinate of the widget. If not given or is NIL, the Y value
remain unchanged and only the current size is returned.

<expL2> : an optional logical value: If not specified or is NIL, the <expN1> and
<returnN> represents a value either in row/cols or in pixels, depending on the
current state of SET PIXEL on/OFF. If specified .T., the given and returned value is
in pixels (and thus equivalent to oPoint:Y acc/ass). If specified .F., the given and
returned value is in row/col coordinates.

<returnN> : The x (column) coordinate of the widget at the time of entering this
method, either in pixel or col/row coordinates, depending on <expL2> argument.

OBJ 44

Rectangle Class
This class is used to hold information about specific coordinate.

Class Rectangle
Inherits from: -
Inherited by: -
Class prototype: basclass.fh
Defines: -

Bottom ACC/ASS The bottom coordinate in pixel
Bottom() METHOD The bottom coordinate in pixel or rows
Height ACC/ASS The height size in pixel
Height() METHOD The height size in pixel or rows
Left ACC/ASS The left coordinate in pixel
Left() METHOD The left coordinate in pixel or columns
Right ACC/ASS The right coordinate in pixel
Right() METHOD The right coordinate in pixel or columns
Top ACC/ASS The top coordinate in pixel
Top() METHOD The top coordinate in pixel or rows
Width ACC/ASS The width size in pixel
Width() METHOD The width size in pixel or rows
X ACC/ASS The left coordinate in pixel
X() METHOD The left coordinate in pixel or columns
Y ACC/ASS The top coordinate in pixel
Y() METHOD The top coordinate in pixel or rows

oRect := Rectangle { [expN1],[expN2],[expN3],[expN4],[expL5] } CREATOR
oRect := RectangleNew ([expN1],[expN2],[expN3],[expN4],[expL5]) CREATOR

Instantiate Rectangle object.

<expN1>...<expN4> are top, left, bottom, right coordinates in that order. If not
specified, 0/0 is used for top/left and maxrow() / maxcol() for bottom/right. If
<expN3> is negative, it specifies the height instead of bottom. If <expN4> is
negative, it specifies the width instead of right.

<expL5> an optional logical value. If not specified or is NIL, the given values
represent the row/cols or pixels, depending on the current state of SET PIXEL
on/OFF. If specified .T., the given values are in pixels. If specified .F., the given
values are in row/col coordinates.

OBJ 45

Size Class
Specifies a size of an object

Class Size
Inherits from: -
Inherited by: Dimension
Class prototype: basclass.fh
Defines: -

oSize := Size { [expN1], [expN2], [expL3] } CREATOR
oSize := SizeNew ([expN1], [expN2], [expL3]) CREATOR alter.syntax

Instantiates a Size (or Dimension) object. Arguments (all optional):

<expN1> : The width (x size) of the widget. If not given, 0 is the default. See also
oSize:Width and oSize:Width()

<expN2> : The height (y size) of the widget. If not given, 0 is the default. See also
oSize:Height and oSize:Height()

<expL3> : an optional logical value. If not specified or is NIL, the given values
represent the row/cols or pixels, depending on the current state of SET PIXEL
on/OFF. If specified .T., the given values are in pixels. If specified .F., the given
values are in row/col coordinates.

oSize:Height ─> iHeightPixel ACCESS
oSize:Height := iHeightPixel ASSIGN

The height (y size) of the widget in pixels. See also oSize:Height() method for an
alternative syntax.

oSize:Height([expN1], [expL2]) ─> nHeight

Set and/or return the height (y size) of the widget. Arguments (optional):

<expN1> : The height of the widget. If not given or is NIL, the value remain
unchanged and only the current size is returned.

<expL2> : an optional logical value. If not specified or is NIL, the <expN1> and
<returnN> represents a value either in row/cols or in pixels, depending on the
current state of SET PIXEL on/OFF. If specified .T., the given and returned value is
in pixels (and thus equivalent to oSize:Height acc/ass). If specified .F., the given
and returned value is in row/col coordinates.

<returnN> : The y (height) coordinate of the widget at the time of entering this
method, either in pixel or col/row coordinates, depending on <expL2> argument.

OBJ 46

oSize:Width ─> iWidthPixel ACCESS
oSize:Width := iWidthPixel ASSIGN

The width (x size) of the widget in pixels. See also oSize:Width() method for an
alternative syntax.

oSize:Width([expN1], [expL2]) ─> nWidth

Set and/or return the width (x size) of the widget. Arguments (optional):

<expN1> : The width of the widget. If not given or is NIL, the X value remain
unchanged and only the current size is returned.

<expL2> : an optional logical value. If not specified or is NIL, the <expN1> and
<returnN> represents a value either in row/cols or in pixels, depending on the
current state of SET PIXEL on/OFF. If specified .T., the given and returned value is
in pixels (and thus equivalent to oSize:Width acc/ass). If specified .F., the given and
returned value is in row/col coordinates.

<returnN> : The x (width) coordinate of the widget at the time of entering this
method, either in pixel or col/row coordinates, depending on <expL2> argument.

OBJ 47

CheckBox Class
Create check boxes, which are widgets (controls) that can be toggled on or off by a user.

A check box allows the user to choose between 2 or 3 states. A 2-state check box allows a
choice between a checked (ON) and unchecked (OFF) state. The choice is reflected in
CheckBox:Value access, which may be TRUE or FALSE. A 3-state check box adds a third
(UNDETERMINED) state, in which the box is dimmed. The third state is indicated by
CheckBox:Value being TRUE and by CheckBox:ValueChanged (which is normally TRUE)
being FALSE. Compatibility note: Clipper supports 2-state mode only.

The CheckBox class has been designed to be easily integrated into the standard FlagShip
GET/READ system in addition to providing the necessary functionality to be utilized on its
own.

The following code creates a check box with a caption "Check me"

oChkBox := CheckBox{30,50, "Check me", .T.}
oChkBox:Show()

FlagShip also support the use of check boxes via the common @..GET / READ interface

lChecked := .F.
@ 5,10 GET lChecked CHECKBOX CAPTION "Check me"
READ

As with other GUI classes in FlagShip, the general CheckBox class is internally inherited by
three different sub-classes: _gCheckBox for GUI based application, _tCheckBox for
terminal/text based mode, and _bCheckBox for basic i/o mode, all defined in the boxclass.fh
header file. The proper class, corresponding to the used i/o mode, is set either at compile
time with the compiler switch "-io=g|t|b", or latest at run-time depending on the currently used
environment.

Note: in the basic i/o mode, only a rough check box functionality is simulated by the
sequential in/output.

OBJ 48

CheckBox Class Index
Class CheckBox
Inherits from: -
Inherited by: -
Class prototype: boxclass.fh
Defines: button.fh, set.fh

Bitmaps ACC/ASS Available for compatibility to Clipper only
Buffer ACCESS Indicates whether the check box is checked or not
CapCol ACC/ASS Screen column of the check box's caption
CapCol() METHOD Screen column of the check box's caption
CapRow ACC/ASS Screen row of the check box's caption
CapRow() METHOD Screen row of the check box's caption
Caption ACC/ASS String that describes the check box caption
Cargo ACC/ASS A user value of any type
Checked ACC/ASS Indicates whether the check box is checked
ClassName METHOD For compatibility to Clipper's getsys.prg only
Col ACC/ASS Screen column where the check box is displayed
Col() METHOD Screen column where the check box is displayed
ColdBox ACC/ASS Frame of check box without focus
ColorSpec ACC/ASS Color attributes
Destroy() METHOD Destroys the CheckBox object
Display() METHOD Show the check box and its caption on the screen
Fblock ACC/ASS Code block evaluated at receiving/losing focus
Handler ACC/ASS User defined keyboard handler
HasFocus ACC Indicates whether the object has input focus
Height ACC/ASS The height of the check box
Height() METHOD The height of the check box (incl. pixel setting)
HitTest() METHOD Determines if the mouse cursor is within the box
HotBox ACC/ASS Frame of check box with focus
KillFocus() METHOD Take input focus away from a CheckBox object
Message ACC/ASS String displayed in the windows status bar
Modified ACC/ASS Indicates whether the button is clicked
Row ACC/ASS Screen row where the check box is displayed
Row() METHOD Screen row where the check box is displayed
Sblock ACC/ASS Code block evaluated at user selection
Select() METHOD Set/clear the check box checked status
SetFocus() METHOD Set input focus to a CheckBox object
Show() METHOD Activates the default or user's input handler
Style ACC/ASS Delimiter and status display characters
ToolTip ACC/ASS Short pop-up info message
TypeOut ACC Always .F.
Value ACC/ASS Indicates whether the check box is checked or not
ValueChanged ACC/ASS State of the 3-state check box
Width ACC/ASS The width of the check box
Width() METHOD The width of the check box (incl. pixel setting)

OBJ 49

CheckBox Class Instantiation

oCheckBox := [_g|_t|_b]CheckBox { [nR], [nC], [cText], [lPixel] } [1]
oCheckBox := [_g|_t|_b]CheckBoxNew ([nR], [nC], [cText], [lPixel]) [2]

oCheckBox := CheckBox ([nR], [nC], [cText], [lPixel]) [3]
oCheckBox := CheckBox { [oOwn], [nId], [oPoint], [oDim], [cText] } [4]

Any of the above syntax instantiate new check box object. Syntax [1] and [2] are
standard FlagShip and should be preferred. Syntax [3] is supported for compatibility
to Clipper 5.3, and [4] is supported for compatibility to VO.

The widget (control) remains invisible until you invoke oCheckBox:Show() or
oCheckBox:Display(). This allows the program to set up the control correctly (with
the correct size, position, and any other parameters), while avoiding the "visual
noise" of changing controls. Arguments:

<nR> row in coordinates or pixel, optional. If not specified, 0 is the default. See
additional details in the oCheckBox:Row description.

<nC> column in coordinates or pixel, optional. If not specified, 0 is the default. See
additional details in the :Col description.

<cText> caption text, optional. If not redefined by :CapCol and/or :CapRow, the text
is displayed in the <nR> row and <nC> + 4 column.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

<oOwn> owner object of the check box, optional. Default is the oApplic object.

<nId> an unique ID between 1 and 8000 of the check box, optional. If not specified,
internal ID is used.

<oPoint> the origin of the check box, in canvas coordinates

<oDim> the dimension of the check box, in canvas coordinates

Example: This example creates two check boxes and process different handling:

oBox1 := CheckBox{10,5,"Male"}
oBox2 := CheckBox(11,5)
oBox2:Caption := "Married"

// process all the handling automatically
oBox1:Show()

// handle this box manually same as in Clipper
oBox2:Display()
oBox2:SetFocus()
key := inkey()
do case

OBJ 50

case key == K_SPACE
oBox2:Select(!oBox:Buffer) // toggle on/off

case chr(key) $ "+yYtT"
oBox2:Select(.T.)

case chr(key) $ "-nNfF"
oBox2:Select(.F.)

endcase
oBox2:KillFocus()

// display the data
? if(oBox1:Checked,"Male","Female"), ;
if(oBox2:Buffer, "", "not ") + "married"

Example: This example creates and integrates a check box within a GetList and
activates it by performing a READ:

LOCAL cName := SPACE(25)
LOCAL lMarried := .T., lMale := .F.
LOCAL cAddress := space(25)

@ 5,10 SAY "Name " GET cName
@ 7,10 SAY "Male " GET lMale CHECKBOX
@ 7,20 SAY "Married " GET lMarried CHECKBOX
@ 9,10 SAY "Address " GET cAddress
READ
@ 10,0 SAY trim(cName) + " is " + if(lMarried, "", "not ") + ;

"married and is", if(lMale, "male", "female")

Compatibility: Available also in CL53 (syntax 3) and VO (syntax 4). See also:
oCheckBox:Destroy()

OBJ 51

CheckBox Class Properties

oCheckBox:Bitmaps ─> aFile ACCESS
oCheckBox:Bitmaps := aFile ASSIGN

This property is available for compatibility to Clipper (in semi- graphical mode) only
and is not used by FlagShip.

Compatibility: Available also in CL53.

oCheckBox:Buffer ─> Checked ACCESS

<lChecked> is a logical value that indicates whether the check box is checked or
unchecked. A value of true (.T.) indicates that it is checked and a value of false (.F.)
indicates that it is not checked. Equivalent to oCheckBox:Checked instance.

Compatibility: Available also in CL53.

See also: oCheckBox:Checked, oCheckBox:Select()

oCheckBox:CapCol ─> nCol ACCESS
oCheckBox:CapCol := nCol ASSIGN
oCheckBox:CapCol([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the check box's
caption is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting. The default setting is oCheckBox:Col
+ 4 columns at instantiation time.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Access/assign is Available also in CL53.

See also: oCheckBox:CapRow, oCheckBox:Caption

oCheckBox:CapRow ─> nRow ACCESS
oCheckBox:CapRow := nRow ASSIGN
oCheckBox:CapRow ([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen row where the check box's
caption is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting. The default setting is taken from
oCheckBox:Row at instantiation time.

OBJ 52

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Access/assign is Available also in CL53.

See also: oCheckBox:CapCol, oCheckBox:Caption

oCheckBox:Caption ─> cText ACCESS
oCheckBox:Caption := cText ASSIGN

<cText> is a string that describes the check box caption. If not redefined by
:CapCol and/or :CapRow, the text is displayed at the :Row and :Col + 4 position set
at instantiation time. You may specify an accelerator key: the character immediately
following an ampersand (&) is treated as accelerator key. This accelerator key
provides a quick and convenient mechanism for the user, to move input focus to
specific check box. The user performs the selection by pressing the Alt key in
combination with an accelerator key. The case of an accelerator key is ignored.

Compatibility: Available also in CL53 and VO.

See also: CheckBox:CapCol, oCheckBox:Caption

oCheckBox:Cargo ─> exp ACCESS
oCheckBox:Cargo := exp ASSIGN

<exp> is a value of any type. The CheckBox:Cargo slot holds any user- definable
data which can be retrieved later. This property is not used by the CheckBox object
itself.

Compatibility: Available also in CL53.

oCheckBox:Checked ─> lChecked ACCESS
oCheckBox:Checked := lChecked ASSIGN

<lChecked> is a logical value that indicates whether the check box is checked or
unchecked. A value of true (.T.) indicates that it is checked and a value of false (.F.)
indicates that it is not checked. Equivalent to oCheckBox:Buffer instance. In 3-state
modus, a NIL value indicates the third UNDETERMINED state. The assign also
changes CheckBox:Value and CheckBox:TextValue. Also, if the CheckBox:Value is
changed, CheckBox:ValueChanged is set to TRUE.

Compatibility: Available also in VO.

See also: CheckBox:Buffer, CheckBox:Select(), CheckBox:Value

OBJ 53

oCheckBox:ClassName() ─> cText

For compatibility to Clipper's getsys.prg only. Returns fix "CHECKBOX" regardless
the subclass. In FlagShip, you may also use IsObjClass() which provides you with
more detailed information.

Compatibility: Available but undocumented in CL53

See also: IsObjClass() and IsObjProperty() functions

oCheckBox:Col ─> nCol ACCESS
oCheckBox:Col := nCol ASSIGN
oCheckBox:Col([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the check box is
displayed. With Access/assign, the value is either in coordinates or pixels according
to the current SET PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

With terminal i/o, the <nCol> value specifies the column where the first character of
oCheckBox:Stype (or :ColdBox, :HotBox) is displayed, i.e. where the left square
bracket [X] of the check box representation display. The whole check box occupies
3 columns.

With GUI i/o, the check box is displayed as a widget (control) and <nCol> is the
leftmost widget coordinate. To ensure the same look and feel to an application
running in textual mode, and to display the widget at approx. the same screen
position, the given <nCol> coordinate is automatically adapted by adding a pixel
value taken from the global array element _aGlobSetting
[GSET_G_N_CHBOX_COL] and [GSET_G_N_CHBOX_WIDTH] (see source in
initio.prg) which may be positive or negative and are modifiable by the application.

Compatibility: Access/assign is Available also in CL53.

See also: CheckBox:Row, CheckBox{} instantiation

OBJ 54

oCheckBox:ColdBox ─> cBox ACCESS
oCheckBox:ColdBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a
box around the check box when it does not have input focus. Its default value is a
single line box, or the value specified in the global array
_aGlobSetting[GSET_T_C_COLDBOX] respectively. Predefined <cBox> constants
are in the box.fh file:

Constant Description

B_SINGLE Single line box
B_DOUBLE Double line box
B_SINGLE_DOUBLE Single line top/bottom, double line sides
B_DOUBLE_SINGLE Double line top/bottom, single line sides
B_PLAIN Use ASCII chars only

The ColdBox apply only if you assign null-string "" to oCheckBox:Style which is
preferred otherwise.

Compatibility: Available also in FS5 only. This property is considered in terminal
mode only and ignored otherwise.

See also: CheckBox:HotBox, CheckBox:SetFocus(), CheckBox:Style

oCheckBox:ColorSpec ─> cAttrib ACCESS
oCheckBox:ColorSpec := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the
display() and show() method. The string must contain four color specifiers.

Position Applies To Default value used from
in <cAttrib> current SET COLOR

1 Check box without input focus Unselected
2 Check box with input focus Enhanced
3 The check box's caption Standard
4 The check box caption's accelerator key Background

Compatibility: Available also in CL53, This property is considered in terminal mode
only and ignored otherwise.

See also: CheckBox:HasFocus, SET COLOR, SET()

OBJ 55

oCheckBox:Destroy() ─> NIL

Destroys the CheckBox object and restores the previous screen content. This
method can be used when a CheckBox object is no longer needed.
oCheckBox:Destroy() de-instantiates the CheckBox object and allows you to close
and free any resources that were opened or created by the object, without waiting
for the garbage collector. This method calls internally oCheckBox:Axit() which is the
equivalence for :Destroy()

Compatibility: Available also in VO

See also: CheckBox{} instantiation

oCheckBox:Display() ─> self

Show the check box, it frame/box and caption on the screen. The check box widget
(control) remains invisible until you invoke oCheckBox: Display() or
oCheckBox:Show(). This allows the program to set up the widget (control) correctly
(with the correct size, position, and any other parameters), while avoiding the
"visual noise" of changing controls. oCheckBox:Display() uses the values of the
following instance variables to correctly show the list in its current context, in
addition to providing maximum flexibility in the manner a check box appears on the
screen: Buffer, Caption, CapCol, CapRow, Col, ColdBox or HotBox, ColorSpec,
HasFocus, Row, and Style.

Compatibility: Available also in CL53

See also: CheckBox:Show()

oCheckBox:Fblock ─> bBlock ACCESS
oCheckBox:Fblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is
evaluated each time the CheckBox object receives or loses input focus. The code
block receives two arguments: the object self and the current :HasFocus status,
which indicates whether the check box is receiving (.T.) or losing (.F.) input focus. In
GUI, the object receives focus every time the user clicks (or activates) the check
box widget and looses focus when other widget is selected.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to
the code block, and hence cannot use generalized but object specific code blocks
which needs to check the current oCheckBox:HasFocus status by itself.

See also: CheckBox:HasFocus, CheckBox:SetFocus(), CheckBox:KillFocus(),
CheckBox:Sblock

OBJ 56

oCheckBox:Handler ─> bHandler ACCESS
oCheckBox:Handler := bHandler ASSIGN

<bHandler> is a code block or NIL. The code block, when present, is invoked from
the oCheckBox:Show() method and replaces the default check box handler
Available also in the <FlagShip_dir>/system/checkboxhand.prg source file. The
code block receives one argument, the object self.

Compatibility: Available also in FS5 only.

See also: CheckBox:Show()

oCheckBox:HasFocus ─> lFocus ACCESS

<lFocus> is a logical value indicating whether the object has input focus (TRUE) or
not. In GUI, the object receives focus every time the user clicks (or activates) the
widget and looses the focus when other widget is selected.

Compatibility: Available also in CL53

See also: CheckBox:KillFocus, CheckBox:SetFocus(), CheckBox:Fblock

oCheckBox:Height ─> nRow ACCESS
oCheckBox:Height := nRow ASSIGN
oCheckBox:Height ([nRow], [lPixel]) ─> nRow

<nCol> is a numeric value that indicates the height of the check box. With access
and assign, the value is either in coordinates or pixels according to the current SET
PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available also in FS5, apply for GUI mode only

oCheckBox:HitTest(nMouseRow, nMouseCol, [lPixel]) ─> nStatus

Determines if the mouse cursor is within the region of the screen that the check box
occupies.

<nRow> Numeric value representing the current or tested screen row position of
the mouse cursor.

<nCol> Numeric value representing the current or tested screen column position of
the mouse cursor.

<lPixel> If specified TRUE, the mouse coordinates are assumed in pixel. If FALSE,
the mouse parameters are assumed in current row/col coordinates. If this

OBJ 57

parameter is not specified (i.e. NIL), the kind of passed mouse coordinates is
determined from the current SET PIXEL setting.

<nStatus> Returned numeric value indicating the relationship of the mouse cursor
with the check box. The constants are specified in button.fh header file.

Value Constant Description
>= 0 n/a The mouse is not located in the box region
-1025 HTCAPTION The mouse cursor is on the box's caption
-2049 HTCLIENT The mouse cursor is on the check box

Compatibility: Available also in CL53

See also: Mrow(), Mcol()

oCheckBox:HotBox ─> cBox ACCESS
oCheckBox:HotBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a
box around the check box when it has input focus. Its default value is a single line
box, or the value specified in the global array _aGlobSetting[GSET_T_C_HOTBOX]
respectively. Predefined <cBox> constants are in the box.fh file:

Constant Description

B_SINGLE Single line box
B_DOUBLE Double line box
B_SINGLE_DOUBLE Single line top/bottom, double line sides
B_DOUBLE_SINGLE Double line top/bottom, single line sides
B_PLAIN Use ASCII chars only

The HotBox apply only if you assign null-string "" to oCheckBox:Style which is
preferred otherwise.

Compatibility: Available also in FS5 only. This property is considered in terminal
mode only and ignored otherwise.

See also: CheckBox:ColdBox, CheckBox:HasFocus, CheckBox:SetFocus(),
CheckBox:Style, @..BOX

oCheckBox:Init([par1]...[par5) ─> self

This is an internal method invoked automatically at instantiation of the CheckBox
object. It is not intended to be called by the application.

Compatibility: Available also in VO

See also: CheckBox{} instantiation

OBJ 58

oCheckBox:KillFocus() ─> self

Take input focus away from a CheckBox object. Upon receiving this message, the
CheckBox object redisplays itself with the :ColdBox frame and, if present, evaluates
the code block specified by :Fblock. This message is meaningful only when the
CheckBox object has input focus.

Compatibility: Available also in CL53. In Clipper, the box is not drawn automatically.

See also: CheckBox:HasFocus, CheckBox:SetFocus(), CheckBox:Fblock

oCheckBox:Message ─> cText ACCESS
oCheckBox:Message := cText ASSIGN

<cText> is a character string displayed in the windows status bar (GUI), or in the
screen line specified by SET MESSAGE (in terminal mode).

Compatibility: Available also in CL53.

See also: CheckBox:Tooltip(), SET MESSAGE, oApplic:StatusMessage()

oCheckBox:Modified ─> lOk ACCESS
oCheckBox:Modified := lOk ASSIGN

<lOk> is a logical value that is set to TRUE when the user clicks on a button, and
reset to FALSE when the mouse button is released.

Compatibility: Available also in VO. Apply in GUI mode only.

oCheckBox:Row ─> nRow ACCESS
oCheckBox:Row := nRow ASSIGN
oCheckBox:Row([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen row where the check box is
displayed. With Access/assign, the value is either in coordinates or pixels according
to the current SET PIXEL status.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If
true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise
the current SET PIXEL status is used.

With terminal i/o, the <nRow> value specifies the column where the three
characters of check box [X] display, see also :Style for details.

In GUI i/o mode, the check box is displayed as a widget (control) and <nRow> is the
topmost widget coordinate when the row is specified in pixel. If the <nRow > is
given in coordinates, the widget position is automatically adapted, to ensure the
same look and feel to an application running in textual mode, and to display the
widget at approx. the same screen position. The topmost widget position is then

OBJ 59

calculated from the given <nRow> coordinate minus the current line height plus a
value taken from the global array element _aGlobSetting
[GSET_G_N_CHBOX_ROW] and _aGlobSetting[GSET_G_N_CHBOX_HEIGHT]
which is either positive or negative number of pixels.

Compatibility: Access/assign is Available also in CL53.

See also: CheckBox:Col, CheckBox{} instantiation

oCheckBox:Sblock ─> bBlock ACCESS
oCheckBox:Sblock := bBlock ASSIGN

<bBlock> is an optional code block or NIL. The code block callback, when present,
is evaluated each time the CheckBox object's state changes. The name "Sblock"
refers to state block. The code block receives two arguments: 1) the object self, and
2) the check status, i.e. the content of oCheckBox:Buffer.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to
the code block; it hence cannot use generalized but object specific code blocks
which must extract the required values from the known object by itself.

See also: CheckBox:Buffer, CheckBox:Fblock

oCheckBox:Select([lOnOff]) ─> lOnOff

<lOnOff> is a logical value that indicates whether the check box should be checked
or not. Set to true (.T.) to check the box or false to uncheck the box. If omitted, the
check box state will toggle to its opposing state. Considered only if the box has
input focus.

The check box state is typically changed when the space bar is pressed or the
mouse's left button is pressed when its cursor is within the check box's region of the
screen. FlagShip's default handler used in oCheckBox:Show() also accepts
+,T,t,Y,y keys to set the status ON, and -,F,f,N,n keys to set the check box status
OFF, and space or "x" key to toggle the status.

Compatibility: Available also in CL53

See also: CheckBox:Buffer

oCheckBox:SetFocus() ─> self

Set input focus to a CheckBox object. Upon receiving this message, the CheckBox
object redisplays itself with the :HotBox frame and, if present, evaluates the code
block specified by :Fblock. This message is meaningful only when the CheckBox
object does not have input focus. In GUI, the object receives focus also every time
the user clicks (or activates) the widget.

Compatibility: Available also in CL53. In Clipper, the box is not drawn automatically.

OBJ 60

See also: CheckBox:HasFocus, CheckBox:KillFocus(), CheckBox:Fblock,
CheckBox:HotBox

oCheckBox:Show() ─> self

This method activates either the default or user specific input handler. Is show the
check box and its caption on the screen, activate focus, wait for user input and set
the check box status in :Buffer accordingly, then kill the focus. The default handler
is available also in the <FlagShip_dir>/system/checkboxhand.prg source file and is
equivalent to a manual code sequence

oCheckBox:Display()
oCheckBox:SetFocus()
key := InkeyTrap(0) // considers SET KEY
do case
case chr(key) $ " xX"

oCheckBox:Select(!oCheckBox:Buffer) // toggle on/off
case chr(key) $ "+yYtT"

oCheckBox:Select(.T.)
case chr(key) $ "-nNfF"

oCheckBox:Select(.F.)
endcase
oCheckBox:KillFocus()

You may assign your own handler by the oCheckBox:Handler property.

Compatibility: Same named method is available also in VO which returns NIL

See also: CheckBox:Display(), CheckBox:Handler

oCheckBox:Style ─> cStyle ACCESS
oCheckBox:Style := cStyle ASSIGN

<cStyle> is a character string that indicates the delimiter characters that are used
by the check box's Display() method. The string must contain five characters. The
first is the left delimiter, the 2nd is the checked indicator, the 3rd is the unchecked
indicator, the 4th character is the right delimiter and the 5th character for the
undetermined check box state. The default style is pre-defined in the global array
element _aGlobSetting[GSET_T_C_CHBOX_STYLE] containing "[X]?" at start-up;
it may be re-defined by a simple assignment later.

When you assign null-string "" to oCheckBox:Style, the oCheckBox:ColdBox and
:HotBox is used as a frame around the check box region, and the 2nd, 3rd and 5th
character in the global setting apply for the checked, unchecked, and undetermined
indicator.

Compatibility: Considered in terminal mode only, ignored in GUI. Available also in
CL53 whose default is a string of four characters containing "[" + chr(251) + "]".

OBJ 61

Neither the redefinition of defaults, nor the ColdBox and HotBox instances are
available in Clipper.

See also: CheckBox:ColdBox, CheckBox:HotBox, CheckBox:Display(),
CheckBox:Show()

oCheckBox:ToolTip ─> cText ACCESS
oCheckBox:ToolTip := cText ASSIGN

<cText> is a string representing the displayed tool tip, i.e. a short info message
which pop up's when the mouse is over the check box.

Compatibility: Available in FS5 only, apply for GUI, ignored otherwise

See also: CheckBox:Message

oCheckBox:TypeOut ─> lVal ACCESS

<lVal> is a value always containing false (.F.). It is not used by the CheckBox object
and is only provided for compatibility with the other GUI control classes.

Compatibility: Available also in CL53

oCheckBox:Value ─> exp ACCESS
oCheckBox:Value := exp ASSIGN

<exp> contains TRUE (.T.) if the check box is in the checked (ON) state, FALSE
(.F) if it is in the unchecked state (OFF) and NIL in the third UNDETERMINED state.

Compatibility: Available also in VO

oCheckBox:ValueChanged ─> lStat ACCESS
oCheckBox:ValueChanged := lStat ASSIGN

<lStat> contains TRUE or FALSE, depending on the state of the check box. For 2-
state check boxes, it is always TRUE. If a 3-state check box is in the third
UNDETERMINED state, <lStat> is FALSE.

Compatibility: Available also in VO

See also: CheckBox:Value

OBJ 62

oCheckBox:Width ─> nCol ACCESS
oCheckBox:Width := nCol ASSIGN
oCheckBox:Width ([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the width of the check box. With Access
and assign, the value is either in coordinates or pixels according to the current SET
PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available in FS5 only, apply for GUI, ignored otherwise

OBJ 63

ComboBox Class
The ComboBox Class is a special case of the ListBox class. It creates and manages combo
boxes.

Combo boxes display a list of items or choices to the user. The difference to the list box is,
that only one list item is displayed at a time while the whole list is poped-up upon request.

As with other GUI classes in FlagShip, the general ComboBox class is internally inherited by
three different sub-classes: _gComboBox for GUI based application, _tComboBox for
terminal/text based mode, and _bComboBox for basic i/o mode, all defined in the boxclass.fh
header file. The proper class, corresponding to the used i/o mode, is set either at compile
time with the compiler switch "-io=g|t|b", or latest at run-time depending on the currently used
environment.

Note: in the basic i/o mode, only a rough combo box functionality is simulated by the
sequential in/output.

ComboBox Class Index
Class ComboBox
Inherits from: ListBox
Inherited by: - (none)
Class prototype: boxclass.fh
Defines: box.fh

AddItem() METHOD Add (append) a new item to a combo box
Bitmap ACC/ASS Display bitmap as combo box item
Bottom ACC/ASS Bottommost screen row of the box
Buffer ACC Position in the list of the selected item
CapCol ACC/ASS Screen column of the combo box's caption
CapRow ACC/ASS Screen row of the combo box's caption
Caption ACC/ASS String that describes the combo box caption
Cargo ACC/ASS A user value of any type
ChangeSelected() METHOD Change a range of items in a multiple selection
ClassName METHOD For compatibility to Clipper's getsys.prg only
Clear() METHOD Clear (delete) all items in a combo box
ClearSelection() METHOD Clear a multiple selection combo box
Close() METHOD Closes the combo box
ColdBox ACC/ASS Frame of combo box without focus
ColorSpec ACC/ASS Color attributes
CurrentItem ACC/ASS String representing the displayed ComboBox item
CurrItemNo ACC/ASS Numeric value indicating the selected item
CurrentText ACC/ASS Fix ""

OBJ 64

DeleteItem() METHOD Remove an item from a combo box
DelItem(p1) METHOD Remove an item from a combo box
DeselectItem() METHOD Turn off the selection of a specified item
Destroy() METHOD Destroys the ComboBox object
Display() METHOD Show the combo box and its caption on the screen
DropDown ACC Always .T.
Exec() METHOD Process user input, same as :Show()
Fblock ACC/ASS Code block evaluated at receiving/loosing focus
FillUsing() METHOD Data server/dictionary driver
FindItem() METHOD Search a combo box for a specified item
FindText() METHOD Search a combo box for a specified string
FirstSelected() METHOD Position of the 1st item in a multiple selection
Font ACC/ASS Font object used to display the combo box items
GetData() METHOD Get the data portion of a combo box item
GetItem() METHOD Get the item property
GetItemValue() METHOD Same as GetData()
GetText(p1) METHOD Get the item text
HasFocus ACC Indicates whether the object has input focus
HitTest() METHOD Determines if the mouse cursor is within the box
HotBox ACC/ASS Frame of combo box with focus
InputBlock ACC/ASS CodeBlock for default/user keyboard handler
InsItem() METHOD Insert a new item to a combo box
IsOpen ACC Indicator whether the combo box widget is visible
ItemCount ACC Number of items in the list
KillFocus() METHOD Take input focus away from a ComboBox object
Left ACC/ASS Leftmost screen column of the box
ListFiles() METHOD Fill a combo box with the names of matching files
Message ACC/ASS String displayed in the windows status bar
Modified ACC/ASS Ignored.
NextItem() METHOD Skip to the next available item
NextSelected() METHOD Skip to the next selected item
Open() METHOD Opens the combo box (drop-down box)
PrevItem() METHOD Skip to the previous available item
Right ACC/ASS Rightmost screen column of the box
Sblock ACC/ASS Code block evaluated at user selection
Scroll() METHOD Scrolls the contents of a combo box up or down
Select() METHOD Change the selected item in a list
SelectedCount ACC Number of items selected in a multiple selection
SelectedFile ACC Selected file filled by :ListFiles()
SelectItem() METHOD Change the selected item in a list
SetData() METHOD Change the property of an available item
SetFocus() METHOD Set input focus to a ComboBox object
SetItem() METHOD Replaces the item property
SetText() METHOD Change/replace the displayed text of item
SetTop() METHOD Move a specified item to the top of the combo box
Show() METHOD Show the combo box and its caption on the screen
TextValue ACC/ASS String representing the displayed ComboBox item

OBJ 65

ToolTip ACC/ASS Short pop-up info message
Top ACC/ASS Topmost screen row of the box
TopItem ACC/ASS Position of the first visible item
TypeOut ACC/ASS Indicator whether the list contains any items
Value ACC/ASS Any value associated with the specified item
ValueChanged ACC/ASS Indicator representing the status of :Value
Vscroll ACC/ASS Ignored in FlagShip

OBJ 66

ComboBox Class Instantiation

oCmbBox := [_g|_t|_b]ComboBox { [nR1],[nC1], [nR2],[nC2], [lPixel] } [1]
oCmbBox := [_g|_t|_b]ComboBoxNew ([nR1],[nC1], [nR2],[nC2], [lPixel]) [2]

oCmbBox := ListBox ([nR1], [nC1], [nR2], [nC2], .T., [lPixel]) [3]
oCmbBox := ComboBox { [oOwn], [nResrc] } [4]
oCmbBox := ComboBox { [oOwn], [nId], [oPoint], [oDim], [nStyle] } [5]

Any of the above syntax instantiate new combo box object. Syntax [1] and [2] are
standard FlagShip and should be preferred. Syntax [3] is supported for compatibility
to Clipper 5.3, [4] and [5] is supported for compatibility to VO.

The combo box widget (control) remains invisible until you invoke oCmdBox:Show()
or oCmdBox:Display(). This allows the program to set up the control correctly (with
the correct size, position, and any other parameters), while avoiding the "visual
noise" of changing controls. Arguments:

<nR1> topmost row in coordinates or pixel, optional. If not specified, 0 is the default

<nC1> leftmost column in coordinates or pixel, optional. If not specified, 0 is the
default

<nR2> bottom row in coordinates or pixel, optional. If not specified, MaxRow() is
default

<nC2> rightmost column in coordinates or pixel, optional. If not specified, MaxCol()
is the default

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

<oOwn> owner object of the combo box, optional. Default is the oApplic object.

<nResrc> resource ID of the combo box

<nStyle> style constant of the combo box according to box.fh, optional. If not given,
LBS_STANDARD is the default.

Compatibility: Available also in CL53 (syntax 3) and VO (syntax 4 and 5).

See also: oListBox:Destroy()

ComboBox Class Properties
All properties of the ListBox class are available also for the ComboBox class. Refer to
description of ListBox class for details.

OBJ 67

Error Class
Generally ERROR objects contain information for the error handler routine. It can be
compared to an array, however one with fixed elements. The ERROR object can also serve
as an information carrier for the RECOVER part of a program interrupt structure. See BEGIN
SEQUENCE.

The ERROR object contains only information (instances), no executable methods are
available.

1. Error handling strategy
FlagShip offers different types of handling errors and exceptions:

•Program enquiry and correction of easily recoverable errors (e.g. through prior allocation
with a default value) in an IF.. ..ELSE...ENDIF structure,

•Program generation and treatment of exceptional statuses and interrupts with the BEGIN
SEQUENCE .. BREAK ... RECOVER ... END structure (see section CMD).

•Error handling at lower system level with ERROR blocks. These are generally used to
handle errors in the FlagShip library, e.g. on wrong parameters, incorrect data types,
input/output errors etc. The programmer can extend, modify, or even replace the default
handling by using additional user-defined functions.

In the following chapter low-level error treatment is described. For a technical treatment of
exception statuses, see sections LNG and CMD.

2. Error Blocks and Functions
When FlagShip asserts an error, it displays it on the screen, and a user action (Continue,
Abort etc.) is prompted. See section FSC.4. The programmer can supervise the entire error
action as all the relevant files are supplied in the source code.

1. If the library module determines an error, it generates the relevant error number
(according to FSerrors.h) and a text error description.

2. This information is passed on to a low-level error function using parameters (contained in
the file FSerror.prg).

3. The xxx_error function generates and occupies an ERROR object with information. Then
either the standard or the user-defined high-level error handling routine is activated by the
last generated error code block.

4. The error treatment routine evaluates the information from the ERROR object which has
been passed on, and then performs the relevant treatment. Generally the error is first
displayed on the screen, which enables the user to react appropriately (Cancel, Ignore,

OBJ 68

Callstack, Debugger). With more simple errors the program execution can be continued
at the next source code instruction.

In order to be able to stagger the error handling routines as required, they are called via a
special code block, not directly. With the function ERRORBLOCK() this code block is passed
to the error system.

Before starting the program execution, FlagShip pre-generates a code block by calling the
function _DEFERROR() with ERRORBLOCK(). This function executes the default error
handling. If an additional or deviating error handling is to be implemented at any position in
the application, the programmer can:

a. save the current error code block in a variable by calling the function ERRORBLOCK(),

b. pass a new code block as parameter to the function ERRORBLOCK(),

c. then restore the original error handling block.

If an error occurs in the sequence b...c, the user-specific function (more precisely: the
contents of the code block) is executed, not the default handling. If the error is not the error,
which requires specific handling, the UDF can have further treatment executed by the
predefined error function.

The whole error handling can be represented as follows:

╔═════ start-up module ════════════════════════
║ ERRORBLOCK ({|errObj| _DEFERROR (errObj) })
╚══

╔═════ FlagShip library ════════
1: default error handler is active: ║

║ FUNCTION anyStdFn()
anyStdFn() <---------------------> ║ IF something is wrong

║ CALL FSerror.c (code, desc)
2: supply user handler, which may ║ RETURN

invoke the default _DEFERROR(): ║ ELSE
║ RETURN value

def := ERRORBLOCK ({|x| ; ║ ENDIF
myerr(x, def) }) ║

anyStdFn() <-----> ║ ╔══ FSerror.prg ═════════════
╚══║ xxx_error() Entry

┌─────────────────────────────── ║ err = ERRORNEW()
│FUNCTION myerr (errObj, defErr) ║ fill err with passed data
│IF errObj:GENCODE == myCode ║ EVAL (ERRORBLOCK(), err)
│ handle specif.error... ╠════════════════════════════
│ELSE ║ FUNCTION _DEFERROR (err)
│ EVAL (defErr, errObj) ║ handle the error...
│ENDIF ║ RETURN or QUIT
│RETURN NIL ╚════════════════════════════
└───────────────────────────────

3: reset the default handler:
ERRORBLOCK (def)

OBJ 69

Technically a simple error handling for opening a database can look as follows:

STATIC defaulterr

USE nonexistent // i/o error generated by default handler
defaulterr := ERRORBLOCK() // retrieve the default handler
ERRORBLOCK({|err| MyHandler (err, defaulterr) }) // set new one

USE nonexistent // now, MyHandler() is called
ERRORBLOCK (defaulterr) // re-activate the default handler

#include "error.fh"

FUNCTION MyHandler (errObj, oldHandler)

LOCAL getlist {}, file, dir, ii
IF errObj:GENCODE == EG_OPEN .and.; // see error.fh

errObj:OSCODE == 101 .and.; // see FSerrors.h
errObj:CANRETRY .and.; // is RETRY possible ?
errObj:OPERATION == "MYUSE" .and.; // see ERRORNEW() example
LEN(errObj:FILENAME) > 0 // is file name supported?
file := errObj:FILENAME // full file name
IF ALERT ("File " + file + " not found", ;

"Abort", "Specify directory") != 2
QUIT

ENDIF

ii = RAT ("/", file)
dir = IF (ii > 0, SUBSTR (file, 1, ii), "")
file = IF (ii > 0, SUBSTR (file, ii+1), file)
dir = PADR (dir, 250)
@ 0,0 SAY "New directory:" GET dir PICTURE "@S50"
READ
IF LASTKEY() != 27

dir := ALLTRIM (dir)
IF (RIGHT (dir, 1) != "/"

dir += "/"
ENDIF
errObj:FILENAME := dir + file // new file specification
RETURN .T. // RETRY

ENDIF
ENDIF
RETURN EVAL (oldHandler, errObj) // invoke default handler

Note: If you use the alternative, smaller error handler FSerror.c (i.e. link it), no error objects
are generated by default. The error messages are displayed in a window that can be
repositioned as required. Due to identity of names, the FSerror.prg should never be compiled
in the directory <FlagShip_dir>/system. If you do this, the alternative C driver FSerror.c is
overwritten.

When program writing, it is absolutely crucial to ensure that the error handling routine does
not result in an endless loop by triggering the same error.

OBJ 70

In the program <FlagShip_dir>/system/FSerror.prg a similar error object is generated on
input/output error:

err:CARGO := NIL
err:ARGS := ""
err:CANDEFAULT := .F.
err:CANRETRY := .F.
err:CANSUBSTITUTE := .F.
err:DESCRIPTION := "file write error;Write error;"
err:FILENAME := ""
err:GENCODE := 104
err:OPERATION := ""
err:OSCODE := 0
err:SEVERITY := ES_IOERR
err:SUBCODE := 0
err:SUBSYSTEM := "BASE"
err:TRIES := 0

Note: for even more comfortable programming, the instance variables will be even more
precisely defined in the library of the next FlagShip version and many functions will support
the full and half-automatic RETRY.

OBJ 71

ErrorNew ()
Syntax 1:

obj = ERRORNEW ()
Syntax 2:

obj = ERROR { }
Purpose:

Creates a new, empty ERROR object.

Arguments:
none.

Returns:
<obj> is the new allocated ERROR object, usually assigned to a regular FlagShip
variable.

Description:
ERRORNEW() creates a new object, which is used to carry information during
program execution.

Example:
Checks if a file is available and traps to the error handler if not. The newly installed
error handler also remains active during execution of the USE command. Prior to
returning from the function, the previous error handler is restored.

#include "error.fh"

IF .not. myuse ("anydatabase")
QUIT

ENDIF

FUNCTION myuse (file)

STATIC oldhandle // save current handle
LOCAL myerr := ERRORNEW() // create object
LOCAL block := {|err| myhandler(err, oldhandle)}
oldhandle := ERRORBLOCK(block) // install new handle

myerr:ARGS := {file}
myerr:CANDEFAULT := .F.
myerr:CANRETRY := .T.
myerr:CANSUBSTIT := .F.
myerr:CARGO := NIL
myerr:DESCRIPTION := "File not found"
myerr:FILENAME := file
myerr:GENCODE := EG_OPEN
myerr:OPERATION := "MYUSE"
myerr:OSCODE := 101
myerr:SEVERITY := ES_ERROR
myerr:SUBCODE := 0
myerr:TRIES := 0

OBJ 72

IF ! FILE(file)
DO WHILE .T.

myerr:TRIES++
IF EVAL (ERRORBLOCK(), myerr) // trap error handler

file := myerr:FILENAME
IF FILE(file)

EXIT
ENDIF

ELSE
ERRORBLOCK (oldhandle)
RETURN .F.

ENDIF
ENDDO

ENDIF

USE (file) SHARED // other errors poss.
ERRORBLOCK (oldhandle) // restore old handle
RETURN .T.

Classification:
programming

Class:
ERROR class, prototyped in <FlagShip_dir>/include/errclass.fh

Compatibility:
Available in FS4, C5 and VO. The alternative syntax 2 and the possibility of
inheriting it into an own subclass is available in FlagShip only.

Related:
ERRORBLOCK()

OBJ 73

Error Class Properties

err:ARGS Access/Assign

Contains an array of the arguments supplied to an operator or function when an
argument error occurs. For other types of error, err:ARGS contains a NIL value.

err:CANDEFAULT Access/Assign

Contains a logical value. TRUE indicates that the subsystem (operation, function)
can perform default error recovery for the error condition. Availability of default
handling and the actual default recovery strategy depends on the subsystem and
the error condition. The minimum action in the error handle is simply to ignore the
error condition and return FALSE which sets the default recovery. If
err:CANDEFAULT is TRUE, err:CANSUBSTITUTE must be FALSE.

err:CANRETRY Access/Assign

Contains a logical value. TRUE indicates that the subsystem (operation, function)
can retry the execution itself. Availability of retry depends on the subsystem and the
error condition. To invoke the default retry, return TRUE from the error handler. If
the automatic retry is not available, you may post the originate statement in a
program loop, e.g. USE... while NETERR() USE... enddo while ! RLOCK() enddo If
err:CANRETRY is TRUE, err:CANSUBSTITUTE must be FALSE.

err:CANSUBSTITUTE Access/Assign

Contains a logical value. TRUE indicates that the subsystem (operation, function)
can substitute a new result when returning from the error handler. Argument errors
and certain other simple errors allow the error handler to substitute a new result
value for the failed operation. If err:CANSUBSTITUTE is TRUE, err:CANDEFAULT
and err:CANRETRY must be FALSE.

err:CARGO Access/Assign

Contains a value of any data type supplied by the user. Not used by the Error
system itself.

err:DESCRIPTION Access/Assign

Contains a character string that describes the error condition in textual form. A null-
string "" indicates that the subsystem does not provide a printable description for
the error.

OBJ 74

err:FILENAME Access/Assign

Contains a character value representing the file name originally used to perform an
input/output request. A null-string "" indicates that the subsystem does not provide
information on the file name.

err:GENCODE Access/Assign

Contains a numeric value representing a generic error code according to the EG_xx
manifests in the <FlagShip_dir>/include/error.fh (and the FSerrors.h) files. Zero
indicates that the error condition is specific to the subsystem and does not
correspond to any of the generic error codes.

err:OPERATION Access/Assign

Contains a character string representing the current operation or function name
which caused the error. For undefined variables or functions, it contains the name
of the variable or function. A null- string "" indicates that the subsystem does not
provide information on the operation.

err:OSCODE Access/Assign

Contains a numeric value representing the operating system error code according
to DOSERROR() and the EX_xx manifests in the <FlagShip_dir>/ include/error.fh
file. Zero indicates that the error condition was not caused by system call.

err:SEVERITY Access/Assign

Contains a numeric value indicating the severity of the error condition. Following
manifests are defined in the <FlagShip_dir>/ include/error.fh file:

ES_FTLERR Fatal error, requires immediate termination of the application.
ES_IOERR Input/output error; continuation may be possible, but the operation

was not performed.
ES_RTERR Run-time error; continuation may be possible, but the operation was

not performed.
ES_INTERR Internal error, probably caused by the continuation of previous i/o or

run-time error.

err:SUBCODE Access/Assign

Contains a numeric value representing the subsystem-specific error code. May also
be used for other purposes, such as a line number or additional information. Zero
indicates that the subsystem does not provide the information.

OBJ 75

err:SUBSYSTEM Access/Assign

Contains a character string representing the name of the subsystem generating the
error. Errors indicated by FlagShip itself may set err:SUBSYSTEM to "BASE". For
errors caused by the replaceable database driver (RDD), the name of the driver is
set. May be used for other purposes, such as indicating an internal driver name.
Null-string "" indicates that the subsystem does not provide the information.

err:TRIES Access/Assign

Contains a numeric value representing the number of times the failed operation has
been attempted. When err:CANRETRY is TRUE, the value of err:TRIES can be
used to limit the number of retry attempts. Zero indicates that the subsystem does
not track the number of times the operation has been tried.

OBJ 76

ErrorBox Class
FlagShip provides several GUI classes used for dialog communication. Apart from the
general ALERT() function, there is available special MessageBox class and its sub-classes
named TextBox, InfoBox, ErrorBox and WarningBox

ErrorBox Class Index
Class ErrorBox
Inherits from: MessageBox
Inherited by: - (none)
Class prototype: dialogclass.fh
Defines: dialog.fh, box.fh
Alternative: standard function ALERT() or

ERRBOX()

BoxText ASSIGN Sets or redefines the displayed text
BoxType ASSIGN Type of the message box, i.e. the used

icon
Buttons ACC/ASS Type and caption of the used push

buttons
Caption ASSIGN Caption (title) of the message box
ColorSpec ACC/ASS Color specification for terminal i/o
DefButton ASSIGN Assigns one button as default
Font ACC/ASS Sets or redefines the used font
HotBox ACC/ASS Box frame for terminal i/o
Exec() METHOD Display the message box and wait for

user action
Show() METHOD Equivalent to oBox:Exec()
Handle() METHOD for compatibility purposes only
Type ACC/ASS for compatibility purposes only

The ErrorBox is an usual MessageBox class with pre-defined properties

oBox:BoxType := MBOX_ERROR
oBox:BoxText := if(empty(cText), "Error !", cText)
oBox:Caption := "Error"

OBJ 77

ErrorBox Class Instantiation
Syntax 1:

oBox := ErrorBox {[oOwner], [cText]}
Syntax 2:

oBox := ErrorBoxNew ([oOwner], [cText])
Syntax 3:

oBox := MessageBox {[cText], MBOX_ERROR, [ncaButt],
[iDefBut], [cTitle], [nOwner], [oFont],
.T. }

Any of the above syntax instantiate new Error box object, optionally with the given
caption, text, push-button(s) and font. The default message box is modal. This
means, the application is suspended until the user acknowledges the message.
Arguments (all optional):

<oOwner> is supported for compatibility purposes to VO and is ignored.

<cText> the displayed text, i.e. the information to be printed in the message box.
You may spilt the text in several lines by using either ";" (semicolon) or LF=chr(10)
character(s). If you need to print semicolon, use "\;". To insert an empty line, use
"; ;" or ";;". If the argument is omitted, no text is displayed. Assignable also by
oBox:BoxText. See the oBox:BoxText property for details about alignment and
HTML text formatting.

The box:Caption is pre-set to "Error", but may be re-defined by assigning any other
text to :Caption.

Example:

oBox := ErrorBox{NIL, "Database " + myFile + " not found"}
oBox:Caption := "Failure"
oBox:Exec()

ErrorBox Class Properties
All the class properties are equivalent to MessageBox class; please refer there for further
details.

OBJ 78

InfoBox Class
FlagShip provides several GUI classes used for dialog communication. Apart from the
general ALERT() function, there is available special MessageBox class and its sub-classes
named TextBox, InfoBox, ErrorBox and WarningBox

As with other GUI classes in FlagShip, the general InfoBox class is internally inherited by
three different sub-classes: _gInfoBox for GUI based application, _tInfoBox for terminal/text
based mode, and _bInfoBox for basic i/o mode, all defined in the dialogclass.fh header file.
The proper class, corresponding to the used i/o mode, is set either at compile time with the
compiler switch "-io=g|t|b", or latest at run-time depending on the currently used
environment.

InfoBox Class Index
Class InfoBox
Inherits from: MessageBox
Inherited by: - (none)
Class prototype: dialogclass.fh
Defines: dialog.fh, box.fh
Alternative: standard function ALERT() or

INFOBOX()

BoxText ASSIGN Sets or redefines the displayed text
BoxType ASSIGN Type of the message box, i.e. the used

icon
Buttons ACC/ASS Type and caption of the used push

buttons
Caption ASSIGN Caption (title) of the message box
ColorSpec ACC/ASS Color specification for terminal i/o
DefButton ASSIGN Assigns one button as default
Font ACC/ASS Sets or redefines the used font
HotBox ACC/ASS Box frame for terminal i/o
Exec() METHOD Display the message box and wait for

user action
Show() METHOD Equivalent to oBox:Exec()
Handle() METHOD for compatibility purposes only
Type ACC/ASS for compatibility purposes only

The InfoBox is an usual MessageBox class with pre-defined properties

oBox:BoxType := MBOX_INFO
oBox:Caption := if(empty(cTitle), "InfoBox", cTitle)

OBJ 79

InfoBox Class Instantiation
Syntax 1:

oBox := InfoBox {[oOwner], [cTitle], [cText]}
Syntax 2:

oBox := InfoBoxNew ([oOwner], [cTitle], [cText])
Syntax 3:

oBox := MessageBox {[cText], MBOX_INFO, [ncaButt],
[iDefBut], [cTitle], [nOwner], [oFont],
.T. }

Syntax 4:
InfoBox (ctext, [cTitle]) -> nSelConstant

Any of the above syntax instantiate new info box object, optionally with the given
caption, text, push-button(s) and font. The default message box is modal. This
means, the application is suspended until the user acknowledges the message. The
InfoBox() function is supported for Clipper compatibility - note the swapped
parameters. Arguments (all optional):

<oOwner> is supported for compatibility purposes to VO and is ignored.

<cText> the displayed text, i.e. the information to be printed in the message box.
You may split the text in several lines by using either ";" (semicolon) or LF=chr(10)
character(s). If you need to print semicolon, use "\;". To insert an empty line, use
"; ;" or ";;". If the argument is omitted, no text is displayed. Assignable also by
oBox:BoxText. See the oBox:BoxText property for details about alignment and
HTML text formatting.

<cTitle> is a caption of the message box, i.e. text displayed in the title bar of the
box. If omitted, the application name plus "Info/Warning/Error" text is used.
Assignable also by oBox:Caption

Example:

oBox := InfoBox{NIL, "My Info","Anything of interest;for the user"}
oBox:Exec()

Example:

InfoBox("Anything of interest;for the user", "My Info")

OBJ 80

InfoBox Class Properties
All the class properties are equivalent to MessageBox class, please refer there for further
details.

The instantiation and the class properties are equivalent to MessageBox class, please refer
there for further details.

OBJ 81

MessageBox Class
FlagShip provides several GUI classes used for dialog communication. Apart from the usual
@SAY..GET..READ, ACHOICE() etc., there is available special MessageBox class and its
sub-classes named TextBox, InfoBox, ErrorBox and WarningBox. They extend the general
ALERT() function for additional functionality.

MessageBox Class

A message box is a small window that displays a caption, a message, an icon (chosen from
a predefined set of icons), and up to three push buttons (selected from a variety of
predefined combinations). It provides an easy alternative to the dialog window when all you
require from the user is a simple response. Message boxes require no sizing, positioning, or
event handling. In addition, message boxes can be application modal (the process cannot
continue until the user has acknowledged the message box), or it can be modal in relation to
its owner window (process cannot continue in its own window until the user has
acknowledged the message box).

The standard function ALERT() uses the MessageBox class in GUI mode. For your
convenience, and for a backward VO compatibility, there are also sub-classes TextBox,
InfoBox, ErrorBox and WarningBox available.

As with other GUI classes in FlagShip, the general MessageBox class is internally inherited
by three different sub-classes: _gMessageBox for GUI based application, _tMessageBox for
terminal/text based mode, and _bMessageBox for basic i/o mode, all defined in the
dialogclass.fh header file. The proper class, corresponding to the used i/o mode, is set either
at compile time with the compiler switch "-io=g|t|b", or latest at run-time depending on
the currently used environment.

Note: in the basic i/o mode, only a rough MessageBox functionality is simulated by the
sequential in/output.

OBJ 82

MessageBox Class Index
Class MessageBox
Inherits from: - (none)
Inherited by: InfoBox, ErrorBox, TextBox,

WarningBox
Class prototype: dialogclass.fh
Defines: dialog.fh, box.fh
Alternative: standard function ALERT()

BoxText ASSIGN Sets or redefines the displayed text
BoxType ASSIGN Type of the message box, i.e. the used

icon
Buttons ACC/ASS Type and caption of the used push

buttons
Caption ASSIGN Caption (title) of the message box
ColorSpec ACC/ASS Color specification for terminal i/o
DefButton ASSIGN Assigns one button as default
Exec() METHOD Display the message box and wait for

user action
Font ACC/ASS Sets or redefines the used font
HotBox ACC/ASS Box frame for terminal i/o
Image ACC/ASS Set/get the file name of image pixmap
Show() METHOD Equivalent to oBox:Exec()
Handle() METHOD for compatibility purposes only
Type ACC/ASS for compatibility purposes only

OBJ 83

MessageBox Class Instantiation
Syntax 1:

oBox := MessageBox ([cText], [nType], [ncaButt],
[iDefBut], [cTitle], [nOwner], [oFont],
[lModal])

Syntax 2:
oBox := MessageBox {[cText], [nType], [ncaButt],

[iDefBut], [cTitle], [nOwner], [oFont],
[lModal] }

Any of the above syntax [1] and [2] instantiate new message box object, optionally
with the given caption, text, push-button(s) and font. The default message box is
modal. This means, the application is suspended until the user acknowledges the
message. Arguments (all optional):

<cText> the displayed text, i.e. the information to be printed in the message box.
You may split the text in several lines by using either ";" (semicolon) or "\n" or
LF=chr(10) character(s). If you need to print semicolon, use "\;". To insert an
empty line, use "; ;" or ";;". If the argument is omitted, no text is displayed. This
value is also assignable by oBox:BoxText. See the oBox:BoxText description for
details about alignment and HTML text formatting.

<nType> is a type of the message box. One of the constants MBOX_INFO,
MBOX_WARNING, MBOX_ERROR, MBOX_QUEST, MBOX_NONE or
MBOX_USER defined in dialog.fh, specifying the type of the box and the used icon.
If omitted, MBOX_INFO is the default. Assignable also by oBox:BoxType. When
MBOX_USER is specified, also oBox:Image assignment is required.

<ncaButt> is a type and caption of the used push buttons.

•Either a numeric constant MBOX_OK, MBOX_YES, MBOX_NO,
MBOX_ABORT, MBOX_CANCEL, MBOX_RETRY, MBOX_IGNORE defined in
dialog.fh,

•or up to three of these numeric constants added to each other,
•or a user defined string displayed in the push button. Note: the accelerator key

character is escaped by an ampersand (&). If you need to display the ampersand
itself, specify two ampersands (&&) in the string.

•or an array of numeric and/or string elements specifying each of the push
buttons. Up to three buttons are considered, the rest (i.e. array element 4 and
greater) is ignored.

If omitted or of an invalid type or value, MBOX_OK is the default. Assignable also
by oBox:Buttons

OBJ 84

<iDefBut> Default button (1 to 3) assigned to the RETURN key. If not specified or
out of range, no default button is set (the default) so the user needs to press TAB or
cursor key before confirming by RETURN. Of course, this has no effect on the
choice via mouse click. Assignable also by oBox:DefButton

<cTitle> is a caption of the message box, i.e. text displayed in the title bar of the
box. If omitted, the application name plus "Info/Warning/Error" text is used.
Assignable also by oBox:Caption

<nOwner> Owner of the message box. If omitted, 0 (zero) or when SDI mode is
used, the parent of the message box is the application window. In MDI mode, giving
a value grater one specifies the owning MDI window for which the message is
modal.

<oFont> specifies the used font, when it should be different from the default, which
is oApplic:FontWindow. See details in Font object. Assignable also by oBox:Font

<lModal> True (.T., the default) or when omitted declares the message box is
modal. This means, the application is suspended until the user acknowledges the
message. False (.F.) declares the message box non modal, which will not suspend
the application or the MDI window.

Example:

MessageBox{"Hello"}:Show() // info box, OK button

Example: warning box with text and three buttons

[OK] [Ignore] [Don't care]

#include "dialog.fh"
oBox := MessageBox{"This warning text;is displayed in" +;

chr(10)+ "three lines", ;
MBOX_WARNING, {MBOX_OK, MBOX_IGNORE, "Do&n't care"} }

oBox:Font := gFontNew("Times", 10) // redefine the used font
nPressed := oBox:Exec() // display, wait for user
action
if nPressed == 0

? "Esc key pressed"
elseif nPressed == 1

? "ok action..."
elseif nPressed >= 2

? "will ignore..."
endif

OBJ 85

MessageBox Class Properties

oBox:BoxText := cText ASSIGN

Set or redefine the displayed text, i.e. the information to be printed in the message
box.

<cText> the displayed text, i.e. the information to be printed in the message box.
You may split the text in several lines by using either ";" (semicolon) or "\n" or
LF=chr(10) character(s). If you need to print semicolon, use "\;". To insert an empty
line, use "; ;" or ";;". To clear the previous value, assign NIL or null-string "".

Alignment: the default alignment is left justified in GUI and centered in Terminal i/o
mode. You may override this defaults by assigning

_aGlobSetting[GSET_G_N_ALERT_ALIGN] := numValue // default = 0
where <numValue> = 0: default alignment, 1: left justify, 2: center, 3: right justify.
Every single line can additionally be individually aligned by three special characters
at the line begin (i.e. after the ";" or "\n" line separator): "<<!" align left, ">>!" align
right, "><!" or "<>!" to center this line, e.g.

oBox:cText := "><!centered;<<!left;>>!right;default"
Of course, these special marker are filtered out from the text.

If the line is too long, it is automatically wrapped. In GUI mode, you may specify the
maximal text width and height (in pixel) by assigning

_aGlobSetting[GSET_G_N_ALERT_WIDTH] := nPix // default = 0
_aGlobSetting[GSET_G_N_ALERT_HEIGHT] := nPix // default = 0

or <nPix> = 0: adjust/fit box to current window size, or <nPix> = -1: adjust/fit box to
desktop size. In GUI mode, the default font oApplic:FontWindow is used, except
you specify your own font object by assigning

_aGlobSetting[GSET_G_O_ALERT_FONT] := oFont|NIL // def = NIL
In Terminal i/o mode, the displayed box and wrapping is adjusted automatically
according to MaxCol() and MaxRow().

HTML-Text: In GUI mode, you alternatively you may format the message text using
HTML like tags (the tag itself is not case sensitive):

text_part = print "text_part" in bold

<I>text_part</I> = print "text_part" in italic

<U>text_part</U> = print "text_part" underlined

<TT>text_part</TT> = print "text_part" in fixed font

<CENTER>text_part</CENTER> = print "text_part" centered

<PRE>...</PRE> = preserve whitespaces in the "..." text part

text_part = print "text_part" in color,
where rr=red, gg=green, bb=blue RGB fraction given in hexadecimal (00, 80,

OBJ 86

FF). Black text is "#000000", white "#ffffff", grey "#808080", purple "#800080",
red "#FF0000", blue "#0000FF" and so on. You also may use HTML color
names like "yellow", "aqua" etc.

text_part = print "text_part" in another font size, nn
is the logical size (1 to 7) of the font. The value may either be absolute, for
example size=3, or relative like size=-2 or size=+1.

text_part = print "text_part" in another font family
of the font, for example face=times.

<HR> = draw horizontal line

 = new line

<P> or <P>...</P> = new paragraph = draw image file

Also simple <TABLE ...><TR><TD> colText </TD><TD> colText </TD>
</TR>... </TABLE> are supported. You may use following <table> tags:
bgcolor, width, border, cellspacing, cellpadding. The <TR> tags are: bgcolor.
The <TD> tags are: bgcolor, width, colspan, rowspan, align.

Same as in HTML documents, you may combine the tags, e.g. <U> underlined
</U> red bold

The HTML text formatting is recognized automatically by scanning the text whether
there is something that looks like a tag before the first line break. To ensure
HTML formatting, set <HTML> at beginning of the text. In HTML formatted text,
the line breaks using ";" are not recognized, use
 or <P> tags instead. An
example is available in memoedithand.prg

oBox:BoxType := nType ASSIGN

Set or redefine the type of the message box, i.e. the used icon (none, info, warning,
error).

<nType> is the same as argument <nType> in the MessageBox{...} instantiation,
see description there. To clear the previous value, assign NIL or 0 (zero).

oBox:Buttons ─> ncaButt ACCESS
oBox:Buttons := ncaButt ASSIGN

Set or redefine the type and caption of the used push buttons.

<ncaButt> is the same as argument <ncaButt> in the MessageBox{...} instantiation,
see description there. To clear the previous value, assign NIL or 0 (zero).

OBJ 87

oBox:Caption := cTitle ASSIGN

Sets or redefine the caption of the message box, i.e. text displayed in the title bar of
the box.

<cTitle> is the same as argument <cTitle> in the MessageBox{...} instantiation, see
description there. To clear the previous value, assign NIL or null-string ""

oBox:ColorSpec ─> cColor ACCESS
oBox:ColorSpec := cColor ASSIGN

<cColor> is an optional color specification, considered in Terminal i/o mode. The
default is pre-defined in the global/public array _aGlobSetting[GSET_T_C_MSG-
BOXCOLOR] and is "W+/B,B/W", see initio.prg

oBox:DefButton := iDefBut ASSIGN

Set one button as default, i.e. the by RETURN key simulated button.

<iDefBut> is the same as argument <iDefBut> in the MessageBox{...} instantiation.
Specify 0 to disable this feature. Value of 1 to 3 to sets the button number 1..3 as
default. If the default button feature is disabled, you need to press TAB or Cursor
key to reach the required button via keyboard. The default key assignment does not
affect the choice via mouse click.

oBox:Exec([nTimeOut]) ─> nSelected

Display the message box, wait for user action and return a numeric value
representing the consecutive number of the pressed button, starting at 1 (one).
Pressing the ESC key returns 0 (zero). Note, the order of keys is guaranteed only
when using the array syntax in MessageBox{} instantiation or in the oBox:Buttons
assignment. For constants added to each other, preferably use oBox:Show()
instead. See example above. Arguments:

<nTimeOut> is a optional value specifying time-out in seconds. Zero = 0 which is
the default let's forever until an user action.

<nSelected> is the consecutive number of the pressed button. 0 is returned on
ESC or time out.

OBJ 88

oBox:Font ─> oFont ACCESS
oBox:Font := oFont ASSIGN

Set or redefine the used font.

<oFont> is the same as argument <oFont> in the MessageBox{...} instantiation,
see description there. To clear the previous value, assign NIL which will then use
the default oApplic:FontWindow font, or a font assigned globally for all text boxes by

_aGlobSetting[GSET_G_O_ALERT_FONT] := oFont|NIL // def = NIL

oBox:Handle() ─> num

Supported for backward compatibility to VO only. Returns 0 (zero).

oBox:HotBox ─> cBoxFrame ACCESS
oBox:HotBox := cBoxFrame ASSIGN

<cBoxFrame> is an optional string specified the frame displayed around the
message box in Terminal i/o mode. The default is pre-defined in the global/public
array _aGlobSetting[GSET_T_C_ALERTBOX] and is B_PLAIN or B_SINGLE when
using #include "fspreset.fh"

oBox:Image ─> cImageFile ACCESS
oBox:Image := cImageFile ASSIGN

<cImageFile> is a string specifying the name of user defined image used instead of
the MBOX_INFO, MBOX_WARNING, MBOX_ERROR or MBOX_QUEST default
images. If <cImageFile> is not empty(), MBOX_USER is assigned automatically to
oBox:BoxType. The <cImageFile> may contain either the file name only to search in
the current directory, or fully qualified name including path. Neither SET DEFAULT
nor SET PATH or FS_SET("lower"|"upper") is considered. Any standard images of
the type GIF, JPEG, PNG, BMP, XBM and XPM are supported. You will most
probably prefer 32x32 pixel image with transparent background; the message text is
displayed right of the image. To create the image, you may use gimp or any other
software. This property is considered in GUI mode, it is supported but ignored in
Terminal i/o mode.

Example:

oMsgBox := MessageBox{"hallo;this is test;using my own image"}
oMsgBox:Image := "/home/data/common/my_img.gif"
oMsgBox:Exec()

OBJ 89

oBox:Show() ─> nSelConstant

Equivalent to oBox:Exec() but return a numeric constant, representing the pressed
button. The constants are equivalent to <expN3> in the MessageBox{...}
instantiation, i.e. MBOX_OK, MBOX_YES, MBOX_NO, MBOX_ABORT,
MBOX_CANCEL, MBOX_RETRY or MBOX_IGNORE. On user-defined buttons
given as string, MBOX_USER1, MBOX_USER2 or MBOX_USER3 constant is
returned. Pressing the ESC key returns MBOX_USER0. All these constants are
declared in dialog.fh

oBox:Type ─> nType ACCESS
oBox:Type := mType ASSIGN

Supported for backward compatibility to VO, don't use for new development. A
constant or combination of constants that indicates which push buttons and/or icons
are displayed. See the BOX* and BUTT* constants in the dialog.fh header file.

OBJ 90

TextBox Class
FlagShip provides several GUI classes used for dialog communication. Apart from the
general ALERT() function, there is available special MessageBox class and its sub-classes
named TextBox, InfoBox, ErrorBox and WarningBox

TextBox Class Index
Class TextBox
Inherits from: MessageBox
Inherited by: - (none)
Class prototype: dialogclass.fh
Defines: dialog.fh, box.fh
Alternative: standard function ALERT() or

TEXTBOX()

BoxText ASSIGN Sets or redefines the displayed text
BoxType ASSIGN Type of the message box, i.e. the used

icon
Buttons ACC/ASS Type and caption of the used push

buttons
Caption ASSIGN Caption (title) of the message box
ColorSpec ACC/ASS Color specification for terminal i/o
DefButton ASSIGN Assigns one button as default
Font ACC/ASS Sets or redefines the used font
HotBox ACC/ASS Box frame for terminal i/o
Exec() METHOD Display the message box and wait for

user action
Show() METHOD Equivalent to oBox:Exec()
Handle() METHOD for compatibility purposes only
Type ACC/ASS for compatibility purposes only

The TextBox is an usual MessageBox class with pre-defined properties

oBox:BoxType := MBOX_NONE
oBox:Caption := if(empty(cTitle), "TextBox", cTitle)

OBJ 91

TextBox Class Instantiation
Syntax 1:

oBox := TextBox {[oOwner], [cTitle], [cText]}
Syntax 2:

oBox := TextBoxNew ([oOwner], [cTitle], [cText])
Syntax 3:

oBox := MessageBox {[cText], MBOX_NONE, [ncaButt],
[iDefBut], [cTitle], [nOwner], [oFont],
.T. }

Any of the above syntax instantiate new text box object, optionally with the given
caption, text, push-button(s) and font. The default message box is modal. This
means, the application is suspended until the user acknowledges the message.
Arguments (all optional):

<oOwner> is supported for compatibility purposes to VO and is ignored.

<cText> the displayed text, i.e. the information to be printed in the message box.
You may spilt the text in several lines by using either ";" (semicolon) or LF=chr(10)
character(s). If you need to print semicolon, use "\;". To insert an empty line, use ";
;" or ";;". If the argument is omitted, no text is displayed. Assignable also by
oBox:BoxText. See the oBox:BoxText property for details about alignment and
HTML text formatting.

<cTitle> is a caption of the message box, i.e. text displayed in the title bar of the
box. If omitted, the application name plus "Info/Warning/Error" text is used.
Assignable also by oBox:Caption

Example:

oBox := TextBox{NIL, "My Header","Hello;world!"}
oBox:Exec()

TextBox Class Properties
All the class properties are equivalent to MessageBox class, please refer there for further
details.

OBJ 92

WarningBox Class
FlagShip provides several GUI classes used for dialog communication. Apart from the
general ALERT() function, there is available special MessageBox class and its sub-classes
named TextBox, InfoBox, ErrorBox and WarningBox

WarningBox Class Index
Class WarningBox
Inherits from: MessageBox
Inherited by: - (none)
Class prototype: dialogclass.fh
Defines: dialog.fh, box.fh
Alternative: standard function ALERT() or

WARNBOX()

BoxText ASSIGN Sets or redefines the displayed text
BoxType ASSIGN Type of the message box, i.e. the

used icon
Buttons ACC/ASS Type and caption of the used push

buttons
Caption ASSIGN Caption (title) of the message box
ColorSpec ACC/ASS Color specification for terminal i/o
DefButton ASSIGN Assigns one button as default
Font ACC/ASS Sets or redefines the used font
HotBox ACC/ASS Box frame for terminal i/o
Exec() METHOD Display the message box and wait for

user action
Show() METHOD Equivalent to oBox:Exec()
Handle() METHOD for compatibility purposes only
Type ACC/ASS for compatibility purposes only

The WarningBox is an usual MessageBox class with pre-defined properties

oBox:BoxType := MBOX_WARNING
oBox:BoxText := if(empty(cText), "Warning ...", cText)
oBox:Caption := if(empty(cTitle), "Warning", cTitle)

OBJ 93

WarningBox Class Instantiation
Syntax 1:

oBox := WarningBox {[oOwner], [cTitle], [cText]}
Syntax 2:

oBox := WarningBoxNew ([oOwner], [cTitle], [cText])
Syntax 3:

oBox := MessageBox {[cText], MBOX_WARNING,
[ncaButt], [iDefBut], [cTitle],
[nOwner], [oFont], .T. }

Syntax 4:
Alert(cText, [aButt]) -> nSelected

Any of the above syntax instantiate new warning box object, optionally with the
given caption, text, push-button(s) and font. The default message box is modal.
This means, the application is suspended until the user acknowledges the
message. Arguments (all optional):

<oOwner> is supported for compatibility purposes to VO and is ignored.

<cText> the displayed text, i.e. the information to be printed in the message box.
You may spilt the text in several lines by using either ";" (semicolon) or LF=chr(10)
character(s). If you need to print semicolon, use "\;". To insert an empty line, use ";
;" or ";;". If the argument is omitted, no text is displayed. Assignable also by
oBox:BoxText. See the oBox:BoxText property for details about alignment and
HTML text formatting.

<cTitle> is a caption of the message box, i.e. text displayed in the title bar of the
box. If omitted, the application name plus "Info/Warning/Error" text is used.
Assignable also by oBox:Caption

Example:

oBox := WarningBox{NIL, "My Warning","Something unusual happen"}
oBox:Exec()

WarningBox Class Properties
All the class properties are equivalent to MessageBox class, please refer there for further
details.

OBJ 94

Font Class
This class is used to hold the font information. It is available in all i/o modes, but a
meaningful information is given in the GUI mode only.

The Font Class is a collection of attributes of a font. When a text is drawn in GUI mode, it
always use a specified or the default font. The most important attributes of a Font are
FontFamily(), SizePoint() and Weight(). The used attributes, e.g. italic, underline, striked
thru, bold etc. can either be set and retrieved at once by Attrib() or separately be the
corresponding method.

As with other GUI classes in FlagShip, the general Fontclass is splitted into three different
sub-classes: _gFont for GUI based application, _tFont for terminal/text based, and
_bFont for basic i/o. Here, only the _gFont class makes sense and has the functionality
described below. To enable a cross-compile-compatibility, the properties of _gFont are
available also in the two other classes (tFont and bFont), but they usually have no action and
return default value only.

The Font class is used in the Application Window for specifying the font appearance of the
main window. For the user window (SDI or MDI), there are two fonts available, one for
displaying of text (e.g. @..SAY..) and one for the data entry (e.g. @..GET..). These default
windows are set automatically on start-up of the application, i.e. during the instantiation of
the Application Window class. You may override these defaults either before creating of the
Application Window (usually in the InitIo() modifiable function), or anytime later by using the
oApplic:Font object.

Selecting a font is not a trivial operation. The font manager needs to search the system for
installed fonts and theirs attributes. The font matching algorithm works as follows: First an
available font family is searched for the given FontFamily or FontName. If the requested is
not available, the style hint given as Attrib() is used to select a replacement family. If the
style hint has not been set, "helvetica" will be used. The following attributes are then
matched, in order of priority: character set, pitch, point size, weight, italic. If, for example, a
font with the correct character set is found, but all other attributes do not match, this font is
even though used, instead of a font with the wrong character set but with all other attributes
correct.

OBJ 95

Font Class Index
Class Font = _gFont, _bFont, _tFont
Inherits from: - (none)
Inherited by: - (none)
Class prototype: fontclass.fh
Defines: font.fh

Attrib() METHOD Returns or set attributes of this font
AttribChar() METHOD Returns or set attributes of this font
Bold ACC/ASS Gets or sets the bold attribute for this font
CharSet() METHOD Sets and/or return the font character set
CloneTo() METHOD Copies current font properties to other object
Dialog() METHOD Lets the user modify a font by a modal dialog
FontFamily ACC/ASS Returns or sets the desired font family name
FontFamily() METHOD alternative to the same named ACCESS or ASSIGN
FontName ACC/ASS Sets and/or return the desired font name
FontName() METHOD Sets and/or return the desired font name
FontPtr ACCESS Return the ptr to C++ font class
Height() METHOD Retrieves the highest char of the font in pixel
IsEqualTo() METHOD Compares Properties of current and other font
Italic ACC/ASS Gets, sets or clears italic attrib for this font
LineHeight() METHOD Retrieves the height of one row (line) in pixel
Name ACC/ASS same as FontName Acc/Ass
Normal ACC/ASS Checks or sets the "normal" attribute
Pitch ACC/ASS Checks, sets or clears variable or fixed pitch
Size ACC/ASS Sets/returns the size of the font in points
SizePixel() METHOD Sets/returns the size of the font in pixels
SizePoint() METHOD Sets/returns the size of the font in points
StrikeThru ACC/ASS Checks, sets or clears the striked-thru attrib
Underline ACC/ASS Checks, sets or clears the underlined attribute
Width() METHOD Retrieves the width of the largest character
WidthChar() METHOD Returns the total width of the given string
WidthMaxChar() METHOD Return the width of the largest char in string

OBJ 96

Font Class Instantiation

Font { [expC1], [expN2], [expC3] } ─> oFont CREATOR
FontNew ([expC1], [expN2], [expC3]) ─> oFont CREATOR, altern. syntax

Instantiates the Font object of a _gFont, _tFont or _bFont sub-class, in dependence
on the compiler switches or latest at run-time. For size-and speed-sensitive
applications, you may directly use the sub- class creators instead. Arguments
(optional):

<expC1> : The desired font family name, see details in oFont:FontFamily. The
given family name is case insensitive. If <expC1> is not given, NIL or empty, the
default desktop font is used.

<expN2> : The desired font size in Points. You may specify or change the font size
later by oFont:SizePoint() or oFont:SizePixel(). If <expN2> is not given, or is NIL or
0 (zero), the default desktop size is used.

<expC3> : optional font attributes, any combination of letters "N" = normal, "B" =
bold, "I" = italic, "U" = underline, "S" = striked thru. You may check or change the
font attribute later by oFont:Normal, oFont:Bold, oFont:Italic, oFont:Underline and
oFont:StrikeThru

Example: instantiation of oFont:

oFont1 := Font {"Times", 15}
oFont2 := Font { }
oFont3 := Font {"Arial", 12, "Bu" }
? "oFont1=", oFont1:FontFamily, "size=", oFont1:SizePixel()
? "oFont2=", oFont2:FontFamily, "size=", oFont2:SizePixel()
? "oFont3=", oFont3:FontFamily, "size=", oFont3:SizePixel(), ;
"attrib=", oFont3:AttribChar(), "bold=", oFont3:Bold, ;
"underline=", oFont3:Underline, "italic=", oFont3:Italic

Example: instantiation of gAppWindow and changing the default font of the main
window:

#include "font.fh"
* oAppWindow := gAppWindow { } // done usually in the InitIo(),
* // not in the application !
oFont := oAppWindow:Font
oFont:SizePixel(10) // ==
oAppWindow:Font:SizePixel(10)
oFont:Attrib(FONT_HELVETICA + FONT_NORMAL + ;

FONT_UPRIGHT + FONT_VAR_PITCH)
oAppWindow:Display()

OBJ 97

Font Class Properties

oFont:Attrib ([expN1]) ─> iFontAtrib

Returns or sets the binary or-ed (or added) attribute of this font. Argument
(optional): <expN1> is the font attribute to be set. Either a single constant or an
addition of max. each one attribute from these groups:
Weight: FONT_LIGHT, FONT_NORMAL (default), FONT_DEMIBOLD,
FONT_BOLD, FONT_BLACK, FONT_25PERCENT, FONT_50PERCENT,
FONT_63PERCENT, FONT_75PERCENT, FONT_87PERCENT

Slant: FONT_UPRIGHT (default), FONT_ITALIC
Style: FONT_SANSSERIF, FONT_SERIF, FONT_TYPEWRITER, FONT_OLDENGLISH,
FONT_SYSTEM, FONT_HELVETICA, FONT_ARIAL, FONT_SWISS, FONT_TIMES,
FONT_ROMAN, FONT_COURIER, FONT_MODERN, FONT_DECORATIVE

Pitch: FONT_VAR_PITCH, FONT_FIX_PITCH
Special: FONT_STRIKED, FONT_STRIKED_OFF, FONT_UNDERL,
FONT_UNDERL_OFF

Returns: binary or-ed attributes of the currently selected font (corresponding to
::FontFamily), before new attributes (if any) are set. You can determine the single
attribute by BinAND() the return value with the attribute constant.

All the above constants are defined in the font.fh header file. Note that the font
manager will try to set either your required attribute, or one close to, since most of
the attributes are dependent on the available font properties.

Example: sets a new font and prints some of its attributes

local oFont := oFont { , 12 }
local iAttrib, iAttrOld
iAttrOld := oFont:Attrib(FONT_MODERN + FONT_UNDERL + ;

FONT_LATIN1 + FONT_BOLD)
? "Font ", oFont:FontName, "->", oFont:FontFamily, ;
"size in pixel", ltrim(oFont:SizePixel))

iAttrib := oFont:Attrib()
if binAND(iAttrib, FONT_LIGHT) != 0

?? " light"
elseif binAND(iAttrib, FONT_NORMAL) != 0

?? " normal"
elseif binAND(iAttrib, FONT_DEMIBOLD) != 0

?? " demibold"
elseif binAND(iAttrib, FONT_BOLD) != 0

?? " bold"
else

?? " black"
endif
if binAND(iAttrib, FONT_UPRIGHT) != 0

?? " upright/roman "
elseif binAND(iAttrib, FONT_ITALIC) != 0

?? " italic "
endif

OBJ 98

See also oFont:Bold, oFont:CharSet(), oFont:Italic, oFont:Normal, oFont:Pitch,
oFont:StrikeThru, oFont:Underline

The _tFont and _bFont sub-class does not set anything and returns 0 (zero) which
signals that the requested attribute is not available.

oFont:AttribChar ([expC1]) ─> cFontAtrib

Returns or sets attribute of this font given as mnemonic character(s). Argument
(optional):

<expC1> is the font attribute to be set. Any combination of letters "N" = normal, "B"
= bold, "I" = italic, "U" = underline, "S" = striked thru. You may check or change
the font attribute later by oFont:Normal, oFont:Bold, oFont:Italic,
oFont:Underline and oFont:StrikeThru

Returns: a constant same as in <expC1>, determined at the time of entering this
method.

oFont:Bold ─> lStatus ACCESS
oFont:Bold := lStatus ASSIGN

Gets, sets or clears the bold attribute for this font. Fully equivalent to
oFont:Attrib(FONT_BOLD), i.e.

isBold := binAND(oFont:Attrib(), FONT_BOLD) > 0
isBold := oFont:Bold

and
oFont:Bold := .T.
oFont:Attrib(FONT_BOLD)

See also oFont:Attrib(), oFont:Italic, oFont:Normal, oFont:Pitch, oFont:StrikeThru,
oFont:Underline

The _tFont and _bFont sub-class does not set anything and returns .F.

oFont:CharSet([expN1]) ─> nAttrib

Sets and/or return the font character set. Argument (optional):

<expN1> is a constant from font.fh representing the font character set.

Enter one of: FONT_ISO8859_1, FONT_ISO8859_2, FONT_ISO8859_3 ...
FONT_ISO8859_15, FONT_KOI8R, FONT_SET_JA, FONT_SET_KO,
FONT_SET_TH_TH, FONT_SET_ZH, FONT_SET_ZH_TW, FONT_UNICODE

or: FONT_LATIN1...4, FONT_CYRILLIC, FONT_ARABIC, FONT_GREEK,
FONT_HEBREW, FONT_TURKISH, FONT_ISO10646

The default character set on the font instantiation is FONT_ISO8859_1 ==
FONT_LATIN1

Returns: a constant same as in <expN1>, determined at the time of entering this
method.

OBJ 99

See also oFont:Attrib()

The tFont and bFont sub-class does not set anything and returns 0 (zero)

oFont:CloneTo(expO1) ─> oFont

Clones (copies) current font properties to a destination object. Argument :

<expO1> is the destination object of class gFont, which properties should be
overwritten by properties of the current object.

Returns: <expO1> self or NIL on error.

Note, you also may assign an object variable to another (e.g. oNewFont :=
oOldFont). But the assignment does not copy the object, it creates only a "link" to
the target, so any change on one object reflects also to the other object. On the
other hand, this oFont: CloneTo() method copies the current properties (all font
attributes) to the target, whereby both the source and target objects remain
independent from each other. This behavior is comparable to the standard function
ACLONE() vs. an array assignment.

Example:

oFont1 := gFont {"Courier"}
oFont2 := gFont { }
? oFont1:FontFamily, oFont2:FontFamily // Courier Helvetica
oFont1:CloneTo(oFont2)
? oFont1:FontFamily, oFont2:FontFamily // Courier Courier
? oFont1:IsEqualTo(oFont2) // .T.

The tFont and bFont sub-class does not set anything and returns NIL

oFont:Dialog() ─> lChanged

Lets the user modify attributes of the current font object by a modal dialog:

(picture)

Returns: .T. and the modified font object if the user clicked "OK" button. Otherwise
.F. and the original unmodified object if the user clicked "Cancel" or closed the
dialog window.

Example:

oFont := oAppWinfow:Font
? "current font:", oFont:FontFamily, ;
"size pixel/pt:", ltrim(oFont:sizePixel), ltrim(oFont:sizePoint)

lChanged := oFont:Dialog()
? if (lChanged, "-changed-", "-unchanged-"), ;
"new font:", oFont:FontFamily, ;
"size pixel/pt:", ltrim(oFont:sizePixel), ltrim(oFont:sizePoint)

The _tFont and _bFont sub-class has no action and returns .F.

OBJ 100

oFont:IsEqualTo(expO1) ─> lEquiv

Compares the current font properties with other font object.

<expO1> is the second object of class gFont, which properties should be compared
with properties of the current font object.

Returns: logical .T. if all properties and attributes of both objects are equivalent, .F.
otherwise

oFont:FontFamily ─> cName ACCESS
oFont:FontFamily := cName ASSIGN
oFont:FontFamily([cName]) ─> cName METHOD

Sets a desired font, or return the truly selected font family name. Note, the font
desired to be set may differ from the returned font family, depending on the installed
fonts found by the font manager. To set a font name, you may specify

•either usual X11 or Win32 name, such as "Helvetica", "Arial", "Times", "Courier",
"OldEnglish", "System", "AnyStyle", "SansSerif" (= Helvetica), "Serif" (= Times),
"TypeWriter" (= Courier), "Decorative" (= OldEnglish), "Swiss" (= Helvetica) . The
string with the family name is case insensitive.

•or a constant from the font.fh file specifying both the font and size:
FONTMODERN8, FONTMODERN10, FONTMODERN12, FONTROMAN10,
FONTROMAN12, FONTROMAN14, FONTROMAN18, FONTROMAN24,
FONTSWISS8, FONTSWISS10, FONTSYSTEM8. These constants are for
backward compatibility purposes to VO only. It is not recommended to use them
for new applications.

The font manager will try to find the desired font or at least a font which is close to
the given one. You may check the currently used font family by access
oFont:FontFamily after assigning a font.

See also "Selecting a font" at the begin of this class description, oFont:FontName()
and Style in oFont:Attrib()

Example:

oFont := oFont { "Courier" }
oFont:FontFamily := "Arial"
? oFont:FontFamily // "Helvetica"
? oFont:FontName() // "Arial"

The _tFont and _bFont sub-class does not set anything and returns "" (null-string)

OBJ 101

oFont:FontName ─> cName ACCESS
oFont:FontName := cName ASSIGN
oFont:FontName([cName]) ─> cName

Sets and/or return the desired font name. Note, the font desired to be set may differ
from the really used font family (::FontFamily), depending on the installed fonts
found by the font manager. This oFont:FontName() will return the last desired
name, whilst the oFont:FontFamily() the really used font name/family. See also
oFont:FontFamily for further details.

The _tFont and _bFont sub-class does not set anything and returns "" (null-string)

oFont:Height() ─> nPixelSize

Retrieves the highest character of the currently used font in pixel. See also
oFont:LineHeight() and example in oFont:Width()

The _tFont and _bFont sub-class returns 1

oFont:Italic ─> lStatus ACCESS
oFont:Italic := lStatus ASSIGN

Gets, sets or clears the italic attribute for this font. Fully equivalent to
oFont:Attrib(FONT_ITALIC), i.e.

isItalic := binAND(oFont:Attrib(), FONT_ITALIC) > 0
isItalic := oFont:Italic

and
oFont:Italic := .T.
oFont:Attrib(FONT_ITALIC)

See also oFont:Attrib(), oFont:Bold, oFont:Normal, oFont:Pitch, oFont:StrikeThru,
oFont:Underline

The _tFont and _bFont sub-class does not set anything and returns .F.

oFont:LineHeight() ─> nPixelSize

Retrieves the height of one row (line) in pixel. The return value is usually equivalent
to oFont:Height() but may be slightly larger for some fonts. See example in
oFont:Width()

The _tFont and _bFont sub-class returns 1

oFont:Name ─> cName ACCESS
oFont:Name := cName ASSIGN

Same as oFont:FontName Access/Assign

OBJ 102

oFont:Normal ─> lStatus ACCESS
oFont:Normal := lStatus ASSIGN

Checks, or sets the "normal" font attribute. Assigning .T. clears the Bold, Italic,
Underline and StrikeThru flag, assigning .F. do not set or clear anything. Equivalent
to oFont:Attrib (FONT_NORMAL), i.e.

isNormal := binAND(oFont:Attrib(), FONT_NORMAL) > 0
isNormal := oFont:Normal

and
oFont:Normal := .T.
oFont:Attrib(FONT_NORMAL)

See also oFont:Attrib(), oFont:Bold, oFont:Italic, oFont:Pitch, oFont:StrikeThru,
oFont:Underline

The _tFont and _bFont sub-class does not set anything and returns .T.

oFont:Pitch ─> lStatus ACCESS
oFont:Pitch := lStatus ASSIGN

Checks, sets or clears the variable/proportional (.T.) or fixed (.F.) pitch attribute of
this currently used font. Fully equivalent to oFont:Attrib(FONT_VAR_PITCH), i.e.

isFixPitch := binAND(oFont:Attrib(), FONT_VAR_PITCH) == 0
isVarPitch := binAND(oFont:Attrib(), FONT_VAR_PITCH) > 0
isVarPitch := oFont:Pitch

and
oFont:Pitch := .T.
oFont:Attrib(FONT_VAR_PITCH)

See also oFont:Attrib(), oFont:Bold, oFont:Italic, oFont:Normal, oFont:StrikeThru,
oFont:Underline

The _tFont and _bFont sub-class does not set anything and returns .F.

oFont:Size ─> nPointSize ACCESS
oFont:Size := nPointSize ASSIGN

Equivalent to nPointSize := SizePoint() or SizePoint(nPointSize)

oFont:SizePixel([expN1]) ─> nPixelSize

Sets and/or returns the size of the current font in pixels. Argument (optional):

<expN1> is the font size in pixel to be set. If not given, or is NIL or 0, the current
size remain unchanged.

Returns: the current font size at the time of entering the method.

See example in oFont:Width()

The _tFont and _bFont sub-class does not set anything and returns 1

OBJ 103

oFont:SizePoint([expN1]) ─> nPointSize

Sets and/or returns the size of the current font in points (1/72 inch). Argument
(optional):

<expN1> is the font size in points to be set. If not given, or is NIL or 0, the current
size remain unchanged.

Returns: the current font size at the time of entering the method.

See example in oFont:Width()

The tFont and bFont sub-class does not set anything and returns 1

oFont:StrikeThru ─> lStatus ACCESS
oFont:StrikeThru := lStatus ASSIGN

Checks, sets or clears the striked-thru attribute of this font. Fully equivalent to
oFont:Attrib(FONT_STRIKED), i.e.

isStrikedThru := binAND(oFont:Attrib(), FONT_STRIKED) > 0
isStrikedThru := oFont:StrikeThru

and
oFont:StrikeThru := .T.
oFont:Attrib(FONT_STRIKED)

See also oFont:Attrib(), oFont:Bold, oFont:Italic, oFont:Normal, oFont:Pitch,
oFont:Underline

The _tFont and _bFont sub-class does not set anything and returns .F.

oFont:Underline ─> lStatus ACCESS
oFont:Underline := lStatus ASSIGN

Checks, sets or clears the underlined attribute of this font. Fully equivalent to
oFont:Attrib(FONT_UNDERL), i.e.

isUnderlined := binAND(oFont:Attrib(), FONT_UNDERL) > 0
isUnderlined := oFont:Underline

and
oFont:Underline := .T.
oFont:Attrib(FONT_UNDERL)

See also oFont:Attrib(), oFont:Bold, oFont:Italic, oFont:Normal, oFont:Pitch,
oFont:StrikeThru

The tFont and bFont sub-class does not set anything and returns .F.

OBJ 104

oFont:Width() ─> nPixelSize

Retrieves the width (in pixel) of the largest character in the current font. Example:

oFont := oFont { "SansSerif", 14 }
? "Font used = ", oFont:FontFamily() // helvetica
? "size in Point = ", oFont:SizePoint() // 14.00
? "size in Pixel = ", oFont:SizePixel() // 15
? "max h x w = ", ltrim(oFont:Height()) + " x " + ;

ltrim(oFont:Width()) // 17 x 15
? "max of 'aXMZ5'= ", oFont:WidthMaxChar("aXMZ5") // 13
? "width 'aXMZ5'= ", oFont:WidthChar("aXMZ5") // 48
? "line height = ", oFont:LineHeight() // 17

The _tFont and _bFont sub-class returns 1

oFont:WidthChar(cString) ─> nPixelSize

Returns the total width (in pixel) of the given string. See example in oFont:Width()

The _tFont and _bFont sub-class returns LEN(cString)

oFont:WidthMaxChar(cString) ─> nPixelSize

Determine and return the width (in pixel) of the largest character in a given string.
With variable font width, this value will usually be smaller for alpha-numeric chars
than the value returned by oFont:Width(). See example in oFont:Width()

The _tFont and _bFont sub-class returns 1

OBJ 105

GET Class
The GET class provides a mechanism for interactive editing of database fields and variables.
In FlagShip, the GET class is generally used to perform @...GET and READ commands. It
also enables the creation of user- defined, screen-oriented input/output routines. The
methods included make mechanisms for formatting and editing data, cursor navigation and
data validation available.

The internal data of the GET object is stored in a normal FlagShip variable or an array
element which is created by the GETNEW() function.

Normally, a GET object is associated with a particular input/output variable which stores the
edited data. The GET object does not directly access this variable; instead, the variable is
manipulated by evaluating a supplied code block. When a GET object is created using the
standard @...GET command, an internal code block is automatically created which
provides access to the variable named in the command. When the user assigns another
code block to the BLOCK instance, it becomes the preferred.

Example:

LOCAL mystr := "any text" + space(100)
@ 5,10 GET mystr PICTURE "@!S20" COLOR "W+/B,N/W,,,R+/B" ;

WHEN !EMPTY(mystr) VALID ISCHAR(mystr)
READ

is equivalent to:

LOCAL mystr := "any text" + space(100)
LOCAL getarr[1]
LOCAL myblock := {|par| IF(par==NIL, mystr, mystr := par)}

getarr[1] := GETNEW (5, 10, myblock, "MYSTR", ;
"@!S20", "W+/B,N/W,,,R+/B")

getarr[1]:PREBLOCK := { || !EMPTY(mystr) }
getarr[1]:POSTBLOCK := { || ISCHAR(mystr) }
READMODAL (getarr)
getarr := {}

OBJ 106

GETNEW()
Syntax 1:

obj = GETNEW ([expN1], [expN2], [expB3], [expC4],
[expC5], [expC6], [expL7])

Syntax 2:
obj = GET {[expN1], [expN2], [expB3], [expC4],

[expC5], [expC6], [expL7] }
Purpose:

Creates a new, empty GET object, optionally initialized by the supplied arguments.

Options:
<expN1> is the screen row where GET is displayed. This argument is equivalent to
assigning the obj:ROW with the same value. The valid range is 0...MAXROW(), the
default is zero.

<expN2> is the screen column where the GET is displayed. This argument is
equivalent to assigning the obj:COLUMN with the same value, the valid range is
0...MAXCOL(). The default is zero.

<expB3> is the user supplied block which accesses and modifies the input variable
or database field. This argument is equivalent to assigning the obj:BLOCK with the
same data.

<expC4> is an optional name of the input variable or database field. This argument
is equivalent to assigning the obj:NAME with the same string.

<expC5> is an optional picture specification used to format the input and output of
the GET field. This argument is equivalent to assigning the obj:PICTURE with the
same string.

<expC6> is an optional color specification used to display the GET field. This
argument is equivalent to assigning the obj:COLORSPEC with the same string.

<expL7> is an optional logical value specifying whether the <expN1> and <expN2>
parameters are given in coordinates or in pixels. When <expL7> is .T., both
parameters are interpreted as pixel. If not given, NIL or .F., the interpretation
depends on the current SET PIXEL status. This argument is set correspondingly by
[NO]PIXEL clause of @..GET command.

Returns:
<obj> is the new allocated GET object, usually assigned to a regular FlagShip
variable or to an array element.

Description:
GETNEW() creates a new, empty get object. If the optional arguments are supplied,
the corresponding instance variables are filled with these values.

OBJ 107

To perform a READ using the GET object, at least the first three arguments must be
specified in GETNEW() or assigned using the instance variables. A READ for one
GET field stored in a regular variable can be invoked using GETREADER(), while a
READ for an array of GET objects can be invoked using the READMODAL() func-
tion.

Example:
LOCAL myget := GETNEW(), myvar := SPACE(100)
LOCAL getarr[2], data1 := 1, data2 := 2

getarr[1] =GETNEW(0,0,{|par|IF(par==NIL,data1,data1:=par)})
getarr[2] =GETNEW(1,0,{|par|IF(par==NIL,data2,data2:=par)})
READMODAL (getarr)

myget:ROW := 10
myget:COLUMN := 0
myget:BLOCK := {|par| IF(par==NIL, myvar, myvar:=par) }
myget:COLORSPEC := "W+/B,R/W,,,B/W"
myget:NAME := "myvar"
myget:PICTURE := "@!S20"
GETREADER (myget)

Classification:
programming

Class:
GET class, prototyped in <FlagShip_dir>/include/getclass.fh

Source:
The user defined READ is available in <FlagShip_dir>/system/ getsys.prg, including
the READMODAL() and GETREADER() functions.

Compatibility:
Available in FS4, C5 and VO. The alternative syntax 2 and the possibility of
inheriting it into an own subclass is available in FlagShip only.

Related:
@..GET, READ, std.fh, VALTYPE(), GETACTIVE(), GETAPPLKEY(),
GETDOSETKEY(), GETPOSTVAL(), GETPREVALID(), GETREADER(),
READMODAL(), READINSERT(), READEXIT()

OBJ 108

Get Class Index
Class Get
Inherits from: -
Inherited by: -
Class
prototype:

getclass.fh

Defines: getexit.fh,
inkey.fh, set.fh

Assign() METHOD Assigns editing buffer to the GET variable
Backspace() METHOD Deletes character left of the cursor
Baddate ACCESS Does editing buffer contain valid date?
BadDate() METHOD internal
Block ACC/ASS Code block that associates object with variable
Buffer ACC/ASS Character editing buffer of the GET
Cargo Export Any user data
Changed ACCESS Has the get:BUFFER changed?
ClassName() METHOD Return "GET"
Clear ACC/ASS Clear buffer before editing?
Col ACC/ASS Screen column where the GET field starts
Col() METHOD Set/get screen column or pixel of the GET field
ColorDisp() METHOD Changes the color specification
ColorSpec ACC/ASS Color attributes for the GET object
Decpos ACCESS Decimal point position within the editing buffer
Copy() METHOD Copies marked text into cut-and-paste buffer
DelEnd() METHOD Deletes rest of the editing buffer
Delete() METHOD Deletes character under cursor
DelLeft() METHOD Deletes character left of cursor
DelRight() METHOD Deletes character right of cursor
DelWordLeft() METHOD Deletes word left of cursor
DelWordLef() METHOD same as DelWordLeft()
DelWordRight() METHOD Deletes word right of cursor
DelWordRig() METHOD same as DelWordRight()
Destroy() METHOD Destroys the GET object
DestroyOnAxit ACC/ASS Should get:Destroy() be called on Axit?
Display() METHOD Displays the GET object on the screen
EmptyDate ACCESS Is the date entry empty?
End() METHOD Moves cursor to the rightmost editable position
End2Char ACC/ASS Controlls the behavior of get:End()
Exec() METHOD Process user input and editing
ExitState ACC/ASS Controlls the action on GET exit
GuiColor ACC/ASS Corresponds to GUICOLOR clause in @..GET
GuiObj2var() METHOD similar to VarPut()
GuiVar2obj() METHOD similar to VarGet()
Handler ACC/ASS Code block specifying handler for get:Exec()

OBJ 109

Hasfocus ACCESS Has the Get field input focus?
Height ACC/ASS Height of the GUI widget
Height() METHOD same as Height ACC/ASS
HitTest() METHOD Checks if the given coordinates are in GET
Home() METHOD Moves cursor to the leftmost editable position
Home2Char ACC/ASS Controlls the behavior of get:Home()
Insert() METHOD Inserts one or more character(s) into buffer
KillFocus() METHOD Removes input focus from the GET object
Left() METHOD Moves cursor left to nearest editable position
Message ACC/ASS String displayed in the SET MESSAGE line
Minus ACC/ASS Was minus sign entered?
Move() METHOD Move GUI widget to new position
Name ACC/ASS Name of the GET variable
OnClickAction ACC/ASS Action in READ triggered by code block
OnClickKeys ACC/ASS Simulates key press, triggered by code block
Original ACCESS Copy of the variable content at begin of edit
Overstrike() METHOD Puts one or more character(s) into buffer
Paste() METHOD Copy cut-and-paste buffer into editing buffer
Picture ACC/ASS String specifying the field formatting
Pos ACCESS Curr cursor position relative to buffer begin
PostBlock ACC/ASS Code block for post-validation (VALID clause)
PreBlock ACC/ASS Code block for pre-validation (WHEN clause)
Reader ACC/ASS Code block accessing user defined READ
Rejected ACCESS Was the edit character placed into buffer?
Reset() METHOD Resets internal status information
Right() METHOD Moves cursor right to nearest editable posit
Row ACC/ASS Screen row of the GET field
Row() METHOD Set/get screen row or pixel of the GET field
SetFocus() METHOD Sets input focus to the GET object
Show() METHOD Same as get:Exec()
Subscript ACC/ASS Used if the GET variable is an array element
ToDecPos() METHOD Moves cursor right of the deci point position
ToolTip ACC/ASS String displayed in GUI mode
Type ACCESS Data type of the GET variable
Typeout ACCESS Accepted cursor movement?
Undo() METHOD Resets internal GET status information
Untransfor() METHOD same as Untransform()
Untransform() METHOD Converts get:BUFFER into variable date type
UpdateBuffer() METHOD Sets get:BUFFER to current value of GET variable
UpdateBuff() METHOD same as UpdateBuffer()
VarGet() METHOD Returns current value of the GET variable
VarPut() METHOD Sets the GET variable to specified value
Width ACC/ASS Width of the GUI widget
Width() METHOD same as Width ACC/ASS
WordLeft() METHOD Moves cursor one word to the left
WordRight() METHOD Moves cursor one word to the right

OBJ 110

GET Instance Variables

get:BADDATE Access

Contains a logical value indicating that the editing buffer does not represent a valid
date if the value is TRUE. When the date is valid, or the current GET is not a date,
the value contains FALSE.

get:BLOCK Access/Assign

Contains the user supplied code block that associates the GET object with a
variable. If the object is created by the @...GET command, an internal code block is
used. When the user assigns another code block, the one stored in get:BLOCK will
be preferred.

The code block takes an optional argument the value of which is assigned to the
variable. If the argument is omitted, the code block returns the current value of the
variable, e.g. when editing the "myvar" variable or "myfld" field:

myget:BLOCK = { |par| IF (par == NIL, myvar, myvar := par) }
myget:BLOCK = { |par| IF (PCOUNT()=0, FIELD->myfld, ;

FIELD->myfld := par) }

If the GET variable is an array element, you may use the get:BLOCK only for arrays
with constant indices. When using the @...GET command the subscript(s) in the
expression are stored internally. Setting and getting array elements may be done by
using the get:VARGET() and get:VARPUT() methods, which is also the preferred
method for simple variables.

get:BUFFER Access/Assign

Contains a character value which is the editing buffer used by the GET object. The
value is meaningful only when the object has input focus. At other times, the value
is mostly NIL or "", and all attempts to assign a new value do not affect the GET
variable.

Note that in GUI i/o mode, the internal buffer data are stored and handled in
ISO/ANSI character set, regardless the current SET GUITRANSL TEXT on/off
translation mode. The buffer is set/translated in get:Display(), get:ASSIGN(),
get:UNTRANSFORM(), get:UPDATEBUFFER() from/to the target variable or field
by considering the current SET GUITRANSL TEXT status, or the equivalent SET
SOURCE ASCII/ISO or SET(_SET_GUIASCII) flag. So if you check or update the
buffer manually and SET(_SET_GUIASCII) is .T., access the buffer data using data
:= ANSI2OEM(get:BUFFER) or assign get:BUFFER := OEM2ANSI(data)

In textual/terminal i/o mode, the current TERM (or CodePage in Windows) is
considered instead.

OBJ 111

get:CARGO Access/Assign

Contains user data of any type, to store information retrieved later in the program.
Not used by the GET system itself.

get:CHANGED Access

Contains a logical value indicating whether the get:BUFFER has changed since the
GET has received input focus. It contains TRUE if the BUFFER has been changed
by one the edit methods; otherwise it contains FALSE. Assigning a value to
get:BUFFER or altering the GET variable will not change the state of
get:CHANGED. Get:SETFOCUS() and get:KILLFOCUS() clears it to FALSE.

get:CLEAR Access/Assign

Contains a logical value indicating whether the editing buffer should be cleared
before any values are entered. This instance is set TRUE when executing
get:SETFOCUS() or get:UNDO(), and the get:PICTURE contains the "@K" (picture
function) or the GET variable is a numeric type.

get:COL Access/Assign
get:COL([nCol], [lPixel]) Method

Contains a numeric value defining the screen column position where the GET field
starts. Equivalent to the <column> argument of the @..GET command. In GUI
mode the current SET PIXEL setting decides if the entry and return value is in
coordinates or pixels. You may override this by using the second parameter of
get:COL() method, where <lPixel> == .T. specify using pixel and <lPixel> == .F.
specify using coordinates.

get:COLORSPEC Access/Assign

Contains a character string defining the display color attributes for the GET object,
equivalent to the COLOR <color> argument of the @..GET command. The color
string must contain at least both "enhanced" and "unselected" attributes. If this
property is specified, it is always used in Terminal i/o mode. In GUI mode, it is used
only if get:GUICOLOR is not set, and when SET GUICOLOR is ON. If
get:COLORSPEC is not specified, get:Display() use the current SetColor() setting
(always in Terminal i/o, and with SET GUICOLOR ON in GUI mode). For further
color information, refer to (CMD) SET COLOR.

get:DECPOS

Contains a numeric value indicating the decimal point position within the editing
buffer, meaningful only when editing a numeric variable and when the object has

OBJ 112

input focus. If the variable and/or the picture has no decimals, this instance contains
zero.

get:DESTROYONAXIT Access/Assign

Contains optional logical value, specifying that get:Destroy() should by called at exit
of READ. Set by the CLEAR or DESTROY clause of @..GET or of READ. See
get:Destroy() for details.

get:END2CHAR Access/Assign

Contains a logical value controlling the behavior of get:End(). If .T., get:End() moves
behind the last character in buffer not a space, .F. moves to last editable character
in buffer. The default is taken from a global variable _aGlobSetting[GSET_L_
GET_END2CHAR], which is .T. by default.

get:EXITSTATE Access/Assign

Contains a numeric value indicating the desired action, or the state when the GET
object was exited and is used in the user-modifiable READ (see
<FlagShip_dir>/system/getsys.prg).

Val getexit.fh Description
0 GE_NOEXIT No exit attempted, prepare GET for editing
1 GE_UP Go to previous GET
2 GE_DOWN Go to next GET
3 GE_TOP Go to first GET
4 GE_BOTTOM Go to last GET
5 GE_ENTER Normal end of GET editing
6 GE_WRITE Terminate READ, save GET
7 GE_ESCAPE Terminate READ, do not save GET
7 GE_EXIT same as GE_ESCAPE
8 GE_WHEN WHEN clause unsatisfied

get:GUICOLOR Export Access/Assign

Contains a character string defining the display color attributes for the GET object
for executable running in GUI mode. The property is set by the GUICOLOR <color>
clause of the @..GET command. The color string should contain at least both
"enhanced" and "unselected" attributes and may contain also "disabled" and
"unselectedWindow" pairs. If this property is specified, it is always used in GUI
mode and is ignored in Terminal i/o, where get:COLORSPEC apply. If
get:GUICOLOR is not specified, get:Display() use either get:COLORSPEC or
SetColor(), in GUI mode only when SET GUICOLOR is ON. For further color
information, refer to (CMD) SET COLOR.

OBJ 113

get:HANDLER Access/Assign

Contains optional code block, used to handle keyboard input. get:Exec() passes the
current object to the code block. The default setting is get:Handler := {|obj|
GetReader(obj) } which triggers the GetReader() function available in getsys.prg
source. See also get:READER.

get:HASFOCUS Access

Contains a logical value that indicates if the GET object has input focus, set by
get:SETFOCUS(). If so, this instance contains TRUE, otherwise FALSE. See also
the GETACTIVE() function in section FUN.

get:HEIGHT Access/Assign
get:HEIGHT([nSize], [lPixel]) Method

Contains numeric value specifying the height of the GUI widget. The default is a
value of one row. The current SET PIXEL setting decides if the entry and the return
value is in coordinates or pixels. You may override this behavior by using the
second parameter of get:HEIGHT() method, where <lPixel> == .T. specify using
pixel and <lPixel> == .F. specify using coordinates.

get:HOME2CHAR Access/Assign

Contains a logical value controlling the behavior of get:Home(). If .T., get:Home()
moves to first character in buffer not a space, .F. moves to first editable character.
The default is taken from a global variable
_aGlobSetting[GSET_L_GET_HOME2CHAR], which is .T. by default.

get:MESSAGE Access/Assign

Contains a character string displayed in the SET MESSAGE TO line (in Terminal i/o
mode) or in the status bar of GUI mode. The message is displayed in READ,
processed via getsys.prg when the get object receive and loose input focus. See
also get:TOOLTIP and getsys.prg

get:MINUS Access/Assign

Contains a logical TRUE value when a minus sign has been added to the editing
buffer. This is meaningful only when the object has input focus, during the editing of
a numeric variable, if the current buffer is empty (zero) and the last change to the
editing buffer was a minus sign. It is cleared to FALSE when any other change is
made to the buffer.

OBJ 114

get:NAME Access/Assign

Contains a character string representing the name of the GET variable. This value
is optional and is only used by the GET methods to access a dynamically scoped
variable, when neither the code block, nor the address of the variable (set by
get:VARPUT()) was specified. When the object is created by the @..GET
command, this instance contains the specified variable or field name.

get:OnClickAction Access/Assign

Contains either NIL or numeric value specifying next READ action (considered in
getsys.prg handler). This request is usually set in get:Notify (or other) code block,
and is same as get:ExitState property:

Val getexit.fh Description
0 GE_NOEXIT No exit attempted, prepare GET for editing
1 GE_UP Go to previous GET
2 GE_DOWN Go to next GET
3 GE_TOP Go to first GET
4 GE_BOTTOM Go to last GET
5 GE_ENTER Normal end of GET editing
6 GE_WRITE Terminate READ, save GET
7 GE_ESCAPE Terminate READ, do not save GET
7 GE_EXIT same as GE_ESCAPE
8 GE_WHEN WHEN clause unsatisfied

get:OnClickKeys Access/Assign

Contains either NIL or a string comparable to KEYBOARD, which keys are
evaluated after exit from get:Notify (or other) code block. You may set in the code
block e.g. obj:OnClickKeys := chr(K_UP, K_UP) to skip two fields up when this field
is clicked. Considered in getsys.prg READ handler.

get:ORIGINAL Access

Contains a value of any data type that is a copy of the value in the GET variable at
the time of get:SETFOCUS(), and is therefore meaningful only when the GET has
input focus. It is used to restore the original by get:UNDO().

get:PICTURE Access/Assign

Contains a character value defining the PICTURE string that controls formatting and
editing for the GET object. It is equivalent to the PICTURE clause of the @..GET
command. On get:SETFOCUS(), this instance contents is validated and corrected
when required.

OBJ 115

get:POS

Contains a numeric value indicating the current cursor position relative to the
beginning of the editing buffer, starting with zero. Meaningful only when the GET
has input focus. Compatibility: Clipper's get:POS starts with 1.

get:POSTBLOCK Access/Assign

Contains an optional code block, which is used to validate the value of GET
variable, and is executed when exiting the edit mode of the current GET. If
specified, the code block should return TRUE to enable exiting the GET field when
in READ, or FALSE to reenter the edit mode. When using a @..GET command, the
code block body is build from the VALID and/or RANGE clauses. GET methods do
not use this instance, but it is used by the user modifiable READ (see
<FlagShip_dir>/system/ getsys.prg).

get:PREBLOCK Access/Assign

Contains an optional code block that validates GET object before entering. If
specified, the code block should return TRUE to enable editing the object, or
FALSE to skip the edit field being in READ. When using the @..GET command, the
code block body is equivalent to the WHEN clause. The GET methods does not use
this instance, but it is used by the user modifiable READ (see
<FlagShip_dir>/system/getsys.prg).

get:READER Access/Assign

Contains an optional code block to implement special READ behavior for any GET
object. If specified, the standard READMODAL() function evaluates that block to
READ the object, otherwise the default GETREADER() function (included in
getsys.prg) is used. This property is available for compatibility purposes and is
nearly equivalent to get: HANDLER, except that :READER has no default code
block but get:HANDLER has.

get:REJECTED Access

Contains a logical value indicating whether the last character written to the buffer by
get:INSERT() or get:OVERSTRIKE() was placed into the BUFFER. If so, the
instance contains FALSE, or TRUE if the operation is rejected.

get:ROW Access/Assign
get:ROW([nCol], [lPixel]) Method

Contains a numeric value defining the screen row where the GET field is displayed.
Equivalent to the <row> argument of the @..GET command. In GUI mode the

OBJ 116

current SET PIXEL setting decides if the entry and the return value is in coordinates
or pixels. You may override this behavior by using the second parameter of
get:ROW() method, where <lPixel> = .T. specify using pixel and <lPixel> == .F.
specify using coordinates.

get:SUBSCRIPT Access/Assign

Contains an array of numeric values representing the dimensions of a GET array
element, if such is used; or NIL if a regular variable is used. It is assigned by the
standard @..GET command. For example, get:SUBSCRIPT contains {5,4,2} for
@..GET xyz[5,4,2] or {15} when executing @..GET xyz[15].

get:TOOLTIP Access/Assign

Contains a character string displayed in GUI mode in small popup window when the
mouse cursor is placed over the GET field. The get:TOOLTIP is ignored in other i/o
modes. See also get:MESSAGE

get:TYPE Access

Contains a string specifying the data type of the GET variable, equivalent to the
result of the TYPE() or VALTYPE() functions.

get:TYPEOUT Access

Contains TRUE, if the most recent method attempted to move the cursor out of the
editing buffer, or if there are no editable positions in the buffer. FALSE indicates a
correct cursor movement. The instance is reset by any cursor movement method.

get:WIDTH Access/Assign
get:WIDTH ([nSize], [lPixel]) Method

Contains numeric value specifying the width of the GUI widget. The default value is
set from the GET field width in accordance to PICTURE specification. The current
SET PIXEL setting decides if the entry and the return value is in coordinates or
pixels. You may override this behavior by using the second parameter of
get:WIDTH() method, where <lPixel> == .T. specify using pixel and <lPixel> == .F.
specify using coordinates.

OBJ 117

GET Init & Status Methods

[get =] get:ASSIGN ()

Assigns the value in the editing buffer to the GET variable by evaluating get:BLOCK
with the buffer contents supplied as its argument. Meaningful only when the object
has input focus.

Note that in GUI i/o mode, the internal buffer data are stored and handled in
ISO/ANSI character set. The buffer is set/translated here to the target variable or
field by considering the current SET GUITRANSL TEXT status, or the equivalent
SET SOURCE ASCII/ISO or SET(_SET_GUIASCII) flag.

In textual/terminal i/o mode, the current TERM (or CodePage in Windows) is
considered instead.

[get =] get:COLORDISP (<expC>)

Changes the color specification of the GET object, similar to issuing
get:COLORSPEC := <expC> ; get:DISPLAY().

[get =] get:DESTROY ()

Destroys the GET object and restores the screen. Called from READ via getsys.prg
when the CLEAR clause of @..GET or READ was specified, or the
get:DestroyOnAxit property was set otherwise.

[get =] get:DISPLAY ([<lForce>])

Displays the GET object on the screen. If the object has input focus, the
get:BUFFER is displayed with the "selected" color attribute and the cursor is placed
at the current editing position. If the object has no focus, the get:BLOCK is
evaluated and the result is displayed using the "unselected" color attribute. Refer to
SET COLOR for an explanation of color attributes. See also get:Exec()

Note: in GUI mode, Display() is highly optimized to avoid flickering. In some
occurrences, this avoids re-displaying of the manually changed values. In such a
case, invoke get:Display(.T.) which will force the re-display. The <lForce>
parameter is accepted also in Text mode.

[get =] get:EXEC ()

Displays the GET object on the screen and process user input using the code block
in get:Handler. It is similar to @..GET/READ command using a single Get field.

OBJ 118

[get =] get:KILLFOCUS ()

Removes the input focus (set by get:SETFOCUS()) from the GET object, redisplays
the editing buffer and discards internal state information. Executed only when the
object has input focus, ignored elsewhere.

[get =] get:RESET ()

Resets the internal status information of the GET object to values, as when invoking
get:SETFOCUS(). Executed only when the object has input focus, ignored
elsewhere.

[get =] get:SETFOCUS ()

Sets the input focus to the GET object, initializes internal state information and the
instances of get:BUFFER, get:POS, get:DECPOS, and get:ORIGINAL. Displays the
buffer as does get:DISPLAY(), using the "selected" color attribute.

See also the GETACTIVE() function, which determines the currently focused GET
object.

[get =] get:UNDO ()

Resets the internal status information of the GET object to values, as when invoking
get:SETFOCUS(). Executing get:UNDO() is equivalent to copying get:ORIGINAL
into the GET variable and then executing the get:RESET() method. Performed only
when the object has input focus, ignored elsewhere.

retval = get:UNTRANSFORM ()

Converts the get:BUFFER into the date type of the original GET variable.
get:ASSIGN() is similar to get:VARPUT(get:UNTRANSFORM()). Executed only
when the object has input focus, ignored elsewhere.

[get =] get:UPDATEBUFFER ()

Sets the get:BUFFER to the current value of the GET variable and redisplays the
edit buffer. Executed only when the object has input focus, ignored elsewhere.

retval = get:VARGET ()

Returns the current value of the GET variable. For simple variables, the <retval>
corresponds to executing the statement retval := EVAL(get:BLOCK). When the GET
variable is an array element, VARGET() is the only method to retrieve this element
value. The content of the current value is returned "as is", without any translation.

OBJ 119

[retval =] get:VARPUT (<exp>)

Sets the GET variable to the passed value of any data type. For simple variables,
the get:VARPUT(exp) corresponds to the execution of EVAL(get:BLOCK,exp).
When the GET variable is an array element, the VARPUT() method is the only one
to assign this element value. The <exp> content is stored in the current variable "as
is", i.e. without any translation.

OBJ 120

GET Editing Methods
All the cursor movement and editing methods will be executed only when the GET object
input focus is set by get:SETFOCUS(). Otherwise they are ignored.

[get =] get:BACKSPACE ()

Deletes the character to the left of the cursor moving the cursor one position to the
left. Ignored, when the cursor is at the leftmost editable position.

[get =] get:COPY ()

Copies currently marked text into clipboard cut-and-paste buffer. Available for GUI
mode only.

[get =] get:DELETE ()

Deletes the character under the cursor, moves the rest of the buffer one position
left, when a string variable is edited.

[get =] get:DELEND ()

Deletes the rest of the editing buffer, starting at the current cursor position.

[get =] get:DELLEFT ()

Deletes the character to the left of the cursor.

[get =] get:DELRIGHT ()

Deletes the character to the right of the cursor.

[get =] get:DELWORDLEFT ()

Deletes the word to the left of the cursor.

[get =] get:DELWORDRIGHT ()

Deletes the word to the right of the cursor.

OBJ 121

[get =] get:END ()

Moves the cursor to the rightmost editable position within the editing buffer, or to the
last character in buffer (default). You may control the behavior individually for each
GET object by get:End2Char or globally by assigning a logical value to
_aGlobSetting[GSET_L_GET_END2CHAR] := .F. // default is .T. to set cursor to the
last editable buffer position.

[get =] get:HOME ()

Moves the cursor to the leftmost editable position within the editing buffer, or to the
first character in buffer (default). You may control the behavior individually for each
GET object by get:Home2Char or globally by assigning a logical value to
_aGlobSetting[GSET_L_GET_HOME2CHAR] := .F. // default is .T. to set cursor to
the first editable buffer position..

[get =] get:INSERT (<char>)

Inserts one or more character(s) <char> into the editing buffer at the current cursor
position. When editing character variables, the content of the editing buffer is shifted
to the right. When editing numeric or date values, the existing content of the buffer
is shifted to the left. See also get:OVERSRTIKE().

[get =] get:LEFT ()

Moves the cursor left to the nearest editable position within the editing buffer. If
there is no editable position to the left, the cursor position remains unchanged.

[get =] get:OVERSTRIKE (<char>)

Puts one or more character(s) <char> into the editing buffer at the current cursor
position, overwriting the current buffer character. The cursor is placed one position
to the right.

Note that in GUI i/o mode, the internal buffer data are stored and handled in
ISO/ANSI character set, regardless the current SET GUITRANSL TEXT on/off
translation mode. So the passed <char> should be a part of the ISO/ANSI character
set, passed e.g. directly from Inkey().

In textual/terminal i/o mode, the current TERM (or CodePage in Windows) is
considered.

See also GETAPPLKEY() function, which applies a key value to the currently
focused get:BUFFER.

OBJ 122

[get =] get:PASTE ()

Copies (or inserts) content of clipboard cut-and-paste buffer into current GET field.
Available in GUI mode only.

[get =] get:RIGHT ()

Moves the cursor right to the nearest editable position within the editing buffer. If
there is no editable position to the right, the cursor position remains unchanged.

[get =] get:TODECPOS ()

Moves the cursor to the immediate right of the decimal point position in the editing
buffer. Meaningful only when editing a numeric value and get:DECPOS is greater
than zero.

[get =] get:WORDLEFT ()

Moves the cursor one word to the left within the editing buffer. It skips all characters
within the current word and all leading spaces. The cursor remains on the first
character of the previous word, or at the first editable buffer position.

[get =] get:WORDRIGHT ()

Moves the cursor one word to the right within the editing buffer. It skips all
characters within the current word and all subsequent spaces. The cursor remains
on the first character of the next word, or at the last editable buffer position.

OBJ 123

ListBox Class
The ListBox Class creates and manages list boxes and combo boxes. The Achoice()
function is based on ListBox class.

List boxes and combo boxes display a list of items or choices to the user. The list box
methods will allow you to add, arrange, remove, and interrogate the list of items. When one
of the items is selected, ListBox:CurrentItem, ListBox:CurrentItemNo, ListBox:TextValue, and
ListBox:Value are updated.

As with other GUI classes in FlagShip, the general ListBox class is internally inherited by
three different sub-classes: _gListBox for GUI based application, _tListBox for terminal/text
based mode, and _bListBox for basic i/o mode, all defined in the boxclass.fh header file. The
proper class, corresponding to the used i/o mode, is set either at compile time with the
compiler switch "-io=g|t|b", or latest at run-time depending on the currently used
environment.

Note: in the basic i/o mode, only a rough list box functionality is simulated by the sequential
in/output.

ListBox Class Index
Class ListBox
Inherits from: - (none)
Inherited by: ComboBox
Class prototype: boxclass.fh
Defines: box.fh

AddItem() METHOD Add (append) a new item to a list box
Bitmap ACC/ASS Display bitmap as list box item
Bottom ACC/ASS Bottommost screen row of the box
Buffer ACC Position in the list of the selected item
CapCol ACC/ASS Screen column of the list box's caption
CapRow ACC/ASS Screen row of the list box's caption
Caption ACC/ASS String that describes the list box caption
Cargo ACC/ASS A user value of any type
ChangeSelected() METHOD Change a range of items in a multiple selection
ClassName() METHOD For compatibility to Clipper's getsys.prg only
Clear() METHOD Clear (delete) all items in a list box
ClearSelection() METHOD Clear a multiple selection list box
Close() METHOD Closes the combo box ("drop-down list box")
ColdBox ACC/ASS Frame of list box without focus
ColorSpec ACC/ASS Color attributes for Terminal i/o
ColumnLeft ACC/ASS Number of the leftmost visible column

OBJ 124

CurrentItem ACC/ASS String representing the displayed listbox item
CurrItemNo ACC/ASS Numeric value indicating the selected item
CurrentText ACC/ASS Fix ""
DeleteItem() METHOD Remove an item from a list box
DelItem(p1) METHOD Remove an item from a list box
DeselectItem() METHOD Turn off the selection of a specified item
Destroy() METHOD Destroys the ListBox object
Display() METHOD Show the list box and its caption on the screen
DropDown ACC Indicator of list box or combo box
Exec() METHOD Process user input, same as :Show()
Fblock ACC/ASS Code block evaluated at receiving/loosing focus
FillUsing() METHOD Data server/dictionary driver
FindItem() METHOD Search a list box for a specified item
FindText() METHOD Search a list box for a specified string
FirstSelected() METHOD Position of the 1st item in a multiple selection
Font ACC/ASS Font object used to display the list box items
GetData() METHOD Get the data portion of a list box item
GetItem() METHOD Get the item property
GetItemValue() METHOD Same as GetData()
GetText(p1) METHOD Get the item text
GuiColor ACC/ASS Color attributes for GUI mode
HasFocus ACC Indicates whether the object has input focus
HitTest() METHOD Determines if the mouse cursor is within the box
HotBox ACC/ASS Frame of list box with focus
InputBlock ACC/ASS CodeBlock for default/user keyboard handler
InsItem() METHOD Insert a new item to a list box
IsOpen ACC Indicator whether the combo box widget is visible
ItemCount ACC Number of items in the list
KillFocus() METHOD Take input focus away from a ListBox object
Left ACC/ASS Leftmost screen column of the box
ListFiles() METHOD Fill a list box with the names of matching files
Message ACC/ASS String displayed in the windows status bar
Modified ACC/ASS Ignored.
NextItem() METHOD Skip to the next available item
NextSelected() METHOD Skip to the next selected item
Open() METHOD Opens the combo box (drop-down box)
PrevItem() METHOD Skip to the previous available item
Right ACC/ASS Rightmost screen column of the box
Sblock ACC/ASS Code block evaluated at user selection
Scroll() METHOD Scrolls the contents of a list box up or down
Select() METHOD Change the selected item in a list
SelectBySingleClick ACC/ASS Allow selection by left mouse same as Enter
SelectBySpace ACC/ASS Allow selection by space key same as Enter
SelectedCount ACC Number of items selected in a multiple selection
SelectedFile ACC Selected file filled by :ListFiles()
SelectItem() METHOD Change the selected item in a list
SetData() METHOD Change the property of an available item

OBJ 125

SetFocus() METHOD Set input focus to a ListBox object
SetItem() METHOD Replaces the item property
SetText() METHOD Change/replace the displayed text of item
SetTop() METHOD Move a specified item to the top of the list box
Show() METHOD Show the list box and its caption on the screen
TextValue ACC/ASS String representing the displayed listbox item
ToolTip ACC/ASS Short pop-up info message
Top ACC/ASS Topmost screen row of the box
TopItem ACC/ASS Position of the first visible item
TypeOut ACC/ASS Indicator whether the list contains any items
Value ACC/ASS Any value associated with the specified item
ValueChanged ACC/ASS Indicator representing the status of :Value
Vscroll ACC/ASS Ignored in FlagShip

OBJ 126

ListBox Class Instantiation

oListBox := [_g|_t|_b]ListBox { [nR1],[nC1], [nR2],[nC2], [lPixel] } [1]
oListBox := [_g|_t|_b]ListBoxNew ([nR1],[nC1], [nR2],[nC2], [lPixel]) [2]

oListBox := ListBox ([nR1], [nC1], [nR2], [nC2], [lCombo], [lPixel]) [3]
oListBox := ListBox { [oOwn], [nResrc] } [4]
oListBox := ListBox { [oOwn], [nId], [oPoint], [oDim], [nStyle] } [5]

Any of the above syntax instantiate new list box (or combo box) object. Syntax [1]
and [2] are standard FlagShip and should be preferred. Syntax [3] is supported for
compatibility to Clipper 5.3, [4] and [5] is supported for compatibility to VO.

The list box widget (control) remains invisible until you invoke oListBox:Show() or
oListBox:Display(). This allows the program to set up the control correctly (with the
correct size, position, and any other parameters), while avoiding the "visual noise"
of changing controls. Arguments:

<nR1> topmost row in coordinates or pixel, optional. If not specified, 0 is the default

<nC1> leftmost column in coordinates or pixel, optional. If not specified, 0 is the
default

<nR2> bottom row in coordinates or pixel, optional. If not specified, MaxRow() is
default

<nC2> rightmost column in coordinates or pixel, optional. If not specified, MaxCol()
is the default

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

<lCombo> if true (.T.), ComboBox (drop-down box in Clipper terminology) is used
instead of ListBox. Optional, default is .F.

<oOwn> owner object of the list box, optional. Default is the oApplic object.

<nResrc> resource ID of the list box

<nStyle> style constant of the list box according to box.fh, optional. If not given,
LBS_STANDARD is the default. Note, the FlagShip constants (accepted also by
VO) are available also in MS-Windows winuser.h header file.

OBJ 127

FlagShip VO Constant
LBS_DISABLENOSCROLL LBOXDISABLENOSCROLL
LBS_EXTENDEDSEL LBOXEXTENDEDSEL
LBS_HASSTRINGS LBOXHASSTRINGS
LBS_MULTICOLUMN LBOXMULTICOLUMN
LBS_MULTIPLESEL LBOXMULTIPLESEL
LBS_NOINTEGRALHEIGHT LBOXNOINTEGRALHEIGHT
LBS_NOREDRAW LBOXNOREDRAW
LBS_NOTIFY LBOXNOTIFY
LBS_OWNERDRAWFIXED LBOXOWNERDRAWFIXED
LBS_OWNERDRAWVARIABLE LBOXOWNERDRAWVARIABLE
LBS_SORT LBOXSORT
LBS_STANDARD LBOXSTANDARD
LBS_USETABSTOPS LBOXUSETABSTOPS
LBS_WANTKEYBOARDINPUT LBOXWANTKEYBOARDINPUT

Tuning: The coordinates <nR1>...<nC2> usually specifies the outer box frame,
common for both GUI and Terminal i/o mode. If you wish in GUI mode these
coordinates specify the inner box, set

_aGlobSetting[GSET_G_L_LISTBOX_BOX] := .F.

If you don't wish to automatically adjust row/col in GUI mode, set

_aGlobSetting[GSET_G_L_LISTBOX_ADJ] := .F. // default = .T.

If the above adjustment is on (.T.), you may set the pixel values

_aGlobSetting[GSET_G_N_LISTBOX_TOP] := -2 // default
_aGlobSetting[GSET_G_N_LISTBOX_BOT] := 2 // default
_aGlobSetting[GSET_G_N_LISTBOX_LEFT] := -7 // default
_aGlobSetting[GSET_G_N_LISTBOX_RIGH] := 6 // default
_aGlobSetting[GSET_G_N_COMBO_HEIGHT] := 4 // default

Example: This example creates and fills a list box with a list of animals:

oLB := ListBox{5,1, 9,15, .F.}
//or in VO syntax:
// oLB := ListBox{NIL,42,Point{10,10}, Dimension{100,40}}
oLB:AddItem("Mouse")
oLB:AddItem("Cat")
oLB:AddItem("Dog")
iSelected := oLB:Show() // or oLB:Exec()

Compatibility: Available also in CL53 (syntax 5) and VO (syntax 4 and 5).

See also: oListBox:Destroy()

OBJ 128

ListBox Class Properties

oListBox:AddItem(cText, [nPos], [exp], [lSelect], [lBitmap]) ─> nRet
oListBox:AddItem(cText, [exp]) ─> nRet

Add (append) a new item to a list box at a specified position or at the list end. When
present, the scroll bar is automatically updated to reflect the addition of the new
item.

<cText> Character string of the item to be inserted/added and displayed in the list.
You may specify hot-key for this item by prefacing the selectable character by "&" or
"\&" or "\<". Otherwise the first character of <cText> is the hotkey.

<nPos> The position in the list box at which to insert the new item. Specify one of
the following values (default is 0 = add):

0 In an unsorted list box, adds the new item at the end of the list; if sorted, inserts the new
item at a position determined by the list box. This is the default setting.

-1 Always adds the item at the list end
1 The first position in the list box.
n The nth position in the list box.

<exp> Any value associated with the specified item, which enables to associate
pertinent data with the text displayed in the list. The default is NIL

<nRet> If the item was added, its position in the list box is returned (a value of 1
refers to the first position in the list box). If the item could not be added, 0 is
returned.

<lSelect> optional logical value specifying if the item is selectable (TRUE, the
default) or not (FALSE). This can be re-defined by oListBox:DeselectItem()

<nBitmap> optional logical value specifying that the <cText> is a name of a bitmap
which should be displayed instead of the text (TRUE), or if <cText> is a usual text
value to be displayed as such (FALSE, the default).

Compatibility: Available also in CL53 and VO. In VO, the 1st format is used with
max. three parameters. CL53 uses the 2nd format and the method return SELF
instead.

See also: oListBox:FillUsing(), oListBox:InsItem(), oListBox:SetData(),
oListBox:SetText(), oListBox:GetData(), oListBox:GetText()

OBJ 129

oListBox:Bitmap ─> cFile ACCESS
oListBox:Bitmap := cFile ASSIGN

<cFile> is a character string that indicates a bitmap file to be displayed as list box
item. The type of the bitmap is determined from the file name extension, supported
are currently .bmp, .gif, .jpeg, .jpg, .png, .ppm and .xpn. If no path is given, the
bitmap file must reside in the same directory as the application or in a directory
specified by SET DEFAULT command. If no file is found, text "(bitmap)" will be
displayed instead of bitmap. Apply only for GUI mode, otherwise "(bitmap)" text is
displayed.

Compatibility: Available also in CL53.

not available yet

oListBox:Bottom ─> nRow ACCESS
oListBox:Bottom := nRow ASSIGN

<nRow> is a numeric value that indicates the bottommost screen row where the list
box is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:Top, oListBox:CapCol

oListBox:Buffer ─> nPos ACCESS

<nPos> is a numeric value that indicates the position in the list of the selected item.

Compatibility: Available also in CL53.

See also: oListBox:CurrItemNo

oListBox:CapCol ─> nCol ACCESS
oListBox:CapCol := nCol ASSIGN

<nCol> is a numeric value that indicates the screen column where the list box's
caption is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:CapRow, oListBox:Caption

OBJ 130

oListBox:CapRow ─> nRow ACCESS
oListBox:CapRow := nRow ASSIGN

<nRow> is a numeric value that indicates the screen row where the list box's
caption is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:CapCol, oListBox:Caption

oListBox:Caption ─> cText ACCESS
oListBox:Caption := cText ASSIGN

<cText> is a string that describes the list box caption. When present, the &
character specifies that the character immediately following it in the caption is the
list box's accelerator key. The accelerator key provides a quick and convenient
mechanism for the user to move input focus from one data input control to a list
box. The user performs the selection by pressing the Alt key in combination with an
accelerator key. The case of an accelerator key is ignored.

Compatibility: Available also in CL53 and VO.

See also: oListBox:CapCol, oListBox:Caption

oListBox:Cargo ─> exp ACCESS
oListBox:Cargo := exp ASSIGN

<exp> is a value of any type. The ListBox:Cargo slot holds any user- definable data
which can be retrieved later. This property is not used by the standard ListBox
object itself.

Compatibility: Available also in CL53.

oListBox:ChangeSelected(oRange, [lEnable]) ─> lOk

Change a range of items in a multiple selection list box to a specified selection. This
method is intended for use with a multiple selection list box (i.e., a list box created
using the LBS_MULTIPLESEL style).

<oRange> The Range object representing the selected items.

<lEnable> The state of the selected items. If not specified, the default is TRUE.

<lOk> is TRUE (.T.) if successful; otherwise FALSE (.F.).

Compatibility: Available also in VO.

See also: oListBox:Select(), oListBox:ClearSelection()

OBJ 131

oListBox:Clear() ─> NIL

Clear (delete) all items in a list box.

Compatibility: Available also in VO

See also: oListBox:DeleteItem(), oListBox:AddItem(), oListBox:FillUsing()

oListBox:ClearSelection() ─> lOk

Clear a multiple selection list box of all selections. This method is intended for use
with a multiple selection list box (i.e., a list box created using the
LBOXMULTIPLESEL style).

<lOk> is TRUE (.T.) if successful; otherwise FALSE.

Compatibility: Available also in VO.

See also: oListBox:Select(), oListBox:ChangeSelected()

oListBox:Close() ─> self

Closes the combo box ("drop-down list box" in Clipper terminology) and restores the
screen previously visible in this area.

Compatibility: Available also in CL53.

See also: oListBox:Open()

oListBox:ColdBox ─> cBox ACCESS
oListBox:ColdBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a
box around the list box when it does not have input focus. Considered in Terminal
mode only, ignored in GUI. Its default value is a single line box. Predefined <cBox>
constants are in the box.fh file:

B_SINGLE Single line box
B_DOUBLE Double line box
B_SINGLE_DOUBLE Single line top/bottom, double line sides
B_DOUBLE_SINGLE Double line top/bottom, single line sides

Compatibility: Available also in CL53. This property is considered in terminal mode
only and ignored otherwise.

See also: oListBox:HotBox, oListBox:SetFocus(), @..BOX

OBJ 132

oListBox:ColorSpec ─> cAttrib ACCESS
oListBox:ColorSpec := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the
list box's display() method. If the list box is a combo box (drop-down list box in
Clipper terminology), the string can contain eight color specifiers, otherwise it
should contain at least seven color specifiers for a usual list box.

Position Applies To Default value used
in <cAttrib> from curr SET COLOR
1 Unselected items, without input focus Std
2 Selected item, without input focus Unselected
3 Unselected items with input focus Std
4 Selected item with input focus Enhanced
5 The list box's border Border
6 The list box's caption Standard
7 The list box caption's accelerator key Background
8 The list box's drop-down button Standard

Compatibility: Available also in CL53, This property is considered in terminal mode
only and ignored otherwise. For GUI mode, see :GuiColor

See also: oListBox:HasFocus, oListBox:GuiColor, SET COLOR, SET()

oListBox:CurrentItem ─> cText ACCESS
oListBox:CurrentItem := cText ASSIGN

<cText> is a string representing the displayed list box or combo box item selected.
The ListBox:CurrentItem access also changes ListBox:CurrItemNo,
ListBox:CurrentText, ListBox:TextValue, and ListBox:Value, if there is a match with
the available display items.
Compatibility: Available also in VO
See also: oListBox:setText(), oListBox:getItem()

oListBox:CurrItemNo ─> nPos ACCESS
oListBox:CurrItemNo := nPos ASSIGN

<nPos> is a numeric value, between 1 and the ListBox:ItemCount, indicating which
item is currently selected. If no item is selected, it is 0.The ListBox:CurrentItemNo
assign also changes ListBox: CurrentItem, ListBox:TextValue, and ListBox:Value. If
the assigned <nPos> is zero, or if it exceeds the ListBox:ItemCount, then no item
will be selected. If the ListBox:CurrItemNo assign represents a change, then
ListBox:ValueChanged will be set to TRUE.
Compatibility: Available also in VO as ListBox:CurrentItemNo
See also: oListBox:CurrentItem, oListBox:getItem()

OBJ 133

oListBox:CurrentText ─> cText ACCESS
oListBox:CurrentText := cText ASSIGN

<cText> is set to the null string "" in ListBox and ComboBox, since there is no text
editing for list boxes.

Compatibility: Available also in VO

See also: oListBox:CurrentItem

oListBox:DeleteItem([nPos]) ─> lOk

Remove an item from a list box.

<nPos> The number of the item to be deleted. Valid values are 1 to
oListBox:ItemCount or 0 (the default) specifying the currently selected item.

<lOk> returns TRUE (.T.) if successful, otherwise FALSE.

Compatibility: Available also in VO

See also: oListBox:DelItem(), oListBox:Clear()

oListBox:DelItem(nPos) ─> self

This method is equivalent to oListBox:DeleteItem([nPos]) and is intended for
backward CL53 compatibility.

Compatibility: Available also in CL53

See also: oListBox:DeleteItem(), oListBox:GetItem()

oListBox:DeselectItem([nPos]) ─> lOk

Turn off the selection of a specified item in a list box. Normally, the user turns
selections off, but this method enables the program to do so also. This method is
intended for use with a multiple selection list box (i.e., a list box created using the
LBOXMULTIPLESEL style).

<nPos> The position of the item (1 to oListBox:ItemCount or 0 for the currently
selected item) to be deselected.

<lOk> returns TRUE if successful; otherwise, FALSE.

Compatibility: Available also in VO

See also: oListBox:Select(), oListBox:ChangeSelected()

OBJ 134

oListBox:Destroy() ─> NIL

Destroys the ListBox object and restores the previous screen content. This method
can be used when a ListBox object is no longer needed. oListBox:Destroy() de-
instantiates the ListBox object and allows you to close and free any resources that
were opened or created by the object, without waiting for the garbage collector. This
method calls internally oListBox:Axit() which is the equivalence for :Destroy()

Compatibility: Available also in VO

See also: ListBox{} instantiation

oListBox:Display() ─> self

Show the list box and its caption on the screen. The list box widget (control)
remains invisible until you invoke oListBox:Display() or oListBox:Show(). This allows
the program to set up the control correctly (with the correct size, position, and any
other parameters), while avoiding the "visual noise" of changing controls.
oListBox:Display() uses the values of the following instance variables to correctly
show the list in its current context, in addition to providing maximum flexibility in the
manner a list box appears on the screen:

:Bottom, :CapCol, :CapRow, :Caption, :ColdBox, :ColorSpec, :HasFocus, :HotBox,
:ItemCount, :Left, :Right, :Style, :Top, :TopItem, :vScroll, :CurrItemNo.

This method is similar to oListBox:Show(), but does not enter the event handler
automatically, i.e. does not provide user input. The listbox page starting with
:TopItem is displayed and the method returns. With ComboBox, only the closed box
is displayed, except :Open() was called previously.

Compatibility: Available also in CL53

See also: oListBox:Show()

oListBox:DropDown ─> lCombo ACCESS

<lCombo> is a logical value indicating whether the object is a combo box (TRUE),
which is "drop-down list box" in Clipper terminology, or a usual list box (FALSE).

Compatibility: Available also in CL53

See also: ListBox{...} instantiation

OBJ 135

oListBox:Exec([naComboOpen], [naComboClose]) ─> nSelItem

This method is equivalent to oListBox:Show([naComboOpen],[naComboClose]). It
shows the list box and its caption on the screen and process keyboard/ mouse
input. In detail: It set input focus :SetFocus(), calls :Display(), enter and process the
default or user's event/keyboard handler specified in :InputBlock, then clears the
input focus by :KillFocus()

Compatibility: Available in FS only

See also: oListBox:Display, oListBox:SetFocus(), oListBox:HasFocus.
oListBox:InputBlock

oListBox:Fblock ─> bBlock ACCESS
oListBox:Fblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is
evaluated each time the ListBox object receives or loses input focus. The code
block receives two arguments: the object self and the current :HasFocus status,
which indicates whether the list box is receiving (.T.) or losing (.F.) input focus. In
GUI, the object receives focus every times the user clicks (or activates) the list box
widget and looses focus when other widget is selected.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to
the code block, and hence cannot use generalized but object specific code blocks
which needs to check the current oListBox:HasFocus status by itself.

See also: oListBox:HasFocus, oListBox:SetFocus(), oListBox:KillFocus(),
oListBox:Sblock

oListBox:FillUsing([aText]) ─> NIL
oListBox:FillUsing([oRdd], [field1], [field2], [field3], [field4]) ─> NIL

Specify the set of values to be displayed in the list box, using an array or a data
server. These values act as a constraint on the values that may be entered in the
list box, and optionally as a translation between program values and display values.

<aText> An array containing the values to be placed in the list box. Either one- or
multi-dimensional array may be used to define the text items shown in the list,
values returned to the program when a list item is selected, and optional flags.
Format of the <aText> array:

1. One-dimensional array containing strings to be displayed in the list. Other item
properties are set to defaults, i.e. the returned value is NIL, the item is
selectable and is not a bitmap.

OBJ 136

2. Multi-dimensional array of up to four elements each, containing [1] the string to
be displayed in the list, and optionally [2] the corresponding value returned to
the program (default is NIL), [3] a logical value indicating that the item is
selectable (default is TRUE), and [4] a logical value indicating whether the item
is a bitmap whose file name is stored in the first element (default is FALSE).

3. Combination of (1) and (2), i.e. any array element may contain either a single
CHAR value or an sub-array with up to four elements.

<oRdd> The data server object that is to be used to provide the set of values. If not
specified, the currently selected work area is used. You also may use the
DbObject() function to provide the Rdd object.

<field1> The field name or it position in the record (corresponding to FieldPos()
return value) that is to be used for the display values. If not specified, the values of
the first field are used. The field needs to be CHAR type.

<field2> The field name or it position in the record that is to be used for the values
that are returned to the program. The field can be of any type. If the field is not
specified, NIL is used.

<field3> The name or position of a logical field that is to be used to indicate
whether the item is selectable. If not specified or if the filed is not logical type, .T. is
the default.

<field4> The name or position of a logical field that is to be used to indicate
whether the first field is a name of bitmap file. If not specified, .F. is the default.

A list box shows the set of valid values for a field. Depending on what type of list
box is used, the set of values may act as a constraint on the values that may be
retrieved or only as a suggestion. Two sets of values may be specified, allowing for
translation of values between the displayed, human-readable representation and
the internal, programmatic value.

On database use, the current record is filled first and then the database is
SKIP()ped forward filling the list box, until EOF() or until the end of scope is
reached. On exit, the database is reset to its original state, i.e. same as on entering
this method.

The :FillUsing() method provides a way of specifying the values to be included in
the list all at once, instead of constructing the list item by item with the :AddItem()
method. Note that this method add the items to the list, so you may freely combine
several :FillUsing() and/or :AddItem() invocations as shown in the example.

Example:

Create a list box with different currencies, showing an explicit representation to the
user but using a different representation internally. It also adds data from a
database, selecting Asian currencies and using fields "CurrName" for the text as
well as the 3rd field for the returned value.

OBJ 137

oLBCurrency := ListBox{10, 10, 200, 400, .T.} // instantiate
oLBCurrency:FillUsing({{"U.S. Dollars", "USD"},;

{"Can. Dollars", "CDN"},;
{"Mexican Pesos", "MEX"},;
{"Yen", "YEN"},;
{"British Pounds", "UK"},;
{"German Marks", "DM", .F.}, ;
{"Euro", "EUR"}})

oLbCurrency:AddItem("non selectable", -1, NIL, .F.)
USE currency INDEX currency SHARED NEW
SET FILTER to upper(trim(CurrArea)) == "ASIA"
GO TOP // find first matching database
record
oLbCurrency:FillUsing(NIL, "CurrName", 3)
oLbCurrency:Sblock := {|obj,pos,txt,val| ;

alert("selected text =[" + txt + "];value =[" + ;
transform(val) + "]") }

oLBCurrency:Show()

Compatibility: Available also in VO, which supports up to two-dimensional array or
up to two fields. VO expect symbolic names of the filed, whilst FS either a string
containing the field name or a numeric value with an ordinal field position in the
record.

See also: oListBox:AddItem(), oListBox:DeleteItem(), oListBox:Clear(),
oListBox:SetData(), oListBox:SetText(), oListBox:GetData(), oListBox:GetText()

oListBox:FindItem(cText, [lWhole]) ─> nPos

Search a list box for a specified string, and return the location of the first item in the
list box that matches it. Note, this is a subset of the oListBox:FindText() method for
VO compatibility and is equivalent to nPos := oListBox:FindText(cText, 1, .T.,
lWhole).

<cText> The text to search for.

<lWhole> Indicates how the search is to be performed. TRUE matches an exact
<cText> string to a "whole" list box item text (for example, a "can" string does not
match "scan"). FALSE finds a match for any list box prefixed by <cText> (for
example, the string "cat" would match "catalog" in the list box). The default is
TRUE.

<nPos> Returned numeric value indicating the position of the first item that
contains the matching text, if a match is found (a value of 1 refers to the first
position in the list box); otherwise 0 is returned if no match is found.

Compatibility: Available also in VO

See also: oListBox:FindText()

OBJ 138

oListBox:FindText(cText, [nStart], [lCase], [lExact],
[lShort], [lLeftTrim], [lOnlySel]) ─> nPos

Search a list box for a specified string, and return the location of the first item in the
list box that matches it.

<cText> The text to search for.

<nStart> Optional numeric value that indicates the starting position in the list of the
search. The default is 1. The search starts from the <nStart> position to the end of
the list and, when necessary, continues from the beginning of the list to <nStart> - 1

<lCase> Optional logical value that indicates whether the search should be case
sensitive. TRUE (default) performs the search case sensitive, FALSE searches
regardless the case.

<lExact> Optional logical value that indicates whether the search enforces an exact
comparison including length and trailing characters. TRUE value indicates to search
by an exact match using the == comparison by ignoring trailing spaces (i.e.
"catalog" would match "catalog ", but not "my catalog "); a FALSE (the default)
value compares only the <cText> size of the list text for equivalence (i.e. "cat"
would match "catalog" in the list box).

<lShort> Optional logical value indicating whether "&" shortkey should be searched
first. Default is .F.

<lLeftTrim> Optional logical value indicating whether the text should be left
trimmed first. Default is .F.

<lOnlySel> Optional logical value indicating that only selectable items should be
searched. Default is .F.

<nPos> Returned numeric value indicating the position of the first item that
contains the matching text, if a match is found (a value of 1 refers to the first
position in the list box); otherwise 0 is returned if no match is found.

Compatibility: Available also in CL53 (first 4 params only)

See also: oListBox:FindItem()

oListBox:FirstSelected() ─> nPos

Returns the position of the first item selected in a multiple selection list box, or 0 if
no item is selected. oListBox:FirstSelected() positions an imaginary cursor on the
first item of the selection. This method is intended for use with a multiple selection
list box (i.e., a list box created using the LBOXMULTIPLESEL style).

Compatibility: Available also in VO

See also: oListBox:CurrItemNo, oListBox:SelectedCount, oListBox:NextSelected(),
oListBox:Select(), oListBox:ChangeSelected(), oListBox:DeselectItem(),
oListBox:Clear()

OBJ 139

oListBox:Font ─> oFont ACCESS
oListBox:Font := oFont ASSIGN

<oFont> is a Font object (or NIL) used to display the list box items. If not set, the
default application font oApplic:Font is used.

Compatibility: Available also in VO. Ignored in non-GUI mode.

See also: Font class, oApplic:Font

oListBox:GetData([nPos]) ─> exp

Retrieves the data portion of a list box item associated with the item but not
displayed in the list.

<nPos> numeric value that indicates the position within the list of the item whose
data is being retrieved. 0 (zero, the default) specifies the currently selected item, 1
to :ItemCount is the requested item number otherwise.

<exp> Returned value of any type associated to the list box item by :AddItem(),
:FillUsing(), :SetData() etc.

Compatibility: Available also in CL53 where the parameter is not optional and which
does not support 0 for <nPos>.

See also: oListBox:GetText(), oListBx:GetItem(), oListBox:SetData(),
oListBox:SetItem()

oListBox:GetItem([nPos]) ─> aData

Retrieves the item property, i.e. the displayed text, associated data and additional
flags returning these in one-dimensional array.

<nPos> numeric value that indicates the position within the list of the item whose
data is being retrieved.0 (zero, the default) specifies the currently selected item, 1 to
:ItemCount is the requested item number otherwise.

<aData> Returned one-dimensional array with four elements containing the item
properties: Element [1] is the displayed text, [2] the associated data of any type, [3]
a logical value specifying whether the item is selectable, [4] a logical value
indicating whether the 1st element is a file name of a bitmap or a usual text.

Compatibility: Available also in CL53, which requires parameter but does not
support 0 input, and return only the first two array elements. The same named VO
method has different meaning and is equivalent to oListBox:GetText() in FS and
CL53.

See also: oListBox:GetText(), oListBox:GetData(), oListBox:SetText(),
oListBox:SetData(), oListBox:SetItem()

OBJ 140

oListBox:GetItemValue([nPos]) ─> exp

This is a VO equivalence for oListBox:GetData() method, and available for
compatibility purpose.

Compatibility: Available also in VO.

See also: oListBox:GetData(), oListBox:GetText(), oListBox:GetItem()

oListBox:GetText([nPos]) ─> cText

Retrieves the text portion of a list box item displayed in the list.

<nPos> numeric value that indicates the position within the list of the item whose
data is being retrieved. 0 (zero, the default) specifies the currently selected item, 1
to :ItemCount is the requested item number otherwise.

<cText> Returned character value associated to the list box item by :AddItem(),
:FillUsing(), :SetText() etc.

Compatibility: Available also in CL53 which does not support 0 input.

See also: oListBox:GetData(), oListBox:GetItem(), oListBox:SetText(),
oListBox:SetItem()

oListBox:GuiColor ─> cAttrib ACCESS
oListBox:GuiColor := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the
list box's display() method in GUI mode. The string can contain four color specifiers
in the SET COLOR syntax:

Position Applies To Default
in <cAttrib>
1 Unselected items, without input focus black/white
2 Selected item, without input focus white/blue
3 Unselected items with input focus black/white
4 Selected item with input focus white/blue

To use default colors, skip it or specify N/N for the item or assign empty string "" to
disable all, which is the default setting. Note that the standard background for
selected item (with and without input focus) is usually set by the window manager
and may hence differ according to the used platform. It is usually
W+/RGB(49,106,195) = W+/#316AC3 in Windows, and W+/RGB(8,93,139) =
W+/#085D8B in Linux/KDE.

Example: display items in Listbox w/o focus on default background with grey bar,
and items in focused Listbox using default colors

OBJ 141

oLB := ListBox{5,1, 9,15}
oLB:AddItem(...)
oLB:InputBlock := ...
// either common for all platforms:
* oLB:GuiColor := ",W+/#C0C0C0,," // or ",W+/#C0C0C0"
// or platform specific:
#ifdef FS_WIN32
oLB:GuiColor := "N/#ECE9D8,W+/#C0C0C0,N/W+,W+/#316AC3"

#else
oLB:GuiColor := "N/#DEDEDE,W+/#C0C0C0,N/W+,W+/#085D8B"

#endif
item := oLB:Show()

Compatibility: This property is considered in GUI mode only and is ignored
otherwise. For Terminal i/o mode, see :ColorSpec

See also: oListBox:HasFocus, oListBox:ColorSpec, SET COLOR, SET()

oListBox:HasFocus ─> lFocus ACCESS

<lFocus> is a logical value indicating whether the object has input focus (TRUE) or
not. In GUI, the object receives focus every times the user clicks (or activates) the
widget and looses the focus when other widget is selected.

Compatibility: Available also in CL53

See also: oListBox:KillFocus, oListBox:SetFocus(), oListBox:Fblock

oListBox:HitTest(nMouseRow, nMouseCol, [lPixel]) ─> nStatus

Determines if the mouse cursor is within the region of the screen that the list box
occupies.

<nRow> Numeric value representing the current or tested screen row position of
the mouse cursor.

<nCol> Numeric value representing the current or tested screen row position of the
mouse cursor.

<lPixel> If specified TRUE, the mouse coordinates are assumed in pixel. If FALSE,
the mouse parameters are assumed in current row/col coordinates. If this
parameter is not specified (i.e. NIL), the kind of passed mouse coordinates is
determined from the current SET PIXEL setting.

<nStatus> Returned numeric value indicating the relationship of the mouse cursor
with the list box. The constants are specified in button.fh header file.

OBJ 142

Value Constant Description
> 0 HTITEMS The mouse is located on one of the list box items
0 HTNOWHERE The mouse cursor is not within the region of the

screen that the list box occupies
-1 HTTOPLEFT The mouse cursor is on the top left corner of the list

box's border
-2 HTTOP The mouse cursor is on the list box's top border
-3 HTTOPRIGHT The mouse cursor is on the top right corner of the

list box's border
-4 HTRIGHT The mouse cursor is on the list box right border
-5 HTBOTTOMRIGHT The mouse cursor is on the bottom right corner of

the list box's border
-6 HTBOTTOM The mouse cursor is on the list box bottom border
-7 HTBOTTOMLEFT The mouse cursor is on the bottom left corner of the

list box's border
-8 HTLEFT The mouse cursor is on the list box's left border
-1000 HTSCROLLBAR The mouse cursor is on listbox scrollbar
-1025 HTCAPTION The mouse cursor is on the list box's caption
-4097 HTDROPBUTTON The mouse cursor is on the list box's drop down

button

Compatibility: Available also in CL53

See also: Mrow(), Mcol()

oListBox:HotBox ─> cBox ACCESS
oListBox:HotBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a
box around the list box when it has input focus. Its default value is a single line box.
Predefined <cBox> constants are in the box.fh header file:

B_SINGLE Single line box
B_DOUBLE Double line box
B_SINGLE_DOUBLE Single line top/bottom, double line sides
B_DOUBLE_SINGLE Double line top/bottom, single line sides

Compatibility: Available also in CL53. This property is considered in terminal mode
only and ignored otherwise.

See also: oListBox:ColdBox, oListBox:HasFocus, oListBox:SetFocus(),
oListBox:ColorSpec, @..BOX

OBJ 143

oListBox:Init([par1]...[par6]) ─> self

This is an internal method invoked automatically at instantiation of the ListBox
object. It is not intended to be called by the application.

Compatibility: Available also in VO

See also: ListBox{} instantiation

oListBox:InputBlock ─> bHandler ACCESS
oListBox:InputBlock := bHandler ASSIGN

This property stores a code block, evaluated during :Show() or :Exec(). The code
block usually calls the default or user specified keyboard and mouse handler,
processing the listbox selection. The :Show() or :Exec() method passes four
parameters to it: 1) the ListBox object self, 2) the pre-selected item number, 3) and
4) an inkey() value (or an array of numeric values) specifying the keys to open or
close combo (drop-down) box, see oListBox:Show(). The code block should return
numeric value specifying the selected item number (1 to :ItemCount) or 0 on
selection abort. This return value is returned by :Show() or :Exec() and used in
standard functions based on Listbox, for example in Achoice()

When :InputBlock was not instantiated yet or is NIL, the default input handler
ListBoxHandler(), available in source in listboxhand.prg, is assigned to :InputBlock
and called by :Show() or :Exec().

Alternatively, your application may call :Display() and invoke/process your input
handler directly (w/o :Show(), same as Clipper do).

Example:

oLB := ListBox{5,1, 9,15}
oLB:AddItem("One")
oLB:AddItem("Two")
oLB:AddItem("Three")
oLB:InputBlock := {|obj,item,iOpen,iClose| ;

myListBoxHandler(obj,item,iOpen,iClose) }
item := oLB:Show()
setpos(10,0)
? "Selected item:", ltrim(item)

Compatibility: Available in VFS only

See also: oListBox:Display(), oListBox:Show(), oListBox:Exec()

OBJ 144

oListBox:InsItem(nPos, cText, [exp], [lSelect], [lBitmap]) ─> exp

Insert a new item to a list box at a specified position. This method is equivalent to
the oListBox:AddItem(cText,nPos,[exp],[lSelect],[lBitmap]) method.

Compatibility: Available also in CL53 which support first three parameters.

See also: oListBox:AddItem(), oListBox:GetText(), oListBox:GetItem(),
oListBox:SetData(), oListBox:SetItem(), oListBox:DeleteItem(), oListBox:Clear()

oListBox:IsOpen ─> lStat ACCESS

<lStat> is a logical value indicating whether the combo box widget is fully visible
(TRUE) or if the combo box shows the current value only (FALSE). With list box,
oListBox:IsOpen always return TRUE.

Compatibility: Available also in CL53

See also: oListBox:Open(), oListBox:Close()

oListBox:ItemCount ─> nCount ACCESS

<nCount> is a numeric value indicating the number of items in the list box.

Compatibility: Available also in CL53 and VO

See also: oListBox:AddItem(), oListBox:InsItem(), oListBox:FillUsing(),
oListBox:DeleteItem(), oListBox:Clear()

oListBox:KillFocus() ─> self

Take input focus away from a ListBox object. Upon receiving this message, the
ListBox object redisplays itself with the :ColdBox frame and, if present, evaluates
the code block specified by :Fblock. This message is meaningful only when the
ListBox object has input focus.

Compatibility: Available also in CL53.

See also: oListBox:HasFocus, oListBox:SetFocus(), oListBox:Fblock

oListBox:Left ─> nCol ACCESS
oListBox:Left := nCol ASSIGN

<nCol> is a numeric value that indicates the leftmost screen column where the list
box is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:Right, oListBox:Top, oListBox:Bottom

OBJ 145

oListBox:ListFiles([cDir], [oFixedText], [nFileType]) ─> lOk

Fill a list box with the names of all files that match the specified path or file name.
This method is unsupported by FlagShip and hence returns FALSE. You may use
instead:

aDirList := directory(...)
oListBox:FillUsing(aDirList)

Compatibility: Available also in VO.

See also: oListBox:SelectedFile

oListBox:Message ─> cText ACCESS
oListBox:Message := cText ASSIGN

<cText> is a character string displayed in the windows status bar (GUI), or in the
screen line specified by SET MESSAGE (in terminal mode).

Compatibility: Available also in CL53.

See also: oListBox:Tooltip(), SET MESSAGE, oApplic:StatusMessage()

oListBox:Modified ─> lOk ACCESS
oListBox:Modified := lOk ASSIGN

Ignored. This property include logical value that is always set to FALSE for a list
box, since it does not contain text that can be edited.

Compatibility: Available also in VO.

oListBox:NextItem() ─> self

Changes the selected item from the current item to the one immediately following it.
If necessary, :NextItem() will call its :Display() or :Scroll() method to ensure that the
newly selected item is visible. This message is meaningful only when the list box
object has input focus. As opposite to the similar oListBox:NextSelected(), this
method changes the "selected" item flag.

Compatibility: Available also in CL53.

See also: oListBox:NextSelected(), oListBox:PrevItem(), oListBox:FirstSelected(),
oListBox:Select()

OBJ 146

oListBox:NextSelected() ─> nPos

After calling oListBox:FirstSelected(), this method is used to cycle through the
remaining items selected in a multiple selection list box. As opposite to the similar
oListBox:NextItem(), this method does not change the "selected" item flag. This
method is intended for use with a multiple selection list box.

<nPos> is a position of the next selected item in the list box, or 0 if no item is
selected or if there are no remaining items.

Compatibility: Available also in VO.

See also: oListBox:NextItem(), oListBox:FirstSelected()

oListBox:Open() ─> self

Opens the combo box (drop-down list box in Clipper terminology) and saves the
screen previously visible in this area.

Compatibility: Available also in CL53.

See also: oListBox:Close()

oListBox:PrevItem() ─> self

Changes the selected item from the current item to the one immediately following it.
If necessary, :NextItem() will call its :Display() or :Scroll() method to ensure that the
newly selected item is visible. This message is meaningful only when the list box
object has input focus. As opposite to the similar oListBox:NextSelected(), this
method changes the "selected" item flag.

Compatibility: Available also in CL53.

See also: oListBox:NextItem(), oListBox:NextSelected(), oListBox:FirstSelected(),
oListBox:Select()

oListBox:Right ─> nCol ACCESS
oListBox:Right := nCol ASSIGN

<nCol> is a numeric value that indicates the rightmost screen column where the list
box is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting.

Compatibility: Available also in CL53.

See also: oListBox:Left, oListBox:Top, oListBox:Bottom

OBJ 147

oListBox:Sblock ─> bBlock ACCESS
oListBox:Sblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is
evaluated each time the user takes a selection in the ListBox object. Evaluated only
when the ListBox (or ComboBox) has input focus.

The code block receives four arguments in this order: 1) the object self, 2) the
ordinal position of the currently selected item in the array (i.e. :Buffer or
:CurrItemNo), 3) the currently selected item text (i.e. :TextValue :CurrentItem), and
4) the associated item value (:Value). If multiple selection is allowed and multiple
items were selected, the 2nd, 3rd and 4th arguments are one-dimensional arrays in
the size of :SelectedCount, containing the selected data.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to
the code block; it hence cannot use generalized but object specific code blocks
which must extract the required values from the known object by itself.

See also: oListBox:HasFocus, oListBox:Buffer, oListBox:Fblock, oListBox:Text,
oListBox:Value

Example: see oListBox:FillUsing()

oListBox:Scroll(nType) ─> self

Scrolls the contents of a list box up or down.

<nType> Numeric value indicating the manner in which the scroll operation is
carried out. The HTSCROLL* constants are available in button.fh header file.

Value Constant Performs
-3074 HTSCROLLUNITDEC Scroll down one line
-3075 HTSCROLLUNITINC Scroll up one line
-3076 HTSCROLLBLOCKDEC Scroll down one window
-3077 HTSCROLLBLOCKINC Scroll up one window.

Compatibility: Available also in CL53

oListBox:Select(nPos) ─> self

Change the selected item in a list. On success, the number of selected items is set
to 1. The selection state is typically changed by the user when one of the cursor
keys is pressed or the mouse's left button is pressed when its cursor is within the
ListBox object's screen region. This method allows programmable set or change the
"selected" mode. If necessary, oListBox:Select() will call its :Display() or :Scroll()
method to ensure that the newly selected item is visible.

<nPos> is a numeric value that indicates the position in the list of the item to select.

OBJ 148

Compatibility: Available also in CL53

See also: oListBox:NextItem(), oListBox:FirstSelected(), oListBox:NextSelected(),
oListBox:SelectItem()

oListBox:SelectBySingleClick ─> lEnabled ACCESS
oListBox:SelectBySingleClick := lEnable ASSIGN

Allow selection by single click on left mouse button, i.e. same as mouse double click
and handle it equivalent to Enter/Return. Considered/handled only in the
keyboard handler in GUI mode.

oListBox:SelectBySpace ─> lEnabled ACCESS
oListBox:SelectBySpace := lEnable ASSIGN

Allow current selection by space key, i.e. handle space equivalent to Enter/Return.
If enabled (the default), searching for an item starting with space is disabled
during the input. Considered/handled only in the keyboard handler.

oListBox:SelectedCount ─> nNum ACCESS

<nNum> is a numeric value representing the total number of items that are
currently selected in a multiple selection list box. This property is intended for use
with a multiple selection list box.

Compatibility: Available also in VO.

See also: oListBox:FirstSelected(), oListBox:NextSelected(), oListBox:Select(),
oListBox:SelectItem()

oListBox:SelectedFile ─> cTxt ACCESS

<cTxt> is a string representing the selected file in a list box previously filled by the
:ListFiles() method. In generally, the return value is equivalent to
oListBox:CurrentItem and is supported for compatibility purposes only.

Compatibility: Available also in VO.

See also: oListBox:CurrentItem, oListBox:ListFiles(), oListBox:FirstSelected(),
oListBox:NextSelected(), oListBox:Select(), oListBox:SelectItem()

OBJ 149

oListBox:SelectItem(nPos) ─> lOk

Change the selected item in a list and on success, reset :SelectedCount to 1. This
method is fully equivalent to oListBox:Select() except the return value.

<nPos> is a numeric value that indicates the position in the list of the item to select.

Compatibility: Available also in VO

See also: oListBox:Select(), oListBox:FirstSelected(), oListBox:NextSelected(),
oListBox:SelectedCount

oListBox:SetData(nPos, [exp], [lSelect], [lBitmap]) ─> lOk

Change the property of an available item.

<nPos> The position in the list box at which to insert the new item; valid values are
1 to :ItemCount or 0 for the currently selected item.

<exp> Any value associated with the specified item, which enables to associate
pertinent data with the text displayed in the list, default is NIL

<lSelect> optional logical value specifying if the item is selectable (TRUE, the
default) or not (FALSE). This can be re-defined by oListBox:DeselectItem()

<nBitmap> optional logical value specifying that the <cText> is a name of a bitmap
which should be displayed instead of the text (TRUE), or if <cText> is a usual text
value to be displayed as such (FALSE, the default).

<lOk> TRUE if the item was changed, FALSE otherwise.

Compatibility: Available also in CL53 which supports two mandatory parameters
and returns SELF.

See also: oListBox:SetText, oListBox:SetItem(), oListBox:AddItem(),
oListBox:FillUsing(), oListBox:InsItem(), oListBox:GetData(), oListBox:GetText(),
oListBox:GetItem()

oListBox:SetFocus() ─> self

Set input focus to a ListBox object. Upon receiving this message, the ListBox object
redisplays itself with the :HotBox frame and, if present, evaluates the code block
specified by :Fblock. This message is meaningful only when the ListBox object does
not have input focus. In GUI, the object receives focus also every times the user
clicks (or activates) the widget.

Compatibility: Available also in CL53.

See also: oListBox:HasFocus, oListBox:KillFocus(), oListBox:Fblock

OBJ 150

oListBox:SetItem(nPos, aData) ─> lOk

Replaces the item property, i.e. the displayed text, associated data and additional
flags providing these in one-dimensional array.

<nPos> numeric value that indicates the position within the list of the item whose
data is being retrieved.0 (zero) specifies the currently selected item, 1 to :ItemCount
is the requested item number.

<aData> is one-dimensional array with one to four elements containing the item
properties: Element [1] is the displayed text, [2] the associated data of any type, [3]
a logical value specifying whether the item is selectable, [4] a logical value
indicating whether the 1st element is a file name of a bitmap or a usual text.

<lOk> TRUE if the item was changed, FALSE otherwise.

Compatibility: Available also in CL53, which supports only the first two array
elements.

See also: oListBox:AddItem(), oListBox:SetText(), oListBox:SetData(),
oListBox:GetItem()

oListBox:SetText(nPos, cTxt) ─> lOk

Change/replace the displayed text of an available item.

<nPos> The position in the list box at which to insert the new item; valid values are
1 to :ItemCount or 0 for the currently selected item.

<cTxt> Character string of the item to be changed and displayed in the list

<lOk> TRUE if the item was changed, FALSE otherwise.

Compatibility: Available also in CL53 which returns SELF.

See also: oListBox:SetData(), oListBox:SetItem(), oListBox:AddItem(),
oListBox:FillUsing(), oListBox:InsItem(), oListBox:GetData(), oListBox:GetText()

oListBox:SetTop(nPos) ─> self

Move a specified item to the top of the list box. This method is equivalent to
oListBox:TopItem assign.

<nPos> The position in the list box which should be displayed at the top; valid
values are 1 to :ItemCount or 0 for the currently selected item.

Compatibility: Available also in VO, which returns NIL

See also: oListBox:TopItem

OBJ 151

oListBox:Show([naComboOpen], [naComboClose]) ─> nSelItem

Show the list box and its caption on the screen and process keyboard/ mouse input.
This method set input focus :SetFocus(), calls :Display(), enter and process the
default or user's event/keyboard handler specified in :InputBlock, then clears the
input focus by :KillFocus()

Alternatively, your application may call :Display() and invoke/process your input
handler directly, w/o :Show() or :Exec(), same as Clipper do.

<naComboOpen> is optional numeric value or an array of numeric values
specifying the key(s) used to open combo box (drop-down). The default setting is
{K_TAB, asc('#')}

<naComboClose> is optional numeric value or an array of numeric values
specifying the key(s) used to close combo box (drop-down). The default setting is
{K_SH_TAB, asc('^')}

Both parameters are passed to the input handler (see :InputBlock) and are
considered only for ComboBox, i.e. when the <lCombo> parameter in ListBox()
instantiation is .T., or when the object was instantiated via ComboBox{} - in both
cases the :DropDown instance returns .T.

The method returns the selected item# (1 to :ItemCount) or 0 when the user
selection was aborted. The return value is passed from the default (or by
:InputBlock user-provided) input handler.

Compatibility: Available also in VO (w/o parameters) which returns NIL

See also: oListBox:Display(), oListBox:Exec(), oListBox:InputBlock

oListBox:TextValue ─> cText ACCESS
oListBox:TextValue := cText ASSIGN

<cText> is a string representing the displayed list box or combo box item selected.
This property is equivalent to oListBox:CurrentItem access/assign.

Compatibility: Available also in VO

See also: oListBox:CurrentItem, oListBox:Value, oListBox:GetText(),
oListBox:GetItem()

oListBox:ToolTip ─> cText ACCESS
oListBox:ToolTip := cText ASSIGN

<cText> is a string representing the displayed tool tip, i.e. a short info message
which pop up's when the mouse is over the list box.

Compatibility: Available also in FS5 only, apply for GUI, ignored otherwise

See also: oListBox:Message

OBJ 152

oListBox:Top ─> nRow ACCESS
oListBox:Top := nRow ASSIGN

<nRow> is a numeric value that indicates the topmost screen row where the list box
is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting.

Compatibility: Available also in CL53

See also: oListBox:Bottom, oListBox:Left, oListBox:Right

oListBox:TopItem ─> nPos ACCESS
oListBox:TopItem := nPos ASSIGN

<nPos> is a numeric value that indicates the position in the list box of the first
visible item. Valid values are 1 to :ItemCount or 0 for the currently selected item.
This property is equivalent to oListBox:SetTop(nPos)

Compatibility: Available also in CL53, which does not support the 0 value

See also: oListBox:SetTop()

oListBox:TypeOut ─> lStat ACCESS

<lStat> A logical value that indicates whether the list contains any items. A TRUE
value indicates that the list contains selectable items; otherwise, FALSE indicates
that the list is empty. This property is equivalent to oListBox:ItemCount != 0.

Compatibility: Available also in CL53

See also: oListBox:ItemCount

oListBox:Value ─> exp ACCESS
oListBox:Value := exp ASSIGN

<exp> Any value associated with the specified item, which enables to associate
pertinent data with the text displayed in the list, default is NIL.

Compatibility: Available also in VO

See also: oListBox:GetData(), oListBox:GetItem(), oListBox:SetData(),
oListBox:TextValue

OBJ 153

oListBox:ValueChanged ─> lStat ACCESS
oListBox:ValueChanged := lStat ASSIGN

<lStat> A logical value representing the status of oListBox:Value. It reports whether
it has been changed from the previously selected item during the selection process.
TRUE indicates that it has been changed from the prior choice, while FALSE
indicates it has been not changed from the prior choice. The :Value may be
changed by clicking on a different item, or via the oListBox:TextValue or
oListBox:Value assigns.

Compatibility: Available also in VO

See also: oListBox:Value, oListBox:GetData(), oListBox:GetData(),
oListBox:GetItem(), oListBox:TextValue

oListBox:Vscroll ─> oScroll ACCESS
oListBox:Vscroll := oScroll ASSIGN

<oScroll> In CL53, contains ScrollBar object whose orientation must be vertical.
Unsupported in FlagShip and hence the default return value is NIL.

Compatibility: Available also in CL53

OBJ 154

MenuItem Class
The MenuItem Class is a property holder for TopBar and PopUp class.

In FlagShip, the main menu (TopBar class) with sub-menus (PopUp class) is created
automatically for GUI mode at start-up of the application, called from initio.prg. The source of
the main menu is available in <FlagShip_dir>/system/initiomenu.prg. You may modify the
default menu any time later, see example in <FlagShip_dir>/examples/menu.prg

As with other GUI classes in FlagShip, the general MenuItem class is internally inherited by
three different sub-classes: _gMenuItem for GUI based application, _tMenuItem for
terminal/text based mode, and _bMenuItem for basic i/o mode, all defined in the
menuclass.fh header file. The proper class, corresponding to the used i/o mode, is set either
at compile time with the compiler switch "-io=g|t|b", or latest at run-time depending on
the currently used environment.

Note: in the basic i/o mode, only a rough MenuItem functionality is simulated by the
sequential in/output.

OBJ 155

MenuItem Class Index
Class MenuItem
Inherits from: - (none)
Inherited by: - (none)
Class prototype: menuclass.fh
Defines: button.fh, inkey.fh

Accelerator() METHOD accelerator key or text
Caption ACC/ASS item text or separator
Checked ACC/ASS check mark to the left?
ClassName() METHOD "MENUITEM" for Clipper compatibility
Column() METHOD set/get column
Data ACC/ASS CodeBlock or oPopUpMenu object or NIL
Enabled ACC/ASS can item be selected?
Font ACC/ASS the item's font
Id ACC/ASS unique identifier or 0
IsCodeblock() METHOD is MenuItem:Data a CodeBlock?
IsPopUp() METHOD is MenuItem:Data popup object?
IsSeparator() METHOD is MenuItem a separator?
Message ACC/ASS status bar message or ""
Row() METHOD set/get row
Select() METHOD FS5
Shortcut ACC/ASS accelerator in CL53 terminology
ShortKey ACC/ASS Inkey() lower value for quick access, def=0
ShortPos ACCESS index of Shortkey in Caption (def=0)
Style ACC/ASS delimiter, ignored by GUI
_setCurrent() METHOD for internal use

OBJ 156

MenuItem Class Instantiation

oMenuItem := MenuItem (cCapt, expData, [nShort], [cMessage], [nID]) [1]
oMenuItem := MenuItem (cCapt, cnItemName) [2]
oMenuItem := MenuItem {cCapt, expData, [nShort], [cMessage], [nID]} [3]
oMenuItem := [_g|_t|_b]MenuItem {cCapt, expData, [nShort],[cMsg],[nID]} [4]

Any of the above syntax instantiate new MenuItem object. Syntax [1] is compatible
to Clipper, syntax [2] is supported for compatibility purposes to FoxPro, syntax [3] is
available in VO and FS5, syntax [4] in FS5 only. Arguments:

<cCapt> is a character string that contains either a text string (caption) that
concisely describes the menu option or a menu separator specifier. Modifiable via
oMenuItem:Caption property.

<expData> is a value that contains either a code block or a PopUpMenu object.
This argument is ignored when <cCapt> contains a menu separator specifier.
Modifiable via oMenuItem:Data property.

<nShort> is an optional numeric inkey value that indicates the shortcut key
combination that selects and launches the menu selection. The default is 0.
Modifiable via oMenuItem:Shortcut Constant values for various key combinations
are defined in inkey.fh.

<cMessage> is an optional character string that indicates the text to display on the
status bar when the menu item is selected. The default is an empty string.
Modifiable via oMenuItem:Message

<nID> is an optional numeric value that uniquely identifies the menu item. The
default is 0. Modifiable via oMenuItem:Id

<cnItemName> is a string specifying the menu name.

<oMenuItem> is the returned MenuItem object when all of the required arguments
are present, or NIL on failure.

In FlagShip, the main menu (TopBar class) for GUI mode is created automatically at
start-up of the application, called from initio.prg. The source is available in
<FlagShip_dir>/system/initio.prg and initiomenu.prg. You may modify the default
menu any time later, see example in <FlagShip_dir>/examples/menu.prg

If there is not special font specified via oMenuItem:Font or oTopBar:Font, the
default window manager font is used.

Compatibility: Available also in CL53 and VO. See also: PopUp and TopBar classes

OBJ 157

MenuItem Class Properties

oMenuItem:Accelerator([inkeyVal], [accText], [iMode]) ─> iKey|cText

An accelerator is a keystroke sequence that is associated with a particular menu
command. The accelerator is used to execute the menu command without requiring
the application user to first display the menu and then choose the command. For
example, if the File -> New command had an accelerator of Ctrl+N, you could
simply press this key combination to open a new document, rather than having to
choose the File menu and then the New command. Each window can be given its
own accelerator. An accelerator generates events as though its associated menu
command was actually selected. Note that an accelerators menu command does
not even have to be visible on any menu - thus an accelerator can be seen as a
direct keystroke sequence for generating a command event.

<inkeyVal> assign new inkey() value as accelerator key, 0 = disable, NIL = return
current value

<accText> assign new accelerator text, "" = disable, NIL = return current value

<iMode> requested return mode: 1 = return current inkeyVal (default), 2= return
current accText

oMenuItem:Caption ─> cCapt ACCESS
oMenuItem:Caption := cCapt ASSIGN

Contains either a text string that concisely describes the menu option or a menu
separator specifier. oMenuItem:caption is the text that appears in the actual menu.

A menu separator is a horizontal line in a pop-up menu that separates menu items
into logical groups. Use the constant MENU_SEPARATOR in button.fh to assign
the menu separator specifier to oMenuItem:caption.

When present, the & character specifies that the character immediately following it
in the caption is the menu item's accelerator key. The accelerator key provides a
quick and convenient mechanism for the user to select a menu item when the menu
that it is contained within has input focus. When the menu is a member of a TopBar
object, the user selects the menu item by pressing the Alt key in combination with
the accelerator key. When the menu is a member of a PopUp object, the user
selects the menu item by simply pressing the accelerator key. The accelerator key
is not case sensitive.

oMenuItem:Cargo <─> anyValue EXPORT

User definable value of any content. Not used by the MenuItem class self. The
default is NIL.

OBJ 158

oMenuItem:Checked ─> lCheck ACCESS
oMenuItem:Checked := lCheck ASSIGN

Contains a logical value that indicates whether a check mark appears to the left of
the menu item's caption. A value of true (.T.) indicates that a check mark should
show; otherwise, a value of false (.F.) indicates that it should not.

oMenuItem:ClassName() ─> "MENUITEM"

provided for Clipper compatibility purposes. Return fix "MENUITEM".

oMenuItem:Column([nCol], [lPixel]) ─> nCol

Set/get column of the associated PopUp class.

<nCol> is a numeric value either in coordinates or in pixel. If NIL, only the current
setting is returned.

<lPixel> If specified TRUE, the <nCol> input/output column coordinate is assumed
in pixel. If FALSE, <nCol> is in row/col coordinates. If this parameter is not specified
(i.e. NIL), the kind of passed and returned coordinates is determined from the
current SET PIXEL setting.

oMenuItem:Data ─> obData ACCESS
oMenuItem:Data := obData ASSIGN

<obData> contains either a code block or a PopUp object or NIL. When the menu
item is selected, its code block, if present, is evaluated passing two parameters to
the code block: the current MenuItem object, and menu-ID. If the codeblock returns
.F., the TopBar or PopUp selection remains active, otherwise the current selection
is terminated. If <obData> is PopUp object, the PopUp menu is opened on
selection.

oMenuItem:Enabled ─> lStatus ACCESS
oMenuItem:Enabled := lStatus ASSIGN

<lStatus> is a logical value that indicates whether the menu item can be selected
or not. If true (.T.), it permit user access; if false (.F.) the user access is denied.
When disabled, the item will be shown in its disabled color.

oMenuItem:Font ─> oFont ACCESS
oMenuItem:Font := oFont ASSIGN

<oFont> is a Font object or NIL. Applicable for GUI mode only. If not specified,
either the oTopBar:Font or the default window manager font is used. If specified,
this item font has preference over the default oTopBar:Font

OBJ 159

oMenuItem:Id ─> nIdNum ACCESS
oMenuItem:Id := nIdNum ASSIGN

<nIdNum> is an optional numeric value that uniquely identifies the menu item. The
default is 0 which sets an internal ID number automatically.

oMenuItem:IsCodeblock() ─> lStatus

Returns true (.T.) when the MenuItem object contain code block, and false
otherwise. This property is provided for your convenience and is equivalent to
valtype(oMenuItem:Data) == "B"

oMenuItem:IsPopUp() ─> lStatus

Returns true (.T.) when the MenuItem object contain PopUp object, and false
otherwise. This property is provided for your convenience and is equivalent to
valtype(oMenuItem:Data) == "O"

oMenuItem:IsSeparator() ─> lStatus

Returns true (.T.) when the MenuItem object contain separator, and false otherwise.
This property is provided for your convenience and is equivalent to oMenuItem:Data
== NIL .or. oMenuItem:Data == MENU_CAPTION_SEPARATOR

oMenuItem:Message ─> cbMsg ACCESS
oMenuItem:Message := cbNsg ASSIGN

<cMsg> is an optional string or code block evaluated to string that describes the
menu item. The text appears on the screens status bar line if such (always in GUI
mode), or in the SET MESSAGE TO line otherwise.

oMenuItem:Row([nRow], [lPixel]) ─> nRow

Set/get row of the associated PopUp class.

<nRow> is a numeric value either in coordinates or in pixel. If NIL, only the current
setting is returned.

<lPixel> If specified TRUE, the <nRow> input/output column coordinate is assumed
in pixel. If FALSE, <nCol> is in row/col coordinates. If this parameter is not specified
(i.e. NIL), the kind of passed and returned coordinates is determined from the
current SET PIXEL setting.

oMenuItem:Select() ─> self

Select the MenuItem, display it including all backward hierarchy

OBJ 160

oMenuItem:Shortcut ─> nInkeyVal ACCESS
oMenuItem:Shortcut := nInkeyVal ASSIGN

"Shortcut" is a Clipper terminology for an accelerator. It is fully equivalent to
ACCESS: nInkeyVal := oMenuItem:Accelerator(NIL, NIL, 1)
ASSIGN: oMenuItem:Accelerator(nInkeyVal, NIL, 1)

oMenuItem:ShortKey ─> nInkeyVal ACCESS
oMenuItem:ShortKey := nInkeyVal ASSIGN

The ShortKey is defined using the & character in oMenuItem:Caption, set during the
object instantiation or at oMenuItem:caption assign. As opposite to accelerator, the
popup menu needs to be open for the ShortKey to be active.

<nInkeyVal> is the Inkey() equivalence of this character

oMenuItem:ShortPos ─> nPos ACCESS

Returns an index of Shortkey in Caption, If no & character in the
oMenuItem:Caption was specified, 0 is returned.

oMenuItem:Style ─> cStyle ACCESS
oMenuItem:Style := cStyle ASSIGN

<cStyle> is a character string that indicates the delimiter characters that are used
by the PopUp:Display() method. The string must contain two characters. The first is
the character associated with the oMenuItem:checked property, its default value is
the square root character. The second is the sub-menu indicator, its default is the
right arrow character.

This property is considered in Terminal i/o mode only and ignored otherwise.

OBJ 161

PopUp Class
Place and display items in pop-up menu.

In FlagShip, the main menu (TopBar class) with sub-menus (PopUp class) is created
automatically for GUI mode at start-up of the application, called from initio.prg. The source of
the main menu is available in <FlagShip_dir>/system/initiomenu.prg. You may modify the
default menu any time later, see example in <FlagShip_dir>/examples/menu.prg

As with other GUI classes in FlagShip, the general PopUp class is internally inherited by
three different sub-classes: _gPopUp for GUI based application, _tPopUp for terminal/text
based mode, and _bPopUp for basic i/o mode, all defined in the menuclass.fh header file.
The proper class, corresponding to the used i/o mode, is set either at compile time with the
compiler switch "-io=g|t|b", or latest at run-time depending on the currently used
environment.

Note: in GUI mode, the PopUp is handled only in the full menu bar context, i.e. as a sub-
class (child) of TopBar or of other PopUp class. In basic i/o mode, only a rough PopUp
functionality is simulated by the sequential in/ output.

OBJ 162

PopUp Class Index
Class PopUp
Inherits from: - (none)
Inherited by: - (none)
Class prototype: menuclass.fh
Defines: button.fh, box.fh

AddItem() METHOD appending new item
Border ACC/ASS ignored in GUI
Bottom ACC/ASS bottommost screen row (pixel/row)
ClassName() METHOD "POPUPMENU" for Clipper compatibility
Close() METHOD deactivate pop-up menu
ColorSpec ACC/ASS term only, ignored in GUI
Current ACC/ASS selected item#
DelItem() METHOD remove an item
Display() METHOD show pop-up menu
GetAccel() METHOD item# corresp.to given accel
GetFirst() METHOD first selectable item
GetItem() METHOD returns the MenuItem object
GetLast() METHOD last selectable item
GetNext() METHOD next selectable item
GetPrev() METHOD previous selectable item
GetShortct() METHOD shortcut keystroke
HitTest() METHOD relationship of mouse and popup
InputBlock ACC/ASS user-supplied input
InsItem() METHOD insert new item at spec.position
IsOpen() METHOD popup open?
ItemCount ACCESS total number of items
ItemPos() METHOD find menu item
Left ACC/ASS leftmost screen column or NIL
MenuStruct() METHOD menu structure
Open() METHOD open popup
ResetAllItems() METHOD reset all MenuItem objects
Right ACC/ASS rightmost screen column or NIL
Top ACC/ASS topmost screen row or NIL
Select() METHOD select specif.item
SetItem() METHOD replace MenuItem object
SetAllItems() METHOD set tempor block to all MenuItem objects
SubmenuMark ACC/ASS mark for submenus (" ...")
Width ACCESS width required... (pixel/row)

OBJ 163

PopUp Class Instantiation

oPopUp := PopUp ([nTop], [nLeft], [nBottom], [nRight], [lInPixel]) [1]
oPopUp := PopUp {[nTop], [nLeft], [nBottom], [nRight], [lInPixel]} [2]
oPopUp := [_g|_t|_b]PopUp {[nTop],[nLeft],[nBott],[nRight],[lInPix]} [3]

Any of the above syntax instantiate new PopUp object. Syntax [1] is compatible to
Clipper, syntax [2] is available in VO and FS5, syntax [3] in FS5 only.

Note: in GUI mode, the PopUp is handled only in the full menu bar context, i.e. as a
sub-class (child) of TopBar or of another PopUp class.

Arguments (all optional):

<nTop> is a numeric value that indicates the top screen row of the pop-up menu. If
omitted, oPopUp:top is set to an appropriate value relative to <nBottom> that allows
as many items as possible to show.

When the pop-up menu is a child of another menu, its top variable will be
automatically set by the parent menu regardless of whether <nTop> is omitted.

<nLeft> is a numeric value that indicates the left screen column of the pop-up
menu. If omitted, oPopUp:left is set to an appropriate value relative to <nRight> that
allows as many menu columns as possible to show.

When the pop-up menu is a child of another menu, its left variable will be
automatically set by the parent menu regardless of whether <nLeft> is omitted.

<nBottom> is a numeric value that indicates the bottom screen row of the pop-up
menu. If omitted, oPopUp:bottom is set to an appropriate value relative to <nTop>
that allows as many items as possible to show. If <nTop> is also omitted,
oPopUp:bottom is set to center the menu vertically on the screen. The default value
is determined the first time the pop-up menu is displayed.

When the pop-up menu is a child of another menu, its bottom variable will be
automatically set by the parent menu regardless of whether <nBottom> is omitted.

<nRight> is a numeric value that indicates the right screen column of the pop-up
menu. If omitted, oPopUp:right is set to an appropriate value relative to <nLeft> that
allows as many menu columns as possible to show. If <nLeft> is also omitted,
oPopUp:right is set to center the menu horizontally on the screen. The default value
is determined the first time the pop-up menu is displayed.

When the pop-up menu is a child of another menu, its right variable will be
automatically set by the parent menu regardless of whether <nRight> is omitted.

<lPixel> If specified TRUE, the input coordinates are assumed in pixel. If FALSE,
the input are row/col coordinates. If this parameter is not specified (i.e. NIL), the
kind of passed coordinates is determined from the current SET PIXEL setting.

OBJ 164

<oPopUp> is a PopUp object when all of the required arguments are present, or
NIL otherwise.

Compatibility: Available also in CL53.

See also: TopBar and MenuItem classes

OBJ 165

PopUp Class Properties

oPopUp:AddItem(oMenuItem) ─> self

Add a new item in the PopUp object. Arguments:

<oMenuItem> is a MenuItem object which is appended at the end of the PopUp
items list.

See also: oPopUp:InsItem()

oPopUp:Border ─> cBorder ACCESS
oPopUp:Border := cBorder ASSIGN

<cBorder> is an optional string that is used when drawing a border around the pop-
up menu. Its default value is predefined in the global array element
_aGlobSetting[GSET_T_C_MENUBORDER], see initio.prg. It is usually B_SINGLE
+ SEPARATOR_SINGLE.

The string must contain either zero or exactly eleven characters. The first eight
characters represent the border of the pop-up menu and the final three characters
represent the left, middle, and right characters for the menu item separators. The
eight characters which represent the pop-up menu border begin at the upper-left
corner and rotate clockwise as follows: upper-left corner, top, upper-right corner,
right, bottom, bottom-left corner, and left. This property apply for Terminal i/o mode
only and is ignored in GUI.

oPopUp:Bottom ─> nRow ACCESS
oPopUp:Bottom := nRow ASSIGN

<nRow> is a numeric value that indicates the bottommost screen row where the
pop-up menu is displayed. If not specified when the PopUp object is instantiated,
oPopUp:bottom contains NIL until the first time it is displayed. This property applies
for Terminal i/o mode only and is ignored in GUI.

oPopUp:Cargo <─> anyValue EXPORT

User definable value of any content. Not used by the PopUp class self. The default
is NIL.

oPopUp:ClassName() ─> "POPUPMENU"

provided for Clipper compatibility purposes. Return fix "POPUPMENU".

OBJ 166

oPopUp:Close([lChild]) ─> self

<lChild> is a logical value that indicates whether oPopUp:close() should deactivate
the pop-up menu in its selected item, which in turn deactivates the pop-up menu in
its selected item and so on. This is useful for nested menus where multiple levels of
choices are presented. A value of true (.T.) indicates that child pop-up menu items
should be closed. A value of false (.F.) indicates that child pop-up menu items
should not be closed. The default value is true.

oPopUp:Close() is used for deactivating of pop-up menu. When called, it performs
three operations. First, if the value of <lChild> is not false, close() determines if its
selected menu item contains a PopUp object. If so, it calls its selected menu item's
close() method. Second, close() restores the previous contents of the region of the
screen that it occupies. Third, close() sets its selected item to 0. When the pop-up
menu is not open, no action is taken.

oPopUp:ColorSpec ─> cColor ACCESS
oPopUp:ColorSpec := cColor ASSIGN

<cColor> is a character string that indicates the color attributes that are used by the
pop-up menu's display() method. The string can contain up to seven color pairs:

Position Applies To Default value from
in colorSpec system color setting
1 Not selected popup menu items Standard
2 Selected popup menu item Enhanced
3 Accelerator key for unselected items Background
4 Accelerator key for the selected items Enhanced
5 Disabled popup menu items Unselected
6 Popup menu's border Border
7 Statusbar message Standard

This property applies for Terminal i/o mode and is ignored otherwise.

oPopUp:Current ─> nPos ACCESS
oPopUp:Current := nPos ASSIGN

<nPos> is a numeric value that indicates which item is selected.

oPopUp:DelItem(nPos) ─> self

Remove an item from a pop-up menu. Argument:

<nPos> is a numeric value that indicates the position in the pop-up menu of the
item to be deleted.

OBJ 167

oPopUp:Display() ─> self

Shows a pop-up menu including its items on the screen. It checks all previously
specified oPopUp object properties, calculates missing values if required, and
displays the widget on the screen. Display() is also called automatically when the
parent menu item in TopBar or PopUp is selected.

oPopUp:GetAccel(nInkeyVal) ─> nInkeyVal

<nInkeyVal> is a numeric value that indicates the inkey() value to be checked.
Returns a numeric value that indicates the position in the pop-up menu of the first
item whose accelerator key matches that which is specified by <nInkeyVal>. The
accelerator key is defined using the & character in oMenuItem:Caption.

oPopUp:GetFirst() ─> nPos

Determine the position of the first selectable item in a pop-up menu. Selectable
means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the pop-up menu of the
first selectable item. Returns 0 if the pop-up menu does not contain a selectable
item.

oPopUp:GetFirst() does not change the currently selected menu item. In order to
change the currently selected pop-up menu item, you must call the oPopUp:Select()
method.

oPopUp:GetItem(nPos) ─> oMenuItem

Return the specified item in a pop-up menu, regardless if the item is selectable or
not.

<nPos> is a numeric value that indicates the position in the pop-up menu of the
item that is being retrieved.

<oMenuItem> is a MenuItem object at the position in the pop-up menu specified by
<nPos> or NIL when <nPos> is invalid.

oPopUp:GetItem() does not change the currently selected menu item. In order to
change the currently selected pop-up menu item, you must call the oPopUp:Select()
method.

oPopUp:GetLast() ─> nPos

Determine the position of the last selectable item in a pop-up menu. Selectable
means a menu item that is enabled and whose caption is not a menu separator.

OBJ 168

<nPos> is a numeric value that indicates the position within the pop-up menu of the
last selectable item. Returns 0 if the pop-up menu does not contain a selectable
item.

oPopUp:GetLast() does not change the currently selected menu item. In order to
change the currently selected pop-up menu item, you must call the oPopUp:Select()
method.

oPopUp:GetNext() ─> nPos

Determine the position of the next selectable item in a pop-up menu. Selectable
means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the pop-up menu of the
next selectable item. Returns 0 if the pop-up menu does not contain next selectable
item.

oPopUp:GetNext() does not change the currently selected menu item. In order to
change the currently selected pop-up menu item, you must call the oPopUp:Select()
method.

oPopUp:GetPrev() ─> nPos

Determine the position of the previous selectable item in a pop-up menu. Selectable
means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the pop-up menu of the
previous selectable item. Returns 0 if the pop-up menu does not contain previous
selectable item.

oPopUp:GetPrev() does not change the currently selected menu item. In order to
change the currently selected pop-up menu item, you must call the oPopUp:Select()
method.

oPopUp:GetShortct(nInkeyVal) ─> nPos

<nInkeyVal> is a numeric value that indicates the inkey() value to be checked.

<nPos> is a numeric value that indicates the position in the pop-up menu of the first
item whose shortcut key matches that which is specified by <nInkeyVal>. The
shortcut key is defined using the oMenuItem:shortcut property.

oPopUp:HitTest(p1, p2) ─> nStatus

Provided for backward compatibility purposes to Clipper only. <nStatus> is always
0.

OBJ 169

oPopUp:InputBlock ─> oBlock ACCESS
oPopUp:InputBlock := oBlock ASSIGN

<oBlock> is user-supplied code block, i.e. keyboard handler which should be used
instead of the build-in one. If <oBlock> is NIL, the default handler will be (re)used.
The code block is called in oPopUp:Display() and receive two arguments: the
oPopUp object, and the pressed key as an Inkey() value. The code block should
then perform the required action and return either

0 : exit the PopUp processing

<0 : enter the current item

>0 : select the PopUp item specified by the return value

See also <FlagShip_dir>/examples/menu2.prg

Apply for Terminal i/o mode, ignored otherwise.

oPopUp:InsItem(nPos, oMenuItem) ─> self

Add a new item in the PopUp object at specified position. Arguments:

<nPos> is a numeric value specifying the position where the menu item should be
inserted. A value greater than oPopUp:ItemCount perform the same action as
oPopUp:AddItem()

<oMenuItem> is a MenuItem object which is inserted at the specified position in the
PopUp items list.

See also: oPopUp:AddItem()

oPopUp:IsOpen() ─> lStatus

<lStatus> is true (.T.) when the PopUp is open, or false otherwise

oPopUp:ItemCount ─> nCount ACCESS

<nCount> is the total number of items in PopUp

oPopUp:ItemPos(oMenuItem) ─> nPos

<oMenuItem> is a MenuItem object which should be searched in the PopUp item
list

<nPos> is the found position of specified MenuItem object in the PopUp item list or
0 if not found.

OBJ 170

oPopUp:Left ─> nCol ACCESS
oPopUp:Left := nCol ASSIGN

<nCol> is the leftmost screen column. Apply for Terminal i/o, ignored otherwise.

oPopUp:MenuStruct([nDepth], [aStruct]) ─> aStruct

Creates a multi-dimensional array containing the current menu structure.
Arguments (all optional):

<nDepth> is the required depth. If not specified, all childs are determined.

<aStruct> if the array was passed as argument, the returned structure is appended,
otherwise a new array is created. Any element contain a sub-array with {nDepth,
nRelPos, oMenuItem, oMenuItem:Caption}

Example:

aStruct := oMyPopup:MenuStruct()
aeval(aStruct, {|x| qout(space(x[1] *2), ltrim(x[2]), x[4])})

oPopUp:Open() ─> self

equivalent to oPopUp:Display()

oPopUp:ResetAllItems() ─> NIL

Replace all PopUp items MenuItem's data with the by oPopUp:SetData() stored
values.

oPopUp:Right ─> nCol ACCESS
oPopUp:Right := nCol ASSIGN

<nCol> is the rightmost screen column. If not specified when the PopUp object is
instantiated, oPopUp:Right contains NIL until the first time it is displayed. Apply for
Terminal i/o, ignored otherwise.

oPopUp:Top ─> nRow ACCESS
oPopUp:Top := nRow ASSIGN

<nRow> is a numeric value that indicates the topmost screen row where the pop-up
menu is displayed. If not specified when the PopUp object is instantiated,
oPopUp:bottom contains NIL until the first time it is displayed. This property applies
for Terminal i/o mode only and is ignored in GUI.

OBJ 171

oPopUp:Select(nPos) ─> self

Set/select the specified item number. The method is typically called when one of the
arrow keys is pressed.

<nPos> is a numeric value that indicates the position in the pop-up menu of the
item to be selected.

Apply for Terminal i/o mode, ignored in GUI mode, where the action is performed
automatically.

oPopUp:SetItem(nPos, oMenuItem) ─> self

Replace specified MenuItem object in the PopUp list. Arguments:

<nPos> is the item position in range 1..oPopUp:ItemCount

<oMenuItem> is MenuItem object replacing the current pop up item.

oPopUp:SetAllItems(bBlock) ─> NIL

Replace all PopUp items by the same code block <bBlock>, i.e. perform the same
action on all menu items. The replacement has no affect on menu items that are
separators or PopUp objects. You may restore the previous status any time later by
oPopUp:ResetAllItems()

oPopUp:SubmenuMark ─> cMark ACCESS
oPopUp:SubmenuMark := cMark ASSIGN

<cMark> is a character or string which should be displayed as a submenu indicator
instead of the 2nd character of oMenuItem:Style.

This property is considered in Terminal i/o mode only and ignored otherwise.

oPopUp:Width ─> nWidth ACCESS

<nWidth> is the current width of the pop up window including the frame box.
Available after the oPopUp:Display() was invoked. Apply for Terminal i/o mode only,
ignored otherwise.

OBJ 172

TopBar Class
Place and display items in TopBar menu. The TopBar is the main menu bar object in GUI
mode.

In FlagShip, the main menu (TopBar class) with sub-menus (PopUp class) is created
automatically for GUI mode at start-up of the application, called from initio.prg. A TopBar
object is assigned there to constant variable "oTopBar". The source of the main menu is
available in <FlagShip_dir>/system/initiomenu.prg. You may modify the default menu any
time later, see example in <FlagShip_dir>/examples/menu.prg

As with other GUI classes in FlagShip, the general TopBar class is internally inherited by
three different sub-classes: _gTopBar for GUI based application, _tTopBar for terminal/text
based mode, and _bTopBar for basic i/o mode, all defined in the menuclass.fh header file.
The proper class, corresponding to the used i/o mode, is set either at compile time with the
compiler switch "-io=g|t|b", or latest at run-time depending on the currently used
environment.

Note: in GUI mode, the TopBar is handled only in the full menu bar context, which handles
automatically also all PopUp child objects. In basic i/o mode, only a rough functionality is
simulated by the sequential in/output.

OBJ 173

TopBar Class Index
Class TopBar
Inherits from: - (none)
Inherited by: - (none)
Class prototype: menuclass.fh
Defines: button.fh, box.fh

AddItem() METHOD append new item
ClassName() METHOD "TOPBARMENU" for Clipper compatibility
Clear() METHOD clear/delete all menu items
ColorSpec ACC/ASS color specification
Current ACC/ASS set/return selected item#
Delimiters ACC/ASS set/return delimiters
DelItem() METHOD remove specific item#
Display() METHOD show top bar menu & items
Exec() METHOD exec/process top bar menu & items
FindMenuProperty() METHOD find item by property
FindSelectedItem() METHOD find last selected item
Font ACC/ASS the font of whole menu structure
GetAccel() METHOD item# corresp.to given accel
GetFirst() METHOD first selectable item#
GetItem(p1) METHOD return oMenuItem at position#
GetLast() METHOD last selectable item#
GetNext() METHOD next selectable item#
GetPrev() METHOD previous selectable item#
HasFocus ACCESS Exec() in process ?
HitTest() METHOD relationship of mouse in TopBar
InputBlock ACC/ASS user-supplied input handler
InsItem() METHOD insert new item at position#
ItemCount ACCESS number of items in TopBar
ItemPos() METHOD find menu item
Left ACC/ASS leftmost column position
MenuStruct() METHOD menu structure
Right ACC/ASS rightmost column position
Row ACC/ASS row position
Select() METHOD change the selected item#
Separator ACC/ASS menu separator
SetItem() METHOD replace specific item

OBJ 174

TopBar Class Instantiation

oTopBar := TopBar ([nRow], [nLeft], [nRight], [lInPixel]) [1]
oTopBar := TopBar {[nRow], [nLeft], [nRight], [lInPixel]} [2]
oTopBar := [_g|_t|_b]TopBar {[nRow],[nLeft],[nRight],[lInPix]} [3]

Any of the above syntax instantiate new TopBar object. Syntax [1] is compatible to
Clipper, syntax [2] is available in VO and FS5, syntax [3] in FS5 only.

Note: in GUI mode, the TopBar is handled only in the full menu bar context, i.e. it
process automatically also it sub-classes (childs) of the MenuItem and PopUp
class. All the coordinates are ignored in GUI mode, since there is a fix position of
the menu bar within the application menu. Arguments (all optional, considered in
terminal i/o mode only):

<nRow> is a numeric value that indicates the screen row of the top bar menu. If
omitted, 0 is the default. This value is modifiable by the oTopBar:Row property.

<nLeft> is a numeric value that indicates the left screen column of the top bar
menu. The default is 0. Modifiable via the oTopBar:Left property.

<nRight> is a numeric value that indicates the right screen column of the top bar
menu. Modifiable via the oTopBar:Right property.

<lPixel> If specified TRUE, the input coordinates are assumed in pixel. If FALSE,
the input are row/col coordinates. If this parameter is not specified (i.e. NIL), the
kind of passed coordinates is determined from the current SET PIXEL setting.

<oTopBar> is the instantiated TopBar object.

In FlagShip, the main menu bar (TopBar class) with sub-menus (PopUp class) is
created automatically for GUI mode at start-up of the application, called from
initio.prg and assigned to oTopBar global/public variable. So instead of creating
new TopBar object, you should use this m->oTopBar variable. The source of the
main menu is available in <FlagShip_dir>/system/initiomenu.prg. You may modify
or redefine the default menu any time later, see example in
<FlagShip_dir>/examples/ topmenu.prg

Compatibility: Available also in CL53.

See also: PopUp and MenuItem classes

OBJ 175

TopBar Class Properties

oTopBar:AddItem() ─> self

Add a new item in the TopBar object. Arguments:

<oMenuItem> is a MenuItem object which is appended at the end of the TopBar
items list.

See also: oTopBar:InsItem()

oTopBar:Cargo <─> anyValue EXPORT

User definable value of any content. Not used by the TopBar class self. The default
is NIL.

oTopBar:ClassName() ─> "TOPBARMENU"

provided for Clipper compatibility purposes. Return fix "TOPBARMENU".

oTopBar:Clear() ─> self

Clears (deletes) all previously assigned TopBar items.

oTopBar:ColorSpec ─> cColor ACCESS
oTopBar:ColorSpec := cColor ASSIGN

<cColor> is a character string that indicates the color attributes that are used by the
top bar menu's display() method. The string can contain up to seven color pairs:

Position Applies To Default value from
in colorSpec system color setting
1 Not selected bar menu items Standard
2 Selected top bar menu item Enhanced
3 Accelerator key for unselected items Background
4 Accelerator key for the selected items Enhanced
5 Disabled top bar menu items Unselected
6 Top bar menu's border Border
7 The message Standard

This property applies for Terminal i/o mode and is ignored otherwise.

OBJ 176

oTopBar:Current ─> nPos ACCESS
oTopBar:Current := nPos ASSIGN

<nPos> is a numeric value that indicates which item is selected.

oTopBar:Delimiters ─> cDelim ACCESS
oTopBar:Delimiters := cDelim ASSIGN

<cDelim> is a string containing 0 or two characters specifying the left and right
delimiter of the menu item, e.g. "[]". The default is an empty string "" specifying that
no delimiters are used. Apply for Terminal i/o mode only, ignored otherwise.

oTopBar:DelItem(nPos) ─> self

Remove an item from a top bar menu. Argument:

<nPos> is a numeric value that indicates the position in the top bar menu of the
item to be deleted.

See also: oTopBar:Clear(), oTopBar:Append(), oTopBar:Insert()

oTopBar:Display() ─> self

Shows a top bar menu on the screen. Display() checks all previously specified
oPopUp object properties, calculates missing values if required, and displays the
menu bar on the screen. To process menu bar entries automatically, use
oTopBar:Exec()

oTopBar:Exec() ─> nSelected

Process the top bar selection (and all childs) by using the build-in or user defined
keyboard handler (specified by InputBlock).

<nSelected> is the selected menu ID number.

oTopBar:FindMenuProperty(bCompare) ─> oMenuItem

Searches the whole menu structure (including all childs) for the requested menu
item property.

<bCompare> is a code block specifying the search criteria. It receives one
parameter, the oMenuItem object, and should return true (.T.) on match, or .F.
otherwise.

<oMenuItem> is the found menu item object when the code block report .T., or NIL
when the requested property was not found.

OBJ 177

Example:

oMenuItem := m->oTopBar:FindMenuProperty({|obj| obj:Id == 123 })
oMenuItem := m->oTopBar:FindMenuProperty(;

{|obj| upper(left(obj:Caption)) == "PRINT" })
if valtype(oMenuItem) == "O"

? "MenuItem found ..."
endif

oTopBar:FindSelectedItem() ─> oMenuItem

Searches the whole menu structure (including all childs) for the requested menu
item property.

<oMenuItem> is the menu item currently selected, or NIL if none.

oTopBar:Font ─> oFont ACCESS
oTopBar:Font := oFont ASSIGN

<oFont> is the used font object for the whole menu bar sequence (i.e. top bar
including all childs). If not specified or is NIL, the default window manager font is
used, except a menu item has own font assigned by oMenuItem:Font. Apply for GUI
mode only, ignored otherwise.

Example:

m->oTopBar:Font := Font{"Courier",10}
m->oTopBar:Display() // refresh topbar menu & submenus

if valtype(m->oTopBar:Font) == "O"
? "used TopBar font =", m->oTopBar:Font:FontFamily

else
? "default TopBar font =", m->oApplic:FontWindow:FontFamily

endif

oTopBar:GetAccel(nInkeyVal) ─> nInkeyVal

<nInkeyVal> is a numeric value that indicates the inkey() value to be checked.
Returns a numeric value that indicates the position in the top bar menu of the first
item whose accelerator key matches that which is specified by <nInkeyVal>. The
accelerator key is defined using the & character in oMenuItem:Caption.

OBJ 178

oTopBar:GetFirst() ─> nPos

Determine the position of the first selectable item in a top bar menu. Selectable
means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the top bar menu of the
first selectable item. Returns 0 if the top bar menu does not contain a selectable
item.

oTopBar:GetFirst() does not change the currently selected menu item. In order to
change the currently selected top bar menu item, you must call the
oTopBar:Select() method.

oTopBar:GetItem(nPos|cPos) ─> oMenuItem

Return the specified item in a top bar menu, regardless if the item is selectable or
not.

<nPos> is a numeric value that indicates the position in the top bar menu of the
item that is being retrieved.

<cPos> is the string specifying the menu name specified by the FoxPro compatible
syntax during the MenuItem(cCapt, cMenuName) invocation.

<oMenuItem> is a MenuItem object at the position in the top bar menu specified by
<nPos> or NIL when <nPos> is invalid.

oTopBar:GetItem() does not change the currently selected menu item. In order to
change the currently selected top bar menu item, you must call the
oTopBar:Select() method.

oTopBar:GetLast() ─> nPos

Determine the position of the last selectable item in a top bar menu. Selectable
means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the top bar menu of the
last selectable item. Returns 0 if the top bar menu does not contain a selectable
item.

oTopBar:GetLast() does not change the currently selected menu item. In order to
change the currently selected top bar menu item, you must call the
oTopBar:Select() method.

OBJ 179

oTopBar:GetNext() ─> nPos

Determine the position of the next selectable item in a top bar menu. Selectable
means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the top bar menu of the
next selectable item. Returns 0 if the top bar menu does not contain next selectable
item.

oTopBar:GetNext() does not change the currently selected menu item. In order to
change the currently selected top bar menu item, you must call the
oTopBar:Select() method.

oTopBar:GetPrev() ─> nPos

Determine the position of the previous selectable item in a top bar menu. Selectable
means a menu item that is enabled and whose caption is not a menu separator.

<nPos> is a numeric value that indicates the position within the top bar menu of the
previous selectable item. Returns 0 if the top bar menu does not contain previous
selectable item.

oTopBar:GetPrev() does not change the currently selected menu item. In order to
change the currently selected top bar menu item, you must call the
oTopBar:Select() method.

oTopBar:HasFocus ─> lStatus ACCESS

<lStatus> is true (.T.) when the top bar has input focus and the Exec() is executed,
or .F. otherwise.

oTopBar:HitTest(p1, p2) ─> nStatus

Provided for backward compatibility purposes to Clipper only.

<nStatus> is always 0.

OBJ 180

oTopBar:InputBlock ─> oBlock ACCESS
oTopBar:InputBlock := oBlock ASSIGN

<oBlock> is user-supplied code block, i.e. keyboard handler which should be used
instead of the build-in one. If <oBlock> is NIL, the default handler will be (re)used.
The code block is called in oTopBar:Exec() and receive two arguments: the
oTopBar object, and the pressed key as an Inkey() value. The code block should
then perform the required action and return either

0 : exit the PopUp processing
<0 : enter the current item
>0 : select the PopUp item specified by the return value

See also <FlagShip_dir>/examples/menu2.prg

Apply for Terminal i/o mode, ignored otherwise.

oTopBar:InsItem(nPos, oMenuItem) ─> self

Add a new item in the top bar object at specified position. Arguments:

<nPos> is a numeric value specifying the position where the menu item should be
inserted. A value greater than oTopBar:ItemCount perform the same action as
oTopBar:AddItem()

<oMenuItem> is a MenuItem object which is inserted at the specified position in the
top bar items list.

See also: oTopBar:AddItem()

oTopBar:ItemCount ─> nCount ACCESS

<nCount> is the total number of items in top bar

oTopBar:ItemPos(oMenuItem) ─> nPos

<oMenuItem> is a MenuItem object which should be searched in the top bar item
list

<nPos> is the found position of specified MenuItem object in the top bar item list or
0 if not found.

oTopBar:Left ─> nCol ACCESS
oTopBar:Left := nCol ASSIGN

<nCol> is the leftmost screen column. Apply for Terminal i/o, ignored otherwise.

OBJ 181

oTopBar:MenuStruct([nDepth], [aStruct]) ─> aStruct

Creates a multi-dimensional array containing the current menu structure.
Arguments (all optional):

<nDepth> is the required depth. If not specified, all childs are determined.

<aStruct> if the array was passed as argument, the returned structure is appended,
otherwise a new array is created. Any element contain a sub-array with {nDepth,
nRelPos, oMenuItem, oMenuItem:Caption}

Example:

aStruct := oTopBar:MenuStruct()
aeval(aStruct, {|x| qout(space(x[1] *2), ltrim(x[2]), x[4])})

oTopBar:Right ─> nCol ACCESS
oTopBar:Right := nCol ASSIGN

<nCol> is the rightmost screen column. If not specified when the top bar object is
instantiated, oTopBar:Right contains NIL until the first time it is displayed. Apply for
Terminal i/o, ignored otherwise.

oTopBar:Row ─> nRow ACCESS
oTopBar:Row := nRow ASSIGN

<nRow> is the screen row. If not specified, 0 is the default. Apply for Terminal i/o,
ignored otherwise.

oTopBar:Select(nPos) ─> self

Set/select the specified item number. The method is typically called when one of the
arrow keys is pressed.

<nPos> is a numeric value that indicates the position in the top bar menu of the
item to be selected.

Apply for Terminal i/o mode, ignored in GUI mode, where the action is performed
automatically.

oTopBar:Row ─> cSeparator ACCESS
oTopBar:Row := cSeparator ASSIGN

Set/return the TopBar separator character, e.g. "|". The default is empty string "".
Apply for Terminal i/o mode, ignored otherwise.

OBJ 182

oTopBar:SetItem(nPos, oMenuItem) ─> self

Replace specified MenuItem object in the top bar list. Arguments:

<nPos> is the item position in range 1..oTopBar:ItemCount

<oMenuItem> is MenuItem object replacing the current top bar item.

OBJ 183

Printer Class
The printer class handles the output to the standard or selected printer driver. In GUI, it
provides also a dialog for printer setup, i.e. to select the required driver.

The Printer setup and Print is available in the default Menu->File. The Print option is
disabled there as long as the printer spooler file is empty. See also LNG.5.1.6 and
<FlagShip_dir>/system/initiomenu.prg for details.

The printer object is instantiated automatically in initio.prg and is stored in global
constant named "oPrinter" and "_oPrinter"

Class Printer
Inherits from: - (none)
Inherited by: - (none)
Class prototype: printerclass.fh
Defines: - (none)
Instantiated to oPrinter and _oPrinter

Printer Class Index
Color ACC/ASS Set/return the printers color property
Display() METHOD Display the printer spooler file
Driver ACC/ASS Return/Set the default driver name
DriverHldpi ACCESS Get the horizontal driver resolution in LDPI
DriverHmargin ACCESS Get the horizontal margin of the driver
DriverVldpi ACCESS Get the vertical driver resolution in LDPI
DriverVmargin ACCESS Get the horizontal margin of the driver
ExecBlock ACC/ASS User code block replacing Exec() behavior
ExecFormatted() METHOD Reformats file/output and print it
Exec() METHOD Invokes the printer-spooler
ExecPrintScreen() METHOD Prints the whole user-screen
Font ACC/ASS Optional font object, used by :ExecFormatted()
HeaderLeft ACC/ASS Left part of header for ExecFormatted()
HeaderMid ACC/ASS Center part of header for ExecFormatted()
HeaderRight ACC/ASS Right part of header for ExecFormatted()
InputFileName ACC/ASS Get/set the file name to print
InputUser() ASSIGN File name assigned by SET PRINTER TO <file>
MarginBottom ACC/ASS Set/get the bottom margin
MarginBottom() METHOD Set/get the bottom margin
MarginLeft ACC/ASS Set/get the left margin
MarginLeft() METHOD Set/get the left margin
MarginRight ACC/ASS Set/get the right margin

OBJ 184

MarginRight() METHOD Set/get the right margin
MarginTop ACC/ASS Set/get the top margin
MarginTop() METHOD Set/get the top margin
NumCopies ACC/ASS Number of copies considered :Exec*()
Orientation ACC/ASS Portrait or Landscape, for user ExecBlock
OutputFileName ACC/ASS Optional for user ExecBlock
PageAll ACC/ASS Optional for user ExecBlock
PageFrom ACC/ASS Optional for user ExecBlock
PageOrder ACC/ASS First or Last, for user ExecBlock
PageSize ACC/ASS Optional for user ExecBlock
PageTo ACC/ASS Optional for user ExecBlock
PrintExecutable ACC/ASS Set/get the default spooler executable
SetupAborted ACCESS Was the SetUp() aborted by user?
Setup() METHOD Dialog to select printer properties (GUI only)
Show() METHOD Equivalent to Display()
TabStop ACC/ASS Tabulator size for :ExeFormatted()
GUIabort() METHOD GUI only: abort output
GUIcol() METHOD GUI only: get/set current column
GUIcolWidth() METHOD GUI only: get column width
GUIdevOut() METHOD GUI only: print text same as DevOut()
GUIdrawBox() METHOD GUI only: draw box
GUIdrawLine() METHOD GUI only: draw line
GUIexec() METHOD GUI only: print, same as PrintGui()
GUIfixPage() METHOD GUI only: fix page size
GUImaxCol() METHOD GUI only: max columns on page
GUImaxRow() METHOD GUI only: max rows on page
GUInewLine() METHOD GUI only: line feed, same as Qout()
GUInewPage() METHOD GUI only: form feed, same as EJECT
GUIpageNum ACC/ASS GUI only: get/set page number
GUIrowHeight() METHOD GUI only: get row height
GUIrow() METHOD GUI only: get/set current row
GUIsetColor() METHOD GUI only: set default color
GUIsetFont() METHOD GUI only: set default font
GUIsetPos() METHOD GUI only: set new print position
GUIstart() METHOD GUI only: init printout
GUItestPage() METHOD GUI only: print test page
GUItextOut() METHOD GUI only: print text same as Qqout()

The source of the printer class is available in <FlagShip_dir>/ system/o*printer*.prg files.
See also example in <FlagShip_dir>/examples/ printer.prg

OBJ 185

Printer Class Instantiation
The printer class is instantiated automatically in initio.prg and is stored in global
constant named "oPrinter"

Printer Class Properties

oPrinter:Color ─> lIsColor ACCESS
oPrinter:Color := lIsColor ASSIGN

Set/return the printers color property This is optional property, not used directly by
:Exec() but my be used and considered in user-defined :ExecBlock The default is
.T. or an user-set value from :SetUp()

oPrinter:Display ([nTop],[nLeft],[nBott],[nRight],
[lPixel],[nLineSize],[cUdf]) ─> lOk METHOD

Displays the printer spooler file via MemoEdit(). The <nTop>, <nLeft>, <nBott> and
<nRight> are optional MemoEdit() coordinates. When <lPixel> is .T., these
coordinates are in pixel, .F. in row/cols, and NIL select default SET PIXEL.
<nLineSize> determines the line length, which defaults to <nRight> - <nLeft>. If
<nLineSize> is greater that the default, the window scrolls horizontally. <cUdf> is a
string specifying the name of a user-defined function to control the editing process.

oPrinter:Driver ─> cPrintDriver ACCESS
oPrinter:Driver := cPrintDriver ASSIGN

Return/Set the default driver name (system dependant). The default driver is user-
selected in oPrinter:SetUp() and is e.g. "Printer1" on Unix or driver name in MS-
Windows. The driver name is used in oPrinter:Exec()

oPrinter:DriverHmargin ─> nPixel ACCESS

Get the horizontal margin of the driver in pixel. If the printer is not set yet, use
default printer

oPrinter:DriverHldpi ─> nResol ACCESS

Get the horizontal driver resolution in LDPI (logical dots per inch). It is not the real
printer resolution, but the unit used for margins. For laser printers, the returned
value is usually 72 x 72 dpi = 2.83 x 2.83 dots per mm. If the printer is not set yet,
use default printer.

OBJ 186

oPrinter:DriverVmargin ─> nPixel ACCESS

Get the horizontal margin of the driver in pixel. If the printer is not set yet, use
default printer

oPrinter:DriverVldpi ─> nResol ACCESS

Get the vertical driver resolution in LDPI (logical dots per inch). It is not the real
printer resolution, but the unit used for margins. For laser printers, the returned
value is usually 72 x 72 dpi = 2.83 x 2.83 dots per mm. If the printer is not set yet,
use default printer.

oPrinter:Exec ([nWait],[ncMode]) ─> lOk METHOD

Invokes the printer-spooler. <nWait> is optional waiting period in seconds after
printing (to display messages), default = 5sec. <ncMode> = 0 or NIL: in Linux,
invoke lpr or lp or driver set by PrintExecutable. In Windows, invokes native
WinSpool driver (the source is available in o_printer.prg). In GUI mode, check for
Setup() is performed. <ncMode> = 1: in Linux, use "cp <file> /dev/lp0", in Windows,
use "copy <file> PRN:" <ncMode> = string: used port/device, e.g. "LPT3:" in
Windows, or "/dev/lp2" in Linux/Unix The printed file name is either set by
oPrinter:InputFileName or is determined by FS_SET("print") otherwise.

Before calling oPrinter:Exec(), either a) execute oPrinter:Setup(), otherwise it will be
called automatically in GUI mode b) or assign oPrinter:Driver := "My Printer Name"
(but insecure) c) or use oPrinter:Exec(,1) d) or use oPrinter:Exec(,"device name")
otherwise simple copy <printerfile> to standard printer device is used, same as with
oPrinter:Exec(,1). You also may set oPrinter:NumCopies, oPrinter:MarginTop and
oPrinter:MarginLeft beforehand.

Note: The _oprinter:Exec() may also be called from main menu File->Print (see
initiomenu.prg) via STATIC FUNCTION InitIoPrint(obj, menuID)

Example: see LNG.5.1.8.c and <FlagShip_dir>/examples/printer.prg

oPrinter:ExecBlock ─> bCodeBlock ACCESS
oPrinter:ExecBlock := bCodeBlock or NIL ASSIGN

User code block replacing the Exec() behavior. If the code block is specified,
oPrinter:Exec() invokes this block instead if the standard oPrinter:Exec() method.

oPrinter:ExecFormatted ([cFileName],[oFont]) ─> lOk METHOD

Reads the <cFileName>, reformats output according to <oFont>, invokes the
printer-spooler set by oPrinter:SetUp(). If <cFileName> is not specified,
oPrinter:InputFileName or FS_SET("print") is used. The <oFont> is considered in
GUI mode only and is optional font object specifying the printer font. It also may be
set by oPrinter:Font.

OBJ 187

Before executing ExecFormatted(), you may change it behavior by HeaderLeft,
HeaderMid, HeaderRight, MarginTop, MarginBottom, MarginLeft, MarginRight,
NumCopies, TabStop

In GUI mode, following attributes within the text are supported: ... - Bold font style.
... - Italic font style. <u>...</u> - Underlined font style In Terminal i/o mode,
oPrinter:ExecFormatted() behaves same as oPrinter:Exec().

Example: see LNG.5.1.8.c and <FlagShip_dir>/examples/printer.prg

oPrinter:ExecPrintScreen ([lAdapt]) ─> lOk METHOD

Prints the whole user-screen to default spooler according to :SetUp() The
oPrinter:PrintScreen() is also executed from main menu (see initiomenu.prg) either
via STATIC FUNCTION InitIoScrPrint(obj, menuID) or user redefined

oPrinter:Font ─> oFont ACCESS
oPrinter:Font := oFont ASSIGN

Optional font object, used by oPrinter:ExecFormatted()

oPrinter:HeaderLeft ─> cText ACCESS
oPrinter:HeaderLeft := cText ASSIGN

Left part of header for ExecFormatted(). <cText> can be any string including special
macros "<>" for page number, "<date>" for current date, "<time>" for current time,
"<file>" for printer file name. The default setting is "Page <>"

oPrinter:HeaderMid ─> cText ACCESS
oPrinter:HeaderMid := cText ASSIGN

The mid part of header for ExecFormatted(). <cText> can be any string including
special macros "<>" for page number, "<date>" for current date, "<time>" for current
time, "<file>" for printer file name. The default setting is "<date> <time>"

oPrinter:HeaderRight ─> cText ACCESS
oPrinter:HeaderRight := cText ASSIGN

Right part of header for ExecFormatted(). <cText> can be any string including
special macros "<>" for page number, "<date>" for current date, "<time>" for current
time, "<file>" for printer file name. The default setting is "<file>"

OBJ 188

oPrinter:InputFileName ─> cFileName ACCESS
oPrinter:InputFileName := cFileName ASSIGN

Get/set the file name to print by oPrinter:Exec() or ExecFormatted(). If not specified,
the default printer spooler file name is either the SET PRINTER TO <cFileName>,
or is determined by the FS_SET("print") function.

oPrinter:InputUser(cFileName) METHOD

File name assigned by SET PRINTER TO <cFileName>. This method is for internal
use only.

oPrinter:MarginBottom ─> nValue ACCESS
oPrinter:MarginBottom := nValue ASSIGN

Set/get the bottom margin for ExecFormatted() and ExecPrintScreen() in GUI
mode. <nValue> is in LDPI (logical dots per inch). Defaults are defined in
printerclass.fh, but best set it to
MarginLeft & MarginRight = oPrinter:DriverHmargin and
MarginTop & MarginBottom = oPrinter:DriverVmargin
i.e. corresponding to the currently used printer driver. Example: see
<FlagShip_dir>/examples/printer.prg

oPrinter:MarginBottom([unit],[newValue]) ─> nValue METHOD

Set/get the bottom margin in GUI mode, same as :MarginBottom ACC/ASS but
accepts conversion from/to units. If <unit> is not given, current SET PIXEL or SET
COORD UNIT is used, default is row/col.

oPrinter:MarginLeft ─> nValue ACCESS
oPrinter:MarginLeft := nValue ASSIGN

Set/get the left margin for ExecFormatted() and ExecPrintScreen() and ExecGUI()
in GUI mode. This instance is set also by SET MARGIN TO ... command. Analog to
oPrinter:MarginBottom, see additional description there. This instance is set also by
SET MARGIN TO ... command.

oPrinter:MarginLeft([unit],[newValue]) ─> nValue METHOD

Set/get the bottom margin in GUI mode, same as :MarginLeft ACC/ASS but accepts
conversion from/to units. If <unit> is not given, current SET PIXEL or SET COORD
UNIT is used, default is row/col.

OBJ 189

oPrinter:MarginRight ─> nValue ACCESS
oPrinter:MarginRight := nValue ASSIGN

Set/get the right margin for ExecFormatted() and ExecPrintScreen() in GUI mode.
Analog to oPrinter:MarginBottom, see additional description there.

oPrinter:MarginRight([unit],[newValue]) ─> nValue METHOD

Set/get the bottom margin in GUI mode, same as :MarginRight ACC/ASS but
accepts conversion from/to units. If <unit> is not given, current SET PIXEL or SET
COORD UNIT is used, default is row/col.

oPrinter:MarginTop ─> nValue ACCESS
oPrinter:MarginTop := nValue ASSIGN

Set/get the top margin for ExecFormatted() and ExecPrintScreen() in GUI mode.
Analog to oPrinter:MarginBottom, see additional description there.

oPrinter:MarginTop([unit],[newValue]) ─> nValue METHOD

Set/get the bottom margin in GUI mode, same as :MarginTop ACC/ASS but accepts
conversion from/to units. If <unit> is not given, current SET PIXEL or SET COORD
UNIT is used, default is row/col.

oPrinter:NumCopies ─> nValue ACCESS
oPrinter:NumCopies := nValue ASSIGN

Set/get the number of copies for Exec() and ExecFormatted(). The default value is
1.

oPrinter:Orientation ─> cValue ACCESS
oPrinter:Orientation := cValue ASSIGN

Set/get printer orientation. <cValue> is either "Portrait" or "Landscape", input of "P"
and "L" is accepted as well. This is an optional user property, not used directly by
Exec() nor by ExecFormatted(), but may be used and considered in user-defined
printing by ExecBlock. The default is "Portrait" or user-selected value from SetUp()

oPrinter:OutputFileName ─> cValue ACCESS
oPrinter:OutputFileName := cValue ASSIGN

Set/get output file name. <cValue> is any string. This is optional user property, not
used directly by Exec() nor by ExecFormatted(), but may be used and considered in
user-defined printing by ExecBlock. The default is "" or an user-selected value from
SetUp()

OBJ 190

oPrinter:PageOrder ─> cValue ACCESS
oPrinter:PageOrder := cValue ASSIGN

Set/get printer page order. <cValue> is either "First" or "Last", input of "F" and "L" is
accepted as well. This is an optional user property, not used directly by Exec() nor
by ExecFormatted(), but may be used and considered in user-defined printing by
ExecBlock. The default is "First" or an user-selected value from SetUp()

oPrinter:PageAll ─> lSet ACCESS
oPrinter:PageAll := .T. ASSIGN

Set/get status for printing of all pages. <lSet> is .T. when PageFrom and/or PageTo
is 0, otherwise .F. ASSIGN accepts .T. only and will reset both PageFrom and
PageTo to 0. This is an optional user property, not used directly by Exec() nor by
ExecFormatted(), but may be used and considered in user-defined printing by
ExecBlock.

oPrinter:PageFrom ─> nPage ACCESS
oPrinter:PageFrom := nPage ASSIGN

Set/get the first printed page. If <nPage> is 0 (set by PageAll), all pages are printed;
otherwise specify the 1st page number (1..n). This is an optional user property, not
used directly by Exec() nor by ExecFormatted(), but may be used and considered in
user-defined printing by ExecBlock.

oPrinter:PageTo ─> nPage ACCESS
oPrinter:PageTo := nPage ASSIGN

Set/get the last printed page. If <nPage> is 0 (set by PageAll), all pages are printed;
otherwise specify the last page number (1..n). This is an optional user property, not
used directly by Exec() nor by ExecFormatted(), but may be used and considered in
user-defined printing by ExecBlock.

oPrinter:PageSize ─> cValue ACCESS
oPrinter:PageSize := cValue ASSIGN

Set/get used page size. <cValue> is "A4" or an user-selected value from SetUp(),
ASSIGN accept any char value w/o check. This is an optional user property, not
used directly by Exec() nor by ExecFormatted(), but may be used and considered in
user-defined printing by ExecBlock.

OBJ 191

oPrinter:PrintExecutable ─> cName ACCESS
oPrinter:PrintExecutable := cName ASSIGN

Set/get the default spooler executable (system dependant), user- selected in
SetUp(). Used in Exec() for Linux. If not set manually, "lpr" or "lp" is returned in
Unix/Linux, otherwise "".

oPrinter:Setup() METHOD

Pop-up dialog to select printer properties, considered in GUI mode only for Exec(),
ExecFormatted() and ExecPrintScreen(). If not yet invoked separately, is called by
the Exec*() method. The Setup() is also executed from main menu (see
initiomenu.prg) either via STATIC FUNCTION InitIoPrSet(obj, menuID) or user
redefined.

oPrinter:SetupAborted ─> lStatus ACCESS

Reports whether the SetUp() was aborted by user. <lStatus> returns .T. when the
"Cancel" button was pressed in the Setup() pop-up dialog, and .F. otherwise. You
may check this property to abort printing.

oPrinter:Show() METHOD

This method is equivalent to oPrinter:Display()

oPrinter:TabStop ─> aValues ACCESS
oPrinter:TabStop := aValues or NIL ASSIGN

Set/get tabulator position (in LDPI pixels) for GUI ExecFormatted(), considered for \t
= chr(9) character in the text line. <aValues> is one-dimensional array of numeric
values. Every Tab position occupy one numeric element in the array, also unsorted,
e.g.
oPrinter:TabStop := {10,20,50,120}
in LDPI units, see DriverHldpi. All tab values must be > 0, otherwise no tabs will be
set. Reset by an empty array or NIL assignment.

Example: see <FlagShip_dir>/examples/printer.prg

oPrinter:GUIabort() ─> lOk METHOD

Abort current printing, clear rendering buffer, SETs GUIPRINT OFF. Returns .T. on
success and .F. on failure with developer's warning, i.e. if oPrinter:GUIstart() or SET
GUIPRINT ON or PrintGui(.T.) was yet not invoked. Applicable in GUI mode only,
ignored otherwise.

OBJ 192

oPrinter:GUIcol([unit], [newPos]) ─> nPos METHOD

Get/set current printer column.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET
COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

<newPos> is optional numeric value specifying new printer column in <units>.

Returns current (before setting) printer column in <unit>s, or 0 when GUI printout
was yet not activated by oPrinter:GUIstart() or SET GUIPRINT ON or
PrintGui(.T.). Applicable in GUI mode only, ignored otherwise.

oPrinter:GUIcolWidth([unit]) ─> num METHOD

Get column width according the current font.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET
COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns current printer column width in <unit>s, or 0 when GUI printout was yet not
activated by oPrinter:GUIstart() or SET GUIPRINT ON or PrintGui(.T.).

Applicable in GUI mode only, ignored otherwise.

oPrinter:GUIdevOut(cText,[coColor], [oFont]) ─> NIL METHOD

Print text same as DevOut() or Qqout(...) functions and ?? command. This method
is for your convenience and equivalent to ::GUItextOut()

<cText> is the string to be printed. SET GUITRANS is considered.
<coColor> is optional color as string or Color object.
<oFont> is optional font specification as Font object.

Applicable when GUI printout was activated by oPrinter:GUIstart() or SET
GUIPRINT ON or PrintGui(.T.), ignored otherwise.

oPrinter:GUIdrawBox(p1,p2,p3,p4,p5,p6,p7,p8) ─> NIL METHOD

Draw box similar to @..BOX command or DispBox() function.

<p1> optional top row position. If not given, current row is used.
<p2> optional left column position. If not given, current column is used.
<p3> optional bottom row position, otherwise GuiMaxRow() is used.
<p4> optional right column position, otherwise GuiMaxCol() is used.
<p5> optional line width in dots, default is 1.
<p6> optional rounding corners (0..99), zero draws angled corners
<p7> optional color as string or array or Color object.
<p8> optional unit value (see UNIT_* in set.fh).

OBJ 193

Applicable when GUI printout was activated by oPrinter:GUIstart() or SET
GUIPRINT ON or PrintGui(.T.), ignored otherwise.

oPrinter:GUIdrawLine(p1,p2,p3,p4,p5,p6,p7) ─> NIL METHOD

Draw line similar to @..DRAW or @..TO.. command.

<p1> optional start row position. If not given, current row is used.

<p2> optional start column position. If not given, current column is used.

<p3> end row position in <p7> units.

<p4> end column position in <p7> units.

<p5> optional line width in dots, default is 1.

<p6> optional color as string or array or Color object.

<p7> optional unit value (see UNIT_* in set.fh), default is row/col.

Applicable when GUI printout was activated by oPrinter:GUIstart() or SET
GUIPRINT ON or PrintGui(.T.), ignored otherwise.

oPrinter:GUIexec() ─> lSuccess METHOD

Print GUI buffer created by oPrinter:GUI*() methods or by common @..SAY, ?, ??,
@..DRAW, @..BOX commands or associated functions. Applicable after
oPrinter:GUIstart() or PrintGui(.T.) or SET GUIPRINT ON. This method is
equivalent to PrintGui() w/o parameter. Considered in GUI mode only, ignored
otherwise.

OBJ 194

oPrinter:GUIfixPage([aSize]) ─> aSize METHOD

Adjust or report page adjustment size for currently by :Setup() selected printer.
Such adjustment may be desirable to utilize whole printable page size, since the
most standard drivers reports approximate values only.

<aSize> is an array specifying the printable page adjustment
aSize[1] = optional string containing printer driver name
aSize[2] = optional string containing page size
aSize[3] = optional string containing page orientation
aSize[4] = numeric value for unit sizes, one of UNIT_* in set.fh
aSize[5] = array of 4 numeric elements for 1st (and next) pages, all four values

are in units according to aSize[4]
aSize[5,1] = non-printable margin left
aSize[5,2] = printable width
aSize[5,3] = non-printable margin top
aSize[5,4] = printable height

aSize[6] = optional array of 4 numeric elements for 2nd (and next) pages,
same structure as aSize[5]. If not given, aSize[5] data are used
also for second and next pages.

Returns: <aSize> in above structure or an empty array if adjustment was not
specified yet.

Example:
// Hint: for the first time, execute this example with disabled
// oPrinter:GUIfixPage(aSetup) statement, then adjust the aSetup
// values according to printout, enable oPrinter:GUIfixPage(aSetup)
// statement and check anew.
#ifdef FS_WIN32 // Windows
aSetup := {"Canon MX850 series Printer", ;

"A4", "Portrait", UNIT_MM, ;
{3.4, 203.1, 5, 286.8}, {0, 203.1, 0, 286.8} }

#else // Linux
aSetup := {"Canon_MX850", "A4", "Portrait", UNIT_CM, ;

{0.31, 20.34, 0.42, 28.76} }
#endif
oPrinter:Setup() // select printer driver
if oPrinter:SetupAborted
wait "sorry ..."
quit

endif
oPrinter:GUIstart() // start GUI rendering
// oPrinter:GUIfixPage(aSetup) // optional: set adjustment
oPrinter:GUItestPage() // create test page #1
oPrinter:GUInewPage() // form feed
oPrinter:GUItestPage() // create test page #2
oPrinter:GUIexec() // end GUI rendering, print it
wait

OBJ 195

oPrinter:GUImaxCol([unit]) ─> num METHOD

Reports max available columns per page

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET
COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns max printer columns in <unit>s according to current font, or 0 when GUI
printout was yet not activated by oPrinter:GUIstart() or SET GUIPRINT ON or
PrintGui(.T.). Considered in GUI mode only, ignored otherwise.

oPrinter:GUImaxRow([unit]) ─> num METHOD

Reports max available rows per page

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET
COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns max printer rows in <unit>s according to current font, or 0 when GUI
printout was yet not activated by oPrinter:GUIstart() or SET GUIPRINT ON or
PrintGui(.T.). Considered in GUI mode only, ignored otherwise.

oPrinter:GUInewLine() ─> NIL METHOD

Execute line feed, sets printer position on 1st column in new line, same as ? or
Qout(""). The row height is calculated from current font height plus global value from
_aGlobSetting[GSET_G_N_ROW_SPACING]. Applicable when GUI printout was
activated by oPrinter:GUIstart() or SET GUIPRINT ON or PrintGui(.T.), ignored
otherwise.

oPrinter:GUInewPage() ─> NIL METHOD

Execute form feed, sets printer position on 1st column in new page, increases page
number (oPrinter:GUIpageNum), comparable to EJECT command. Applicable when
GUI printout was activated by oPrinter: GUIstart() or SET GUIPRINT ON or
PrintGui(.T.), ignored otherwise.

oPrinter:GUIpageNum ─> num ACCESS
oPrinter:GUIpageNum := num ASSIGN

Get/set current page number starting at 1. 0 is reported when GUI printout was yet
not activated by oPrinter:GUIstart() or SET GUIPRINT ON or PrintGui(.T.), and after
oPrinter:GUIexec(). Considered in GUI mode only, ignored otherwise.

OBJ 196

oPrinter:GUIrowHeight([unit]) ─> num METHOD

Get row height according the current font.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET
COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns current printer row height in <unit>s, or 0 when GUI printout was yet not
activated by oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.).
Considered in GUI mode only, ignored otherwise.

oPrinter:GUIrow([unit], [newPos]) ─> nPos METHOD

Get/set current printer row.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET
COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

<newPos> is optional numeric value specifying new printer row in <units>.

Returns current (before setting) printer row in <unit>s, or 0 when GUI printout was
yet not activated by oPrinter:GUIstart() or by SET GUIPRINT ON or
PrintGui(.T.). Considered in GUI mode only, ignored otherwise.

oPrinter:GUIsetColor(coColor) ─> lSuccess METHOD

Set default printer text and drawing color. This can be temporarily overwritten by
corresponding method parameter or PRINTCOLOR command clause.

<coColor> is a string according to SET COLOR "foreground[/background]" or a
Color object.

Returns .T. on success or .F. when GUI printout was yet not activated by
oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.). Considered in GUI
mode only, ignored otherwise.

oPrinter:GUIsetFont([oFont]) ─> oFont METHOD

Set or get default printer font (standard is set to Courier,10). This method is
equivalent to oPrinter:Font := oFont assignment. The font can be temporarily
overwritten by corresponding method parameter or the FONT command clause.

<oFont> is optional Font object.

Returns current font object (before setting) or NIL when GUI printout was yet not
activated by oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.).
Considered in GUI mode only, ignored otherwise.

OBJ 197

oPrinter:GUIsetPos(row, col, [unit]) ─> lSuccess METHOD

Set new printer's position. Alternative methods are oPrinter:GUIcol(),
oPrinter:GUIrow(), oPrinter:GUInewLine() and oPrinter:GUInewPage().

<row> is numeric value specifying the row or y position in <unit>s.

<col> is numeric value specifying the col or y position in <unit>s.

<unit> is optional numeric value (see UNIT_* in set.fh). If not given, current SET
COORD UNIT or SET PIXEL is used (default is UNIT_ROWCOL = row/col).

Returns .T. on success or .F. when GUI printout was yet not activated by
oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.). Considered in GUI
mode only, ignored otherwise.

oPrinter:GUIstart([oFont]) ─> lSuccess METHOD

Init (or continue) GUI printout rendering. May be called subsequently; when the
rendering is already initialized, nothing happens. This method is invoked (without
parameter) also by SET GUIPRINT ON and PrintGui(.T.).

<oFont> is optional Font object, set as default.

Returns .T. on success or .F. when GUI printout was already activated Considered
in GUI mode only, ignored otherwise.

oPrinter:GUItestPage() ─> lSuccess METHOD

Print test page with driver/margin/page settings and box around the printable area.
See example in oPrinter:GUIfixPage() above.

Returns .T. on success or .F. when GUI printout was yet not activated by
oPrinter:GUIstart() or by SET GUIPRINT ON or PrintGui(.T.). Considered in GUI
mode only, ignored otherwise.

oPrinter:GUItextOut(cText, [coColor], [oFont]) ─> NIL METHOD

Print text similarly to ?? command or DevOut() or Qqout() functions.

<cText> is the string to be printed. SET GUITRANS is considered.

<coColor> is optional color as string or Color object.

<oFont> is optional font specification as Font object.

Applicable when GUI printout was activated by oPrinter:GUIstart() or SET
GUIPRINT ON or PrintGui(.T.), ignored otherwise.

OBJ 198

Push Button Class
The push button, also referred to as command button, is perhaps the most central widget in
any graphical user interface: Push it to perform some associated action. Typical actions are
Ok, Apply, Cancel, Close or Help.

The following code creates a push button labeled "Press Me"

oButton := PushButton{30,50, "Press Me", .T.}
oButton:Show()

FlagShip also support the use of push buttons via the common @..GET / READ interface

lButStatus := .F.
@ 5,10 GET lButStatus PUSHBUTTON CAPTION "Press Me"
READ

The text can be changed anytime later with oPushBut:Caption. You can also define a pixmap
with oPushBut:Pixmap(). The text/pixmap is manipulated as necessary to create "disabled"
appearance according to the respective GUI style when the button is disabled. A command
button can, in addition to the text or pixmap label, also display a little icon, see
oPushButt:Bitmap and oPushButt:SetImage() for details.

When the push button it is activated, either with the mouse, the spacebar or a keyboard
accelerator, it calls a user code block, if such is supplied by oPushButt:Notify,
oPushButt:fBlock and/or oPushButt:sBlock, which then process the required action.

Command buttons in dialogs are by default auto default buttons, i.e. they become the default
push button automatically when they receive the keyboard input focus. A default button is a
command button that is activated when the users hits the Enter or Return key in a dialog.
Adjust this behavior with <expL4> during the instantiation, or later by oPushButt:Default().
The default buttons reserve a little extra space necessary to draw a default button indicator.
If you do not want this space around your buttons, use oPushButt:SetStyle
(BUT_AUTOBORDER, .F.) .

There are sometimes confusions when to use push or other buttons. As a general rule, use a
push button when the application or dialog window performs an action when the user clicks
on it (like Apply, Cancel, Close, Help, ...) and when the widget is supposed to have a wide,
rectangular shape with a text label. See RadioButton, CheckButton and Menu classes for
other GUI command buttons.

As with other i/o and GUI classes in FlagShip, the generic PushButton class stay either for
_gPushButton for GUI based application, _tPushButton for terminal/text based, or
_bPushButton for basic i/o. When the general PushButton class is instantiated, FlagShip will
assign the proper i/o class either at compile-time or run-time.

OBJ 199

Note: in the basic i/o mode, only a rough push button functionality is simulated by the
sequential in/output.

PushButton Class Index
Class PushButton
Inherits from: - (none)
Inherited by: - (none)
Class prototype: buttonclass.fh
Defines: button.fh

AsString() METHOD Return an identifying label for the button
Bitmap ACC/ASS A bitmap file displayed as a icon
Buffer ACC/ASS Indicates that the push button has been pushed
Caption ACC/ASS The displayed text of the button
Cargo ACC/ASS User data of any type
ClassName() METHOD For compatibility to Clipper's getsys.prg only
Col ACC/ASS Upper left push button coordinate
ColorSpec ACC/ASS Color attributes, ignored in GUI mode
CurrentText ACC/ASS Same as oPushButton:Caption
Display() METHOD Display the PushButton
Enable() METHOD Enable or disable the button availability
FBlock ACC/ASS Code block evaluated at receiving/losing focus
Font ACC/ASS The used font object
Font() METHOD The used font object
HasFocus ACC Status of the bush button input focus
Height() METHOD Height of the push button widget
Hide() METHOD Hide the PushButton
HitTest() METHOD Determining if the mouse is within the push button
KillFocus() METHOD Take input focus away from the PushButton
Message ACC/ASS Short help in the window status line
Move() METHOD Move the push button widget to a new position
Notify ACC/ASS Code block evaluated when the push button is pressed
OnClickAction ACC/ASS Action in READ triggered by code block
OnClickKeys ACC/ASS Simulates key press, triggered by code block
Resize() METHOD Resize the push button widget to a new size
Row ACC/ASS Upper left push button coordinate
SBlock ACC/ASS Code block evaluated on button push and release
Select() METHOD Simulates the button press
SetFocus() METHOD Gives input focus to the PushButton object
SetImage() MMETHOD Assign an image to PushButton
SetStyle() METHOD Set/return the style of the Push button widget
Show() METHOD Display the PushButton, same as :Display()
SizeX ACC/ASS The horizontal size (width) of the widget
SizeY ACC/ASS The vertical size (height) of the widget

OBJ 200

Style ACC/ASS For terminal mode only
ToolTip ACC/ASS Short pop-up info message
Visible ACC Report the push button visibility
Width() METHOD Set/return the width of the push button widget
X() METHOD Set/return the x coordinate of the button widget
Y() METHOD Set/return the y coordinate of the button widget

OBJ 201

PushButton Class Instantiation
Syntax 1:

oPushButton := [_g|_t|_b]PushButton
{[nR],[nC],[cText],[lDef],[bNotif],[lPix
]}

Syntax 2:
oPushButton := [_g|_t|_b]PushButtonNew

([nR],[nC],[cText],[lDef],[bNotif],[lPix
])

Syntax 3:
oPushButton := PushButton

([nR],[nC],[cText],[lDef],[bNotif],[lPix
])

Syntax 4:
oPushButton := PushButton

{[oOwn],[nId],[oaPos],[oaSize],
[cText],[nSty]}

Any of the above syntax instantiate new check box object. Syntax [1] and [2] are
standard FlagShip and should be preferred. Syntax [3] is supported for compatibility
to Clipper 5.3, and [4] is supported for compatibility to VO.

<nR> Vertical coordinate (row) of the upper left edge. Either in pixels or col/row
coordinates, dependent on the current state of SET PIXEL on|OFF or the <lPix>
parameter. Modifiable by oPushButt:Row or oPushButt:Y(nR,[lPix]).

<nC> Horizontal coordinate (column) of the upper left edge. Either in pixels or
col/row coordinates, dependent on the current state of SET PIXEL on|OFF or the
<lPix> parameter. Modifiable by oPushButt:Col or oPushButt:X(nC,[lPix]).

<cText> The informational text to be printed in the button. If not given, null-string ""
(i.e. no text) is displayed. See additional details in oPushButt:Caption.

<lDef> Set this button as default, i.e. button that is activated when the users hits the
Enter or Return key. If this argument is not specified or of other value than .T., the
button can only be activated by mouse click. To perform the "click" by keyboard,
use Tab or cursor keys in conjunction with Return or space key.

<bNotif> is an optional code block, equivalent to oPushButton:Notify assignment.
To activate this codeblock, subsequent oPushBut:Show() or oPushBut:Display() is
required.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

OBJ 202

<oOwn> The window that owns the button. If <expO1> is not given or empty, the
User Window object <oUserWindow> is used.

<nId> An unique ID between 1 and 32000 which identify the button. If not given or
is out of range, a next free ID will automatically be determined by FlagShip.

<oaPos> Button coordinates (upper left edge). Either a Point object (which allows
entry in pixels or col/row), or an array of two numeric elements specifying the
coordinates {row, col} in pixel. If not given 0,0 is assumed.

<oaSize> Button size (height and width). Either a Dimension object (which allows
entry in pixels or col/row), or an array of two numeric elements specifying the button
size {height, width} in pixel. If not given, the default button size is calculated from
the current font and <cText>.

<nSty> The style of the push button, see BS_* constants in the button.fh file.
Modifiable by oPushButton:SetStyle()

Compatibility: Available also in CL53 (syntax 3, first three params) and VO (syntax
4).

OBJ 203

PushButton Class Properties

oPushButton:AsString() ─> cLabel

Return an identifying label for the button of the form <ClassName>-<Caption>. For
compatibility to VO only, don't use for new development.

oPushButton:Bitmap ─> cFilename ACCESS
oPushButton:Bitmap := cFilename ASSIGN

Contains a character string that indicates a bitmap file to be displayed as a icon in
addition to the text set by oPushButton:Caption. Specify full qualified name
(including path) if the image file is not in the current or the SET PATH directory.
FlagShip detects the image format automatically from the image data. Currently are
supported following image file formats: .png, .bmp, .xbm, .xpm, .jpeg (.jpg) and
.pnm in format PBM (P1 or P4), PGM (P2 or P5), PPM (P3 or P6). It also support
.gif, but note: Unisys has changed its position regarding GIF. If you are in a country
where Unisys holds a patent on LZW compression (Canada, Japan, the USA,
France, Germany, Italy and the UK) Unisys may require you to license that
technology. Therefore, GIF support may be removed completely in a future version
of FlagShip. We recommend using the .png format.

oPushButton:SetImage() oPushButton:Bitmap Acc/Ass is a shortcut for oPush-
Button:SetImage(cFileName, .T., .T.) which crops the image to default or given size.

oPushButton:Buffer ─> lValue ACCESS

Contains a logical value indicating that the push button has been pushed (.T.) or not
(.F.). The .T. state remains permanent as long as the object has focus, as opposite
to oPushButton:Modified where the value changes on any push by mouse click and
keyboard.

oPushButton:Caption ─> cText ACCESS
oPushButton:Caption := cText ASSIGN

A string representing the text that is displayed in the push button. If the text contains
"&" in the string, gPushButton creates an automatic accelerator key for the
character following the ampersand &. To display the ampersand itself, enter it twice.
E.g. "&You && Me" will display button labeled "You & Me" and the button gets an
automatic accelerator key, Alt-Y. The string returned by access is the plain text
only. For the example above, oPushButton:Caption will return "You & Me".

OBJ 204

oPushButton:Cargo ─> value ACCESS
oPushButton:Cargo := value ASSIGN

Contains user data of any type, to store information retrieved later in the program.
Not used by oPushButton itself.

oPushButton:ClassName() ─> cName

Return a "PUSHBUTTON" string, mainly for VO compatibility. In FlagShip, you may
also use IsObjClass() function which can determine the from PushButton inherited
classes.

oPushButton:Col ─> nCol ACCESS
oPushButton:Col := nCol ASSIGN

Contains a numeric value that indicates the screen column (upper left edge) where
the push button is displayed. The <nCol> value is either in pixel or col/row
coordinates depending on the current state of SET PIXEL on|OFF. On assignment,
the push button widget is moved to the new position. It is similar to oPushButton:X()
which allows you to specify or get the column value independent on the SET PIXEL
state.

oPushButton:ColorSpec ─> cColor ACCESS
oPushButton:ColorSpec := cColor ASSIGN

Contains a character string specifying the color attributes that are used by the
oPushButon:Display() or oPushButton:Show() method. Ignored in GUI mode.

oPushButton:CurrentText ─> cText ACCESS
oPushButton:CurrentText := cText ASSIGN

For compatibility to VO only, same as oPushButton:Caption.

oPushButton:Display() ─> NIL

Display the PushButton, equivalent to oPushButton:Show(). See also
oPushButton:Hide()

OBJ 205

oPushButton:Enable([expL1]) ─> lEnabled

Enable or disable the button availability. An enabled push button (the default)
receives keyboard and mouse events; a disabled widget does not. Note that an
enabled widget receives keyboard events only when it is in focus. A disabled button
is shown grayed out. Argument (optional):

<expL1> enable (.T.) or disable (.F.) the button press. If not specified or is not
logical, only the current status is returned.

<lEnabled> reports the enable status at the time of entering this method, i.e. before
the possible status change.

oPushButton:FBlock ─> cBlock ACCESS
oPushButton:FBlock := cBlock ASSIGN

Contains an optional code block ("focus block") that, when present, is evaluated
each time the PushButton object receives or loses input focus. The code block
receives two arguments: lFocusState and the object self. You also may use the
PushButton:hasFocus instance to determine if the push button is receiving or losing
input focus. A value of true (.T.) indicates that it is receiving input focus; otherwise,
a value of false (.F.) indicates that it is losing input focus. See also
oPushButton:Notify and oPushButton:SBlock for other call-back interfaces.

oPushButton:Font ─> oFont ACCESS
oPushButton:Font := oFont ASSIGN
oPushButton:Font([oFont]) ─> oFont

Set, get or redefine the used push buttons font.

<oFont> is the used Font object. If nor specified or is NIL, the default oApplic:Font
is used.

oPushButton:HasFocus ─> lFocus ACCESS

A logical value that is set to TRUE when the object receive input focus, and is reset
to FALSE when the object loses the input focus. See also oPushButton:Buffer and
oPushButton:FBlock

oPushButton:Height([expN1], [lPixel]) ─> nHeight

Set and/or return the height (y size) of the push button widget. Arguments
(optional):

<expN1> The height of the widget. If not given or is NIL, the value remain
unchanged and only the current size is returned. On assignment, the push button
widget is resized accordingly.

OBJ 206

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

<nHeight> The y (row) coordinate of the widget at the time of entering this method,
either in pixel or col/row coordinates, depending on <expL2> argument.

oPushButton:Hide() ─> NIL

Hide the PushButton. See also oPushButton:Show()

oPushButton:HitTest([expN1], [expN2], [lPixel]) ─> nMouseStatus

Supported for Clipper compatibility purposes. Determining if the mouse cursor is
within the region of the screen that the push button occupies. Arguments (optional):

<expN1> the current row position of the mouse cursor relative to the user window,
passed e.g. as return value from the MROW() function. If not given, FlagShip
determines the mouse position automatically.

<expN2> the current column position of the mouse cursor relative to the user
window, passed e.g. as return value from the MCOL() function. If not given,
FlagShip determines the mouse position automatically.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

<returnN> : a numeric value that indicates the relationship of the mouse cursor with
the push button:

0 The mouse cursor is not within the region of the screen that the push button
occupies.

< 0 The mouse cursor is within the region of the screen that the push button
occupies. FlagShip generally returns HTCLIENT == -2049 when the mouse
was clicked within the push button area. Note: the constants HTNOWHERE
(== 0) and HTTOPLEFT ... HTCLIENT (all < 0) are supported as well and are
specified in button.fh

oPushButton:KillFocus() ─> self

Take input focus away from the PushButton. Upon calling this method and the
object has a focus, the object redisplays itself and, if present, evaluates the code
block assigned to oPushButton:FBlock, then the oPushButton:Buffer is set .F. See
also oPushButton:SetFocus()

oPushButton:Message ─> cMessage ACCESS
oPushButton:Message := cMessage ASSIGN

Contains a string that display short help in the window status line.

OBJ 207

oPushButton:Modified ─> lClick ACCESS

A logical value that is set to TRUE when the user clicks on a button, and reset to
FALSE when the mouse button is released. See also oPushButton:Buffer

oPushButton:Move([expN1], [expN2], [lPixel]) ─> self

Moves the push button widget to a new position. Arguments:

<expN1> the new row number (also decimal fraction) or a vertical position of the
top left edge in pixel (depending on the current SET PIXEL setting and the <lPixel>
argument). If not given, the current row is used.

<expN2> the new column number (also decimal fraction) or a horizontal position of
the top left edge in pixel (depending on the current SET PIXEL setting and/or
<lPixel>). If not given, the current column is used.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

oPushButton:Notify ─> cBlock ACCESS
oPushButton:Notify := cBlock ASSIGN

Contains an optional code block that, when present, is evaluated each time the
PushButton is pressed to enable the application to react on the button press. The
code block takes one argument, the object self. See also oPushButton:FBlock and
oPushButton:SBlock for other call-back interfaces.

oPushButton: OnClickAction ─> num ACCESS
oPushButton: OnClickAction := num ASSIGN

Contains either NIL or numeric value specifying next READ action (considered in
getsys.prg handler). This request is usually set in get:Notify (or other) code block,
and is similar to get:ExitState property:

Val getexit.fh Description
0 GE_NOEXIT No exit attempted, stay in PushButton
1 GE_UP Go to previous GET field
2 GE_DOWN Go to next GET field
3 GE_TOP Go to first GET field
4 GE_BOTTOM Go to last GET field
5 GE_ENTER Go to next GET field
6 GE_WRITE Terminate READ, save current GET
7 GE_ESCAPE Terminate READ, do not save current GET
7 GE_EXIT same as GE_ESCAPE
8 GE_WHEN WHEN clause unsatisfied

OBJ 208

oPushButton: OnClickKeys ─> cKeys ACCESS
oPushButton: OnClickKeys := cKeys ASSIGN

Contains either NIL or a string comparable to KEYBOARD, which keys are
evaluated after exit from oPush:Notify (or other) code block. You may set in the
code block e.g. obj:OnClickKeys := chr(K_UP, K_UP) to skip two fields up when
this field is clicked. Considered in getsys.prg READ handler.

oPushButton:Origin ─> oPoint ACCESS
oPushButton:Origin := oPoint ASSIGN

Contains the top left coordinate as Point object. Supported for VO compatibility
only. Don't use for a new development, use oPushButton:X() and oPushButton:Y()
instead.

oPushButton:Resize([expN1], [expN2], [lPixel]) ─> self

Resize the push button widget to a new size. Arguments:

<expN1> the new size in rows (height, also decimal fraction) or a vertical size of the
application window in pixel (depending on the current SET PIXEL setting and the
<lPixel> value). If not given, the current height remains unchanged.

<expN2> the new size in columns (width, also decimal fraction) or a horizontal size
of the application window in pixel (depending on the current SET PIXEL setting and
the <lPixel> value). If not given, the current width remains unchanged.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

oPushButton:Row ─> nRow ACCESS
oPushButton:Row := nRow ASSIGN

Contains a numeric value that indicates the screen row (upper left edge) where the
push button is displayed. The <nRow> value is either in pixel or col/row coordinates
depending on the current state of SET PIXEL on|OFF. On assignment, the push
button widget is moved to the new position. Mainly for Clipper compatibility, for a
new development preferably use oPushButton:Y() which allows you to specify or
get the row value independent on the SET PIXEL state.

oPushButton:SBlock ─> cBlock ACCESS
oPushButton:SBlock := cBlock ASSIGN

Contains an optional code block ("state block") that, when present, is evaluated
each time the PushButton object state (i.e. press/release) changes. The code block
receives two arguments: a logical argument which if .T. when the button is pressed,

OBJ 209

and .F. when released. The second argument is the object self. You also may check
by oPushButton:Buffer whether the button was already pressed during this focus
period. See also oPushButton:Notify (which is evaluated only on button push) and
oPushButton:FBlock (which is evaluated on focus change) for other call-back
interfaces.

oPushButton:Select([expN1]) ─> self

Activates the Push button object, i.e. simulates the button press. Argument
(optional):

<expN1> is a numeric value that indicates the key (as inkey() value) that triggered
the push buttons activation. If passed, Select() waits for the key specified by
<expN1> to be released before continuing.

When this method activated, it performs several operations: First, :Buffer is set to
true (.T.). Then, it calls :Display() to show the button in its highlighted color or in the
pushed GUI style. If <expN1> is passed, it waits for the key specified by <expN1>
to be released. Then, if present, it evaluates its :SBlock code block.

A push buttons state is typically changed when the space bar or enter key is
pressed or the mouse’s left button is pressed when its cursor is within the push
buttons region. Calling this method is meaningful only when the PushButton object
has input focus, and is ignored otherwise.

oPushButton:SetFocus() ─> self

Gives input focus to the PushButton object. Upon calling this method, and the
object has not a focus yet, the object redisplays itself, sets the oPushButton:Buffer
to .F. and, if present, evaluates the code block assigned to oPushButton:FBlock.
See also oPushButton:KillFocus()

oPushButton:SetImage([cFile], [lFrame], [lCrop], [lFromVar]) ─> self

Retrieve or assign an image to PushButton object.

<cFile> is the image file name. FS_SET() and SET PATH are considered. If not
given, the method return the currently used image file name or NIL if none. All
common image formats (.gif, .png, .bmp, .jpeg (.jpg), .xbm, .xpm and .pnm) are
accepted. When <lFromVar> is set .T., the <cFile> is a character string containing
the image self.

<lFrame> is optional logical value, specifying if the button frame should be drawn.
The default is .T. which draw the frame.

<lCrop> is optional logical value, specifying whether the image should be scaled or
cropped. The default is .F. which scales the image to given button height and/or
width. For best scaling, to calculate the button size automatically from the image

OBJ 210

size, either set only button height or width, or reset one of them to 0 by oPb:Hight(0)
or oPb:Width(0) - but before invoking the oPb:SetImage() method.

<lFromVar> is optional logical value, specifying whether image file should be read
from disk file (.F.) or from character variable (.T.), default is .F.

Example:

oBut1 := PushButton(10,5, , , {|obj| alert("button 1 pressed")})
oBut1:SetImage("myimage.jpeg") // height = 1 row, width = auto
oBut1:Display()
oBut2 := PushButton(12,5, , , {|obj| alert("button 2 pressed")})
oBut2:Width(50,.T.) // width = 50 pixel, height = auto
cImg := memoread("otherimage.png")
oBut2:SetImage(cImg, , ,.T.)
oBut2:Display()

oPushButton:SetStyle(expN1, [expL2]) ─> NIL

Set and/or return the style of the Push button widget. Arguments:

<expN1> A style constant applicable for the push button, see BS_* constants in the
button.fh file.

<expL2> True (.T.) enables the specified style; False (.F.) disables it. If omitted, the
default is True.

oPushButton:Show() ─> NIL

Display the PushButton, equivalent to oPushButton:Display(). See also
oPushButton:Hide()

oPushButton:Size ─> oSize ACCESS
oPushButton:Size := oSize ASSIGN

Contains the push button size as Dimension (or Size) object. Supported for VO
compatibility only. Don't use for a new development, use oPushButton:Height() and
oPushButton:Width() instead.

oPushButton:SizeX ─> nCol ACCESS
oPushButton:SizeX := nCol ASSIGN

Contains a numeric value that indicates the horizontal size (width, columns) of the
push button. The <nCol> value is either in pixel or col/row coordinates depending
on the current state of SET PIXEL on|OFF. See also oPushButton:Width() which
allows you to specify or receive the column value type independent on the SET
PIXEL state.

OBJ 211

oPushButton:SizeY ─> nRow ACCESS
oPushButton:SizeY := nRow ASSIGN

Contains a numeric value that indicates the vertical size (height, rows) of the push
button. The <nRow> value is either in pixel or col/row coordinates depending on the
current state of SET PIXEL on|OFF. See also oPushButton:Height() which allows
you to specify or receive the size value independent on the SET PIXEL state.

oPushButton:Style ─> cStyle ACCESS
oPushButton:Style := cStyle ASSIGN

For terminal mode only: button is drawn as <text>, or by single or double line
characters. Ignored in GUI mode, where oPushButton:SetStyle can be used.

oPushButton:ToolTip ─> cTip ACCESS
oPushButton:ToolTip := cTip ASSIGN

Set or retrieve the ToolTip string. A Tool tip is a short, one-line text reminding the
user of the push button widget. Apply for GUI mode only, ignored otherwise.

oPushButton:Visible ─> lVisible ACCESS

Reports the push button visibility. It returns FALSE (.F.) only when the widget is
hidden (invisible), see oPushButton:Hide(.T.). Otherwise, TRUE (.T.) is returned
even if the button is not accessible, see oPushButton:Enable(.F.).

oPushButton:Width([expN1], [lPixel]) ─> nWidth

Set and/or return the width (x size) of the push button widget.

<expN1> The width of the widget. If not given or is NIL, the value remain
unchanged and only the current size is returned. On assignment, the push button
widget is resized accordingly.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

<nWidth> The width (x size) coordinate of the widget at the time of entering this
method, either in pixel or col/row coordinates, depending on <lPixel> argument.

OBJ 212

oPushButton:X([expN1], [lPixel]) ─> nColumn

Set and/or return the x (column) coordinate of the Push button widget.

<expN1> The x (column) coordinate of the widget. If not given or is NIL, the X value
remain unchanged and only the current size is returned. On assignment, the push
button widget is moved to the new position.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

<nColumn> The x (column) coordinate of the widget at the time of entering this
method, either in pixel or col/row coordinates, depending on <lPixel> argument.

oPushButton:Y([expN1], [lPixel]) ─> nRow

Set and/or return the y (row) coordinate of the Push button widget.

<expN1> The y (row) coordinate of the widget. If not given or is NIL, the Y value
remain unchanged and only the current size is returned. On assignment, the push
button widget is moved to the new position.

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL is used.

<nRow> The y (row) coordinate of the widget at the time of entering this method,
either in pixel or col/row coordinates, depending on <lPixel> argument.

OBJ 213

RadioButton Class
Creates radio button, which is a widget (controls) that can be toggled ON or OFF by a user.
A radio button is said to be "pressed" or "selected" when it is filled in, and the
RadioButton:Pressed (as well as :Button and :Value) access is TRUE. The radio button
object is usually not handled by its own, but in a group using the RadioGroup class.

Radio buttons are typically presented in related groups (see also the RadioGroup Class) and
provide mutually exclusive responses to a condition where only one choice is appropriate.
(For example, a group of radio buttons might allow you to choose Inches, Centimeters, Pixel
or Picas for formatting, or Male/Female for sex, etc.)

Only one radio button can be on in each radio button group. When a different button is
pressed, the previously selected button is turned off.

You can create a group of radio buttons by using RadioGroup object. FlagShip also support
the use of RadioGroups via the common @..GET / READ interface.

Example: This example creates two radio buttons, one with a caption of "Male" and the other
"Female" and groups them together using the RadioGroup class:

LOCAL oRadio1, oRadio2, oRgroup AS object
oRadio1 := RadioButton{10,5,"Male"}
oRadio1:CapCol := 9
oRadio1:CapRow := 10
oRadio2 := RadioButton(11,5)
oRadio2:Caption := "Female"
oRadio2:CapCol := 9
oRadio2:CapRow := 10

oRgroup := RadioGroup(9,3,12,15)
oRgroup:AddItem(oRadio1)
oRgroup:AddItem(oRadio2)
oRgroup:Show()
? "you are", if(oRadio1:Buffer, "male", ;
if(oRadio2:Buffer, "female", "of unknown sex"))

Example: This example creates and integrates a radio button group within a GetList and
activates it by performing a READ. The selected radio button is returned in the nSex
variable.

LOCAL cName := SPACE(25)
LOCAL nSex:= 1, aSex := array(2)
LOCAL cAddress := space(25)
aSex[1] := RadioButton{6,52,"&Male"}
aSex[2] := RadioButton{7,52,"&Female"}

@ 5,10 SAY "Name " GET cName
@ 6,10 SAY "Sex"

OBJ 214

@ 5,50,8,61 GET nSex RADIOGROUP aSex
@ 7,10 SAY "Address " GET cAddress
READ
@ 10,0 SAY if(nSex == 1, "Mr. ", "Mrs. ") + cName

As with other GUI classes in FlagShip, the general RadioButton class is internally inherited
by three different sub-classes: _gRadioButton for GUI based application, _tRadioButton for
terminal/text based mode, and _bRadioButton for basic i/o mode, all defined in the
boxclass.fh header file. The proper class, corresponding to the used i/o mode, is set either at
compile time with the compiler switch "-io=g|t|b", or latest at run-time depending on the
currently used environment.

Note: in the basic i/o mode, only a rough radio button functionality is simulated by the
sequential in/output.

OBJ 215

RadioButton Class Index
Class RadioButton
Inherits from: - (none)
Inherited by: RadioGroup
Class prototype: boxclass.fh
Defines: button.fh, set.fh

Bitmaps ACC/ASS Available for compatibility to Clipper only
Buffer ACC Indicates whether the button is checked or not
CapCol ACC/ASS Screen column of the radio button caption
CapCol() METHOD Screen column of the radio button caption
CapRow ACC/ASS Screen row of the radio button caption
CapRow() METHOD Screen row of the radio button caption
Caption ACC/ASS String that describes the button caption
Cargo ACC/ASS A user value of any type
Col ACC/ASS Screen column where the radio button is displayed
Col() METHOD Screen column where the radio button is displayed
ColorSpec ACC/ASS Color attributes
Data ACC/ASS Returned value instead of relative position
Destroy() METHOD Destroys the RadioButton object
Display() METHOD Show the radio button and its caption on the screen
Enabled ACC/ASS Indicates whether radio button is selectable
Fblock ACC/ASS Code block evaluated at receiving/losing focus
HasFocus ACC Indicates whether the object has input focus
Height ACC/ASS The height of the radio button
Height() METHOD The height of the radio button
HitTest() METHOD Determines if the mouse cursor is within the button
IsAccel() METHOD Determines whether a key press is button's hot key
KillFocus() METHOD Take input focus away from a radio button object
Message ACC/ASS String displayed in the windows status bar
Pressed ACC/ASS Indicates whether the button is selected
Row ACC/ASS Screen row where the radio button is displayed
Row() METHOD Screen row where the radio button is displayed
Sblock ACC/ASS Code block evaluated at user selection
Select() METHOD Set/clear the buttons selected status
SetFocus() METHOD Set input focus to a radio button object
Show() METHOD Activates the default or user's input handler
Style ACC/ASS Delimiter and status display characters
ToolTip ACC/ASS Short pop-up info message
TypeOut ACC Always .F.
Value ACC/ASS Indicates whether the button is selected or not
Width ACC/ASS The width of the radio button
Width() METHOD The width of the radio button

OBJ 216

RadioButton Class Instantiation

oRadBut := [_g|_t|_b]RadioButton { [nR],[nC],[cText],[uData],[lPix] } [1]
oRadBut := [_g|_t|_b]RadioButtonNew([nR],[nC],[cText],[uData],[lPix]) [2]

oRadBut := RadioButton ([nR], [nC], [cText], [uData], [lPixel]) [3]
oRadBut := RadioButton { [oOwn], [nId], [oPoint], [oDim], [<cText>] } [4]

Any of the above syntax instantiate new radio button object. Syntax [1] and [2] are
standard FlagShip and should be preferred. Syntax [3] is supported for compatibility
to Clipper 5.3, and [4] is supported for compatibility to VO.

The widget (control) remains invisible until you invoke oRadBut:Show() or
oRadBut:Display(). This allows the program to set up the control correctly (with the
correct size, position, and any other parameters), while avoiding the "visual noise"
of changing controls.

<nR> row in coordinates or pixel, optional. If not specified, 0 is the default. See
additional details in the oRadBut:Row description.

<nC> column in coordinates or pixel, optional. If not specified, 0 is the default. See
additional details in the oRadBut:Col description.

<cText> caption text, optional. If not redefined by :CapCol and/or :CapRow, the text
is displayed in the <nR> row and <nC> + 4 column.

<uData> optional, assigned data of any type, returned by RadioGroup:Value

<lPixel> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL status is used.

<oOwn> owner object of the radio button, optional. Default is the oApplic object.

<nId> an unique ID between 1 and 8000 of the radio button, optional. If not
specified, internal ID is used.

<oPoint> the origin of the radio button, in canvas coordinates

<oDim> the dimension of the radio button, in canvas coordinates

Compatibility: Available also in CL53 (syntax 3) and VO (syntax 4). See also:
oRadBut:Destroy()

OBJ 217

RadioButton Class Properties

oRadBut:Bitmaps ─> aFile ACCESS
oRadBut:Bitmaps := aFile ASSIGN

This property is available for compatibility to Clipper (in semi- graphical mode) only
and is not used by FlagShip object.

Compatibility: Available also in CL53.

oRadBut:Buffer ─> lChecked ACCESS

<lChecked> is a logical value that indicates whether the radio button is selected or
not. A value of true (.T.) indicates that it is selected and a value of false (.F.)
indicates that it is not. Equivalent to oRadBut:Checked instance.

Compatibility: Available also in CL53.

See also: oRadBut:Checked, oRadBut:Select()

oRadBut:CapCol ─> nCol ACCESS
oRadBut:CapCol := nCol ASSIGN
oRadBut:CapCol([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the radio button
caption is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting. The default setting is oRadBut:Col + 4
columns at instantiation time.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Access/assign is available in CL53.

See also: oRadBut:CapRow, oRadBut:Caption

oRadBut:CapRow ─> nRow ACCESS
oRadBut:CapRow := nRow ASSIGN
oRadBut:CapRow([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen row where the radio button
caption is displayed. The input and output value is either in coordinates or in pixels,
depending on the current SET PIXEL setting. The default setting is taken from
oRadBut:Row at instantiation time.

OBJ 218

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If
true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise
the current SET PIXEL status is used.

Compatibility: Available also in CL53.

See also: oRadBut:CapCol, oRadBut:Caption

oRadBut:Caption ─> cText ACCESS
oRadBut:Caption := cText ASSIGN

<cText> is a string that describes the radio button caption. If not redefined by
:CapCol and/or :CapRow, the text is displayed at the :Row and :Col + 4 position set
at instantiation time. When present, the & character specifies that the character
immediately following it in the caption is the radio button accelerator key. The
accelerator key provides a quick and convenient mechanism for the user to move
input focus from one data input control to a radio button. The user performs the
selection by pressing the Alt key in combination with an accelerator key. The case
of an accelerator key is ignored.

Compatibility: Available also in CL53 and VO.

See also: oRadBut:CapCol, oRadBut:Caption

oRadBut:Cargo ─> exp ACCESS
oRadBut:Cargo := exp ASSIGN

<exp> is a value of any type. The RadioButton:Cargo slot holds any user-definable
data which can be retrieved later. This property is not used by the RadioButton
object itself.

Compatibility: Available also in CL53.

oRadBut:Col ─> nCol ACCESS
oRadBut:Col := nCol ASSIGN
oRadBut:Col([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the radio button
is displayed. With Access/assign, the value is either in coordinates or pixels
according to the current SET PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

With terminal i/o, the <nCol> value specifies the column where the first character of
oRadBut:Stype is displayed, i.e. where the left parenthesis (*) of the radio button
representation display. The whole radio button occupy 3 columns.

OBJ 219

With GUI i/o, the radio button is displayed as a widget (control) and <nCol> is the
leftmost widget coordinate. To ensure the same look and feel to an application
running in textual mode, and to display the widget at approx. the same screen
position, the given <nCol> coordinate is automatically adapted by adding a pixel
value taken from the global array elements _aGlobSetting[GSET_G_N_
RADBUT_COL] and _aGlobSetting [GSET_G_N_ RADBUT_WIDTH] which may be
positive or negative and are user modifiable.

Compatibility: Access/assign is available in CL53.

See also: oRadBut:Row, RadioButton{} instantiation

oRadBut:ColorSpec ─> cAttrib ACCESS
oRadBut:ColorSpec := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the
display() and show() method. May be also set or redefined by
RadioGroup:SetColor(). The string must contain eight color specifiers, otherwise the
rest remain unchanged.

Position in Applies To Default value used
<cAttrib> from curr SET COLOR
1 Radio button without input focus, unselected Unselected
2 Radio button without input focus, selected Unselected
3 Radio button with input focus, unselected Enhanced
4 Radio button with input focus, selected Enhanced
5 Radio button's caption Standard
6 Radio button caption's accel. key w/o focus Standard
7 Radio button caption's accel. key with focus Background
8 Radio button and caption, disabled Border

Specifying "-" for foreground or background lets the original color unchanged, which
enables you to change the required color attribute only.

Compatibility: Available also in CL53, which support seven attributes. This property
is considered in terminal mode only, and ignored in GUI mode.

See also: oRadBut:HasFocus, :Enabled, SET COLOR, SET()

oRadBut:Data ─> exp ACCESS
oRadBut:Data := exp ASSIGN

<exp> is a value of any type. If specified, the RadioGroup:Value returns this value
instead of the relative position of selected radio button.

Compatibility: Available but undocumented in CL53.

See also: RadioGroup:Value

OBJ 220

oRadBut:Destroy() ─> NIL

Destroys the RadioButton object and restores the previous screen content. This
method can be used when a RadioButton object is no longer needed.
oRadBut:Destroy() de-instantiates the RadioButton object and allows you to close
and free any resources that were opened or created by the object, without waiting
for the garbage collector. This method calls internally oRadBut:Axit() which is the
equivalence for :Destroy()

Compatibility: Available also in VO

See also: RadioButton{} instantiation

oRadBut:Display() ─> self

Show the radio button, it frame and caption on the screen. The radio button widget
(control) remains invisible until you invoke :Display() or oRadBut:Show(). This
allows the program to set up the control correctly (with the correct size, position,
and any other parameters), while avoiding the "visual noise" of changing controls.

oRadBut:Display() uses the values of the following instance variables to correctly
show the list in its current context, in addition to providing maximum flexibility in the
manner a radio button appears on the screen: Buffer, Caption, CapCol, CapRow,
Col, ColorSpec, HasFocus, Row, and Style.

Compatibility: Available also in CL53

See also: oRadBut:Show()

oRadBut:Enabled ─> lOk ACCESS
oRadBut:Enabled := lOk ASSIGN

<lOk> contains TRUE (.T.) if the radio button is selectable by user, and FALSE (.F)
if it is not. The default is TRUE.

Compatibility: Available also in FS5 only

See also: oRadBut:ColorSpec

oRadBut:Fblock ─> bBlock ACCESS
oRadBut:Fblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is
evaluated each time the RadioButton object receives or loses input focus. The code
block receives two arguments: the object self and the current :HasFocus status,
which indicates whether the radio button is receiving (.T.) or losing (.F.) input focus.
In GUI, the object receives focus every times the user clicks (or activates) the radio
button widget and looses focus when other widget is selected.

OBJ 221

Compatibility: Available also in CL53, but Clipper does not pass any arguments to
the code block, and hence cannot use generalized but object specific code blocks
which needs to check the current oRadBut:HasFocus status by itself.

See also: oRadBut:HasFocus, :SetFocus(), :KillFocus(), :Sblock

oRadBut:HasFocus ─> lFocus ACCESS

<lFocus> is a logical value indicating whether the object has input focus (TRUE) or
not. In GUI, the object receives focus every times the user clicks (or activates) the
widget and looses the focus when other widget is selected.

Compatibility: Available also in CL53

See also: oRadBut:KillFocus, :SetFocus(), :Fblock

oRadBut:Height ─> nRow ACCESS
oRadBut:Height := nRow ASSIGN
oRadBut:Height ([nRow], [lPixel]) ─> nRow

<nCol> is a numeric value that indicates the height of the radio button. With Access
and assign, the value is either in coordinates or pixels according to the current SET
PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available also in FS5, apply for GUI mode only

oRadBut:HitTest(nMouseRow, nMouseCol, [lPixel]) ─> nStatus

Determines if the mouse cursor is within the region of the screen that the radio
button occupies.

<nRow> Numeric value representing the current or tested screen row position of
the mouse cursor.

<nCol> Numeric value representing the current or tested screen row position of the
mouse cursor.

<lPixel> If specified TRUE, the mouse coordinates are assumed in pixel. If FALSE,
the mouse parameters are assumed in current row/col coordinates. If this
parameter is not specified (i.e. NIL), the kind of passed mouse coordinates is
determined from the current SET PIXEL setting.

<nStatus> Returned numeric value indicating the relationship of the mouse cursor
with the radio button. The constants are specified in button.fh header file.

OBJ 222

Value Constant Description
0 HTNOWHERE The mouse is not located in the button region
-1025 HTCAPTION The mouse cursor is on the button's caption
-2049 HTCLIENT The mouse cursor is on the radio button

Compatibility: Available also in CL53

See also: Mrow(), Mcol()

oRadBut:Init([par1]...[par5]) ─> self

This is an internal method invoked automatically at instantiation of the RadioButton
object. It is not intended to be called by the application.

Compatibility: Available also in VO

See also: RadioButton{} instantiation

oRadBut:IsAccel(nKey) ─> lOk

Determines whether a key press should be interpreted as a user request to select a
radio button. Returns a logical value <lOk> that indicates whether the value
specified by <nKey> should be treated as a hot key. A value of true (.T.) indicates
that the key should be treated as a hot key; otherwise, a value of false (.F.)
indicates that it should not. This is an internal method invoked automatically at
instantiation of the RadioButton object. It is not intended to be called by the
application.

Compatibility: Available also in CL53

See also: oRadBut:Caption

oRadBut:KillFocus() ─> self

Take input focus away from a RadioButton object. Upon receiving this message, the
RadioButton object redisplays itself and, if present, evaluates the code block
specified by :Fblock. This message is meaningful only when the RadioButton object
has input focus.

Compatibility: Available also in CL53. In Clipper

See also: oRadBut:HasFocus, :SetFocus(), :Fblock

OBJ 223

oRadBut:Message ─> cText ACCESS
oRadBut:Message := cText ASSIGN

<cText> is a character string displayed in the windows status bar (GUI), or in the
screen line specified by SET MESSAGE (in terminal mode).

Compatibility: Available also in FS5 only

See also: oRadBut:ToolTip(), SET MESSAGE, oApplic:StatusMessage()

oRadBut:Pressed ─> lOk ACCESS
oRadBut:Pressed := lOk ASSIGN

<lOk> contains TRUE (.T.) if the radio button is in the selected (ON) state, and
FALSE (.F) if it is in the unselected state (OFF). Equivalent to oRadBut:Buffer and
oRadBut:Pressed

Compatibility: Available also in VO

See also: oRadBut:Buffer, oRadBut:Value

oRadBut:Row ─> nRow ACCESS
oRadBut:Row := nRow ASSIGN
oRadBut:Row([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen row where the radio button is
displayed. With Access/assign, the value is either in coordinates or pixels according
to the current SET PIXEL status.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If
true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise
the current SET PIXEL status is used.

With terminal i/o, the <nRow> value specifies the column where the three
characters of radio button (*) display.

In GUI i/o mode, the radio button is displayed as a widget (control) and <nRow > is
the topmost widget coordinate when the row is specified in pixel. If the <nRow > is
given in coordinates, the widget position is automatically adapted, to ensure the
same look and feel to an application running in textual mode, and to display the
widget at approx. the same screen position. The topmost widget position is then
calculated from the given <nRow> coordinate minus the current line height plus a
value taken from the global array elements _aGlobSetting[GSET_G_
N_RADBUT_ROW] and _aGlobSetting [GSET_G_N_ RADBUT_HEIGHT] which is
either positive or negative number of pixels and are user modifiable.

Compatibility: Access/assign is available in CL53.

See also: oRadBut:Col, RadioButton{} instantiation

OBJ 224

oRadBut:Sblock ─> bBlock ACCESS
oRadBut:Sblock := bBlock ASSIGN

<bBlock> is an optional code block or NIL. The code block callback, when present,
is evaluated each time the RadioButton object's state changes. The name "Sblock"
refers to state block. The code block receives two arguments: 1) the object self, and
2) the select status, i.e. the content of oRadBut:Buffer.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to
the code block; it hence cannot use generalized but object specific code blocks
which must extract the required values from the known object by itself.

See also: oRadBut:Buffer, :Fblock

oRadBut:Select([lOnOff]) ─> lOnOff

<lOnOff> is a logical value that indicates whether the radio button should be
selected or not. Set to true (.T.) to select, or false (.F.) to deselect the button. If
omitted, the radio button state will toggle to its opposing state. Considered only if
the button has input focus, or when the radio button is a member of a RadioGroup
object that has input focus.

The radio button state is typically changed when the space bar is pressed or the
mouse’s left button is pressed when its cursor is within the radio button's region of
the screen. FlagShip's default handler used in oRadioGroup:Show() also accepts
+,T,t,Y,y keys to set the status ON, and -,F,f,N,n keys to set the radio button status
OFF, and space or "x" key to toggle the status.

Compatibility: Available also in CL53

See also: oRadBut:Buffer

oRadBut:SetFocus() ─> self

Set input focus to a RadioButton object. Upon receiving this message, the
RadioButton object redisplays itself and, if present, evaluates the code block
specified by :Fblock. This message is meaningful only when the RadioButton object
does not have input focus. In GUI, the object receives focus also every times the
user clicks (or activates) the widget.

Compatibility: Available also in CL53.

See also: oRadBut:HasFocus, :KillFocus(), :Fblock, :HotBox

OBJ 225

oRadBut:Show() ─> self

Provided for compatibility to VO, performs the same action as :Display()

Compatibility: Available also in VO

See also: oRadBut:Display(), oRadBut:Handler

oRadBut:Style ─> cStyle ACCESS
oRadBut:Style := cStyle ASSIGN

<cStyle> is a character string that indicates the delimiter characters that are used
by the radio button's Display() and Show() method. The string must contain four
characters. The first is the left delimiter, the 2nd is the "selected" indicator, the 3rd
is the "unselected" indicator, and the 4th character is the right delimiter. The default
style is pre-defined in the global array element _aGlobSetting [GSET_T_C_
RADBUT_STYLE] containing "(*)" at start-up; it may be re-defined by a simple
assignment later. May be also set or redefined by RadioGroup:SetStyle().

Compatibility: Considered in terminal mode only, ignored in GUI. Available also in
CL53.

See also: RadioGroup:SetStyle(), oRadBut:ColdBox, :HotBox, :Display()

oRadBut:ToolTip ─> cText ACCESS
oRadBut:ToolTip := cText ASSIGN

<cText> is a string representing the displayed tool tip, i.e. a short info message
which pop up's when the mouse is over the radio button.

Compatibility: Available in FS5 only, apply for GUI, ignored otherwise

See also: oRadBut:Message

oRadBut:TypeOut ─> lVal ACCESS

<lVal> is a value always containing false (.F.). It is not used by the RadioButton
object and is only provided for compatibility with the other GUI control classes.

Compatibility: Available also in FS5

oRadBut:Value ─> exp ACCESS
oRadBut:Value := exp ASSIGN

<exp> contains TRUE (.T.) if the radio button is in the selected (ON) state, and
FALSE (.F) if it is in the unselected state (OFF). Equivalent to oRadBut:Buffer

Compatibility: Available also in VO

See also: oRadBut:Buffer, oRadBut:Pressed

OBJ 226

oRadBut:Width ─> nCol ACCESS
oRadBut:Width := nCol ASSIGN
oRadBut:Width ([nCol], [lPixel]) ? nCol

<nCol> is a numeric value that indicates the width of the radio button. With Access
and assign, the value is either in coordinates or pixels according to the current SET
PIXEL status.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available also in FS5, apply for GUI mode only

OBJ 227

RadioGroup Class
Creates radio button group which provides a convenient mechanism for manipulating radio
buttons, added in the radio group via AddItem() or InsItem() method.

Radio buttons are typically presented in related groups (i.e. using this RadioGroup Class)
and provide mutually exclusive responses to a condition where only one choice is
appropriate. Only one radio button can be ON in each radio button group. When a different
button is pressed, the previously selected button is turned off.

Example: This example creates two radio buttons, one with a caption of "Male" and the other
"Female" and groups them together using the RadioGroup class and uses the standard input
handler via :Show()

oRadio1 := RadioButton{10,5,"Male"}
oRadio2 := RadioButton(11,5)
oRadio2:Caption := "Female"
oRgroup := RadioGroup(9,3,12,15)
oRgroup:AddItem(oRadio1)
oRgroup:AddItem(oRadio2)
oRgroup:Show() // process automatically
? "you are", if(oRadio1:Buffer, "male", ;
if(oRadio2:Buffer, "female", "of unknown sex"))

? "selected was radio button#" + ltrim(oRgroup:Value())

Example: This is very similar to above example but handles the input by its own and uses
Radio button :Data property:

#include "inkey.fh"
#include "box.fh"
oRadio1 := RadioButton{10,5,"Male","Mr."}
oRadio2 := RadioButton(11,5)
oRadio2:Caption := "Female"
oRadio2:Data := "Mrs."
oRgroup := RadioGroup(9,3,12,15)
oRgroup:AddItem(oRadio1)
oRgroup:AddItem(oRadio2)
oRgroup:ColdBox := B_PLAIN
oRgroup:HotBox := B_PLAIN

// handle this radio group manually similarly to Clipper
SET WRAP ON // wrap from last to first selection
oRgroup:Display()
oRgroup:SetFocus()
oRgroup:FirstItem():Select(.T.) // select first item
while .T.

key := inkey()
do case
case key == K_DOWN

oRgroup:NextItem()
case key == K_UP

OBJ 228

oRgroup:PrevItem()
case key == K_ESCAPE

exit
case key == K_CTRL_UP .or. key == K_HOME

oRgroup:FirstItem()
case key == K_CTRL_DOWN .or. key == K_END

oRgroup:LastItem()
case chr(key) $ " X"

oRgroup:Select() // toggle on/off
exit

case chr(key) $ "+yYtT" .or. key == K_ENTER
oRgroup:Select(NIL, .T.)
exit

case chr(key) $ "-nNfF"
oRgroup:Select(.F.)
exit

endcase
enddo
oRgroup:KillFocus()
cSalutation := oRgroup:Value() // Mr. or Mrs.

Example: See additional examples, e.g. the use via @..GET / READ in the RadioButton
class description.

As with other GUI classes in FlagShip, the general RadioGroup class is internally inherited
by three different sub-classes: _gRadioGroup for GUI based application, _tRadioGroup for
terminal/text based mode, and _bRadioGroup for basic i/o mode, all defined in the
boxclass.fh header file. The proper class, corresponding to the used i/o mode, is set either at
compile time with the compiler switch "-io=g|t|b", or latest at run-time depending on the
currently used environment.

Note: in the basic i/o mode, only a rough radio button functionality is simulated by the
sequential in/output.

OBJ 229

RadioGroup Class Index
Class RadioGroup
Inherits from: - (none)
Inherited by: - (none)
Class prototype: boxclass.fh
Defines: button.fh, set.fh

AddItem() METHOD Add new RadioButton item at the end of radio group list
Bottom ACC/ASS Screen bottom row of the radio group frame
Bottom() METHOD Screen bottom row of the radio group frame
Buffer ACC Position of the selected radio button in the group list
Button() METHOD Get the specified radio button object
CapCol ACC/ASS Screen column of the radio group caption
CapCol() METHOD Screen column of the radio group caption
CapRow ACC/ASS Screen row of the radio group caption
CapRow() METHOD Screen row of the radio group caption
Caption ACC/ASS String that describes the radio group caption
Cargo ACC/ASS A user value of any type
ClassName() METHOD For compatibility to Clipper's getsys.prg only
ColdBox ACC/ASS Frame of the radio group without focus
ColorSpec ACC/ASS Color attributes
CurrItemNo ACC/ASS Position of the selected radio button in the group list
Destroy() METHOD Destroys the RadioGroup object
DelItem() METHOD Remove specified item from the radio group list
Display() METHOD Show radio buttons, frame and caption on the screen
Exec() METHOD Process user input, same as :Show()
Fblock ACC/ASS Code block evaluated at receiving/losing focus
FirstItem() METHOD Selects the first selectable item in the group list
FrameStyle ACC/ASS Set kind of GUI frame around the radio group
GetAccel() METHOD Get the item position corresponding to the given key
GetItem() METHOD Get the specified radio button object
Handler ACC/ASS User defined keyboard handler
HasFocus ACC Indicates whether the object has input focus
Height ACC/ASS The height of the radio group widget
Height() METHOD The height of the radio group widget
HitTest() METHOD Determines if the mouse cursor is within the widget
HotBox ACC/ASS Frame of the radio group with focus
InsItem() METHOD Insert new RadioButton item at specified position
ItemCount ACC Total number of radio buttons in the RadioGroup list
KillFocus() METHOD Take input focus away from a CheckBox object
LastItem() METHOD Selects the last selectable item in the group list
Left ACC/ASS Leftmost screen column of the radio group frame
Left() METHOD Leftmost screen column of the radio group frame
Message ACC/ASS String displayed in the windows status bar

OBJ 230

Modified ACC/ASS Indicates that the user clicks on a radio button
NextItem() METHOD Selects the next selectable item in the group list
PrevItem() METHOD Selects the previous selectable item in the group list
Right ACC/ASS Rightmost screen column of the radio group frame
Right() METHOD Rightmost screen column of the radio group frame
Sblock ACC/ASS Code block evaluated at user selection
Select() METHOD Select and set specific radio button on/off
SetColor() METHOD Set uniform color attributes for all radio buttons
SetFocus() METHOD Set input focus to a radio button object
SetStyle() METHOD Set uniform style attributes for all radio buttons
Show() METHOD Displays the widget and invoke the keyboard handler
ToolTip ACC/ASS Short pop-up info message
Top ACC/ASS Screen topmost row of the radio group frame
Top() METHOD Screen topmost row of the radio group frame
TypeOut ACC/ASS Indicates whether the group contains selectable buttons
Value ACC/ASS Relative position of the button toggled ON
Width ACC/ASS The width of the radio group widget
Width() METHOD The width of the radio group widget

OBJ 231

RadioGroup Class Instantiation

oRadGrp := [_g|_t|_b]RadioGroup {[nTop],[nLeft],[nBott],[nRight],[lPix]} [1]
oRadGrp := [_g|_t|_b]RadioGroupNew([nTop],[nLeft],[nBott],[nRight],[lPix]) [2]

oRadGrp := RadioGroup ([nTop], [nLeft], [nBott], [nRight], [lPix]) [3]
oRadGrp := RadioGroup { [oOwn], [nId], [oPoint], [oDim], [cCapt] } [4]

Any of the above syntax instantiate new radio group object. Syntax [1] and [2] are
standard FlagShip and should be preferred. Syntax [3] is supported for compatibility
to Clipper 5.3, and [4] is supported for compatibility to VO.

The widget (control) remains invisible until you invoke oRadGrp:Show() or
oRadGrp:Display(). This allows the program to set up the control correctly (with the
correct size, position, and any other parameters), while avoiding the "visual noise"
of changing controls.

<nTop> topmost row where the frame of radio group display in coordinates or pixel,
optional. If not specified, the coordinates are calculated automatically from radio
group items at the first oRadGrp:Display(). See additional details in the
oRadGrp:Top description.

<nLeft> leftmost column where the frame of radio group display in coordinates or
pixel, optional. If not specified, the coordinates are calculated automatically from
radio group items at the first oRadGrp: Display(). See additional details in the
oRadGrp:Left description.

<nBott> bottom row where the frame of radio group display in coordinates or pixel,
optional. If not specified, the coordinates are calculated automatically from radio
group items at the first oRadGrp:Display(). See additional details in the
oRadGrp:Bottom description.

<nRight> rightmost column where the frame of radio group display in coordinates
or pixel, optional. If not specified, the coordinates are calculated automatically from
radio group items at the first oRadGrp: Display(). See additional details in the
oRadGrp:Right description.

<lPix> if true(.T.), the row and column data are in pixel; if false (.F.), data are in
row/col coordinates, otherwise the current SET PIXEL status is used.

<oOwn> owner object of the radio button, optional. Default is the oApplic object.

<nId> an unique ID between 1 and 8000 of the radio button, optional. If not
specified, internal ID is used.

<oPoint> the origin of the radio button, in canvas coordinates

<oDim> the dimension of the radio button, in canvas coordinates

OBJ 232

<cCapt> caption text, optional. The position of the text is specified by
oRadGrp:CapRow and oRadGrp:CapCol

Compatibility: Available also in CL53 (syntax 3) and VO (syntax 4). Neither Clipper
nor VO calculates the frame coordinates automatically but requires the input.

See also: oRadGrp:Destroy()

OBJ 233

RadioGroup Class Properties

oRadGrp:AddItem(oRadButt) ─> self

Add new RadioButton item to radio group list

<oRadButt> is the radio button object to be added at the and of the radio group list.

Compatibility: Available also in CL53 and VO.

See also: oRadGrp:InsItem(),oRadGrp:DelItem()

oRadGrp:Bottom ─> nRow ACCESS
oRadGrp:Bottom := nRow ASSIGN
oRadGrp:Bottom ([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen bottom row where the cold
and hot box frame of the radio group is displayed. The input and output value is
either in coordinates or in pixels, depending on the current SET PIXEL setting. The
default coordinates are specified at radio group instantiation or are calculated
automatically from radio group items at the first oRadGrp:Display() or :Show()
invocation.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If
true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise
the current SET PIXEL status is used.

With terminal i/o, the <nRow> value specifies the row where the frame of
oRadGrp:ColdBox and :HotBox is displayed.

With GUI i/o, the radio group is displayed as a widget (control) and <nRow > is the
bottom widget coordinate. To ensure the same look and feel to an application
running in textual mode, and to display the widget at approx. the same screen
position, the given <nRow> coordinate is automatically adapted by adding a pixel
value taken from the global array element _aGlobSetting[GSET_G_N_
RADGRP_BOT] which may be positive or negative. Additional adjustment is
possible via oRadGrp:Right and :Height

Compatibility: Available also in CL53 which does not calculate the frame
coordinates automatically but requires the input.

See also: oRadGrp:Top, :Left, :Right

oRadGrp:Buffer ─> nPos ACCESS

<nPos> is a numeric value that indicates the position in the radio group of the
selected radio button. Equivalent to oRadGrp:Value instance w/o data properties.

Compatibility: Available also in CL53.

See also: oRadGrp:Select()

OBJ 234

oRadGrp:Button([nPos]) ─> oRadioButton

Fully equivalent to oRadGrp:GetItem([nPos]), available for compatibility purpose.

Compatibility: Available also in VO.

See also: oRadGrp:GetItem (), :FirstItem(), :NextItem(), :LastItem(), :ItemCount

oRadGrp:CapCol ─> nCol ACCESS
oRadGrp:CapCol := nCol ASSIGN
oRadGrp:CapCol([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the screen column where the radio group
caption is displayed, the default is 0. The input and output value is either in
coordinates or in pixels, depending on the current SET PIXEL setting.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Access/assign is available in CL53.

See also: oRadGrp:CapRow, oRadGrp:Caption

oRadGrp:CapRow ─> nRow ACCESS
oRadGrp:CapRow := nRow ASSIGN
oRadGrp:CapRow([nRow], [lPixel]) := nRow

<nRow> is a numeric value that indicates the screen row where the radio group
caption is displayed, the default is 0. The input and output value is either in
coordinates or in pixels, depending on the current SET PIXEL setting.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If
true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise
the current SET PIXEL status is used.

Compatibility: Available also in CL53.

See also: oRadGrp:CapCol, oRadGrp:Caption

oRadGrp:Caption ─> cText ACCESS
oRadGrp:Caption := cText ASSIGN

<cText> is a string that describes the radio group caption. When present, the &
character specifies that the character immediately following it in the caption is the
radio group accelerator key. The accelerator key provides a quick and convenient
mechanism for the user to move input focus from one data input control to a radio

OBJ 235

group. The user performs the selection by pressing the Alt key in combination with
an accelerator key. The case of an accelerator key is ignored.

Compatibility: Available also in CL53 and VO.

See also: oRadGrp:CapCol, oRadGrp:Caption

oRadGrp:Cargo ─> exp ACCESS
oRadGrp:Cargo := exp ASSIGN

<exp> is a value of any type. The oRadGrp:Cargo slot holds any user- definable
data which can be retrieved later. This property is not used by the RadioGroup
object itself.

Compatibility: Available also in CL53.

oRadGrp:ClassName() ─> cText

For compatibility to Clipper's getsys.prg only. Return fix "RADIOGROUP"
regardless the subclass. In FlagShip, you may also use IsObjClass() which provides
you with more detailed information.

Compatibility: Available but undocumented in CL53

See also: IsObjClass() and IsObjProperty() functions, getsys.prg source

oRadGrp:ColdBox ─> cBox ACCESS
oRadGrp:ColdBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a
box around the radio group when it does not have input focus. Its default value is
pre-defined in the global array element _aGlobSetting[GSET_T_C_COLDBOX]and
is usually B_SINGLE. The following <cBox> constants are defined in the box.fh file,
the _aGlobSetting[] array constants in set.fh and initio.prg files.

Constant Description
B_SINGLE Single line box
B_DOUBLE Double line box
B_SINGLE_DOUBLE Single line top/bottom, double line sides
B_DOUBLE_SINGLE Double line top/bottom, single line sides
B_PLAIN Plain ASCII characters

Compatibility: Available also in CL53. This property is considered in terminal mode
only and is ignored in GUI mode.

See also: oRadGrp:HotBox,:SetFocus(), :ColorSpec, @..BOX

OBJ 236

oRadGrp:ColorSpec ─> cAttrib ACCESS
oRadGrp:ColorSpec := cAttrib ASSIGN

<cAttrib> is a character string specifying the color attributes that are used by the
Display() and Show() method. The string must contain three color specifiers,
otherwise the rest is unchanged.

Position in Applies To Default value used
<cAttrib> from curr SET COLOR

1 Radio group border Border
2 Radio group caption Standard
3 Radio group caption's key Background

Specifying "-" for foreground or background lets the original color unchanged, which
enables you to change the required color attribute only.

Compatibility: Available also in CL53. This property is considered in terminal mode
only and is ignored in GUI mode.

See also: oRadGrp:HasFocus, :SetColor(), SET COLOR, SET()

oRadGrp:CurrItemNo ─> nPos ACCESS
oRadGrp:CurrItemNo := nPos ASSIGN

<nPos> is a numeric value, between 1 and the :ItemCount, indicating which item is
currently selected and is equivalent to :Buffer. If no item is selected, it is 0.The
:CurrItemNo assign is equivalent to :GetItem(nPos).

Compatibility: Available in FS5 only

See also: oRadGrp:Buffer, :GetItem()

oRadGrp:Destroy() ─> NIL

Destroys the RadioGroup object and restores the previous screen content. This
method can be used when a RadioGroup object is no longer needed.
oRadGrp:Destroy() de-instantiates the RadioGroup object and allows you to close
and free any resources that were opened or created by the object, without waiting
for the garbage collector. This method calls internally oRadGrp:Axit() which is the
equivalence for :Destroy()

Compatibility: Available also in VO

See also: RadioGroup{} instantiation

OBJ 237

oRadGrp:DelItem(nPos) ─> self

<nPos> is a numeric value that indicates the position in the radio group list of the
radio button to be deleted.

Compatibility: Available also in CL53 and VO

See also: oRadGrp:AddItem(), :InsItem(), :ItemCount

oRadGrp:Display() ─> self

Show all the radio buttons available in the group list, the radio group frame and
caption on the screen. If the radio group coordinates were not specified yet, they
are calculated automatically from the radio button list.

Note: the radio group widget (control) remains invisible until you invoke
oRadGrp:Display() or oRadGrp:Show(). This allows the program to set up the
control correctly (with the correct size, position, and any other parameters), while
avoiding the "visual noise" of changing controls.

Compatibility: Available also in CL53, which does not calculate the coordinates
automatically bur requires the input.

See also: oRadGrp:Show(), :Top, :Bottom, :Left, Right

oRadGrp:Exec() ─> self

This method is equivalent to oRadGrp:Show(). It activates either the default or user
specific input handler (specified by :Handler) to process the user entry. See further
details in :Show()

Compatibility: Available in FS5 only.

See also: oRadGrp:Show(), :GetItem(), :NextItem(), :LastItem()

oRadGrp:Fblock ─> bBlock ACCESS
oRadGrp:Fblock := bBlock ASSIGN

<bBlock> is a code block or NIL. The code block callback, when present, is
evaluated each time the RadioGroup object receives or loses input focus. The code
block receives two arguments: the object self and the current :HasFocus status,
which indicates whether the radio button is receiving (.T.) or losing (.F.) input focus.
In GUI, the object receives focus every times the user clicks (or activates) the radio
button widget and looses focus when other widget is selected.

Compatibility: Available also in CL53, but Clipper does not pass any arguments to
the code block, and hence cannot use generalized but object specific code blocks
which needs to check the current oRadGrp:HasFocus status by itself.

See also: oRadGrp:HasFocus, :SetFocus(), :KillFocus(), :Sblock

OBJ 238

oRadGrp:FirstItem() ─> oRadioButton

Selects the first available and selectable item in the group list, considering the
oRadButton:Enabled status. If no selectable items are available, NIL is returned.
Selecting the item does not change the radio button status.

Compatibility: Available in FS5 only.

See also: oRadGrp:GetItem(), :NextItem(), :LastItem(), :ItemCount

oRadGrp:FrameStyle ─> nStyle ACCESS
oRadGrp:FrameStyle := nStyle ASSIGN

Set the frame style of RadioGroup. Assign is considered before first :Display(). The
constants are defined in button.fh

<nStyle> constant Action
BS_GROUPBOX_NONE don't draw frame around the radio group
BS_GROUPBOX_SUNKEN sunken box frame (default in GUI i/o)
BS_GROUPBOX_RAISED raised box frame
BS_GROUPBOX_PLAIN plain box frame (default in Terminal i/o)

oRadGrp:FrameWidth ─> nWidth ACCESS
oRadGrp:FrameWidth := nWidth ASSIGN

Set the line width (in pixel) of RadioGroup frame. Apply for GUI only. The default
width is 1. Assign is considered before first :Display()

oRadGrp:GetAccel (nKey) ─> nPos

<nKey > is a numeric value that indicates the Inkey() value to check.

<nPos> is the returned numeric value in the range 1 to :ItemCount that indicates
the first position in the list of items whose accelerator key matches the <nKey>
value. If a corresponding accelerator is not found, 0 is returned.

Compatibility: Available also in CL53

See also: RadioButton:Caption, oRadGrp:ItemCount

OBJ 239

oRadGrp:GetItem([nPos]) ─> oRadioButton

<nPos> is a numeric value in the range 1 to :ItemCount that indicates the position
in the list of the item that is being retrieved. If not specified or is 0 or NIL, the current
radio button object is returned. Selecting the item does not change the radio button
status.

<oRadioButton> is the RadioButton object specified by <nPos>, even if the button
is disabled. If no item is available at the specified position, NIL is returned.

Compatibility: Available also inCL53

See also: oRadGrp:Button(), :FirstItem(), :NextItem(), :LastItem(), :ItemCount

oRadGrp:Handler ─> bHandler ACCESS
oRadGrp:Handler := bHandler ASSIGN

<bHandler> is a code block or NIL. The code block, when present, is invoked from
the oRadGrp:Show() method and replaces the default radio button handler available
in the <FlagShip_dir>/system/radiogrouphand.prg source file. The code block
receives one argument, the object self.

Compatibility: Available in FS5 only.

See also: oRadGrp:Show()

oRadGrp:HasFocus ─> lFocus ACCESS

<lFocus> is a logical value indicating whether the radio group object has input
focus (TRUE) or not. In GUI, the object receives focus every times the user clicks
(or activates) the widget and looses the focus when other widget is selected.

Compatibility: Available also in CL53

See also: oRadGrp:KillFocus, :SetFocus(), :Fblock

oRadGrp:Height ─> nRows ACCESS
oRadGrp:Height := nRows ASSIGN
oRadGrp:Height ([nRows], [lPixel]) ─> nRows

<nRows> is a numeric value that indicates the height of the radio group widget
(control) including the frame. With Access and assign, the value is either in
coordinates or pixels according to the current SET PIXEL status. The default value
is determined from oRadGrp:Top and oRadGrp:Bottom. Setting a new value
overwrites oRadGrp:Bottom.

OBJ 240

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available in FS5 only. Apply for GUI mode and is ignored otherwise

See also: oRadGrp:Width, :Top, :Bottom

oRadGrp:HitTest(nMouseRow, nMouseCol, [lPixel]) ─> nStatus

Determines if the mouse cursor is within the region of the screen that the radio
button occupies.

<nRow> Numeric value representing the current or tested screen row position of
the mouse cursor.

<nCol> Numeric value representing the current or tested screen column position of
the mouse cursor.

<lPixel> If specified TRUE, the mouse coordinates are assumed in pixel. If FALSE,
the mouse parameters are assumed in current row/col coordinates. If this
parameter is not specified (i.e. NIL), the kind of passed mouse coordinates is
determined from the current SET PIXEL setting.

<nStatus> Returned numeric value indicating the relationship of the mouse cursor
with the radio button. The constants are specified in button.fh header file.

Value Constant Description: the mouse cursor is...
0 HTNOWHERE not located in the box region
-1 HTTOPLEFT on the top left corner of the object border
-2 HTTOP on the object top border
-3 HTTOPRIGHT on the top right corner of object border
-4 HTRIGHT on the object right border
-5 HTBOTTOMRIGHT on the bottom right corner of the obj border
-6 HTBOTTOM on the object bottom border
-7 HTBOTTOMLEFT on the bottom left corner of the obj border
-8 HTLEFT on the object left border
-2049 HTCLIENT within the radio group's screen region

Compatibility: Available also in CL53

See also: Mrow(), Mcol()

OBJ 241

oRadGrp:HotBox ─> cBox ACCESS
oRadGrp:HotBox := cBox ASSIGN

<cBox> is an optional string that specifies the characters to use when drawing a
box around the radio button when it has input focus. Its default value is pre-defined
in the global array element _aGlobSetting [GSET_T_C_HOTBOX] and is usually
B_DOUBLE. The following <cBox> constants are defined in the box.fh file, the
_aGlobSetting[] array constants in set.fh and initio.prg files.

Constant Description
B_SINGLE Single line box
B_DOUBLE Double line box
B_SINGLE_DOUBLE Single line top/bottom, double line sides
B_DOUBLE_SINGLE Double line top/bottom, single line sides
B_PLAIN Plain ASCII characters

Compatibility: Available also in CL53

See also: oRadGrp:ColdBox, :HasFocus, :SetFocus(), @..BOX

oRadGrp:Init([par1]...[par5]) ─> self

This is an internal method invoked automatically at instantiation of the RadioButton
object. It is not intended to be called by the application.

Compatibility: Available also in VO

See also: RadioGroup{} instantiation

oRadGrp:InsItem(nPos, oRadButt) ─> self

<nPos> is a numeric value in the range of 1 to :ItemCount that indicates the
position in the list at which the new item is inserted. Values less or equal to zero are
treated as 1, values greater than :ItemCount performs the same action as
:AddItem()

<oRadButt> is the radio button object to be inserted.

Compatibility: Available also in CL53 and VO.

See also: oRadGrp:AddItem(), :DelItem(), :ItemCount

oRadGrp:ItemCount ─> nCount ACCESS

<nCount> is a numeric value that indicates the total number of radio buttons in the
RadioGroup list.

Compatibility: Available also in CL53

See also: oRadGrp:AddItem(), :InsItem()

OBJ 242

oRadGrp:KillFocus() ─> self

Take input focus away from a RadioGroup object. Upon receiving this message, the
RadioGroup object redisplays itself with the :ColdBox frame and, if present,
evaluates the code block specified by :Fblock. This message is meaningful only
when the RadioGroup object has input focus.

Compatibility: Available also in CL53

See also: oRadGrp:HasFocus, :SetFocus(), :Fblock

oRadGrp:LastItem() ─> oRadioButton

Selects the last available and selectable item in the group list, considering the
oRadButton:Enabled status. If no selectable items are available, NIL is returned.
Selecting the item does not change the radio button status.

Compatibility: Available in FS5 only.

See also: oRadGrp:GetItem(), :FirstItem(), :NextItem(), :ItemCount

oRadGrp:Left ─> nCol ACCESS
oRadGrp:Left := nCol ASSIGN
oRadGrp:Left([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the leftmost screen column where the
radio group frame is displayed. With Access/assign, the value is either in
coordinates or pixels according to the current SET PIXEL status. The default is
taken from object instantiation and, if not specified, the coordinates are calculated
automatically from radio group items at the first oRadGrp:Display() or :Show()
invocation.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true (.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

With terminal i/o, the <nCol> value specifies the column where the frame of
oRadGrp:ColdBox and :HotBox is displayed.

With GUI i/o, the radio group is displayed as a widget (control) and <nCol > is the
leftmost widget coordinate. To ensure the same look and feel to an application
running in textual mode, and to display the widget at approx. the same screen
position, the given <nCol> coordinate is automatically adapted by adding a pixel
value taken from the global array element _aGlobSetting[GSET_G_N_
RADGRP_LEFT] which may be positive or negative. Additional adjustment is
possible via oRadGrp:Right and :Width

Compatibility: Access/assign is available in CL53.

See also: oRadGrp:Right, :Width, RadioGroup{} instantiation

OBJ 243

oRadGrp:Message ─> cText ACCESS
oRadGrp:Message := cText ASSIGN

<cText> is a character string displayed in the windows status bar (GUI), or in the
screen line specified by SET MESSAGE (in terminal mode). Apply only if the
current radio button has not own :Message which is preferred otherwise.

Compatibility: Available also in CL53.

See also: oRadGrp:Tooltip(), SET MESSAGE, RadioButton:Message

oRadGrp:Modified ─> lOk ACCESS
oRadGrp:Modified := lOk ASSIGN

<lOk> is a logical value that is set to TRUE when the user clicks on a radio button,
and reset to FALSE when the mouse button is released.

Compatibility: Available also in VO. Apply in GUI mode only.

oRadGrp:NextItem() ─> oRadioButton

Selects the next available and selectable item in the group list, considering the
oRadButton:Enabled status. If there are no further selectable items available,
:LastItem() is executed with SET WRAP OFF and :FirstItem() with SET WRAP ON.
If no selectable items are available, NIL is returned. Selecting the item does not
change the radio button status.

Compatibility: Available also in CL53

See also:oRadGrp:GetItem(), :FirstItem(), :PrevItem(), :LastItem(), :ItemCount

oRadGrp:PrevItem() ─> oRadioButton

Selects the previous available and selectable item in the group list, considering the
oRadButton:Enabled status. If there are no previous selectable items available,
:FirstItem() is executed with SET WRAP OFF and :LastItem() with SET WRAP ON.
If no selectable items are available, NIL is returned. Selecting the item does not
change the radio button status.

Compatibility: Available also in CL53

See also: oRadGrp:GetItem(), :FirstItem(), :Next Item(), :LastItem(), :ItemCount

OBJ 244

oRadGrp:Right ─> nCol ACCESS
oRadGrp:Right := nCol ASSIGN
oRadGrp:Right([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the rightmost screen column where the
radio group frame is displayed. With Access/assign, the value is either in
coordinates or pixels according to the current SET PIXEL status. The default is
taken from object instantiation and, if not specified, the coordinates are calculated
automatically from radio group items at the first oRadGrp:Display() or :Show()
invocation.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

With terminal i/o, the <nCol> value specifies the column where the frame of
oRadGrp:ColdBox and :HotBox is displayed.

With GUI i/o, the radio group is displayed as a widget (control) and <nCol> is the
rightmost widget coordinate. To ensure the same look and feel to an application
running in textual mode, and to display the widget at approx. the same screen
position, the given <nCol> coordinate is automatically adapted by adding a pixel
value taken from the global array element _aGlobSetting [GSET_G_N_RADGRP_
RIGH] which may be positive or negative. Additional adjustment is possible via
oRadGrp:Left and :Width

Compatibility: Available also in CL53 which does not calculate the frame
coordinates automatically but requires the input.

See also: oRadGrp:Left, :Width, RadioGroup{} instantiation

oRadGrp:Sblock ─> bBlock ACCESS
oRadGrp:Sblock := bBlock ASSIGN

<bBlock> is an optional code block or NIL. The code block callback, when present,
is evaluated each time the RadioGroup selection changes. The name "Sblock"
refers to state block. The code block receives two arguments: 1) the object self, and
2) the current item number, i.e. the content of oRadGrp:Buffer.

Compatibility: Available also in CL53, but undocumented and w/o passing any
arguments to the code block.

See also: oRadGrp:Buffer, :Fblock, :Select(), :GetItem(), :FirstItem(), :NextItem()

OBJ 245

oRadGrp:Select(nPos, [lOnOff]) ─> lOnOff

<nPos> is a numeric value in the range 1 to :ItemCount that indicates the position
in the list of the item that is being retrieved. No action is taken if <nPos> is out of
range. NIL specifies the current radio button without skipping forward or backward.

<lOnOff> Set to true (.T.) to check the radio button or false (.F.) to uncheck it. If
omitted or NIL, the radio button state will toggle to its opposing state.

If none, or only one argument is given and it is logical, it is interpreted as (NIL,
<lOnOff>) to ensure the logical compatibility to RadioButton:Select() method.

This method is provided for you convenience and is equivalent to
oRadGrp:GetItem(nPos):Select(lOnOff). It selects the specified radio button item in
the group list, and sets or toggles the radio button state. Hence, the
RadioButton:Enabled status is not checked here as opposite to :FirstItem(),
:NextItem() etc. which should be preferably used instead, to skip to other radio
button, if some items are disabled.

Compatibility: Available also in CL53, which supports 1st argument only

See also: oRadGrp:Buffer, :GetItem(), :FirstItem(), :NextItem(), :PrevItem(),
:LastItem(), RadioButton:Select()

oRadGrp:SetColor([cAttrib]) ─> cColor

This method is used for uniformly setting the color attributes of all the radio buttons
in its group. It accomplishes this by assigning RadioButton:ColorSpec := <cAttrib>
to each of the radio buttons in the group list.

<cColor> is a character string that indicates the color attributes that are used by the
radio button's display() method. If the parameter is not specified or is NIL or empty,
no action is taken and the current setting is returned. The <cAttrib> string must
contain eight color specifiers, otherwise the rest remain unchanged.

Position in Applies To Default value used
<cAttrib> from curr SET COLOR

1 Radio button without input focus, unselected Unselected
2 Radio button without input focus, selected Unselected
3 Radio button with input focus, unselected Enhanced
4 Radio button with input focus, selected Enhanced
5 Radio button's caption Standard
6 Radio button caption's accel. key w/o focus Standard
7 Radio button caption's accel. key with focus Background
8 Radio button and caption, disabled Border

Specifying "-" for foreground or background lets the original color unchanged, which
enables you to change the required color attribute only.

OBJ 246

Compatibility: Available also in CL53 with seven attributes and returns self. This
property is considered in terminal mode only and is ignored in GUI mode.

See also: oRadGrp:ColorSpec, :SetStyle(), RadioButton:ColorSpec

oRadGrp:SetFocus() ─> self

Set input focus to a RadioGroup object. Upon receiving this message, the
RadioGroup object redisplays itself with all assigned RadioBox'es, with the :HotBox
frame and, if present, evaluates the code block specified by :Fblock. This message
is meaningful only when the RadioGroup object does not have input focus. In GUI,
the object receives focus also every times the user clicks (or activates) the widget.

Compatibility: Available also in CL53

See also: oRadGrp:HasFocus, :KillFocus(), :Fblock, :HotBox

oRadGrp:SetStyle ([cStyle]) ─> cStyle

This method is used for uniformly setting the style attributes of all the radio buttons
in its group. It accomplishes this by assigning RadioButton:Style := <cStyle> to
each of the radio buttons in the group list.

<cStyle> is a character string that indicates the delimiter characters that are used
by the radio group Display() and Show() method. If the parameter is not specified or
is NIL or empty, no action is taken and the current setting is returned. The string
must contain four characters. The first is the left delimiter, the 2nd is the "selected"
indicator, the 3rd is the "unselected" indicator, and the 4th character is the right
delimiter. The default style is pre-defined in the global array element
_aGlobSetting[GSET_T_C_RADGRP_STYLE] containing "(*)" at start-up; it may
be re-defined by a simple assignment later.

Compatibility: Available also in CL53. Considered in terminal mode only, ignored in
GUI.

See also: oRadGrp:SetColor(), RadioButton:Style

OBJ 247

oRadGrp:Show([lMust]) ─> self

This method activates either the default or user specific input handler. Is displays all
the radio buttons in the list, activates the group focus, waits for user input and sets
the selected radio button status to on/off status accordingly, and on exit, kills the
group focus. The default handler is available in the <FlagShip_dir>/system/
radiogrphand.prg source file and is roughly equivalent to the manual code
sequence given in the second example in front of this class description. If all radio
items are disabled, :Show() exits immediately. Changes of the RadioButton or
RadioGroup properties (possible e.g. via the :Sblock or SET KEY, ON KEY
callbacks) are not considered anymore during the user input in the standard
handler.

<lMust> is an optional logical value. True (.T.) indicates that one radio item must be
ON, otherwise an user exit is disabled. If <lMust> is false, NIL or not given, :Show()
accepts also unselected radio group items at the exit via Return or Escape key.

You may assign your own handler by the oRadGrp:Handler property.

Compatibility: Same named method is available also in VO which returns NIL

See also: oRadGrp:Display(), oRadGrp:Handler

oRadGrp:ToolTip ─> cText ACCESS
oRadGrp:ToolTip := cText ASSIGN

<cText> is a string representing the displayed tool tip, i.e. a short info message
which pop up's when the mouse is over the radio group widget.

Compatibility: Available in FS5 only, apply for GUI, ignored otherwise

See also: oRadGrp:Message

oRadGrp:Top ─> nRow ACCESS
oRadGrp:Top := nRow ASSIGN
oRadGrp:Top ([nRow], [lPixel]) ─> nRow

<nRow> is a numeric value that indicates the screen topmost row where the cold
and hot box frame of the radio group is displayed. The input and output value is
either in coordinates or in pixels, depending on the current SET PIXEL setting. The
default coordinates are specified at radio group instantiation or are calculated
automatically from radio group items at the first oRadGrp:Display() or
oRadGrp:Show() invocation.

<lPixel> is optional value indicating if the set/get value is in coordinates or pixels. If
true(.T.), the row data are in pixel; if false (.F.), data are in coordinates, otherwise
the current SET PIXEL status is used.

OBJ 248

With terminal i/o, the <nRow> value specifies the row where the frame of
oRadGrp:ColdBox and :HotBox is displayed.

With GUI i/o, the radio group is displayed as a widget (control) and <nRow> is the
top widget coordinate. To ensure the same look and feel to an application running
in textual mode, and to display the widget at approx. the same screen position, the
given <nRow> coordinate is automatically adapted by adding a pixel value taken
from the global array element _aGlobSetting[GSET_G_N_RADGRP_TOP] which
may be positive or negative. Additional adjustment is possible via oRadGrp:Bottom
and oRadGrp:Height

Compatibility: Available also in CL53 which does not calculate the frame
coordinates automatically but requires the input.

See also: oRadGrp:Bottom, :Left, :Right

oRadGrp:TypeOut ─> lVal ACCESS

<lVal> is a logical value that indicates whether the group contains any selectable
buttons. A value of true (.T.) indicates the group contains selectable buttons; a false
(.F.) value indicates that the group is empty or that all items are disabled.

Compatibility: Available also in CL53

oRadGrp:Value ─> exp ACCESS
oRadGrp:Value := exp ASSIGN

<exp> contains the relative position (1 to :ItemCount) of the radio button toggled to
ON. If this radio button contains :Data (i.e. the RadioButton:Data is not NIL), it value
is returned instead.

Compatibility: Available also in CL53 (undocumented) and in VO

See also: oRadGrp:Show(), RadioButton:Data

oRadGrp:Width ─> nCol ACCESS
oRadGrp:Width := nCol ASSIGN
oRadGrp:Width ([nCol], [lPixel]) ─> nCol

<nCol> is a numeric value that indicates the width of the radio group. With Access
and assign, the value is either in coordinates or pixels according to the current SET
PIXEL status. The default value is determined from oRadGrp:Left and
oRadGrp:Right. Setting a new value overwrites oRadGrp:Right instance.

<lPixel> is optional value indicating if the passed and returned value is in
coordinates or pixels. If true(.T.), the column data are in pixel; if false (.F.), data are
in coordinates, otherwise the current SET PIXEL status is used.

Compatibility: Available in FS5, apply for GUI mode only

See also: oRadGrp:Height, :Left, :Right

OBJ 249

TBROWSE Class
A TBROWSE object is a general purpose browsing mechanism for table- oriented data, i.e.
arrays or databases. It provides mechanisms for acquiring, formatting and displaying data.

The output of TBROWSE can be created as with ACHOICE() or DBEDIT(), but TBROWSE is
the most powerful. It differs from the standard functions in its degree of exclusive control. On
the other hand, it does not replace ACHOICE(), DBEDIT() or BROWSE(), since for a simple
structure and display they are significantly easier to handle by the programmer. In fact,
DBEDIT() uses TBROWSE, see its source code in <FlagShip_dir>/system/ dbedit.prg

See also section LNG.7 for general Tbrowse description and it handling.

1. Creating an Object
Any TBROWSE object contains one or more TBCOLUMN objects (see TbColumn class). In
general, the TBROWSE instances and methods control browsing and positioning in the data
table, while TBCOLUMN formatting and data output.

The TBROWSE object is created using the standard function TBROWSENEW() or the
specialized TBROWSEDB() or TBROWSEARR(), both available in source code in
.../system/tbr*.prg. TbrowseNew() creates generic TBROWSE object, while the TbrowseDb()
an object customized and partially initialized for browsing databases, and the TbrowseArr()
for browsing arrays. See example in Chapter 4 below.

2. Specifying the Columns
Data columns to be displayed from the table are initialized by invoking TBCOLUMNEW() and
assigning the resulting column object to TBROWSE using the tb:ADDCOLUMN() method.
See examples in chapter 4 and TbColumn class. At least one column needs to be assigned.

Data display and browsing, according to the user request, is controlled by the source code
using a loop. In the loop body, the key-press is checked and the corresponding action is
performed calling a TBROWSE method. Alternatively, you may use FlagShip's pre-defined
handler (available in the library but also in source code for an easy customizing) assigned by
the :Handler property and used by the :Exec() method.

3. Stabilizing the Display
To permit greater control over the browsing system, TBROWSE allows to move the data
pointer asynchronously (in the background), with respect to the currently visible screen. This

OBJ 250

may visually speed up the preparation of displayed data. This asynchronous process is
called stabilization.

Every time a movement in the data table is requested, the system becomes "unstable".
TBROWSE does not display the data immediately but waits until the object is stabilized with
the tb:STABILIZE() method. When this message is received, the browse displays one data
record. When data movement and data display is finished, the TBROWSE system becomes
"stable". If any user key is pressed in the meantime, the stabilize and/or output process may
be interrupted for the next action required. Otherwise, the stabilizing method is repeated until
the whole screen (region) is displayed and the tb:STABILIZE() method or the tb:STABLE
instance returns TRUE. The usual method is

WHILE .T.
WHILE !mybrow:STABILIZE() // wait for data display,

IF NEXTKEY() != 0 // optional:
EXIT // manage async.input

ENDIF
ENDDO

key := INKEY(0) // process key pressed
IF key == K_ESC

EXIT
ELSEIF key == // process movement
ENDIF // see chapter 5

ENDDO

Using the tb:FORCESTABLE() method instead of tb:STABILIZE() will display all data
belonging on the screen, which avoids invoking the stabilization several times.

WHILE .T.
mybrow:FORCESTABLE() // wait for data display,
key := INKEY(0) // process key pressed
IF key == K_ESC

EXIT
ELSEIF key == // process movement
ENDIF

ENDDO

OBJ 251

4. Data Movement
TBROWSE manages any data in table form, such as arrays and databases. Data retrieval
and file or array positioning are performed via user-supplied code blocks, allowing a high
degree of flexibility and interaction between the browsing mechanism and programming.

There are three instance variables containing a code block, which handle data repositioning:
tb:SKIPBLOCK to move one record (or row) forward or backward, tb:GOTOPBLOCK and
tb:GOBOTTOMBLOCK to reach the first or last data record. The :SKIPBLOCK is mandatory,
:GOBOTTOM and :GOTOP optional but highly recommended. An example to move array
data (see also example in TBROWSENEW() and in <FlagShip_dir>/examples/
tbrowse_db.prg or tbrowse_ar.prg):

*** test.prg
myname := {"one","two","three"}
mydata := {{1, 2, 3}, {"aa","bb","cc"}, {11,12,13}}
browsearr (mydata, myname)

#define KNOWN_ARR_SIZE

FUNCTION browsearr (arr, names) // multi-dim. data
LOCAL mybrow := TBROWSENEW (10,10, 17,40) // create object
PRIVATE element := 1 // current element
PRIVATE arrdata := arr

mybrow:GOTOPBLOCK := {|| element := 1 }
mybrow:GOBOTTOMBLOCK := {|| element:= LEN(arrdata) }
mybrow:SKIPBLOCK := {|how,obj| skipper (arrdata, @element, how) }

mybrow:COLSEP := " " + CHR(179) + " " // or " : "
mybrow:HEADSEP := "─┼─" // or "-+-"
#ifdef KNOWN_ARR_SIZE

mybrow:ADDCOLUMN (TBCOLUMNNEW (names[1], {|| arrdata[1,element] }))
mybrow:ADDCOLUMN (TBCOLUMNNEW (names[2], {|| arrdata[2,element] }))
mybrow:ADDCOLUMN (TBCOLUMNNEW (names[3], {|write| IF (write==NIL, ;

arrdata[3,element], arrdata[3,element] := write) }))
#else

FOR ii = 1 TO LEN(names) // variable array size,
idx = LTRIM(STR(ii)) // 3rd and following
IF ii < 3 // columns are editable

mybrow:ADDCOLUMN (TBCOLUMNNEW (names[ii], ;
{|| arrdata[&idx., element] }))

ELSE
mybrow:ADDCOLUMN (TBCOLUMNNEW (names[ii], {|write| ;

IF(write==NIL, arrdata[&idx., element], ;
arrdata[&idx., element] := write) }))

ENDIF
NEXT

#endif
mybrowhandle (mybrow) // see chapter 5
RETURN

OBJ 252

FUNCTION skipper (arr, elem, how)
LOCAL old := elem
elem += how
DO CASE
CASE how > 0 // skip forward

IF elem > LEN(arr)
elem = LEN(arr)

ENDIF
CASE how < 0 // skip backward

IF elem < 1
elem = 1

ENDIF
ENDCASE
RETURN elem - old // elements skipped

To browse a database, either the TBROWSEDB() function which creates all the three skip
blocks automatically, or the similar program sequence may be used:

FUNCTION browsedbf ()
LOCAL mybrow
#ifdef USING_TBROWSEDB

mybrow := TBROWSEDB (0,0, 7,20) // creates dbf object
#else

mybrow := TBROWSENEW (0,0, 7,20) // creates generic object
mybrow:GOTOPBLOCK := {|| DBGOTOP() }
mybrow:GOBOTTBLOCK := {|| DBGOBOTTOM() }
mybrow:SKIPBLOCK := {|how,obj| skipdb (how) }

#endif

FOR ii = 1 TO FCOUNT() // see chapter 4
mybrow:ADDCOLUMN (TBCOLUMNNEW (FIELDNAME(ii), ;

FIELDBLOCK (FIELDNAME(ii)))
NEXT

mybrowhandle (mybrow) // see chapter 5
RETURN
#ifndef USING_TBROWSEDB

FUNCTION skipdb (how) // user supplied fn
LOCAL countmoved := 0
DO CASE
CASE how == 0 // flush only

DBCOMMIT ()
CASE how > 0 // skip forward

WHILE countmoved < how .and. ! EOF()
SKIP
IF EOF()

?? CHR(7)
SKIP -1

ELSE
countmoved++

ENDIF
ENDDO

CASE how < 0 // skip backward
WHILE countmoved > how .and. ! BOF()

SKIP -1
IF BOF()

OBJ 253

?? CHR(7)
ELSE

countmoved--
ENDIF

ENDDO
ENDCASE
RETURN countmoved // records skipped

#endif

When searching for the next data (record), by executing the movement method, TBROWSE
will invisibly post it at the next screen row, if available. The data found is displayed during the
stabilization process.

You may invoke several requests for data movement between two user key-presses and
then display the data using tb:FORCESTABLE() or repeating tb:STABILIZE().

When tb:STABILIZE() is invoked, it tries to leave the same row (data item) highlighted as
before, unless the visual movement of the highlight bar was requested.

During operation, a TBROWSE object retrieves data by evaluating the code blocks supplied.
The data is organized into rows and columns and displayed in a specified region of the
screen. The TBROWSE object maintains an internal browse cursor. Its vertical or horizontal
movement on the screen and within the processed data is controlled by the TBROWSE
methods, which usually performs the user keystrokes. A highlight bar marks the current
position within the processed data.

Initially, the browse cursor is placed on the first data item associated with the first column.

OBJ 254

5. Handling a User Request
To comply with the user request to display a special portion of browsed data, the keystroke
is read by e.g. INKEY() function, and the TBROWSE movement for vertical or horizontal
display or the data movement is performed invoking the corresponding TBROWSE method.

For standard use, there are ready-to-use keyboard handlers available, see

tbrowsehand.prg = for TbrowseArr() and array-based Tbrowse, and
tbrowsedbhand.prg = for TbrowseDb() and database-based Tbrowse

in the <FlagShip_dir>/system directory. These handlers are used per default by
oTbrowse:Exec() method. You may define your own handler as well, and either assign it via
oTbrowse:Handler when using oTbrowse:Exec(), or simply invoke your handler directly.

Example for executing the user request (continuing from chapter 4):

#include "inkey.fh"

FUNCTION mybrowhandle (mybrow)
LOCAL key
WHILE .T.

WHILE (!mybrow:STABLE) // (re)build screen,
mybrow:STABILIZE() // wait for stabilizing
IF NEXTKEY() != 0 // optional:

EXIT // manage async.input
ENDIF

ENDDO

key := INKEY(0) // get key pressed
DO CASE
CASE key = K_LEFT .or. key = K_CTRL_S // cursor left

mybrow:LEFT() // = column left
CASE key = K_RIGHT .or. key= K_CTRL_D // cursor right

mybrow:RIGHT() // = column right
CASE key = K_UP .or. key = K_CTRL_E // cursor up

mybrow:UP() // = previous record
CASE key = K_DOWN .or. key = K_CTRL_X // cursor down

mybrow:DOWN() // = next record
CASE key = K_PGUP .or. key = K_CTRL_R // page-up

mybrow:PAGEUP() // = previous window
CASE key = K_PGDN .or. key = K_CTRL_C // page-down

mybrow:PAGEDOWN() // = next window
CASE key = K_CTRL_PGUP // Ctrl page-up

mybrow:GOTOP() // = first record
CASE key = K_CTRL_PGDN // Ctrl page-down

mybrow:GOBOTTOM() // = last record
CASE key = K_HOME .or. key = K_CTRL_A // home

mybrow:HOME() // = first screen column
CASE key = K_END .or. key = K_CTRL_F // end

mybrow:HOME() // = last screen column

OBJ 255

CASE key = K_ESC // escape
EXIT // terminates browsing

CASE key = K_RETURN // return, enter
myedit (mybrow) // edit cell, see chapt 6

OTHERWISE
?? CHR(7) // invalid key

ENDCASE
ENDDO // system is unstable now
RETURN NIL

Note that TBROWSE actions are handled in the background, e.g. when Pg-Dn and cursor
right keys are pressed twice rapidly in sequence, the TBROWSE system first skips the data
two pages forward, re-arranges the columns and then displays the data reached, if no other
key is pending.

See also the source of <FlagShip_dir>/system/dbedit.prg for an example of the
implementation.

Generally, if using the :Exec() or :Handler property of Tbrowse, you don't need to create own
handler with TbrowseSb() or TbrowseArr(), since a default handler is already available and
assigned. You may re-assign it to your own handler using the :Handler Tbrowse property.
The source code for database and array handler is available in <FlagShip_dir>/system
directory.

OBJ 256

6. Editing Data
You may edit the current data cell at user request, using e.g. the standard GET/READ
system. Specify a TBCOLUMN read/write code block to allow the replacement of the data.
See the third block in Chapter 4. Example (continued from Chapter 4 and 5):

FUNCTION myedit (brow)
LOCAL data, row := ROW(), col := COL()
LOCAL sSave, colobj, block, getlist := {}
IF brow:COLPOS < 3

?? CHR(7)
@ 0,0 SAY "The first two columns are not editable"
SETPOS (row, col)
RETURN NIL

ENDIF
IF .not. brow:STABLE

@ 0,0 SAY "Let's stabilize first"
SETPOS (row, col)
RETURN NIL

ENDIF
@ 0,0

colobj := brow:GETCOLUMN(brow:COLPOS)
block := colobj:BLOCK
data := EVAL(block) // Retrieve data using the column block
sSave := SaveScreen(row,col,row,brow:nRight)
@ row, col GET data COLOR "W+/BG,W+/BG"
READ
RestScreen(row,col,row,brow:nRight,sSave)

IF LASTKEY() != 27
EVAL (block, data) // REPLACE if the block is read/write
brow:RefreshAll() // and ensure the Tbrowse display
brow:ForceStable() // the changes

ENDIF
SETPOS (row, col)
RETURN NIL

When you are using the default keyboard handler, the editing is already implemented there.
You may disallow editing by oTbrowse:ReadOnly := .T. or by oTbColumn:ReadOnly := .T. for
specific column.

OBJ 257

Tbrowse Class Instantiation

TbrowseNew ()
Syntax 1:

obj = TbrowseNew ([expN1], [expN2], [expN3],
[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9])

Syntax 2:
obj = Tbrowse { [expN1], [expN2], [expN3], [expN4],

[expL5], [expL6], [expC7], [expO8],
[expN9] }

Purpose:
Creates a new, generic TBROWSE object, optionally initialized by the arguments
supplied.

Options:
<expN1> is the top screen row where the TBROWSE is displayed. This argument is
equivalent to assigning the obj:NTOP with the same value. The valid range is
0...MAXROW(). The default value is zero.

<expN2> is the leftmost screen column where the TBROWSE is displayed. This
argument is equivalent to assigning the obj:NLEFT with the same value. The valid
range is 0...MAXCOL(). The default value is zero.

<expN3> is the bottom screen row where the TBROWSE is displayed. This
argument is equivalent to assigning the obj:NBOTTOM with the same value. The
valid range is <expN1>...MAXROW(). The default value is MAXROW().

<expN4> is the rightmost screen column where TBROWSE is displayed. This
argument is equivalent to assigning the obj:NRIGHT with the same value. The valid
range is <expN2>...MAXCOL(). The default value is MAXCOL().

<expL5> is the pixel specification. If .T., the coordinates given are assumed in
pixel. If .F., the coordinates are in row/column. If not given or NIL, the current SET
PIXEL is considered.

<expL6> specifies whether the Tbrowse widget is re-sizeable by user or not.
Default is .F. which means the Tbrowse widget is fix. Applies for GUI mode only,
ignored otherwise.

<expC7> is a ToolTip string. Applies for GUI mode only, ignored otherwise.

<expO8> is a Font object. If not specified, the oApplic:Font is used. Applies for GUI
mode, ignored otherwise.

<expN9> specify the row height in pixel, see also tb:RowHeight. If not specified, the
size of one row is used. Applies for GUI mode, ignored otherwise.

OBJ 258

Returns:
<obj> is the newly allocated TBROWSE object, usually assigned to a regular
FlagShip variable or to an array element.

Description:
TBROWSENEW() creates a new, empty TBROWSE object for generic use. To
create a partially predefined TBROWSE object for browsing databases,
TBROWSEDB() may be used instead.

If the optional arguments are supplied, the corresponding instance variables are
filled with these values.

Prior to using the TBROWSE object, at least a skip block (see tb:SKIPBLOCK) and
one or more TBCOLUMNs (see tb:ADDCOLUMN()) must be specified.

Example:
This example demonstrates many of the TBROWSE facilities. It will browse and sort
a given directory, using different color settings for each column.

*** test.prg, compile: FlagShip test.prg -na -Mmain
STATIC elem := 1

function main() // entry point
browsedir ("*") // display all

#include "box.fh"
#include "inkey.fh"

FUNCTION browsedir (skeleton)

LOCAL brow := TBROWSENEW () // create empty TBCOLUMN
LOCAL ii, sort, column, dir

dir := DIRECTORY(skeleton)
IF LEN(dir) = 0

? CHR(7) + "No directory entries for '" + skeleton + '"'
RETURN 0

ENDIF

SET COLOR TO "W+/B,N/W"

brow:NTOP := 5
brow:NLEFT := 10
brow:NBOTTOM := MAXROW() -5
brow:NRIGHT := MAXCOL() -10
brow:SKIPBLOCK := {|input, obj, temp| temp := elem, ;

elem := MAX(1, MIN(LEN(dir), ;
elem + input)), elem - temp }

* brow:GOTOPBLOCK:= {||elem := 1 } // not used here
* brow:GOBOTTOMBL:= {||elem := LEN(dir)} // not used here
brow:COLSEP := " │ "
brow:HEADSEP:= "─┼─"
brow:COLORSPEC := "W/B, W+/B, BG+/W, GR+/B, R+/B, N/W"
brow:FOOTSEP:= "─┴─"
*** Create columns

OBJ 259

browdircolumn (brow, dir) // see chapter 4

*** draw box around TBROWSE region
@ brow:NTOP -1, brow:NLEFT -1, brow:NBOTTOM +3, ;

brow:NRIGHT +1 BOX B_DOUBLE + " " // draw box
@ brow:NBOTTOM +1, brow:NLEFT TO ;
brow:NBOTTOM +1, brow:NRIGHT // draw line

@ brow:NBOTTOM +2, brow:NLEFT SAY " Move: " + ;
"Cursor or PgUp,PgDn. Sort: select column, press S"

*** main loop to browse and perform an user action
WHILE (.T.)

IF LEN(dir) > brow:ROWCOUNT
WHILE ! brow:STABILIZE() .and. NEXTKEY() == 0
ENDDO

ELSE
brow:FORCESTABLE()

ENDIF
key := INKEY(0) // get key pressed

DO CASE
CASE key = K_LEFT // left

brow:LEFT()
CASE key = K_RIGHT // right

brow:RIGHT()
CASE key = K_UP // up

brow:UP()
CASE key = K_DOWN // down

brow:DOWN()
CASE key = K_PGUP // PgUp

brow:PAGEUP()
CASE key = K_PGDN // PgDown

brow:PAGEDOWN()
CASE key = K_ESC .or. key = K_ENTER // ESC or ENTER

EXIT
CASE UPPER(CHR(key)) == "S" // sort on current column

sort = brow:COLPOS
ASORT (dir, , , {|x,y| x[sort] <= y[sort] })
FOR ii = 1 TO 5

column = brow:GETCOLUMN (ii)
column:FOOTING := IF (ii==sort, "sorted", "")
brow:SETCOLUMN (ii, column)

NEXT
brow:REFRESHALL()

OTHERWISE
?? CHR(7)

ENDCASE
ENDDO
RETURN elem

* function browdircolumn (brow, dir) // see TBCOLUMNNEW()
* :
* RETURN

OBJ 260

Example:
See also the <FlagShip_dir>/system/dbedit.prg file for a complete example of the
TBROWSE usage.

Classification:
programming

Class:
TBROWSE class, prototyped in <FlagShip_dir>/include/tbrclass.fh

Compatibility:
Available in FS4, C5 and VO. The alternative syntax 2 and the possibility of
inheriting it into an own subclass is available in FlagShip only. Arguments <expL5>
to <expN9> are new in FS5.

Related:
TBCOLUMN, ACHOICE(), DBEDIT(), MEMOEDIT()

OBJ 261

TbrowseArr ()
Syntax:

obj = TbrowseArr ([expN1], [expN2], [expN3],
[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9], [expA10])

Purpose:
Creates a new TBROWSE object with predefined array movement blocks,
optionally initialized by the arguments supplied.

Options:
<expN1> is the top screen row where TBROWSE is displayed. This argument is
equivalent to assigning the obj:NTOP with the same value. The valid range is
0...MAXROW(). The default value is zero.

<expN2> is the leftmost screen column where TBROWSE is displayed. This
argument is equivalent to assigning the obj:NLEFT with the same value, the valid
range is 0...MAXCOL(). The default value is zero.

<expN3> is the bottom screen row where TBROWSE is displayed. This argument is
equivalent to assigning the obj:NBOTTOM with the same value. The valid range is
<expN1>...MAXROW(). The default value is MAXROW().

<expN4> is the rightmost screen column TBROWSE is displayed. This argument is
equivalent to assigning the obj:NRIGHT with the same value. The valid range is
<expN2>...MAXCOL(). The default value is MAXCOL().

<expL5> is the pixel specification. If .T., the coordinates given are assumed in
pixel. If .F., the coordinates are in row/column. If not given or NIL, the current SET
PIXEL is considered.

<expL6> specifies whether the Tbrowse widget is resizeable by user or not. Default
is .F. which means the Tbrowse widget is fix. Applies for GUI mode only, ignored
otherwise.

<expC7> is a ToolTip string. Applies for GUI mode only, ignored otherwise.

<expO8> is a Font object. If not specified, the oApplic:Font is used. Applies for GUI
mode, ignored otherwise.

<expN9> specify the row height in pixel, see also tb:RowHeight. If not specified, the
size of one row is used. Applies for GUI mode, ignored otherwise.

<expA10> is the array to browse. If nor specified, the array need to be assigned by
tb:UserArray

Returns:
<obj> is the newly allocated TBROWSE object, usually assigned to a regular
FlagShip variable.

OBJ 262

Description:
TbrowseArr() is similar to the generic TBROWSENEW(), but will already predefine
tb:SKIPBLOCK, tb:GOTOPBLOCK and tb:GOBOTTOMBLOCK and is working on
the specified array.

If the optional arguments are supplied, the corresponding instance variables are
filled with these values.

Prior to using the TBROWSE object, at least one or more TBCOLUMNs (see
tb:ADDCOLUMN()) must be specified.

Example:
Browse thru multi-dimensional array 'myArray', uses the default keyboard handler
defined in .../system/tbrowsearrhand.prg. This is an extract from the example in
.../examples/tbrowse_ar.prg

oBr := TbrowseArr(6,5, 20,60, NIL, NIL, "My Browse")
oBr:UserArray := myArray // assign array
* oBr:ReadOnly := .T. // enable if editing is not desired
* oBr:CanAppend := .F. // if append is not desired, def. is .T.
for ii := 1 to len(myArray[1])

oTbcol := TbColumnNew(aHeader[ii], .T.) // use def. array block
if ii == 1

oTbcol:Picture := "9999"
oTbcol:ReadOnly := .T. // 1st column not editable

elseif ii == 4
oTbcol:Picture := "999999"

endif
oBr:AddColumn(oTbcol)

next
* oBr:Trim := .T. // optional, trim displayed char data
oBr:Exec() // calls UDF assigned by :Handler

Example:
complete example is in <FlagShip_dir>/examples/tbrowse_ar.prg

Classification:
programming

Class:
uses TBROWSE class, prototyped in <FlagShip_dir>/include/ tbrclass.fh

Compatibility:
Available in FS5 only.

Source:
Source is available in <FlagShip_dir>/system/tbrowsearr.prg and in
<FlagShip_dir>/system/tbrowsehand.prg

Related:
TbrowseNew(), TbrowseDb(), TbColumn

OBJ 263

TbrowseDB ()
Syntax:

obj = TbrowseDb ([expN1], [expN2], [expN3],
[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9])

Purpose:
Creates a new TBROWSE object with predefined database movement blocks,
optionally initialized by the arguments supplied.

Options:
<expN1> is the top screen row where TBROWSE is displayed. This argument is
equivalent to assigning the obj:NTOP with the same value. The valid range is
0...MAXROW(). The default value is zero.

<expN2> is the leftmost screen column where TBROWSE is displayed. This
argument is equivalent to assigning the obj:NLEFT with the same value, the valid
range is 0...MAXCOL(). The default value is zero.

<expN3> is the bottom screen row where TBROWSE is displayed. This argument is
equivalent to assigning the obj:NBOTTOM with the same value. The valid range is
<expN1>...MAXROW(). The default value is MAXROW().

<expN4> is the rightmost screen column TBROWSE is displayed. This argument is
equivalent to assigning the obj:NRIGHT with the same value. The valid range is
<expN2>...MAXCOL(). The default value is MAXCOL().

<expL5> is the pixel specification. If .T., the coordinates given are assumed in
pixel. If .F., the coordinates are in row/column. If not given or NIL, the current SET
PIXEL is considered.

<expL6> specifies whether the Tbrowse widget is resizeable by user or not. Default
is .F. which means the Tbrowse widget is fix. Applies for GUI mode only, ignored
otherwise.

<expC7> is a ToolTip string. Applies for GUI mode only, ignored otherwise.

<expO8> is a Font object. If not specified, the oApplic:Font is used. Applies for GUI
mode, ignored otherwise.

<expN9> specify the row height in pixel, see also tb:RowHeight. If not specified, the
size of one row is used. Applies for GUI mode, ignored otherwise.

Returns:
<obj> is the newly allocated TBROWSE object, usually assigned to a regular
FlagShip variable or to an array element.

OBJ 264

Description:
TBROWSEDB() is similar to the generic TBROWSENEW(), but will already
predefine tb:SKIPBLOCK, tb:GOTOPBLOCK and tb:GOBOTTOMBLOCK.

If the optional arguments are supplied, the corresponding instance variables are
filled with these values.

Prior to using the TBROWSE object, at least one or more TBCOLUMNs (see
tb:ADDCOLUMN()) must be specified.

Example:
Browse through the database 'mydata.dbf', uses the default keyboard handles
defined in <FlagShip_dir>/system/tbrowsedbhand.prg. This is an extract from the
example in .../examples/tbrowse_db.prg

use mydada SHARED NEW
@ 5,4,21,61 box B_PLAIN color ("gr+/b") // for Terminal i/o mode
oBr := TbrowseDb(6,5, 20,60, NIL, NIL, "My Browse")

for ii := 1 to Fcount()
oBr:AddColumn(TbColumnNew(FieldName(ii), ;

FieldBlock(FieldName(ii))))
next
* oBr:Handler := {|obj| TbrDbHandler(obj) } // default setting
oBr:Exec() // process browsing

Example:
This example demonstrates many of the TBROWSE facilities. It will browse and sort
a given directory, using different color settings for each column.

USE address INDEX adr1
browsedb()
FUNCTION browsedbf ()
LOCAL mybrow := TBROWSEDB (1,0, MAXROW()-1, MAXCOL())
* mybrow:GOTOPBLOCK := {|| DBGOTOP() } // predefined
* mybrow:GOBOTTOMBL := {|| DBGOBOTTOM() } // predefined
* mybrow:SKIPBLOCK := {|how,obj| skipdb (how) } // see chapt 4

FOR ii = 1 TO FCOUNT() // see TbColumn class
mybrow:ADDCOLUMN (TBCOLUMNNEW (FIELDNAME(ii), ;

FIELDBLOCK (FIELDNAME(ii)))
NEXT

mybrowhandle (mybrow) // see chapter 5
RETURN NIL

Example:
See also the <FlagShip_dir>/system/dbedit.prg file for a complete example of the
TBROWSE usage. A complete example is available also in <FlagShip_dir>/
examples/tbrowse_db.prg

OBJ 265

Classification:
programming

Class:
uses TBROWSE class, prototyped in <FlagShip_dir>/include/ tbrclass.fh

Compatibility:
Available in FS4, C5 and VO. Arguments <expL5> to <expN9> are new in FS5.

Source:
Source is available in <FlagShip_dir>/system/tbrowsedb.prg and in
<FlagShip_dir>/system/tbrowsedbhand.prg

Related:
TBROWSENEW(), TBCOLUMN, DBEDIT()

OBJ 266

Tbrowse Class Index
Class Tbrowse
Inherits from: -
Inherited by: -
Class prototype: tbrclass.fh
Defines: tbrowse.fh

AddColumn() METHOD Add new TbColumn object
ApplyKey() METHOD Evaluates the Tb:SetKey() code block
AutoLite Export Highlights current cell automatically
AutoRefresh ACC/ASS Set/get auto refresh seconds or 0 if none
AutoRefresh() Method Process auto refresh each specified seconds
Border ACC/ASS Character value drawn around the TBrowse
CanAppend ACC/ASS Appending of new records allowed ?
Cargo Export Any user data
Col() METHOD Column coordinate of currently selected cell
ColAdjust Export Adjust large columns (left/centered)
ColCount ACCESS Total number of data columns
ColorRect() METHOD Alters the color of a rectangular group of cells
ColorSpec ACC/ASS Color attribute for the Tbrowse display
ColPos ACC/ASS Column number of current selection
ColSep ACC/ASS Character value of column separator
ColSepEof ACC/ASS Display column separator in empty rows?
ColVisibleCoord() METHOD Coordinate of specified visible column
ColVisibleWidth() METHOD Returns the really visible column width
ColWidth() METHOD Width of specified column
Configure() METHOD Reexamine all instances
Data() METHOD Get/set cell data
DataChangedBlock ACC/ASS Code block returning .T. when database changed
DeHilite() METHOD De-highlight current cell
DelColumn() METHOD Deletes specified column
Destroy() METHOD Destroy Tbrowse object
Down() METHOD Moves the Tbrowse cursor down one row
End() METHOD Moves the Tbrowse cursor to the rightmost column
Exec() METHOD Process browsing
FootSep ACC/ASS Character of column footing separator
ForceStable() METHOD Performs a full stabilization
ForceStabl() METHOD same as ForceStable()
Freeze ACC/ASS Data columns frozen to the left
Font ACC/ASS Used font object for Tbrowse
GetColumn() METHOD Returns the specified TBCOLUMN object
GoBottomBlock ACC/ASS Code block for the tb:GOBOTTOM() method
GoBottom() METHOD Moves the data to the last logical record
GoMousePos() METHOD Perform mouse related activities on TBrowse

OBJ 267

GoTopBlock ACC/ASS Code block for the tb:GOTOP() method
GoTop() METHOD Moves the data to the first logical record
GuiColorSpec ACC/ASS Array of ColorPair objects for color attribute
GuiFontSpec ACC/ASS Array of oFont objects
GuiGrid ACC/ASS Enables/disables drawing the grid
Handler ACC/ASS Codeblock invoking the keyboard/mouse handler
HeadSep ACC/ASS Character of column heading separator
Hide() METHOD Hides Tbrowse until tb:Show()
Hilite() METHOD Highlights current cell
HitBottom ACC/ASS Attempt to navigate beyond the end-of-data ?
HitTest() METHOD Checks if the given coordinates are in Tbrowse
HitTop ACC/ASS Attempt to navigate beyond the beg-of-data ?
Home() METHOD Moves the Tbrowse cursor to leftmost column
HScrollBar() ASSIGN Sets the horizontal scrollbar visibility
IncrSearch ACC/ASS Incremental search requested?
InsColumn() METHOD Inserts a TBCOLUMN object
Invalidate() METHOD Re-draw the entire TBROWSE display at stabil
KillFocus() METHOD For @..Get/Read only
Left() METHOD Moves the Tbrowse cursor left one data column
LeftVisible ACCESS Position of the leftmost unfrozen column
LineCursor ACC/ASS internal
McolPos ACC/ASS Sets/gets column where mouse cursor is located
Message ACC/ASS Message displayed in @..Get/Read
MouseOn() METHOD Enable/disable the mouse in GUI Tbrowse
MrowPos ACC/ASS Sets/gets row where mouse cursor is located
NBottom ACC/ASS Bottom screen row
NBottom() METHOD same as NBottom ACC/ASS
NLeft ACC/ASS Leftmost screen column
NLeft() METHOD same as NLeft ACC/ASS
NRight ACC/ASS Rightmost screen column
NRight() METHOD same as NRight ACC/ASS
NTop ACC/ASS First screen row
NTop() METHOD same as NTop ACC/ASS
PageDown() METHOD Moves the data one window page downwards
PageUp() METHOD Moves the data one window page upwards
PanEnd() METHOD Moves the browse cursor to rightmost column
PanHome() METHOD Moves the browse cursor to leftmost column
PanLeft() METHOD Moves the browse cursor to left column
PanRight() METHOD Moves the browse cursor to right column
ReadOnly ACC/ASS Are Tbrowse fields editable?
RefreshAll() METHOD Marks all data rows as invalid
RefreshCur() METHOD Marks current data row as invalid
RefreshCurrent() METHOD same as RefreshCur()
Right() METHOD Moves the browse cursor right one data column
RightVisible ACCESS Position of the rightmost unfrozen column
Row() METHOD Row coordinate of currently selected cell
RowCache ACC/ASS Size of the browse cache for page skip

OBJ 268

RowCount ACCESS Number of visible data rows
RowHeight ACC/ASS Sets/gets the height of each row in pixel
RowPos ACC/ASS Current row number
ScrollLeft() METHOD Scroll view to left
ScrollRight() METHOD Scroll view to right
SelectedCol ACC/ASS currently selected column
SelectedRow ACC/ASS currently selected row
SelectedRecno ACC/ASS currently selected record
SelectedValue ACC/ASS currently selected value
SetColumn() METHOD Replaces the specified Tbcolumn
SetFocus() METHOD For @..Get/Read only
SetKey() METHOD Set/get code block associated to Inkey value
SetKeyDef() METHOD Set default tb:SetKey() redirections
SetStyle() METHOD Manage a 1-dimensional array with log flags
Show() METHOD Re-display hidden Tbrowse
SkipBlock ACC/ASS Code block for tb:DOWN/UP(), tb:PAGEDOWN/UP()
Stabilize() METHOD Performs incremental stabilization
Stable ACC/ASS Is the TBROWSE object stable?
TimeOut ACC/ASS Set/get TimeOut seconds
ToolTip ACC/ASS Set/get the tooltip string
Trim ACC/ASS Trim character fields
Up() METHOD Moves the TBROWSE cursor up one row
UserArray ACC/ASS Array with Tbrowse data for TbrowseArr()
UserArrayPos ACC/ASS Current row in data-array, used by skipper
Visible ACCESS Is Tbrowse visible or hidden?
VScrollBar ASSIGN Sets the vertical scrollbar visibility

OBJ 269

Tbrowse Class Properties

[tc =] tb:ADDCOLUMN (<expO1>)

Adds a new TBCOLUMN object <expO1> to the TBROWSE object and increases
the tb:COLCOUNT instance by one. See examples in Chapter 4,
TBROWSENEW(), TBROWSEDB() and TbColumn class.

tb:AUTOLITE Access/Assign

Contains a logical value. When set to TRUE (the default), the stabilize method
automatically highlights the current cell as part of stabilization.

<retN> := tb:APPLYKEY([<expN>])

Evaluates the code block associated with the key in tb:SetKey(<expN>,
<codeBlock>) setting. The return value <retN> is passed from the code block's
return value, and specifies the manner in which the key should be processed by the
handler:

Constant Value Meaning
TBR_EXIT -1 User request for the browse to lose input focus and to

exit Tbrowse, ignores corresp. SET KEY
TBR_CONTINUE 0 Key <expN> is set by tb:SetKey() or SetKeyDef(), code

block associated with <nExp> was evaluated, do not
process default handler action, nor previously set SET
KEY

TBR_EXCEPTION 1 Key <expN> not set by tb:SetKey() or SetKeyDef()
Evaluate corresponding SET KEY if set, the handler
should then process default key action

TBR_DEFACTION 2 Key <expN> is set by tb:SetKey() or SetKeyDef(), the
handler should process default key action, but ignores
corresponding SET KEY if such set.

The TBR_* constants are available in tbrowse.fh include file. If the code block for
<expN> is not set, tb:ApplyKey() returns TBR_EXCEPTION. If the code block
returns invalid value, TBR_CONTINUE is returned from tb:ApplyKey().

tb:CANAPPEND Access/Assign

Logical value specifying whether appending of new records is allowed. The default
value is TRUE, new records can be appended.

OBJ 270

tb:CARGO Access/Assign

Contains any user data of any type to store information retrieved later in the
program. Not used by the TBROWSE system itself. The default is NIL.

retN = tb:COL ([expL1])

Returns the coordinate of currently selected column, comparable to COL() function.
<expL1> is the pixel specification for GUI. If .T., the return value is in pixel. If .F.,
<retN> is in row/column. If <expL2> is not given or is NIL, current SET PIXEL is
considered.

tb:COLADJUST Access/Assign

Controls adjustment of large columns. If 0 (the default), a large column which does
not fit in visible window area, will be centered. Specifying value > 0, the column will
be moved so, that at least <value> pixels are visible at the left site, in front of the
column. You may achieve the same behavior by setting the global variable
_aGlobSetting[GSET_G_N_TBROW_COLADJ] := value which may preferably be
used for Tbrowse wrappers like DbEdit(). Considered in GUI mode, ignored
otherwise.

tb:COLCOUNT Access

Contains a numeric value indicating the total number of data columns specified in
the TBROWSE object using the tb:ADDCOLUMN() method.

[tb =] tb:COLORRECT (<expA1>, <expA2>)

Alters the color of a rectangular group of cells. Applies for Terminal i/o mode only,
ignored in GUI mode.

The <expA1> is an array of four numeric coordinates (top row, left column, bottom
row, and right column) referring to cells within the current TBROWSE data display,
not to the physical screen coordinates. The valid range is 1,1...tb:ROWCOUNT,
tb:COLCOUNT. The tb:COLORRECT() is stronger than tc:COLORBLOCK on the
same coordinates.

The <expA2> argument is an array of two numbers, specifying the color index in
tb:COLORSPEC for normal and highlighted color.

Such re-colored cells retain the new color until the cells are scrolled down or up out
of the screen, or tb:REFRESH*() is executed. Horizontal panning does not change
the new coloring. In fact, the currently invisible cells to the left and right can be
colored using tb:COLORRECT().

OBJ 271

Example for re-coloring all cells to yellow on blue of the entire window, with the
exception of the first and last column:

brow:COLORSPEC := "W/B, W+/B, BG+/W, GR+/B, R+/B, N/W"
brow:COLORRECT ({1,2, brow:ROWCOUNT, brow:COLCOUNT -1}, {4,3})

An alternative to tb:ColorRect() is 3rd array element of tc:ColorBlock() and
tc:GuiColorBlock() which highlights current Tbrowse row.

tb:COLORSPEC Access/Assign

Contains a character string defining a color attribute for the TBROWSE display.
Unlike SET COLOR TO, you may specify as many attributes as you require. Each
color attribute is internally stored in an array element, whose index is used in
tc:COLORBLOCK. When TBROWSE is being created, the current SETCOLOR()
value is copied into tb:COLORSPEC. Applicable for Terminal i/o mode only, ignored
in GUI where the tb:GUI- COLORSPEC may be used instead.

Example to set standard display yellow on blue and the highlight bar red on cyan:

tbr = TBROWSEDB()
tc = TBCOLUMNNEW("Name", {|| FIELD->name})
tbr:COLORSPEC := SETCOLOR() + "W+/B, R+/BG" // total 5+2=7
elements
tc:COLORBLOCK := {|x| {6,7}} // use element 6 and 7
tbr:ADDCOLUMN(tc)

See .../examples/tbrowse_ar.prg for complete example

tb:COLPOS Access/Assign

Contains a numeric value (starting at one) indicating the data column where the
TBROWSE cursor is currently located. On assignment, only columns of the
currently visible area are accepted. When you need to move to invisible column,
use tb:right() or tb:left(), for example to display the 12th column automatically in
visible area:

if tb:rightvisible >= 12
while tb:leftvisible > 12 .and. tb:rightvisible > 12

tb:left()
enddo

elseif tb:colcount >= 12
while tb:leftvisible < 12 .and. tb:rightvisible < 12

tb:right()
enddo

endif
tb:colpos := 12
tb:refreshall() ; tb:forcestable()

OBJ 272

tb:COLSEP Access/Assign

Contains a character value that defines a column separator for TBCOLUMN which
does not containing a column separator of its own. The default is one space.
Applicable for Terminal mode only, ignored in GUI mode where tb:GUIGRID may be
used instead.

tb:COLSEPEOF Access/Assign

Contains logical value that specifies whether column separators should be
displayed even if the row is empty, i.e. for not available data. The default is .T.

retN = tb:COLVISIBLECOORD ([expN1], [expL2])

Returns the coordinate of currently visible column <expN1>. If <expN1> is not given
or is NIL, currently selected column is used. <expL2> is the pixel specification for
GUI. If .T., the returned value is in pixel. If .F., <retN> is in row/column. If <expL2>
is not given or is NIL, current SET PIXEL is considered. If the returned value is
negative (usually -999), the given column is currently invisible, i.e. <expN1> is not in
range tb:LEFTVISIBLE to tb:RIGHTVISIBLE. If the leftmost column is only partially
visible, the returned <retN> value is lower than tb:NLEFT.

retN = tb:COLVISIBLEWIDTH ([expN1], [expL2])
retN = tb:COLVISIBLEWIDTH ([expL2])

Returns the visible width of column number <expN1> or of current column if
<expN1> is not given or is NIL. If <retN> is negative, the column is currently
invisible. If <retN> is less than tb:COLWIDTH(<expN1>), the column is only partially
visible. <expL2> is the pixel specification for GUI. If .T., the returned value is in
pixel. If .F., <retN> is in row/column. If <expL2> is not given or is NIL, current SET
PIXEL is considered.

retN = tb:COLWIDTH ([expN1], [expL2])

Returns the display width of column number <expN1> or of current column if
<expN1> is not given or is NIL. If <expN1> is out of the valid range
1...tb:COLCOUNT, <retN> is <= 0 <expL2> is the pixel specification for GUI. If .T.,
the returned value is in pixel. If .F., <retN> is in row/column. If <expL2> is not given
or is NIL, current SET PIXEL is considered.

[tb =] tb:CONFIGURE ()

Causes the TBROWSE object to reexamine all instance variables and TBCOLUMN
objects, reconfiguring its internal settings as required. This method forces
reconfiguration when a TBCOLUMN object is modified directly.

OBJ 273

ret = tb:DATA ([expN1], [exp2])

Get or set data of current or specified cell within current row. This method is a
shorthand for EVAL((tb:GetColumn(expN1)):Block, exp2) <expN1> is the column
number (in range 1 to tb:COLCOUNT). If <expN1> is not given or is NIL, current
column is used. <exp2> is optional value to be set. If <exp2> is not given or is NIL,
only the current cell value is returned. Otherwise, the valtype() must be equivalent
to valtype() of the cell. <ret> is the current (or modified) cell value, NIL signals an
error.

[tb =] tb:DEHILITE ()

Causes the current cell (the cell to which the browse cursor is positioned) to be de-
highlighted. This method is designed for use when tb:AUTOLITE is set to TRUE
(the default).

tc = tb:DELCOLUMN (<expN1>)

Deletes the specified column <expN1> from TBROWSE. The returning value is a
TBCOLUMN object which can be preserved by assigning the method to a FlagShip
variable.

[tb =] tb:DOWN ()

Moves the TBROWSE cursor down one row. If the cursor is already on the bottom
row, the display is scrolled up and a new row is brought into view. If the data pointer
is already at the logical end-of-file and the browse cursor is already on the bottom
row, tb:HITBOTTOM instance is set TRUE.

[tb =] tb:END ()

Moves the browse cursor to the rightmost data column currently visible. The
highlight bar remains at the same row.

OBJ 274

[tb =] tb:EXEC ()

Process browsing using the default or by tb:Handler assigned keyboard handler.
Standard handlers (tbrowsehand.prg and tbrowsedbhand.prg) supports following
keys and actions:

Key Action in READ
Cursor up ctrl-E Up one row yes
Cursor down ctrl-X Down one row or append record * yes
Cursor <- ctrl-S Column left yes
Cursor -> ctrl-D Column right yes
TAB ctrl-H Scroll right (next GET) no
shift-TAB shift-ctrl-H Scroll left (prev GET) no
PgUp ctrl-R Previous window yes
PgDn ctrl-C Next window yes
Home ctrl-A Leftmost curr. column yes
End ctrl-F Rightmost curr.column yes
ctrl-Home ctrl-] First item in window yes
ctrl-End ctrl-F Last item in window yes
ctrl-PgUp ctrl-- First screen row yes
ctrl-PgDn ctrl-^ Last screen row yes
Esc Terminate Tbrowse (next GET) yes
Enter ctrl-M Edit current cell ** yes
Mouse-Left-DoubleClick Edit current cell ** *** yes
Mouse-Wheel previous/next row *** yes
Mouse-Wheel+Shift/Alt/Ctrl previous/next window *** yes

* Append only when oTb:CanAppend is .T. and current row = last row

** Available only when oTb:ReadOnly is .F.

*** in GUI mode only

tb:FOOTSEP Access/Assign

Contains a character or string which specifies the column footing separator. The
string is displayed to the left of the current column, if it is not the first one. The last
character of the string is used repetitively for the footing line underlining the column.
This tb:FOOTSEP separator is used as default, when a column separator
tc:FOOTSEP is not specified. Null-string "" is preset. This completely omits
displaying the footing separator. See example in TBCOLUMN class.

OBJ 275

[tb =] tb:FORCESTABLE ()

Performs a full stabilization of the TBROWSE, displaying all visible TBROWSE
data. It is similar to performing

DO WHILE ! tb:STABILIZE()
ENDDO

tb:FREEZE Access/Assign

Contains a numeric value that defines the number of data columns frozen to the left
of the display. Frozen columns are always visible, even when other columns are
panned off the display. The default is zero (no frozen columns). Available in
Terminal i/o mode only.

tb:FONT Access/Assign

The used font object for Tbrowse. If not specified, oApplic:Font is taken. Apply for
GUI mode only, ignored otherwise.

tc = tb:GETCOLUMN (<expN1>)

Returns the TBCOLUMN object specified by <expN1>.

[tb =] tb:GOBOTTOM ()

Moves the data to the last logical record by evaluating the tb:GOBOTTOMBLOCK
code block. The TBROWSE display is refilled with the bottommost available data,
the cursor moved to the row containing the last record. The pan position of the
window remains unchanged.

tb:GOBOTTOMBLOCK Access/Assign

Contains a code block executed in response to repositioning at the last data
element when using the tb:GOBOTTOM() method. One argument <oSelf> passed
to the block. It is the Tbrowse object self which can be e.g. passed to an UDF
function, instead of using public variables. The code block body typically contains
an index of the last array element, or the result of the database movement with the
DBGOBOTTOM() function (predefined when using TBROWSEDB()).

If there is no tb:GOBOTTOMBLOCK assigned, Tbrowse moves forwards using the
tb:SKIPBLOCK, which is in the most cases less effective. It is roughly comparable
to GO BOTTOM vs. WHILE !eof() ; SKIP ; ENDDO on databases. If the
tb:GOBOTTOMBLOCK is available, it may be used internally also by other
movements.

OBJ 276

Compatibility note: Clipper do not pass any argument to the code block. But when
you specify (and not use) the tbrowse object as 1st parameter, your source remain
backward compatible to Clipper.

[tb =] tb:GOTOP ()

Moves the data to the first logical record by evaluating the tb:GOTOPBLOCK code
block. The TBROWSE display is refilled with the topmost available data; the cursor
moved to the first row. The pan position of the window remains unchanged.

tb:GOTOPBLOCK Access/Assign

Contains a code block executed in response to repositioning at the first data
element when using the tb:GOTOP() method. One argument is passed to the block.
It is the Tbrowse object self which can be e.g. passed to an UDF function, instead
of using public variables. The code block body typically contains an index of the first
array element, or the result of the database movement with the DBGOTOP()
function (predefined when using TBROWSEDB()).

If there is no tb:GOTOPBLOCK assigned, Tbrowse moves backwards using the
tb:SKIPBLOCK, which is in the most cases less effective. It is roughly comparable
to GO TOP vs. WHILE !bof() ; SKIP -1 ; ENDDO on databases. If the
tb:GOTOPBLOCK is available, it may be used internally also by other movements.

Compatibility note: Clipper do not pass any argument to the code block. But when
you specify (and not use) the tbrowse object as 1st parameter, your source remain
backward compatible to Clipper.

tb:GUICOLORSPEC Access/Assign

GuiColorSpec is similar to ColorSpec property for Terminal i/o mode. It contains an
array of ColorPair objects or color strings (see SET COLOR) defining the color
attribute for the TBROWSE display in GUI mode. You may specify as many
attributes as you require. The corresponding color element is used in
tc:GUICOLORBLOCK. Applicable for GUI i/o mode only, ignored in Terminal i/o,
where the tb:COLORSPEC may be used instead. Example:

tbr := TBROWSEDB()
tbr:GUICOLORSPEC := {"N/W+", ;

ColorPair{Color{255,0,0},Color{0,127,127}}, ;
"#FFFFFF/#E5F902" }

tc = TBCOLUMNNEW("Name", {|| FIELD->name})
tc:GUICOLORBLOCK := {|x| {1,2}} // use element 1

and 2
tbr:ADDCOLUMN(tc)

See .../examples/tbrowse_ar.prg for complete example

OBJ 277

tb:GUIGRID Access/Assign

Enables/disables drawing the grid = separator between columns and rows.
Applicable for GUI mode only, ignored otherwise, where the tb:COLSEP apply.

tb:HANDLER Access/Assign

Retrieve or assign a codeblock invoking the keyboard handler when the tb:Exec()
method is called. The codeblock receives one argument, the Tbrowse object self.
The default codeblock depends on the Tbrowse instantiation and is either
TbrHandler() available in source in <FlagShip_dir>/system/tbrowsehand.prg, or the
TbrDbHanler() for database access, available in .../system/tbrowsedbhand.prg

tb:HEADSEP Access/Assign

Contains a character or string which specifies the column heading separator. The
string is displayed to the left of the current column, if it is not the first one. The last
character of the string is used repetitively for the heading line displayed over the
column. The tb:HEADSEP is used as default, when a column separator
tc:HEADSEP is not specified. Null-string "" is preset, which completely omits the
display of the heading separator. See example in TBCOLUMN class and
TBROWSENEW().

[tb =] tb:HILITE ()

Causes the current cell (the cell to which the browse cursor is positioned) to be
highlighted. This method is designed for use when tb:AUTOLITE is set to FALSE.

tb:HITBOTTOM Access/Assign

Contains a logical value indicating whether an attempt was made to navigate
beyond the end of the available data. Normally, the value contains FALSE. During
stabilization, the value is set TRUE if it was unable to skip forward as many records
as requested.

tb:HITTOP Access/Assign

Contains a logical value indicating whether an attempt was made to navigate past
the beginning of the available data. Normally, the value contains FALSE. During
stabilization, the value is set TRUE if it was unable to skip backward as many
records as requested.

[tb =] tb:HOME ()

Moves the browse cursor to the leftmost unfrozen data column. The high-light bar
remains at the same row.

OBJ 278

tb:HSCROLLBAR Assign

Change visibility of horizontal scrollbar in GUI mode, default s true.

tb:INCRSEARCH Access/Assign

Contains logical value indicating whether an incremental search should apply at
character input or not. The default is .F. = disabled search. The incremental search
allows you to search for any character data in the current index by simply typing the
requested data. Implemented for the default handler assigned with TbrowseDb().
You may re-implement the <FlagShip_dir>/system/ tbrowsedbhand.prg in your
source when non-standard search is required.

[tc =] tb:INSCOLUMN (<expN1>, <expO2>)

Inserts a TBCOLUMN object <expO2> at the specified position <expN1>. Unlike
tb:ADDCOLUMN(), which adds columns at the end, tb:INSERTCOLUMN() inserts
new columns anywhere in the TBROWSE.

[tb =] tb:INVALIDATE ()

Invoking this method causes the next stabilization to re-draw the entire TBROWSE
display, including headings, footings and all data rows. This method does not
refresh the visible data. This can be performed using the tb:REFRESHALL()
method.

[tb =] tb:LEFT ()

Moves the browse cursor left one data column. If the cursor is on the leftmost
displayed column, the display is horizontally scrolled to bring the previous data
column (if there is one) into view, similar to tb:PANLEFT().

tb:LEFTVISIBLE Access

Contains a numeric value indicating the position of the leftmost unfrozen column
visible in the browse display. If all columns are frozen, the value contains zero, one
otherwise.

tb:NBOTTOM Access/Assign
retN = tb:NBOTTOM ([expN1], [expL2])

Contains a numeric value specifying the bottom screen row where the TBROWSE
is displayed. The value is preset by arguments of TBROWSENEW() or
TBROWSEDB(). If not specified, the default is MAXROW().

OBJ 279

The tb:NBOTTOM() method is generalized tb:NBOTTOM acc/assign property. It
returns the tb:NBOTTOM value, where <expN1> is optional new bottom screen row
and <expL2> is pixel specification for GUI. If <expL2> is .T., the <expN1> and the
return value are in pixel. If <expL2> is .F., <expN1> and <retN> are in row/column.
If <expL2> is not given, current SET PIXEL is considered, same as in tb:NBOTTOM
access.

tb:NLEFT Access/Assign
retN = tb:NLEFT ([expN1], [expL2])

Contains a numeric value specifying the leftmost screen column where the
TBROWSE is displayed. The value is preset by arguments of TBROWSENEW() or
TBROWSEDB(). If not specified, the default is zero.

The tb:NLEFT() method is generalized tb:NLEFT access/assign property. It returns
the tb:NLEFT value, where <expN1> is optional new leftmost screen column and
<expL2> is pixel specification for GUI. If <expL2> is .T., the <expN1> and the return
value are in pixel. If <expL2> is .F., <expN1> and <retN> are in row/column. If
<expL2> is not given, current SET PIXEL is considered, same as in tb:NLEFT
access.

tb:NRIGHT Access/Assign
retN = tb:NRIGHT ([expN1], [expL2])

Contains a numeric value specifying the rightmost screen column where the
TBROWSE is displayed. The value is preset by arguments of TBROWSENEW() or
TBROWSEDB(). If not specified, the default is MAXCOL().

The tb:NRIGHT() method is generalized tb:NRIGHT access/assign property. It
returns the tb:NRIGHT value, where <expN1> is optional new rightmost screen
column and <expL2> is pixel specification for GUI. If <expL2> is .T., the <expN1>
and the return value are in pixel. If <expL2> is .F., <expN1> and <retN> are in
row/column. If <expL2> is not given, current SET PIXEL is considered, same as in
tb:NRIGHT access.

tb:NTOP Access/Assign
retN = tb:NTOP ([expN1], [expL2])

Contains a numeric value specifying the first screen row where the TBROWSE is
displayed. The value is preset by arguments of TBROWSENEW() or
TBROWSEDB(). If not specified, the default is zero.

The tb:NTOP() method is generalized tb:NTOP access and assign property. It
returns the tb:NTOP value, where <expN1> is optional new topmost screen row and
<expL2> is pixel specification for GUI. If <expL2> is .T., the <expN1> and the return
value are in pixel. If <expL2> is .F., <expN1> and <retN> are in row/column. If
<expL2> is not given, current SET PIXEL is considered, same as in tb:NTOP
access.

OBJ 280

[tb =] tb:PAGEDOWN ()

Moves the data one window page downwards skipping tb:ROWCOUNT records
(from the first visible row) by evaluating the tb:SKIPBLOCK code block. The cursor
remains on the same row if possible or is moved to the last row containing data. If
the end-of-data is reached. When issuing the stabilization method, the TBROWSE
display is refilled with the bottommost available data and tb:HITBOTTOM is set
TRUE.

[tb =] tb:PAGEUP ()

Moves the data one window page upwards skipping tb:ROWCOUNT records (from
the first visible row) by evaluating the tb:SKIPBLOCK code block. The cursor
remains on the same row. If the logical first data record is already shown, the cursor
is set to the first row and tb:HITTOP is set TRUE during the invocation of a
stabilizing method.

[tb =] tb:PANEND ()

Moves the browse cursor to the rightmost data column, causing the display to be
panned completely to the right.

[tb =] tb:PANHOME ()

Moves the browse cursor to the leftmost data column, causing the display to be
panned completely to the left.

[tb =] tb:PANLEFT ()

Pans the display without changing the browse cursor. If a left column is available,
the screen is scrolled horizontally right to display a new left column. As opposed to
tb:LEFT(), tb:PANLEFT() will always scroll the columns (if possible) and does not
move the cursor to the left column.

[tb =] tb:PANRIGHT ()

Pans the display without changing the browse cursor. If a right column is available,
the screen is scrolled horizontally left to display a new right column. As opposed to
tb:RIGHT(), tb:PANRIGHT() will always scroll the columns (if possible and the
available columns are not frozen) and does not move the cursor to the right column.

OBJ 281

tb:READONLY Access/Assign

Logical value specifying that all fields of Tbrowse can or cannot be edited. The
default value is FALSE, the fields are editable. See also oTbColumn:READONLY
for column setting.

[tb =] tb:REFRESHALL ()

Internally marks all data rows as invalid, causing them to be refilled and redisplayed
at the next stabilization.

[tb =] tb:REFRESHCURRENT ()

Internally marks the current data row as invalid, causing it to be refilled and
redisplayed at the next stabilization.

[tb =] tb:RIGHT ()

Moves the browse cursor right one data column. If the cursor is on the rightmost
displayed column, the display is horizontally scrolled to bring the next data column
(if there is one) into view, similar to tb:PANRIGHT().

tb:RIGHTVISIBLE Access

Contains a numeric value indicating the position of the rightmost unfrozen column
visible in the browse display. If all columns are frozen, the value contains zero,
tb:COLCOUNT otherwise.

retN = tb:ROW ([expL1])

Returns row coordinate of currently selected cell, comparable to ROW() function.
<expL1> is the pixel specification for GUI. If .T., the return value is in pixel. If .F.,
<retN> is in row/column. If <expL2> is not given or is NIL, current SET PIXEL is
considered.

tb:ROWCACHE Access/Assign

Numeric value specifying the size of the browse cache. If this value is greater than
the number of visible rows (tb:RowCount), the cache is filled at once and the
cached area can be scrolled by mouse using the vertical scrollbar or the Cursor
Up/Down key. The default cache size is the number of visible rows. You may set
the tb:RowCache higher (e.g. to 10 * tb:RowCount) to be able to skip faster thru the
database via PgDn or PdUp key. Applies in GUI mode only, ignored otherwise.

OBJ 282

Note: for a small database (or an array), you may specify
tb:RowCache := reccount()

or
tb:RowCache := LEN(myArray)

to be able to scroll thru the whole table (database or array) via the vertical scrollbar.
Keep in mind, all the data from the RowCache size must be hold in memory, so
consider the memory use and the Tbrowse speed for refreshing of large tables (with
thousands or millions of records); usually only the current <RowCache> slice of the
table needs to be refreshed until the next table slice is read on user request (e.g. by
the PgUp/PgDn key press).

tb:ROWCOUNT Access

Contains a numeric value indicating the number of data rows visible in the
TBROWSE display. Heading and footing lines are not included in that value.

tb:ROWPOS Access/Assign

Contains a numeric value indicating the data row where the TBROWSE cursor is
currently located. The valid range is 1.. ..tb:ROWCOUNT.

[tc =] tb:SCROLLLEFT ([expL1])

Scroll the view to left, if possible. If <expL1> is .T. or NIL or not given, the leftmost
column is "protected", i.e. displayed at rightmost position after scroll, if possible.
Otherwise the new rightmost position is the old leftmost visible column +1.

[tc =] tb:SCROLLRIGHT ([expL1])

Scroll the view to right, if possible. If <expL1> is .T. or NIL or not given, the
rightmost column is "protected", i.e. displayed at leftmost position after scroll, if
possible. Otherwise the new leftmost position is the old rightmost visible column +1.

tb:SELECTEDCOL Access/Assign

Contains currently selected column (1..n). Equivalent to tb:ColPos but is available
also after exit from tb:Exec(). This value is not set by the class self, but by the
handler (per default tbrowsedbhand.prg or tbrowsehand.prg).

tb:SELECTEDROW Access/Assign

Contains currently selected row (1..nBuff). Equivalent to tb:RowPos but is available
also after exit from tb:Exec(). This value is not set by the class self, but by the
handler (per default tbrowsedbhand.prg or tbrowsehand.prg).

OBJ 283

tb:SELECTEDRECNO Access/Assign

Contains currently selected record number or the array index (1..n). Equivalent to
Recno() or tb:UserArrayPos but is available also after exit from tb:Exec(). This value
is not set by the class self, but by the handler (per default tbrowsehand.prg or
tbrowsedbhand.prg).

tb:SELECTEDVALUE Access/Assign

Contains the value of currently selected item. Equivalent to tb:Data() but is available
also after exit from tb:Exec(). This value is not set by the class self, but by the
handler (per default tbrowsehand.prg or tbrowsedbhand.prg).

[tc =] tb:SETCOLUMN (<expN1>, <expO2>)

Replaces the column <expN1> with the TBCOLUMN object <expO2>. The returned
value of <tc> is the old TBCOLUMN object.

[tc =] tb:SETFOCUS (<expL>)

Considered and used in @..GET...Tbrowse only in getsys.prg

[<expB>] := tb:SETKEY (<expN>, [<expB>])

Set/get a code block <expB> associated to Inkey value <expN> for this Tbrowse
object. It is similar to standard SET KEY command or SetKey() function, but
tb:SetKey() re-direction do not interferes previously set SET KEY. It is used in
default Tbrowse handlers (tbrowsehand.prg and tbrowsedbhand.prg) or handled by
tb:ApplyKey() method. This allows to keep and handle SET KEY values in your
program independent of Tbrowse handling. The codeblock receives 2 parameters,
current Tbrowse object and key value. The code block is evaluated by
tb:ApplyKey(). The code block should return:

Constant Value Meaning
TBR_EXIT -1 User request for the browse to lose input focus and to

exit Tbrowse, ignores corresp. SET KEY
TBR_CONTINUE 0 Code block associated with <nExp> was evaluated, do

not process default handler action, nor previously set
SET KEY

TBR_EXCEPTION 1 Evaluate corresponding SET KEY if set, the handler
should then process default key action

TBR_DEFACTION 2 The handler should process default key action, but
ignores corresponding SET KEY if such set.

The TBR_* constants are available in tbrowse.fh include file. If the code block
returns invalid value, tb:ApplyKey() returns TBR_CONTINUE. You may retrieve the
associated codeblock by myblock := tb:SETKEY(key) or delete previous setting by

OBJ 284

tb:SETKEY(key,NIL). The standard Tbrowse SetKey() actions can be set by
tb:SetKeyDef() method, and are set in TbrowseArr() and TbrowseDb() functions by
default.

[<expB>] := tb:SETKEYDEF([<expL>])

Sets default tb:SetKey() redirections. If <expL> is not given, following SET KEY
redirection is set for Tbrowse actions (same as Clipper 5.3):

oTb:SetKey(K_DOWN, {|oTb,key| oTb:Down(), TBR_CONTINUE})
oTb:SetKey(K_END, {|oTb,key| oTb:End(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_PGDN, {|oTb,key| oTb:GoBottom(),TBR_CONTINUE})
oTb:SetKey(K_CTRL_PGUP, {|oTb,key| oTb:GoTop(), TBR_CONTINUE})
oTb:SetKey(K_HOME, {|oTb,key| oTb:Home(), TBR_CONTINUE})
oTb:SetKey(K_LEFT, {|oTb,key| oTb:Left(), TBR_CONTINUE})
oTb:SetKey(K_PGDN, {|oTb,key| oTb:PageDown(),TBR_CONTINUE})
oTb:SetKey(K_PGUP, {|oTb,key| oTb:PageUp(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_END, {|oTb,key| oTb:PanEnd(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_HOME, {|oTb,key| oTb:PanHome(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_LEFT, {|oTb,key| oTb:PanLeft(), TBR_CONTINUE})
oTb:SetKey(K_CTRL_RIGHT, {|oTb,key| oTb:PanRight(),TBR_CONTINUE})
oTb:SetKey(K_RIGHT, {|oTb,key| oTb:Right(), TBR_CONTINUE})
oTb:SetKey(K_UP, {|oTb,key| oTb:Up(), TBR_CONTINUE})
oTb:SetKey(K_ESC, {|oTb,key| TBR_EXIT })

If <expL> is .T., all above key redirections are set to
oTb:SetKey(K_..., {|oTb,key| TBR_DEFACTION})

which triggers default handler action but ignores previous SET KEY, ON KEY and
SET FUNCTION redirections. Set by default in TbrowseArr() and TbrowseDb()
functions. If <expL> is .F., all tb:SetKey() redirections are removed. See tb:Apply-
Key() for constants and code block evaluation.

tb:SKIPBLOCK Access/Assign

Contains a code block executed in response to repositioning the data using the
tb:DOWN(), tb:UP(), tb:PAGEDOWN(), tb:PAGEUP() methods. Two arguments are
passed to the block: <nSkip> and <oSelf>. The <nSkip> is numeric argument
representing the number of records to be skipped. A positive value means skip
forward, and a negative value means skip backward. A zero argument does not
indicate a repositioning request, but rather that a data refresh of the current record
is required. The <oSelf> is the Tbrowse object self which can be e.g. passed to the
UDF function, instead of declaring the object public.

Assigning the tb:SKIPBLOCK is mandatory and must be done latest before any
Tbrowse movement and/or before using stabilizing via tb:STABILIZE() or
tb:FORCESTABLE().

The code block body typically calculates a new array index or executes a user
defined function performing SKIP <arg> for a database movement (predefined
when using TBROWSEDB()). The block must return the number of rows (positive,

OBJ 285

negative, or zero) actually skipped. If the value returned is not the same as the code
block argument <arg>, the TBROWSE object assumes that the skip operation
encountered the beginning or end of file or of the array boundary. See examples in
Chapter 4 and in functions TBROWSENEW(), TBROWSEDB() and
TBROWSEARR().

Compatibility note: Clipper passes only one argument to the code block. But when
you specify (and not use) the tbrowse object as 2nd parameter, your source remain
backward compatible to Clipper.

[retL =] tb:STABILIZE ()

Performs incremental stabilization. Each time this message is sent, some part of the
stabilization process is performed. Stabilization is performed in increments so that it
can be interrupted by a keystroke or another asynchronous event. If the TBROWSE
object is already stable, the method returns TRUE and the tb:STABLE instance is
also set to TRUE. Otherwise, a FALSE value indicates that further stabilize
messages should be sent. The TBROWSE is stable when all data has been
retrieved and displayed, the data pointer has been repositioned to the record
corresponding to the browse cursor, and the current cell has been highlighted. For
more details see Chapter 3.

tb:STABLE Access/Assign

Contains a logical value indicating whether the TBROWSE object is stable, when
TRUE. The browse is considered stable when all data has been retrieved and
displayed, the data source has been repositioned to the record corresponding to the
browse cursor, and the current cell has been highlighted. When a data movement
method is requested, the value is set to FALSE. The invocation of
tb:FORCESTABLE() or multiple invocation of tb:STABILIZE() will set the value to
TRUE.

tb:TIMEOUT Access/Assign

Set or get time-out value in seconds. If you assign numeric value between 1 and
86399 (= 1 sec to 24 hours), the tbrowse handler will exit browsing (similar to ESC
key) when a key press (or mouse press) did not occurred within this period since
tbrowse start, or last key/mouse press. Default value is 0 which disables time-out. It
is used in the standard Tbrowse handler <FlagShip_dir>/system/tbrowsehand.prg
and tbrowsedbhand.prg

tb:TRIM Access/Assign

Logical value. If TRUE, size columns of character fields to trimmed length of the
largest value. This will usually display more columns on the screen at a time,
especially with long, only partially filled fields. Applies in GUI mode only, ignored
otherwise. The default is .F. See also Tc:Width for additional tuning.

OBJ 286

[tb =] tb:UP ()

Moves the TBROWSE cursor up one row. If the cursor is already on the top row,
the display is scrolled down and a new row is brought into view. If the data pointer is
already at the logical top-of-data and the browse cursor is in the first row,
tb:HITTOP instance is set to TRUE.

tb:USERARRAY Access/Assign

Assign (or get) an two-dimensional data-array for TbrowseArr(). It is equivalent to
<expA10> parameter of TbrowseArr(). The number of elements in each row (i.e. the
size of sub-arrays) must be equivalent and the element type (C/N/L/D) in each
column must not change. At least one row and column {{"single"}} is required. You
may format the column data by TbColumn properties, e.g. tc:Picture, tc:ColorBlock
etc.

Example:

oTbr:UserArray := {{"row1col1", 1, "row1col3", .T.}, ;
{"row2col1", 2, "row2col3", .F.}, ;
{"row3col1", 3, "row3col3", .T.} }

tb:USERARRAYPOS Access/Assign

Assign (or get) current row of array, used in tbrowsehand.prg handler.

tb:VISIBLE Access

Returns true when Tbrowse is visible, false if hidden.

tb:VSCROLLBAR Assign

Change visibility of vertical scrollbar in GUI mode, default s true.

OBJ 287

TbColumn Class
A TBCOLUMN objects contains all the information required to specify a TBROWSE column.
Since TBCOLUMN is used only at the conclusion of TBROWSE, this class has no methods,
but only instance variables.

Usually one or more newly created TBCOLUMN objects are assigned to a FlagShip variable
or directly to the TBROWSE using the tb:ADDCOLUMN() or tb:INSERTCOLUMN() method.

A new TBCOLUMN object is created by TBCOLUMNNEW() and then contains the minimal
column information. Additional settings can be specified using the TBCOLUMN instances.

Note that assigning the TBCOLUMN object to TBROWSE will assign the address of the
object only, similar to assigning arrays using the = operator. Therefore, additional changes
on the TBCOLUMN variable will also automatically apply to TBROWSE until a new object is
assigned to that column variable.

After the TBCOLUMN object holding variable (the 'tc' below) is assigned to TBROWSE, you
may re-use the same named variable to create another column with TBCOLUMNNEW(), e.g.

USE mydbf
tb := TBROWSEDB()
FOR ii = 1 TO FCOUNT()

tc := TBCOLUMNNEW (FIELDNAME(ii), FIELDBLOCK (FIELDNAME(ii)))
tb:ADDCOLUMN (tc)
tc:CARGO := "Text for the column " + LTRIM(STR(ii))
? EVAL (tc:BLOCK)

NEXT

See also <FlagShip_dir>/system/dbedit.prg for an example of the implementation.

OBJ 288

TbColumnNew ()
Syntax 1:

obj = TBCOLUMNNEW (expC1, expBL2)
Syntax 2:

obj = TBCOLUMN { expC1, expBL2 }
Purpose:

Creates a new TBCOLUMN object initialized by the arguments supplied .

Arguments:
<expC1> is a string containing the header text displayed by TBROWSE at the top
of this column. <expC1> is stored into the tc:HEADING instance.

<expB2> is a code block returning the current value of the column data. TBROWSE
does not pass any argument to the code block. <expB2> is stored into the
tc:BLOCK instance.

<expL2> can also be logical TRUE which advises TbColumn to generate a skip
block for an array access.

Returns:
<obj> is the newly allocated TBCOLUMN object, usually assigned to a regular
FlagShip variable or directly to TBROWSE using e.g. tb:ADDCOLUMN().

Description:
TBCOLUMNEW() creates a new object, used for specifying the displayed
TBROWSE data. An additional setting of the column can be assigned using the
instance variables.

Prior to using the TBROWSE object, one or more TBCOLUMNs must be specified
and assigned to TBROWSE.

Example:
Used in the example for TBROWSENEW() function, Tbrowse class

FUNCTION browdircolumn (brow, dir)
LOCAL col[5], ii

col[1] := TBCOLUMNNEW ("File name", {|| dir[elem,1] })
col[2] := TBCOLUMNNEW ("Size", {|| dir[elem,2] })
col[3] := TBCOLUMNNEW ("Date", {|| dir[elem,3] })
col[4] := TBCOLUMNNEW ("Time", {|| dir[elem,4] })
col[5] := TBCOLUMNNEW ("Attrib", {|| dir[elem,5] })

* Specify different color attributes for column cell, see
* color attributes in brow:COLORSPEC in TBCOLUMNNEW():
* brow:COLORSPEC := "W/B, W+/B, BG+/W, GR+/B, R+/B, N/W"

* - Databases are displayed yellow, .prg sources bright
* - File size > 50 KB bright, > 1 MB yellow
* - Date older than 2 months bright white

OBJ 289

* - Executables (x attrib) are yellow, r/o white, dirs red

col[1]:COLORBLOCK := {|x| IF(".DB" $ UPPER(x), {4,6}, ;
IF(".prg" $ x, {2,6}, {1,6}))}

col[2]:COLORBLOCK := {|x| IF(x > 1000000, {4,3}, ;
IF(x > 50000, {2,3}, {1,3}))}

col[3]:COLORBLOCK := {|x| IF(DATE()-x > 60, {2,3}, {1,3})}
col[5]:COLORBLOCK := {|x| IF(LEFT(x,1) == "d", {5,3}, ;

IF("x" $ x, {4,3}, ;
IF(SUBSTR(x,2,1)!="r", {1,3},{2,3})))}

col[1]:WIDTH := 10 // adjust column width
col[2]:WIDTH := 4
FOR ii := 1 TO LEN(dir)

col[1]:WIDTH := MAX(col[1]:WIDTH, StrLen2col(dir[ii,1]))
col[2]:WIDTH := MAX(col[2]:WIDTH, StrLen2col(Ltrim(dir[ii,2])))

NEXT
col[1]:FOOTING := "unsorted" // Preset footing msg

FOR ii = 1 to 5 // Assign columns to TBROWSE
col[ii]:DEFCOLOR := {1, 2 }
brow:ADDCOLUMN (col[ii])

NEXT
RETURN

Example:
See also the <FlagShip_dir>/system/dbedit.prg file for a complete example of the
TBROWSE and TBCOLUMN usage.

Classification:
programming

Class:
TBCOLUMN class, prototyped in <FlagShip_dir>/include/tbrclass.fh

Compatibility:
Available in FS4, C5 and VO. The alternative syntax 2 and the possibility of
inheriting it into an own subclass is available in FlagShip only.

Related:
TBROWSENEW(), TBROWSEDB()

OBJ 290

TbColumn Class Index
Class TbColumn

Inherits from: -
Inherited by: -
Class prototype: tbrclass.fh
Defines: tbrowse.fh

Alignment ACC/ASS Set/get the column alignment
Block ACC/ASS Code block that retrieves the column data
ColorBlock ACC/ASS Code block managing the displayed cell color
ColPos ACCESS Get current column number
_ColPos() METHOD Set column position (internal)
ColSep ACC/ASS Column separator character
Data ACC/ASS Get/set current cell data
DefColor ACC/ASS Array managing required color attribute
FootColor ACC/ASS Set/get the footing color
Footing ACC/ASS String displayed at the column footing
FootSep ACC/ASS Column footer separator character
GuiColorBlock ACC/ASS Code block managing the GUI cell color
GuiDefColor ACC/ASS Array managing required GUI color attribute
GuiFontBlock ACC/ASS Set/get the GUI Font code block
HeadColor ACC/ASS Set/get the header color
Heading ACC/ASS String displayed in the column header
HeadSep ACC/ASS Column heading separator character
MemoPos ACC/ASS Object specifying the position of MemoEdit()
Parent ACCESS Get parent (Tbrowse) object
Parent() METHOD Set parent object (internal)
Picture ACC/ASS Set/get the picture string for column formatting
PostBlock ACC/ASS For @..Get/Read
PreBlock ACC/ASS For @..Get/Read
ReadOnly ACC/ASS Are fields of this column editable?
SetPtrEx() METHOD internal
SetStyle() METHOD internal
Width ACC/ASS Set/get the column width in chars
WidthPixel ACC/ASS Set/get the column width in pixel
WidthVisible ACC/ASS Set/get the visible column width in pixel

OBJ 291

TbColumn Class Properties

tc:BLOCK Access/Assign

Contains a code block that retrieves data for the column, equivalent to the <expB2>
argument of TBCOLUMNNEW(). Any code block is valid. No block arguments are
supplied when the block is evaluated. The code block must return the appropriate
data value for the column. Example:

USE mydbf
tb := TBROWSEDB()
FOR ii = 1 TO FCOUNT()

tc := TBCOLUMNNEW (FIELDNAME(ii), FIELDBLOCK (FIELDNAME(ii)))
tb:ADDCOLUMN (tc)
? EVAL (tc:BLOCK)

NEXT

tc:CARGO Access/Assign

Contains any user data of any type, to store column information retrieved later in
the program using the TBROWSE, for example:

USE mydbf
tb := TBROWSEDB()
FOR ii = 1 TO FCOUNT()

tc := TBCOLUMNNEW (FIELDNAME(ii), FIELDBLOCK (FIELDNAME(ii)))
tc:CARGO := "Text for the column " + LTRIM(STR(ii))
tb:ADDCOLUMN (tc)

NEXT
// later, executing TBROWSE
col := tb:GETCOLUMN (tb:COLPOS)
@ MAXROW(), 0 CLEAR
IF col:CARGO != NIL

@ MAXROW(), 0 SAY col:CARGO
ENDIF

tc:COLORBLOCK Access/Assign

Contains an optional code block that determines the color of the displayed data cell.
If present, the block is evaluated every time a new value is retrieved in TBROWSE
via the tc:BLOCK. The TBROWSE passes the new data element as an argument to
the tc:COLORBLOCK. The body of the code block must return an array with two or
three numeric elements, specifying the index position of the required color attribute
according to the tb:COLORSPEC setting. The first element (color pair index) is
used to display unselected cells, the second element specifies color pair for
selected cell. The 3rd element, if present and if > 0, is used to paint all unselected
cells in current row by this color. For example, to display all negative data red,
positive data white and values greater than 1000 yellow/blue, use:

OBJ 292

brow:COLORSPEC := "W/B, N/W, W+/B, R+/B, GR+/B"
tc := TBCOLUMNNEW ("Price", FIELDBLOCK ("PRICE"))
#ifdef INLINE_CODED
tc:COLORBLOCK := {|data| IF (data < 0, {4,2}, ;

IF (data > 1000, {5,2}, {3,2})) }
#else
tc:COLORBLOCK := {|data| mydisplay(data) }

#endif
brow:ADDCOLUMN (tc)

#ifndef INLINE_CODED
FUNCTION mydisplay(data)
LOCAL out[2]
IF data < 0

out[1] = 4 // 4th element in DEFCOLOR = "R+/B" unsel
ELSEIF data > 1000

out[1] = 5 // 5th element in DEFCOLOR = "GR+/B" unsel
ELSE

out[1] = 3 // 3th element in DEFCOLOR = "W+/B" unsel
ENDIF
out[2] = 2 // 2nd element in DEFCOLOR = "N/W" selected
RETURN out

#endif

To specify cell colors for GUI mode, use tc:GUICOLORBLOCK instead. See
.../examples/tbrowse_ar.prg for complete example, including use of 3rd array
element for highlighting of the whole line.

tc:COLSEP Access/Assign

Contains an optional string that defines the character(s) drawn to the left of this
column, if a left TBROWSE column exists. If tc:COLSEP is not specified, the default
tb:COLSEP is used by TBROWSE. Applies for terminal i/o mode only, ignored
otherwise. Example:

element := 1
column := TBCOLUMNNEW ("Second", {|| myarray[element, 2])
column:COLSEP := " : "
brow:INSCOLUMN (2, column)

tc:DATA Access/Assign

retVal := tc:DATA (access) returns current cell data and is equivalent to executing
retVal := EVAL(tc:BLOCK). tc:DATA := value (assign) sets current cell data and is
equivalent to executing EVAL(tc:BLOCK, value).

tc:DEFCOLOR Access/Assign

Contains a numeric array with two elements, specifying the index position of the
required color attribute according to tb:COLORSPEC to display this column. The
first element specifies the attribute index of the normal output (including headings,
footings and the column data), while the second element the color index highlighted

OBJ 293

output of the TBROWSE cursor which are in these columns. The default setting is
{1, 2}, which selects the "normal" and "selected" color pair of the SETCOLOR()
attributes, the default for tb:COLORSPEC. Example:

brow:COLORSPEC := SETCOLOR() + "W/B, N/W, W+/B, R+/B, GR+/B"
col := TBCOLUMNNEW ("Name", FIELDBLOCK ("NAME"))
col:DEFCOLOR := { 10, 7 } // "GR+/B" and "N/W"
brow:ADDCOLUMN (col)

tc:FOOTING Access/Assign

Contains a string displayed at the footing of this column. The use of tc:FOOTSEP to
separate the footing text from the column data is also recommended. Applies for
terminal i/o mode only, ignored otherwise. See next example.

tc:FOOTSEP Access/Assign

Contains a character or string which specifies the column footing separator. The
string is displayed to the left of the current column, if it is not the first one. The last
character of the string is used repetitively for the footing line underlining the column.
If tc:FOOTSEP is not specified or contains a null-string "", the default tb:FOOTSEP
is used by TBROWSE. Applies for terminal i/o mode only, ignored otherwise. For
example:

tbr:FOOTSEP := "-+-"
tbr:COLSEP := " | " // xxxxxxxxxxx?:!xxxxxxxxx | xxxxx
col:FOOTING := "Column 2" // xxxxxxxxxxx?:!xxxxxxxxx | xxxxx
col:COLSEP := "?:!" // -----------.:!=========-+------
col:FOOTSEP := ".:!=" // Column 2

tc:GUICOLORBLOCK Access/Assign

Same as tc:COLORBLOCK but is used in GUI i/o mode to select colors from the
oTbrowse:GUICOLORSPEC array of color pairs. It contains an optional code block
that determines the color of the displayed data cell. If present, the block is
evaluated every time a new value is retrieved in TBROWSE via the tc:BLOCK. The
TBROWSE passes the call value as argument to the tc:GUICOLORBLOCK. The
code block body must return array with two or three numeric elements, specifying
an index position of the required color attribute according to the
tb:GUICOLORSPEC setting, zero signals to use default color. The first element (i.e.
color pair index) is used to display unselected cells, the 2nd element specifies color
pair for selected cell. The 3rd element, if present, is used to paint unselected cells in
current row. For example, to display all unselected data black on while (except in
column 2 which is red on yellow), highlight the current row by white on green and
the selected cell by yellow/red, use (see full source in .../ examples/tbrowse_ar.prg):

oBr:GuiColorSpec := {"N/W+", ; // 1: black on white
"GR+/R+", ; // 2: yellow on red
"#CC0000/#E5F902", ; // 3: red on yellow
"W+/G" } // 4: white on green

OBJ 294

for ii := 1 to len(myArray[1])
oTbcol := TbColumnNew(aHeader[ii], .T.) // create TbColumn
if ii == 2 // for 2nd column:

oTbcol:GuiColorBlock := {|val| {3,2,4}} // = R/Y, Y/R, W/G
else // other columns:

oTbcol:GuiColorBlock := {|val| {1,2,4}} // = B/W, Y/R, W/G
endif
oBr:AddColumn(oTbcol) // assign TbColumn to Tbrowse

next

To specify cell colors for Terminal i/o mode, use tc:COLORBLOCK instead.

tc:HEADING Access/Assign

Contains a string displayed at the top of this column over the heading separator
(line), if tc:HEADSEP is given. Equivalent to the argument <expC1> of
TBCOLUMNNEW(). See also example there.

tc:HEADSEP Access/Assign

Contains a character or string which specifies the column heading separator. The
string is displayed left of the current column, if it is not the first one. The last
character of the string is used repetitively for the heading line displayed over the
column. If tc:HEADSEP is not specified or contains a null-string "", the default
tb:HEADSEP is used instead. See example in tc:FOOTSEP and in
TBROWSENEW(). Applies for terminal i/o mode only, ignored otherwise.

tc:MEMOPOS Access/Assign

Contains an object of Rectangle class (top,left,bottom,right) specifying the position
of MemoEdit() for editing of MEMO fields. When NIL, the position is calculated
automatically.

tc:PICTURE Access/Assign

Optional string containing the "picture" for formatting the column data. Same as
Picture template of @..SAY command or Transform() function. If not available, the
default formatting in dependence on the data type and the column width is used.

tc:READONLY Access/Assign

Logical value specifying that the fields of this column can or cannot be edited. The
default value is FALSE, the fields are editable. See also oTbrowse:READONLY for
global setting.

OBJ 295

tc:WIDTH Access/Assign

Contains a numeric value specifying the display width for the column. If tc:WIDTH is
not specified, the column width is calculated as MAX (LEN(tc:HEADING), LEN
(tc:FOOTING), LEN(first column data)). If tc:WIDTH is set, all headings, footings
and data will be truncated to the specified length. Only character data may be
truncated, all other data types expand the column width. In GUI, the WIDTH
specifies the minimal column width to be displayed. When the real column size
exceeds it setting, the WIDTH is automatically increased. When tc:WIDTH is not
set, Tbrowse tries to display as many data as possible in the available space. It
calculates the column width for every displayed page and if this increases, it
automatically update the visible column size. If the row size is larger than the
available Tbrowse width, a horizontal scroll bar is displayed. See also tb:Trim for
additional width tuning.

tc:WIDTHPIXEL Access/Assign

Same as tc:WIDTH but returns or assigns values in pixel instead of the cols width.

OBJ 296

DataServer and DBserver Class
In FlagShip, the database and index access is performed using a replaceable database
driver (see section RDD). The high-level database and index functions, described in sections
CMD and FUN, invoke methods from the DBSERVER class.

DATASERVER is a "pseudo-class" with predefined method names only, to ensure a proper
hybrid use of the procedural vs. RDD object access (see more below). This class should be
inherited from other RDDs, which then define their own instances and the required,
supported methods. The DataServer class prototype is specified in the stdclass.fh file.

The DBSERVER and DBFIDX classes also inherit the general DATASERVER class.
DBSERVER is compatible to CA-VisualObjects, but not available in Clipper. Since the use of
the DBSERVER, DBFIDX or any other RDD inheriting the general DATASERVER class is
the same, the DBSERVER stands in the following description also for all other similar RDDs.

FlagShip fully supports hybrid database operation for all RDDs created (inheriting) from the
DATASERVER, DBSERVER or DBFIDX class, as opposed to VO. Hybrid operation means
that command and function calls are fully interchangeable with invoking object methods for
the same database access. Invoking the database command or function is usually the more
comfortable programming way, but you may use the object oriented programming style
directly as well.

Same as the high-level database commands and functions operate on the currently selected
working area (see LNG.4.3 and CMD.SELECT), the objects of a DataServer or DBserver
class perform operations on an automatically opened working area. Therefore, for any open
database (and its associated memo fields and indexes), a separate DBserver object exists,
created automatically with the USE command, DBUSEAREA() function, or by instantiating
the DBserver object.

In FlagShip, as opposed to VO, you may open a database in the current (or a new) working
area by:

•the USE command or the DBUSEAREA() function, along with the optional RDD driver
name,

•creating an object variable with the DBSERVERNEW() creator function or the DBSERVER
{..} instantiation (see LNG.2.11.1). You may also use the appropriate RDD creator function
or instantiation, e.g. DBFIDXNEW(), CB4CDXNEW() or CB4CDX {..} instead. Note, that
the selection of a NEW working area is the default there, when not specified otherwise.

OBJ 297

To select the required working area, you may alternatively use

•the SELECT command or the DBSELECTAREA() function,
•the object variable itself, created by the DBSERVERNEW() function or the DBSERVER{}

instantiation,
•the object variable of a specified working area, retrieved by the DBOBJECT() function.

You may interchangeably access the database fields by:

•specifying the field name itself (see LNG.4.2),
•specifying the field name prefixed with an alias (see LNG.4.4),
•the ordinal field number using FIELDNAME() and FIELDPOS() functions,
•invoking the FIELDGET() and FIELDPUT() functions,
•using the object variable, send operator and the field name,
•using the object variable, send operator and one of the methods described below.

Performance hint: the fastest access to a database field is performed by using the field
name in the current WA directly (since the addressing is already resolved at compile-time),
followed by alias-><field>, the FIELDGET() function or method, then alias->FIELDGET(), the
use of object:<field>, and a <field> of a related database.

As with all objects, using TYPED variables (of the known RDD or DATASERVER type) will
speed up the application significantly, since already the FlagShip compiler will resolve the
object addresses. Otherwise, the run- time system has to search for the class property name
for any access to it.

OBJ 298

1. Scope and Filters
When using procedural programming, several database commands have clauses to define
the scope of records of the database on which to execute. These clauses are FOR, WHILE,
ALL, REST, NEXT <nRecords>, RECORD <nRecord> and are described in section
CMD.Notation.

In the DBserver class, three instances (oRdd:FORBLOCK, oRdd:WHILEBLOCK and
oRdd:SCOPE) are available for defining a global scope. When none of the scoping
arguments of a particular method (e.g. oRdd:APPENDDB() etc.) are specified, the global
DBserver instances are used by default. This means, the general scope applies whenever
one of the bulk processing methods is invoked without an explicit scope.

The <for> argument of some DBserver methods, and the oRdd:FORBLOCK instance
specify, that the method will be repeatedly executed for all records according to the <scope>.
The condition is stored as a code block, or converted to a code block if given as a string. If
the global condition is not required, set it to NIL, the default value.

The <while> argument of some DBserver methods, and the oRdd:WHILEBLOCK instance
specify that the repetitive execution of the method stops when a record does not meet the
condition. The condition is stored as a code block, or converted to a code block if given as a
string. If the global condition is not required, set it to NIL, the default value.

The <scope> argument of the DBserver methods, and the oRdd:SCOPE instance specify
partial execution of the method or a range for the for/while condition. The syntax differs
slightly from the command notation:

Scope content Value Description
DBSCOPEALL .F. The scope is ALL records, or REST with WHILE.
DBSCOPEREST .T. The scope is the remaining records starting from the current

position.
any number > 0 The scope is NEXT nRecords
set to NIL The scope is ALL records, or REST with WHILE.

The above constants are specified in the #include "rddsys.fh" file. Note, that there is no
counterpart to the RECORD <nRecord> command scope, since it is very seldom used. If
required, you may use the equivalent FlagShip command or function, or issue
oRdd:GOTO(nRecord) and set the <scope> to 1.

Remember to restore/reset the general scope and conditions when they are not needed any
more. The scope is persistent and applies to all scope- based methods until reset to NIL or
via the oRdd: CLEARSCOPE() method.

Filters: in addition to the global scope and conditions, two global filters are available, SET
FILTER or oRdd:FILTER and the SET DELETED flag. These filters are considered on any
data movement (except GOTO), even in the repetitive execution of methods according to the
given or general scope.

OBJ 299

2. Summary of Properties
The following table summarize properties of the DATASERVER and DBSERVER class. See
their availability in the different RDDs in the section RDD. You may also check the selected
RDD driver via the ISOBJPROPERTY (oRdd, <name>, <type>, 1) function.

DATASERVER Name Type Descript, CMD/FUN equival.
Alias Access,Assign = ALIAS()
AliasSym Access symbol of the alias
Append() Method = APPEND BLANK
AppendDB() Method = APPEND FROM
AppendDelimited() Method = APPEND FROM ... DELIM
AppendSDF() Method = APPEND FROM ... SDF
AsString() Method name of the data server
Average() Method = AVERAGE
Axit() Method internal, clean up
BlobDirectExport() Method export bin. large object to file
BlobDirectGet() Method retrieve data from blob file
BlobDirectImport() Method import bin. large obj. from file
BlobDirectPut() Method write data to blob file
BlobExport() Method write data to blob file
BlobGet() Method read the blob data
BlobImport() Method copy a blob file
BlobRootGet() Method read the blob root area
BlobRootLock() Method lock root area of the blob file
BlobRootPut() Method write the blob root area
BlobRootUnlock() Method unlock root area of blob file
BOF Access = BOF()
ClearFilter() Method clears RDD global filter
ClearIndex() Method = CLOSE INDEX
ClearLocate() Method clears LOCAL condition
ClearRelation() Method = SET RELATION TO
ClearScope() Method clears RDD global scope
Close() Method = CLOSE
Commit() Method = DBCOMMIT()
ConcurrencyControl Access,Assign similar to SET AUTOLOCK
Continue() Method = CONTINUE
CopyDB() Method = COPY TO
CopyDelimited() Method = COPY TO ... DELIM
CopySDF() Method = COPY TO ... SDF
CopyStructure() Method = COPY STRUCT TO
Count() Method = COUNT
CreateDB() Method = DBCREATE()
CreateIndex() Method = INDEX ON ... TO
CreateOrder() Method = ORDCREATE()

OBJ 300

DataField() Method = FIELDGET()
DBStruct() Method = DBSTRUCT()
Delete() Method = DELETE
DeleteAll() Method = DELETE ALL
Deleted Access = DELETED()
DeleteOrder() Method = ORDDESTROY()
Driver Access name of the RDD driver
EOF Access = EOF()
ErrInfo Access error obj of previous error
Error() Method error object / handler
Eval() Method = DBEVAL()
FCount Access = FCOUNT()
FieldGet() Method = FIELDGET()
FieldGetFormatted() Method formatted FIELDGET()
FieldHyperLabel() Method hyperlabel of the field
FieldInfo() Method = FIELDxxx()
FieldName() Method = FIELDNAME()
FieldPos() Method = FIELDPOS()
FieldPut() Method = FIELDPUT()
FieldSpec() Method object of the field
FieldStatus() Method status of the field operation
FieldSym() Method name of a field from symbol
FieldValidate() Method validate accord. to field obj
FileSpec Access
Filter Access,Assign = DBSETFILTER()
FLock() Method = FLOCK()
ForBlock Access,Assign global RDD 'for' block
Found Access = FOUND()
GetArray() Method multiple FIELDGET()s
GetArrFields() Method multiple FIELDGET()s
GetLocate() Method get the LOCATE code block
GetLookupTable() Method FIELDGET()s of several rec
GoBottom() Method = GO BOTTOM
GoTo() Method = GOTO
GoTop() Method = GO TOP
Header Access = HEADER()
IndexCheck Access = INDEXCHECK()
IndexCount Access = INDEXCOUNT()
IndexExt Access = INDEXEXT()
IndexKey Access = INDEXKEY()
IndexKey() Method = INDEXKEY()
IndexLock Access locks the index
IndexOrd() Method = INDEXORD()
Info() Method various infos about the RDD
Init() Method = USE ... or DBUSEAREA()
IsRelation Access,Assign activate/deactivate relations
Join() Method = JOIN

OBJ 301

LastRec Access = LASTREC(), RECCOUNT()
Locate() Method = LOCATE
LockCurrentRecord() Method = RLOCK()
LockSelection() Method multiple RLOCK()s
LUpdate Access = LUPDATE()
Name Access = RDDSETDEFAULT()
NoiVarGet() Method exception Access handler
NoiVarPut() Method exception Assign handler
NoMethod() Method exception Method handler
Notify() Method event handler
OrderBottomScope Access,Assign control value of bottom
OrderDescend() Method similar to DESCEND clause
OrderInfo() Method various infos about the order
OrderIsUnique() Method similar to UNIQUE clause
OrderKeyAdd() Method add a key into order
OrderKeyCount() Method no of keys in order
OrderKeyDel() Method delete key in order
OrderKeyGoTo() Method move to record no
OrderKeyNo Access,Assign logical record number
OrderKeyNo() Method logical record number
OrderKeyVal Access = &(INDEXKEY())
OrderScope() Method boundary scope on order
OrderSkipUnique() Method skip unique in order
OrderTopScope Access,Assign control value of top
Pack() Method = PACK
QuickFieldGet() Method = FIELDGET()
QuickFieldPut() Method = FIELDPUT()
RDDInfo() Method various infos about RDD
RDDName Access = RDDSETDRIVER()
ReadOnly Access status of USE open
Recall() Method = RECALL
RecallAll() Method = RECALL ALL
RecCount Access = LASTREC(), RECCOUNT()
RecNo Access,Assign = RECNO()
RecordInfo() Method various infos about record
RecSize Access = RECSIZE()
Refresh() Method undo record changes
RegisterClient() Method register a window
Reindex() Method = REINDEX
Relation() Method = DBRELATION()
RelationObject() Method object of the relation
Replace() Method = REPLACE
ResetNotification() Method suppress notifying
RLock() Method = RLOCK()
RLockList Access = RLOCKLIST()
RLockVerify() Method similar to RLOCK()
RollBack() Method roll back

OBJ 302

Scope Access,Assign general RDD scope
Seek() Method = SEEK
SeekEval() Method = SEEK EVAL
SetDataField() Method assign object to field
SetFilter() Method = DBSETFILTER()
SetIndex() Method = SET INDEX TO...
SetOrder() Method = DBSETORDER()
SetOrderCondition() Method condit. of INDEX..FOR
SetRelation() Method = DBSETRELATION()
SetSelectiveRelation() Method set selective relation
Shared Access = ! ISDBEXCL()
Skip() Method = SKIP
Sort() Method = SORT
Status Access
Sum() Method = SUM
SuspendNotification() Method suspend notification
Total() Method = TOTAL
Unlock() Method = UNLOCK
Update() Method = UPDATE
Used Access = USED()
UsersDbf() Method = USERSDBF()
WhileBlock Access,Assign global RDD 'while' block
Zap() Method = ZAP

By default, all methods of the DATASERVER class are empty and call the predefined
DataServer:NoMethod(), all Access methods call DataServer:NoiVarGet() and all Assign
methods call the DataServer:NoiVarPut() method. A very minimal (hybrid) RDD driver should
therefore at least specify it's own INIT(), CLOSE() and FIELDGET() methods and the USED
Access method. See also section RDD and an example in the <FlagShip_dir>/system/
smallrdd.prg file.

Compatibility: the DATASERVER is a superset of the CA/VO class of the same name. The
DBSERVER class is generally compatible to CA/VO and to other FlagShip RDDs. If slight
differences exist, they are given in the description of the particular method below. Neither the
DataServer, nor the DBserver class are available in CA/Clipper.

OBJ 303

DBSERVERNEW() and DBFIDXNEW()
Syntax 1:

obj = DBSERVER {expC1, [expL2], [expL3], [expC4],
[expA5], [expL6]}

or:
obj = DBSERVERNEW (expC1, [expL2],

[expL3],[expC4],[expA5],[expL6])

Syntax 2:
obj = DBFIDX {expC1, [expL2], [expL3], [NIL],

[NIL], [expL6] }
or:

obj = DBFIDXNEW (expC1, [expL2], [expL3], [NIL],
[NIL], [expL6])

Purpose:
Creates a new DBSERVER object for the DBFIDX driver, optionally initialized by
the supplied arguments. Opens the specified database (and its associated memo
file when memo fields exist) in the current or the first free working area, equivalent
to the USE command or DBUSEAREA() function.

DBSERVER{} or DBSERVERNEW() according to syntax 1 is designed for generic
RDD purposes and may be slightly slower than alternatively using the RDD driver
name itself according to syntax 2, see text below.

Arguments:
<expC1> specifies the name of the database file to open in the current or the first
free working area. If no extension is specified, the default .dbf extension is
assumed. Upper/lower case translation is performed according to FS_SET(), the
search path may be specified with SET PATH or SET DEFAULT.

Options:
<expL2> is a synonym for the SHARED clause of the USE command. If specified
TRUE (or if the DB_SHARED constant is used), the database is open for shared
use in multiuser, multitasking network or concurrent mode. If the argument is
FALSE, the database is opened in EXCLUSIVE mode. If not specified, the current
SET EXCLUSIVE status is used.

<expL3> is a synonym for the READONLY clause of the USE command. If the
argument is TRUE (or if the DB_READONLY constant is used), the database is
opened for read-only purposes. The UNIX access rights -r-- are sufficient for the
database and memo <file> (but not for index files (.idx of the DBFIDX driver), which
must always be -rw-). In an attempt to REPLACE or APPEND a record, a run-time
error is brought up. If the argument is FALSE or not specified, the database is open
in read-write mode.

OBJ 304

<expC4> is the driver name of the DBSERVER class. If not specified, it defaults to
the driver specified by RDDSETDEFAULT() which in turn defaults to DBFIDX. If
specified, and the name differs from the default driver, you also have to include the
EXTERN <expC4>NEW statement somewhere in the application, or explicitly link in
the RDD driver.

Alternatively, you may explicitly invoke the RDD driver itself according to syntax 2,
e.g. DBFIDXNEW(...), CB4CDX{..} etc, to avoid this parameter (or specify it NIL).
The FlagShip high-level USE command and DBUSEAREA() function call the default
driver (usually DBFIDXNEW()), if the VIA clause is not given.

<expA5> is not used and placed here for compatibility to VO only. You may specify
any value, the default is NIL. In FlagShip, you may create an inherited object also
from the DBSERVER class.

<expL6> is a synonym for the NEW clause of the USE command. If <expL6> is
specified TRUE (the DB_NEW constant), or not given, an unused working area is
selected first, making it the current one, and the database <expC1> is opened
there. If the argument is FALSE or the DB_SELECTED constant, the database is
opened in the currently SELECTed working area, closing any active database
occupying that working area.

Returns:
<obj> is the newly allocated DBSERVER or RDD object, usually as- signed to a
regular FlagShip variable or to an array element. Before using the object, verify that
the database was successfully opened by using the oRdd:USED instance, or the
USED() function.

Description:
DBSERVERNEW() creates a new DBserver object. The functionality is equivalent
to the standard USE command, the DBUSEAREA() function or the instantiating of
the <defaultRDD> object. The automatically called INIT() method opens an existing
database .dbf file, and its associated memo .dbt file in the current (or the first
available) working area.

After successfully opening the database (the oRdd:USED instance or the USED()
function returns TRUE), the record pointer points to the first record. If the database
is empty, both BOF() and EOF() are set to TRUE. You may then assign another
alias, indices etc. to the object.

For more information, refer to the USE command.

As with all objects, using TYPED variables (of the known RDD or DBSERVER type)
and prototypes (by default included in the stdclass.fh file) will speed up the
application significantly (e.g. specifying LOCAL oDbf AS DBSERVER).

Performance:
The direct usage of DBFIDX{} or DBFIDXNEW(), instead of the general purpose
DBSERVER{} or DBSETVERNEW() will result in faster applications.

OBJ 305

Multiuser:
If a multiuser, multitasking and/or network access is required, database files can be
opened EXCLUSIVEly or SHARED, using the <expL2> argument, alternatively by
using the SET EXCLUSIVE command.

Opening a database EXCLUSIVEly will succeed only if it is not already in use by the
same or another user. Attempting to open a database SHARED will succeed only if
the database is not opened exclusively by another user (or concurrently in another
working area). Always check the oRdd:USED instance, USED() or NETERR()
functions or the return value <retL> to see whether the database has been
successfully opened.

For special purposes, FlagShip allows the same database to be used
simultaneously in different working areas, when the given ALIAS names (given in
the oRdd:ALIAS instance, or specified by the 4th argument in DBUSEAREA()
function) differ. On the object instantiation, FlagShip automatically creates a new
ALIAS name, if such already exist. The handling of concurrent databases is the
same, as the use of shared databases in multiuser mode.

In SHARED mode, any write attempt to the database or memo file (like REPLACE,
DELETE, RECALL, oRdd:FieldName := ... or alias->FieldName := ...) requires that
the current record or the whole file is locked beforehand using RLOCK() or
FLOCK(). This will ensure data integrity denying other users a write access to the
same record or database. When the write access is finished, use UNLOCK or
UNLOCK ALL to release the previously set record and file locks, so that another
user may lock the file or record.

FlagShip's RDD allows automatic record and file locking/unlocking, when a
RLOCK() or FLOCK() is not already specified by the programmer. The auto-locking
capability is specified in the oRdd:ConcurrencyControl instance. During object
creation, this instance will be set according to the current SET AUTOLOCK state.
You may redefine the instance at any later time.

Global changes to the physical record storage order (PACK and ZAP) or rebuilding
the index files (INDEX, REINDEX) require an EXCLUSIVE open mode (which
cannot be handled by the automatic concurrence control).

Refer to the USE command and LNG.4.8 for more information about multiuser
programming.

Example 1:
LOCAL dbf5 AS DBSERVER // optional
SELECT 5
dbf5 := DBSERVERNEW ("mydbf",,,,, .F.) // minimal usage
** := DBSERVERNEW ("mydbf",,,"dbfidx",,.F.) // equivalent
** := DBFIDXNEW ("mydbf",,,,, .F.) // equivalent
** := DBSERVER {"mydbf"} // ditto, NEW
** := DBSERVERNEW ("mydbf") // ditto, NEW

OBJ 306

if !dbf5:USED // check success
? "Couldn't open mydbf.dbf file in WA5"
QUIT

endif

? "The " + dbf5:NAME + " database was open in " + ;
if(dbf5:SHARED, "shared", "exclusive") + ;
if(dbf5:READONLY, ", read-only", "") + ;
" mode. The automatic locking is " + ;
if(!dbf5:SHARED, "not required.", ;

if(db5:CONCURRENCY, "enabled.", "disabled."))

Example 2:
Hybrid use of objects and commands is possible in FS4

LOCAL oAdr AS DBSERVER // or ...AS DBFIDX
SET AUTOLOCK TO 0
oAdr := DBFIDXNEW ("address", .T., .F.)
if !USED() // == if NETERR()

QUIT
endif
APPEND BLANK // == oAdr:APPEND()
REPLACE field->Name WITH "Smith"
oAdr:First := "John" // == address->First := ...

oAdr:APPEND() // == DBAPPEND()
Name := "Miller" // == address->Name := ...
oAdr:First := "Peter" // == address->First := ...

Example 3:
Other hybrid use of objects, functions and commands

LOCAL oAdr AS DBSERVER
USE address INDEX adr1,adr2 NEW SHARED
if NETERR()

quit
endif
? DBF() + " is open in working area " + ;
ltrim(str(SELECT())) + ", alias = " + ALIAS()

DBAPPEND()
FIELDPUT (1, "Smith")
SEEK "Miller"
? "Miller was " + if(FOUND(), "found at record " + ;
ltrim(str(RECNO())), "not found")

oAdr := DBOBJECT() // retrieve object
? oAdr:NAME + " is open in working area " + ;
ltrim(str(SELECT())) + ", alias = " + oAdr:ALIAS

oAdr:SEEK("Smith")
? "Smith was " + if(oAdr:FOUND, "found at record " + ;
ltrim(str(oAdr:RECNO)), "not found")

OBJ 307

Classification:
programming

Class:
<FlagShip_dir>/include/

datserver.fh = prototype of DATASERVER class
dbserver.fh = prototype of DBSERVER class
dbfidx.fh = prototype of DBFIDX class

Include:
The constants are available in "rddsys.fh"

Compatibility:
Available in FS4 and VO only. FS4 does not support the VO's optional use of
<expO1>, nor an array of RDDs in <expA5>. VO does not support the 6th
parameter <expL6>, nor the hybrid use of database commands and functions with
objects.

Related:
USE, DBUSEAREA(), USED(), RDDSETDEFAULT(), CLASS, PROTOTYPE,
oRdd:INFO(), LNG.2.11, other drivers in sect. RDD #

OBJ 308

DataServer and DBserver Properties
Note: you may determine current database object <oRdd> by DbObject(), so e.g. the return
of Alias() function is equivalent to DbObject():Alias The used DBI_* and DBOI_* constants /
manifests are defined in rddsys.fh

oRdd:ALIAS <─> expC Access/Assign

Contains a string representing the alias of the work area. It is set to the database
name on instantiation. Equivalent to and invoked from the ALIAS() function and
oRdd:INFO(DBI_ALIAS) method. Compatibility: VO supports access only.

Related: ALIAS(), oRdd:INFO(DBI_ALIAS)

oRdd:APPEND ([expL1]) ─> retL Method

Adds a new empty record to the end of the currently selected database. The
availability is signaled by oRdd:INFO(DBI_CANPUTREC). Equivalent to and
invoked from the APPEND BLANK command or the DBAPPEND() function.

Optional arguments: <expL1> indicates if the existing record locks should be
released. If not specified or TRUE, all record locks are cleared, then the new record
appended and locked. This is equivalent to the behavior of the APPEND BLANK
command. If specified FALSE, the previous records remain locked (until
oRdd:UNLOCK() or oRdd:UNLOCK(recNo) methods, or the UNLOCK command is
executed), and the new record is added to the lock list.

Returns: <retL> is a logical value, TRUE signals the success, an error otherwise.

Example:

LOCAL ii, oAdr
oAdr := DBSERVER {"address", .T.} // open shared
FOR ii := 1 TO 10

oAdr:APPEND(.F.) // hold locks
NEXT
aeval(oAdr:RlockList(), {|x| QOUT("Lock:",x)})
if oAdr:APPEND() // release RLOCKs first

oAdr:Name := "Smith" // replace
oAdr:UNLOCK() // unlock all

endif

Related: APPEND BLANK, DBAPPEND(), UNLOCK, DBRUNLOCK(),
oRdd:UNLOCK(), oRdd:FIELDINFO(), oRdd:INFO(DBI_CANPUTREC)

OBJ 309

oRdd:APPENDDB (expC1...) ─> retL Method

Adds records to the current (target) database file from another (source) database
file. Equivalent to the APPEND FROM command.

retL = oRdd:APPENDDB (expC1|expO1, [expA2],
[expC3|expB3], [expC4|expB4],
[expN5|expL5], [expC6])

Arguments: <expC1>|<expO1> is the name or object of the source database. If no
extension is specified, it is assumed to be .dbf, or the standard extension according
to the RDD driver of <expC6>. If <expC1> is specified, the source database is used
in shared, read- only mode. If <expO1> is given, the RDD server object is used.

Options: <expA2> is an array of character values, specifying the field names of the
source and target database to be included. If not specified, all fields of the source
database are transferred. Equivalent to the FIELDS clause of APPEND FROM.
FlagShip performs an automatic type translation, if necessary.
<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string
or code block, is evaluated for each record of the source scope.
<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record of the source from the current
record until it returns FALSE.
<expN5>|<expL5> is the range of records in the source, providing the same
functionality as the ALL, REST and NEXT clause of commands. See chapter 6.2 for
the scope values.
<expC6> is equivalent to the VIA clause of the APPEND FROM command. It
specifies the RDD of the source database, if <expC1> is used.

Scope: If none of the arguments 3 to 5 are specified, the global source server scope
is used, see chapter 6.1.

Returns: <retL> signals the success if TRUE or failure otherwise.

Compatibility: in VO, the first 2 arguments are mandatory and the <expC6>
argument is not available.

Related: APPEND FROM, oRdd:APPENDSDF(), oRdd:APPENDDELIMITED(),
oRdd:INFO()

OBJ 310

oRdd:APPENDDELIMITED (expC1...) ─> retL Method

Adds records to the current (target) database file from an ASCII text file in a
"comma-separated-value" CSV file format (source). Equivalent to APPEND FROM
... DELIMITED command.

retL = oRdd:APPENDDELIMITED (expC1, [expC2],
[expA3], [expC4|expB4], [expC5|expB5],
[expN6|expL6])

Arguments: <expC1> is the name of the ASCII source file. If no extension is
specified, it is assumed to be .txt.

Options: <expC2> is a single character specifying the delimiter of character fields,
equivalent to the DELIMITED WITH clause of APPEND FROM ... command. If not
specified, the oRdd:INFO(SETDELIMITER) character, or double quotation mark (")
is assumed.
<expA3> is an array of character values, specifying the field names of the target
database and the order of the fields in the text file. If not specified, the order of
fields corresponds to the field order of the target database. Equivalent to the
FIELDS clause of APPEND FROM.
<expC4>|<expB4> is equivalent to the FOR scope. The condition, given as a string
or code block, is evaluated for each record of the scope.
<expC5>|<expB5> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current record until it
returns FALSE.
<expN6>|<expL6> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: The global server scope according to chapter 6.1 is not applicable for the
text (source) file. If the parameters 4 to 6 are not specified, all records of the source
are transferred.

Returns: <retL> signals the success if TRUE or failure otherwise.

Compatibility: the first 3 arguments are mandatory in VO.

Related: APPEND FROM ... DELIMITED, oRdd:APPENDSDF(),
oRdd:APPENDDBF(), oRdd:INFO()

OBJ 311

oRdd:APPENDSDF (expC1...) ─> retL Method

Adds records to the current database file (target) from an ASCII text file in SDF
format (source). Equivalent to the APPEND FROM ... SDF command.

retL = oRdd:APPENDSDF (expC1, [expA2],
[expC3|expB3], [expC4|expB4],
[expN5|expL5])

Arguments: <expC1> is the name of the ASCII source file in SDF format. If no
extension is specified, .txt is assumed.

Options: <expA2> is an array of character values, specifying the field names of the
target database and the order of the fields in the text file. If not specified, the order
of fields corresponds to the field order of the target database. Equivalent to the
FIELDS clause of APPEND FROM.
<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string
or code block, is evaluated for each record of the source scope.
<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current record until it
returns FALSE.
<expN5>|<expL5> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: The global server scope according to chapter 6.1 is not applicable for the
text (source) file. If the parameters 3 to 5 are not specified, all records of the source
are transferred.

Returns: <retL> signals the success if TRUE or failure otherwise.

Compatibility: the first 2 arguments are mandatory in VO.

Related: APPEND FROM ... SDF, oRdd:APPENDDBF(), oRdd:APPEND-
DELIMITED(), example in sect RDD.2

oRdd:ASSTRING () ─> retC Method

This method is equivalent to the oRdd:NAME access. It returns the main part of the
used database file name, e.g. "MyFile". Available for compatibility purposes to
CA/VO.

OBJ 312

oRdd:AVERAGE (expC1...) ─> retA Method

Calculates the average of a series of numeric expressions for a range of records in
the current database file and puts the results in the returned array. Similar to the
AVERAGE command.

retA = oRdd:AVERAGE (expC1|expB1|expA1,
[expC2|expB2], [expC3|expB3],
[expN4|expL4])

Arguments: <expC1>|<expB1>|<expA1> is a string which specifies the numeric
expression (e.g. field names) to be averaged, a code block to be executed, or an
array of expressions or code blocks.

Options: <expC2>|<expB2> is equivalent to the FOR scope. The condition, given
as a string or code block, is evaluated for each record of the scope.
<expC3>|<expB3> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current record until it
returns FALSE.
<expN4>|<expL4> is the scope, a range of records, providing the same
functionality as the ALL, REST and NEXT clause of commands. See chapter 6.2 for
the scope values.

Scope: If none of the arguments 2 to 4 are specified, the global server scope is
used, see chapter 6.1.

Returns: <retA> is an array of results. If a single expression or code block was
specified, an array length of 1 is returned.

Related: AVERAGE command

oRdd:AXIT () ─> retL|NIL Method

This method performs an internal garbage collection of the object, just before the
object is destroyed. It is invoked automatically, you should not invoke it manually.
See additional description in section LNG.11.3 and RDD.2.3.3. To ensure the
correct functionality, an inheriting class should invoke SUPER:AXIT() method, if a
separate oRdd:AXIT() method is required and specified (check it by
ISOBJPROPERTY() function).

oRdd:BOF ─> expL Access

Contains a logical value indicating whether there was an attempt to move past the
beginning of the current database file. It also returns TRUE if the database contains
no records. Equivalent to and invoked from the BOF() function.

OBJ 313

oRdd:CARGO <─> exp Export (access/assign)

Contains user data of any type, to store information retrieved later in the program.
Not used by the RDDs itself. Compatibility: not available in VO.

oRdd:CLEARFILTER () ─> retL Method

Clears the global filter condition (see also chapter 6.1) specified with the
oRdd:SETFILTER() method or the SET FILTER command. Equivalent to and
invoked from the SET FILTER TO command w/o parameters or the
DBCLEARFILTER() function.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SETFILTER(), oRdd:FILTER, SET(), SET FILTER,
DBCLEARFILTER()

oRdd:CLEARINDEX () ─> retL Method

Clears all indexes currently associated with the server. Equivalent to and invoked
from the CLOSE INDEX or SET INDEX TO commands w/o parameters.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SETINDEX(), SET INDEX, CLOSE INDEX

oRdd:CLEARLOCATE () ─> retL Method

Clears the LOCATE condition set by the <for> argument of oRdd:LOCATE()
method or the FOR clause of the LOCATE command. Note, that this condition is
different from the global oRdd:FORBLOCK instance, described also in chapter 6.1.

Returns: <retL> signals success, if TRUE.

Related: oRdd:LOCATE(), oRdd:CONTINUE(), LOCATE, CONTINUE

oRdd:CLEARRELATION () ─> retL Method

Clears all relations to other database servers. Equivalent to and invoked from the
command SET RELATION TO w/o parameters.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SETRELATION(), oRdd:RELATION(), SET RELATION

OBJ 314

oRdd:CLEARSCOPE () ─> retL Method

Sets the global scope instances oRdd:SCOPE, oRdd:FORBLOCK and
oRdd:WHILEBLOCK to NIL. See also chapter 6.1 for an additional discussion of the
global scope.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SCOPE, oRdd:FORBLOCK, oRdd:WHILEBLOCK

oRdd:CLOSE () ─> retL Method

Closes the database file and its associated index and memo files, if any. Clears the
relations set to other databases. Clears all global scopes and filters for the
database server. Equivalent to and invoked from the commands CLOSE
DATABASE or USE w/o parameters. Invoked automatically, when the application
terminates.

Returns: <retL> signals success, if TRUE.

Related: DBSERVERNEW(), oRdd:INIT(), oRdd:SETORDER(), oRdd:SETINDEX(),
oRdd:CLEARSCOPE(), oRdd:CLEARRELATION(), CLOSE DATABASES, USE,
QUIT

oRdd:COMMIT () ─> retL Method

Commits all changes of the server fields to disk, ensuring that all buffers are
flushed. Equivalent to and invoked from the DBCOMMIT() function, oRdd:SKIP(0)
method or SKIP 0 command. Note, that this flushing is performed asynchronously in
background, as opposed to the immediate, synchronous flushing by the COMMIT
command or DBCOMMITALL() function.

Returns: <retL> signals success, if TRUE.

Related: oRdd:SKIP(), COMMIT, DBCOMMIT(), DBCOMMITALL()

OBJ 315

oRdd:CONCURRENCYCONTROL <─> expN Access/Assign

Contains a numeric value indicating the mode of automatic concurrence control for
this data server, determining when and how records are locked and released.
Preset during instantiation according to the state of the SET AUTOLOCK switch.
The following constants are available in the #include "rddsys.fh" file.

Constant Value Description
CCNONE 0 The data server provides no automatic record locking;

the application is required to do all the locking explicitly.
CCOPTIMISTIC 1 Execute the AUTOxLOCK() function or method, if lock is

required. The data server locks and unlocks the record
(or the file on multiple record replacement) automatically,
but only if no programmer's RLOCK() or FLOCK() was
detected. This option follows the SET AUTOLOCK
setting and is therefore performed only, if SET
AUTOLOCK was not set < 2.

CCSTABLE 2 currently equivalent to CCOPTIMISTIC.
CCREPEATABLE 3 currently equivalent to CCOPTIMISTIC.
CCFILE 4 currently equivalent to CCOPTIMISTIC.
negat number < 0 Similar to CCOPTIMISTIC, but the trial period is

specified here in negative seconds. To try the lock for 3
seconds, specify -3, to try it forever, specify e.g. -
9999999.

Compatibility: the AUTOxLOCK() functionality is not available in VO.

Related: SET AUTOLOCK, AUTOxLOCK(), RLOCK(), FLOCK(), SET
MULTILOCKS, oRdd:FIELDPUT(), oRdd:INFO()

oRdd:CONTINUE () ─> retL Method

Continues the pending LOCATE or oRdd:LOCATE() search from the current record,
using the <for> condition of LOCATE, but ignoring its <while> condition and
<scope>. Equivalent to and invoked from the CONTINUE command. Hint: If you
want to continue searching with the <while> condition, set the <scope> to REST
and perform another oRdd:LOCATE().

Returns: <retL> signals success, equivalent to the oRdd:FOUND instance. If the
search was successful, the matching record becomes the current record, and this
method, the FOUND() function or oRdd:FOUND instance returns TRUE. If not
found, the record pointer is positioned on EOF or the first record outside the FOR
scope, and FALSE is returned.

Related: oRdd:LOCATE(), oRdd:CLEARLOCATE(), oRdd:INFO(), LOCATE,
CONTINUE

OBJ 316

oRdd:COPYDB (expC1...) ─> retL Method

Copies records from the current database file (source) to another database file
(target). Equivalent to the COPY TO command.

retL = oRdd:COPYDB (expC1|expO1, [expA2],
[expC3|expB3], [expC4|expB4],
[expN5|expL5], [expC6])

Arguments: <expC1>|<expO1> is the name or object of the target database. If no
extension is specified, it is assumed to be .dbf, or the standard extension according
to the RDD driver of <expC6>. If <expC1> is specified, the target database is
opened exclusively. If <expO1> is given, the RDD server object is used and locked
automatically.

Options: <expA2> is an array of character values, specifying the field names of the
source and target database to be copied. If not specified, all fields of the source
database are transferred. Equivalent to the FIELDS clause of COPY TO. FlagShip
performs an automatic type translation, if necessary.
<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string
or code block, is evaluated for each record of the scope.
<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position in the
source database until <expB4> returns FALSE.
<expN5>|<expL5> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.
<expC6> is equivalent to the VIA clause of the COPY TO command. It specifies the
RDD of the target database, if <expC1> is used.

Scope: If none of the arguments 3 to 5 are specified, the global scope of the current
server is used, see chapter 6.1.

Returns: <retL> signals success, if TRUE, or failure (e.g. the open mode)
otherwise.

Compatibility: in VO, the first 2 arguments are mandatory and <expC6> is not
available.

Related: COPY TO, oRdd:COPYSDF(), oRdd:COPYDELIMITED(), APPEND
FROM, COPY FILE, RENAME

OBJ 317

oRdd:COPYDELIMITED (expC1...) ─> retL Method

Copies records from the current database file (source) to a "comma- separated-
value" CSV file format (target). Equivalent to the COPY TO ... DELIMITED
command.

retL = oRdd:COPYDELIMITED (expC1, [expC2], [expA3],
[expC4|expB4], [expC5|expB5],
[expN6|expL6])

Arguments: <expC1> is the name of the target ASCII file. If no extension is
specified, it is assumed to be .txt.

Options: <expC2> is a single character specifying the delimiter of character fields,
equivalent to the DELIMITED WITH clause of the COPY TO ... command. If not
specified, the oRdd:INFO(SETDELIMITER) character, or double quotation mark (")
is assumed.
<expA3> is an array of character values, specifying the field names of the source
database and the order of the fields in the target text file. If not specified, all fields of
the source are transferred, the order of fields corresponds to the field order of the
source database. Equivalent to the FIELDS clause of COPY TO.
<expC4>|<expB4> is equivalent to the FOR scope. The condition, given as a string
or code block, is evaluated for each record of the scope.
<expC5>|<expB5> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position until
<expB5> returns FALSE.
<expN6>|<expL6> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 4 to 6 are specified, the global scope of the current
server is used, see chapter 6.1. If not available, all records are transferred.

Returns: <retL> signals success, if TRUE, or failure otherwise.

Compatibility: the first 3 arguments are mandatory in VO.

Related: COPY TO ... DELIMITED, oRdd:COPYSDF(), oRdd:COPYDBF(),
oRdd:INFO()

OBJ 318

oRdd:COPYSDF (expC1...) ─> retL Method

Copies records from the current database file (source) to an ASCII text file in SDF
format (target). See the additional description of the format in the COPY TO ... SDF
command.

retL = oRdd:COPYSDF (expC1, [expA2], [expC3|expB3],
[expC4|expB4], [expN5|expL5])

Arguments: <expC1> is the name of the ASCII target file in SDF format. If no
extension is specified, .txt is assumed.

Options: <expA2> is an array of character values, specifying the field names of the
source database and the order of the fields in the target text file. If not specified, all
fields of the source are transferred, the order of fields corresponds to the field order
of the source database. Equivalent to the FIELDS clause of COPY TO.
<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string
or code block, is evaluated for each record of the source scope.
<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position until
<expB4> returns FALSE.
<expN5>|<expL5> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 3 to 5 are specified, the global scope of the current
server is used, see chapter 6.1. If not available, all records are transferred.

Returns: <retL> signals success, if TRUE, or failure otherwise.

Compatibility: the first 2 arguments are mandatory in VO.

Related: COPY TO ... SDF, oRdd:COPYDBF(), oRdd:COPYDELIMITED()

oRdd:COPYSTRUCTURE (expC1...) ─> retL Method

Creates an empty database (target) with field definitions from the current (source)
database. Equivalent to the COPY STRUCTURE TO command.

retL = oRdd:COPYSTRUCTURE (expC1, [expA2], [expC3])
Arguments: <expC1> is the name of the target database. If no extension is
specified, it is assumed to be .dbf, or the standard extension according to the RDD
driver of <expC3>.

Options: <expA2> is an array of character values, specifying the field names of the
source database to be included in the given order in the target database. If not
specified, the target database overtakes the structure of the source. Equivalent to
the FIELDS clause of COPY STRUCTURE.

OBJ 319

<expC3> is equivalent to the VIA clause of the COPY STRUCTURE command. It
specifies the RDD of the target database, if not the default one.

Returns: <retL> signals success, if TRUE, or failure (e.g. the create mode)
otherwise.

Compatibility: in VO, the first 2 arguments are mandatory and the <expC3>
argument is not available.

Related: COPY STRUCTURE TO, oRdd:CREATEDB()

oRdd:COUNT ([expC1...]) ─> retN Method

Counts records in the current working area, which fall into the given scope and fulfill
the specified conditions. The result is returned. Equivalent to and invoked from the
COUNT command.

retN = oRdd:COUNT ([expC1|expB1], [expC2|expB2],
[expN3|expL3])

Options: <expC1>|<expB1> is equivalent to the FOR scope. The condition, given
as a string or code block, is evaluated for each record of the source scope.
<expC2>|<expB2> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position until
<expB2> returns FALSE.
<expN3>|<expL3> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.1 for the scope values.

Scope: If none of the arguments 1 to 3 are specified, the global scope of the current
server is used, see chapter 6.1. If not available and none of the global filters (SET
DELETE or SET FILTER) were specified, oRdd:RECCOUNT is returned.

Returns: <retN> is the number of records which fall into the given scope.

Related: COUNT, oRdd:RECCOUNT, oRdd:AVERAGE(), oRdd:TOTAL()

oRdd:CREATEDB (expC1...) ─> retL Method

Creates a new, empty database (and the associated memo file, if memo fields exist)
according to the structure in the given array. Equivalent to and invoked from the
DBCREATE() function, which should preferably be used. The main reason for this
method is to exist as an entity of the RDD, which allows any RDD to create its own,
required structure.

retL = oRdd:CREATEDB (expC1, expA2, [expN3|expC3])
Arguments: <expC1> is the name of the new created database. If no extension is
specified, it is assumed to be of the standard RDD extension(s) (e.g. .dbf and .dbt).
If a path is not specified, the file is placed into the current or the SET DEFAULT

OBJ 320

directory. The automatic case conversion according to FS_SET() is considered. If a
file of the same name exists, it will be overwritten.
<expA2> is a two-dimensional array that contains the structure of the database to
be created. See detailed description in the DBCREATE() function. The supported
field type and field length (DBS_TYPE and DBS_LEN, the 2nd and 3rd element of
the subarray) may depend on the RDD used.

Options: <expN3>|<expC3> are the associated access rights to the file given in an
semi-octal notation or as a string (e.g. 664 = "rw-rw-r- -"), or passed from the 4th
parameter of DBCREATE(). The semi-octal notation includes three digits (for the
owner, group, world), each in the range 0..7 are required. 0 specifies no permission,
4 = read only, 2 = write only, 6 = read/ write. If not specified, the default "umask" is
used.

Returns: <retL> signals success, if TRUE, or failure (e.g. in- sufficient directory
access rights, wrong field definition etc.) otherwise. The return value is passed to
DBCREATE().

Example:

LOCAL oNew
if DBCREATE ("newdb", {{"name","C",20,0}, {"date","D",8,0}},

"CB4CDX", 664)
oNew := DBSERVER {"newdb",,, "CB4CDX"}
? "Records in " + oNew:NAME, oNew:RECCOUNT
? "The file is placed in " + oNew:INFO(DBI_FULLPATH)

endif

Compatibility: this method in not available in VO. For other than the default
"DBFIDX" RDD, differences may apply.

Related: DBCREATE(), oRdd:DBSTRUCT, FILE(), DBSTRUCT(), CREATE FROM

oRdd:CREATEINDEX (expC1...) ─> retL Method

Creates an index file or, if the RDD supports multiple orders, the first order within an
index file. If the index file exists, it is overwritten. If another order name than
<expC1> is required for multiple order indexes, use the oRdd:CREATEORDER()
method instead. Equivalent to and invoked from the INDEX ON command,
DBCREATEINDEX() or ORDCREATE() functions.

retL = oRdd:CREATEINDEX (expC1, expC2, [expB3],
[expL4])

Arguments: <expC1> is the name of the newly created index file. If no extension is
specified, it is assumed to be of the standard RDD index extension, i.e. .idx for the
DBFIDX driver. If a path is not specified, the file is placed into the current or the
SET DEFAULT directory. The automatic case conversion according to FS_SET() is

OBJ 321

considered. If a file of the same name exists, it will be overwritten. The access right
of the database applies for the index file.
<expC2> is a string specifying the index expression, e.g. the field name. This
expression is stored in the index (order) header and evaluated later on any index
(order) access. See additional info in the DBCREATEINDEX() description. To
create a descending order, you may use the DESCEND() function, or specify it with
the oRdd:SETORDERCONDITION(...) method (alternatively with
oRdd:ORDERDESCEND(...) or oRdd:ORDERINFO(DBOI_ISDESC, ...) methods).

Options: <expB3> is a code block used for the index (order) creation. Its result
should match the <expC2> result, but the code block body can contain additional
code used at creation time only, e.g. to display the creation status. If <expB3> is not
specified, the <expC2> argument is used.
<expL4> is a logical value equivalent to the UNIQUE clause. If not specified, the
current state of SET UNIQUE is used.

Scope: the condition set with oRdd::SETORDERCONDITION() is considered.

Returns: <retL> signals success, if TRUE, or failure (e.g. in- sufficient directory
access rights, wrong field definition etc.) otherwise. The return value is passed to
the DBCREATEINDEX() or ORDCREATE() function, if this was used.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at
least FLOCK() is required (or AUTOFLOCK() used, if possible according to
oRdd:ConcurrencyControl) to ensure the index integrity. You may disable this lock
requirement by assigning a FALSE value to the oRdd:INDEXLOCK instance.

Example:

USE address NEW
INDEX ON name+first TO addr1 FOR name="Smith" DESCEND

// is equivalent to:

oMyDbf := DBSERVERNEW ("address")
oMyDbf:SETORDERCONDITION ('name="Smith"',,,,,,,,,.T.)
oMyDbf:CREATEINDEX ("addr1","name+first",{|| name+first},.F.)
oMyDbf:SETORDERCONDITION ()

Compatibility: Compatible to VO. For other than the default "DBFIDX" RDD,
differences may apply.

Related: INDEX ON, DBCREATEINDEX(), ORDCREATE(), ORDCONDSET(),
oRdd:CREATEORDER(), oRdd:INFO(), oRdd:ORDERINFO(),
oRdd:SETORDER- CONDITION()

OBJ 322

oRdd:CREATEORDER (expC1...) ─> retL Method

When the RDD supports multiple orders, it creates an additional or replaces an
existing order within an existing index, or creates the first order within a new index
file. This is similar to and invoked from the ORDCREATE() function or INDEX
command. If the RDD supports a single order only, like the default DBFIDX, the
functionality is equivalent to the oRdd:CREATEINDEX() method.

retL = oRdd:CREATEORDER (expC1, expC2, expC3,
[expB4], [expL5])

Arguments: <expC1> is the name of the existing, or a newly created index file. If no
extension is specified, it is assumed to be of the standard RDD index extension, i.e.
.idx for the DBFIDX driver. If a path is not specified, the file is searched/placed in
the current or the SET PATH, SET DEFAULT directory. The automatic case
conversion according to FS_SET() is considered.
<expC2> is a string specifying the order name within the index file. If single-order is
supported only, the order name is equivalent to <expC1>.
<expC3> is a string specifying the index expression, e.g. the field name. This
expression is stored in the index (order) header and evaluated later on any index
(order) access. See additional info in the DBCREATEINDEX() description. To
create a descending order, you may use the DESCEND() function, or specify it with
the oRdd:SETORDERCONDITION(...) method (alternatively with oRdd:ORDER-
DESCEND(...) or oRdd:ORDERINFO (DBOI_ISDESC, ...) methods).

Options: <expB4> is a code block used for the index (order) creation. Its result
should match the <expC3> result, but the code block body can contain additional
code used at creation time only, e.g. to display the creation status. If <expB4> is not
specified, the <expC3> argument is used.
<expL5> is a logical value equivalent to the UNIQUE clause. If not specified, the
current state of SET UNIQUE is used.

Scope: the condition set with oRdd::SETORDERCONDITION() is considered.

Returns: <retL> signals success, if TRUE, or failure (e.g. in- sufficient directory
access rights, wrong field definition etc.) otherwise. The return value is passed to
the DBCREATEINDEX() or ORDCREATE() function, if this was used.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at
least FLOCK() is required to ensure the index integrity. You may disable the locking
check by assigning a FALSE value to the oRdd:INDEXLOCK instance.

Example:

oMyDbf := DBSERVERNEW ("address")
oMyDbf:CREATEORDER ("addr1","order2","city",{|| city},.F.)
oMyDbf:SETINDEX ("addr1")
oMyDbf:SETORDER ("city")
? oMyDbf:SEEK("Munich")

OBJ 323

Compatibility: Compatible to VO. For other than the default "DBFIDX" RDD,
differences may apply.

Related: INDEX ON, DBCREATEINDEX(), ORDCREATE(), ORDCONDSET(),
oRdd:ORDERINFO(), oRdd:SETORDERCONDITION(),
oRdd:DELETEORDER()

oRdd:DBSTRUCT () ─> retA Method

Returns a two-dimensional array, compatible to that of the DBSTRUCT() function,
containing the structure of this data server. The array length is equal to the number
of fields in the server. The subelements contains the field name, type, length and
number of decimal places. It is equivalent to and invoked from the DBSTRUCT()
function. Please see the DBSTRUCT() function for additional information.

oRdd:DELETE ([expC1...]) ─> retL Method

Deletes the current record or a range of records according to the given scope.
Equivalent to and invoked from the DELETE command or the DBDELETE()
function.

retN = oRdd:DELETE ([expC1|expB1], [expC2|expB2],
[expN3|expL3])

Options: <expC1>|<expB1> is equivalent to the FOR clause of DELETE. The
condition, given as a string or code block, is evaluated for each record of the source
scope.
<expC2>|<expB2> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position, until
<expB2> returns FALSE.
<expN3>|<expL3> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 1 to 3 are specified, the global scope of the current
server is used, see chapter 6.1. If not set, the current record is DELETEd.

Returns: <retL> signals success, if TRUE, or failure (e.g. failed lock) otherwise.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at
least RLOCK() for deleting a single record, or FLOCK() for multiple record
processing is required, if oRdd:CONCURRENCY is set to 0.

Related: DELETE, DBDELETE(), DELETED(), oRdd:DELETEALL(),
oRdd:DELETED, oRdd:CONCURRENCYCONTROL

OBJ 324

oRdd:DELETEALL () ─> retL Method

Deletes all records of the database table. Equivalent to the DELETE ALL command
or the oRdd:GOTOP() ; oRdd:DELETE({|| .T.}) sequence.

Scope: The global scope according to chapter 6.1 does not apply.

Returns: <retL> signals success, if TRUE, or failure (e.g. failed lock) otherwise.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode,
FLOCK() is required, if oRdd:CONCURRENCY is set to 0.

Related: DELETE, DBDELETE(), DELETED(), oRdd:DELETEALL(),
oRdd:DELETED, oRdd:CONCURRENCYCONTROL

oRdd:DELETED ─> retL Access

A logical value indicating whether the current record is marked as deleted.
Equivalent to and invoked from the DELETED() function.

oRdd:DELETEORDER (expC1...) ─> retL Method

When the RDD supports multiple orders, it deletes (destroys) the specified order
within an existing index file. Similar to and invoked from the ORDDESTROY()
function. Not supported by RDDs with single orders, such as the default DBFIDX.

retL = oRdd:DELETEORDER (expC1|expN1, [expC2])

Arguments: <expC1>|<expN1> is the order name within the index file, or the
ordinal order number within the active order list.

Options: <expC2> is a string specifying the index file name. Use this argument only
if the index is not assigned to the server, and the <expN1> argument is not used.

Returns: <retL> signals success, if TRUE, or failure (e.g. the index is open by
others etc.) otherwise.

Multiuser: an active order cannot be destroyed if the database is opened (or the
class instantiated) in SHAREd mode, since it may also be used by others.

Related: ORDDESTROY(), oRdd:ORDERINFO()

oRdd:DRIVER ─> expC Access

Retrieves the name of the currently used RDD driver/server, e.g. "DBFIDX" for the
default driver, equivalent to oRdd:RDDNAME. The server can be specified as an
instantiation parameter to the DBserver. If no driver is set, the default driver is used;
it can be set by RDD- SETDEFAULT() or DBSETDRIVER().

OBJ 325

oRdd:EOF ─> expL Access

A logical value indicating whether there was an attempt to move past the end of the
current database file. It also returns TRUE if the database contains no records.
Equivalent to and invoked from the EOF() function.

oRdd:ERRINFO ─> expO Access

Returns the error object (see Error class) of the previous DBserver operation, or NIL
if neither RTE, I/O or Developer's error occurred there. May be used e.g. in the
RECOVER clause of the BEGIN...END sequence, when the user defined
oRdd:ERROR() method executes the BREAK statement.

oRdd:ERROR (expO1...) ─> NIL Method

Provides a method for handling error conditions raised during database processing.
This error handler is automatically called by other methods of this DBserver when
an RTE, I/O, Fatal or Developer's error occurs. You may redefine the default error
handler by executing the ERRORBLOCK() function.

[NIL =] oRdd:ERROR (expO1, expC2)
Arguments: <expO1> is the error object (see Error) passed to the default, or the
user-specified error handler.
<expC2> is a string specifying the name of the method, stored in the
oErr:OPERATION instance.

Returns: always NIL.

Related: ERRORBLOCK(), oRdd:ERRINFO, FS_SET("develop"), FSC.4, file
<FlagShip_dir>/system/FSerror.prg

oRdd:EVAL (expB1...) ─> retL Method

Evaluates a code block for each record matching a scope and condition. Equivalent
to and invoked from the DBEVAL() function.

retL = oRdd:EVAL (expB1, [expC2|expB2],
[expC3|expB3], [expL4|expN4])

Arguments: <expB1> is a code block to execute for each record processed.

Options: <expC2>|<expB2> is equivalent to the FOR clause. The condition, given
as a string or code block, is evaluated for each record of the scope, for which
<expB2> returns TRUE.
<expC3>|<expB3> is equivalent to the WHILE scope. The condition, given as a
string or code block, evaluated for each record from the current position until
<expB3> returns FALSE.

OBJ 326

<expN4>|<expL4> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 2 to 4 are specified, the global scope of the current
server is used, see chapter 6.1.

Returns: <retL> signals success, if TRUE, or failure otherwise.

Related: DBEVAL()

oRdd:FCOUNT ─> expN Access

A numeric value representing the number of fields in the current server. Equivalent
to and invoked from the FCOUNT() function.

oRdd:FIELDGET (expN1...) ─> ret Method

Retrieves the value of a field using the ordinal position of the field in the database
structure or the field name. Equivalent to and invoked from the FIELDGET()
function.

ret = oRdd:FIELDGET (expN1|expC1)
Arguments: <expN1>|<expC1> is the ordinal position of the field in the record
structure or the field name. Specifying numeric argument may perform slightly faster
on databases with a large number of fields.

Returns: <ret> is the value of the specified field. If <expN> is out of range of
FCOUNT(), the return value is NIL.

Related: FIELDGET(), <exp> := oRdd:<field>, oRdd:NOIVARGET()

oRdd:FIELDINFO (expN1...) ─> ret Method

Retrieves information about a field, similar to oRdd:DBSTRUCT() method.

ret = oRdd:FIELDINFO (expN1, expN2|expC2)
Arguments: <expN1> specifies the required type of the field information, given as a
constant (see "rddsys.fh") or a numeric value:

Constant Value Ret Returns
DBS_NAME 1 retC name of the field
DBS_TYPE 2 retC type of the field
DBS_LEN 3 retN length of the field
DBS_DEC 4 retN number of decimal places for the field

OBJ 327

<expN2>|<expC2> is the ordinal position of the field in the record structure or the
field name. Specifying a numeric argument may perform slightly faster on
databases with a large number of fields.

Returns: <retN>|<retC> is the required field information, or NIL on error.

Compatibility: RDDs other than the default DataServer may contain additional field
features.

Related: DBSTRUCT(), oRdd:DBSTRUCT(), oRdd:INFO()

oRdd:FIELDNAME (expN1) ─> retC Method

Retrieves the name of the field at the given ordinal position. Equivalent to the
FIELDNAME() function.

retC = oRdd:FIELDPOS (expN1)
Arguments: <expN1> is the ordinal position of the requested field.

Returns: <retC> is the field name in upper case, or "" on error.

Related: FFIELDNAME(), IELDPOS(), oRdd:DBSTRUCT(), oRdd:INFO(),
oRdd:FIELDINFO()

oRdd:FIELDPOS (expC1) ─> retN Method

Retrieves the ordinal position of the specified field in the database structure.
Equivalent to and invoked from the FIELDPOS() function.

retN = oRdd:FIELDPOS (expC1)
Arguments: <expC1> is the requested field name. The input is automatically
converted to upper case and abbreviated, if necessary.

Returns: <retN> is the ordinal position in the structure starting with 1. It corresponds
to the element number of the array returned by oRdd:DBSTRUCT() method. If
<expC> is not a valid field of the DBserver, the return value is 0.

Related: FIELDPOS(), oRdd:DBSTRUCT(), oRdd:INFO(), oRdd:FIELDINFO()

OBJ 328

oRdd:FIELDPUT (expN1...) ─> ret Method

Assigns the given value to a field specified by the ordinal position in the database
structure or by the field name. Equivalent to and invoked from the FIELDPUT()
function.

ret = oRdd:FIELDPUT (expN1|expC1, exp2)
Arguments: <expN1>|<expC1> is the ordinal position of the field in the record
structure, or the field name. Specifying a numeric argument may perform slightly
faster on databases with a large number of fields.
<exp2> is the value to be assigned to the field. The data type must match the data
type of the field.

Returns: <ret> is the newly assigned value, if the operation was successful, or NIL
otherwise.

Multiuser: if the database is opened in SHAREd mode, at least RLOCK() is
required, if oRdd:CONCURRENCY is set to 0.

Related: FIELDPUT(), oRdd:RLOCK(), oRdd:CONCURRENCY, oRdd:<field> :=
<exp>, oRdd:NOIVARPUT()

oRdd:FILTER <─> expC Access/Assign

Determines or sets the global filter condition string. Equivalent to and invoked from
the SET FILTER command, DBSETFILTER() function, or
oRdd:INFO(DBI_DBFILTER) method. Note, that this instance may return an empty
string "" even with an active filter, when only the filter code block was assigned.
Usually, only the filter code block is evaluated for scoping (see oRdd:INFO
(DBI_FILTERBLOCK)), this instance has an informative character only. To reset the
filter condition, use the SET FILTER TO command, DBCLEARFILTER() function or
the oRdd:CLEARFILTER() method.

Related: SET FILTER, DBSETFILTER(), DBCLEARFILTER(), oRdd:CLEARFIL-
TER(), oRdd:INFO()

oRdd:FLOCK () ─> retL Method

Locks all records of the table (database) to perform a global write access or to
protect it against write access from another user or process. Meaningful in SHAREd
mode only. Equivalent to and invoked from the FLOCK() function.

Returns: <retL> signals success. On error, FALSE is returned, which reports that
the database is FLOCKed or RLOCKed by another user, application or DBserver.

Multiuser: if the database is opened in SHAREd mode, and the automatic locking is
disabled (oRdd:CONCURRENCY is set to 0), FLOCK() is required prior to write

OBJ 329

accessing a range of records or prior to issuing the INDEX ON command or the
oRdd:CREATEORDER(), oRdd:CREATEINDEX() methods. If
oRdd:CONCURRENCY is active, FLOCK() overrides the automatic locking and the
lock remains active until oRdd:UNLOCK() is executed. If the database was open in
EXCLUSIVE mode (the default), no locking is required and FLOCK() is ignored.

Related: FLOCK(), oRdd:RLOCK(), oRdd:UNLOCK(), oRdd:CONCURRENCY

oRdd:FORBLOCK <─> expB|NIL Access/Assign

The FOR block is a component of the general server scope, described in chapter 1.
It affects several bulk processing methods if they are called with no explicit scope.
The FOR block can be specified as a code block or a string. Accessing this instance
always returns a code block or NIL if not set. To reset the global FOR block, assign
NIL to it or execute oRdd:CLEARSCOPE() for a global reset.

Related: oRdd:WHILEBLOCK, oRdd:SCOPE, oRdd:CLEARSCOPE()

oRdd:FOUND ─> expL Access

Determines the success of a previously executed SEEK, LOCATE or CONTINUE
command, function or method. Equivalent to and invoked from the FOUND()
function.

Related: FOUND(), oRdd:SEEK(), oRdd:LOCATE(), oRdd:CONTINUE(),
oRdd:EOF()

oRdd:GETARRAY ([expN1...]) ─> retA Method

Assigns the values of several records of the specified field into a one-dimensional
array. This method is a subset of the oRdd:GETARRAYFIELDS() method, which
retrieves several fields per record at once.

retA = oRdd:GETARRAY ([expN1], [expC2|expN2],
[exp3])

Options: <expN1> is the maximum number of records that should be retrieved and
the size of the returned array. If omitted, 100 records is the default.
<expN2>|<expC2> is the ordinal position of the retrieved field in the record
structure, or the field name. If omitted, values of the first field are stored into the
array.
<exp3> is a "seek" expression for searching the first retrieved value, equivalent to
executing the oRdd:SEEK() method with the same parameter. If not specified, the
storage of field values starts at the current record, considering the global scope,
according to chapter 6.1.

OBJ 330

Returns: <retA> is a one-dimensional array with the retrieved field values. If the
end-of-file is reached or the scope is out of range before the given record count is
proceeded, the array size is adapted accordingly. If no record is found, LEN(retA) is
0.

Example:

oMyDbf := DBSERVER {"article", DB_SHARED, DB_READONLY}
if oMyDbf:USED .and. oMyDbf:SETINDEX("articleno")

aArtNo := GETARRAY (500, "ArtNo", 2001)
oMyDbf:Close()

endif

Related: FIELDGET(), oRdd:FIELDGET(), oRdd:GETARRFIELDS(), oRdd:GET-
LOOKUPTABLE()

oRdd:GETARRFIELDS ([expN1...]) ─> retA Method

Assigns the values of several records of the specified fields into a multi-dimensional
array. This method is a superset of the oRdd:GETARRAY() method.

retA = oRdd:GETARRFIELDS ([expN1],
[expA2|expC2|expN2], [exp3])

Options: <expN1> is the maximum number of records that should be retrieved and
the size of the returned array. If omitted, 100 records is the default.
<expA2>|<expN2>|<expC2> is the ordinal position of the retrieved field in the
record structure, or the field name, or an array containing field names or ordinal
positions. If omitted, or the array element is NIL, values of the first field are stored
into the array.
<exp3> is a "seek" expression for searching the first retrieved value, equivalent to
executing the oRdd:SEEK() method with the same parameter. If not specified, the
storage of field values starts at the current record, considering the global scope,
according to chapter 6.1.

Returns: <retA> is a multi-dimensional array with the retrieved field values. If the
end-of-file is reached or the scope is out of range before the given record count is
processed, the array size is adapted accordingly. If no record is found, LEN(retA) is
0.

Example:

oMyDbf := DBSERVERNEW ("address")
if oMyDbf:USED .and. oMyDbf:SETINDEX("addrname")

aField := GETARRFIELDS (50, {"First","Name",4}, "SMITH")
AEVAL (aField, {|elem| QOUT(elem[1], elem[2], elem[3]) })
wait
myTbrowse (aField)

endif

OBJ 331

Compatibility: This method is not available in VO.

Related: FIELDGET(), oRdd:FIELDGET(), oRdd:GETARRAAY(), oRdd:GET-
LOOKUPTABLE()

oRdd:GETLOCATE () ─> retB Method

Retrieves the code block of the current LOCATE condition, or returns NIL if no
previous LOCATE command or oRdd:LOCATE() method was executed.
Returns: <retB> is the code block of the FOR clause of LOCATE command, or the
code block used in the oRdd:LOCATE() method. The condition may also be
retrieved or set by the oRdd:INFO(DBI_GETSCOPE) method.
Related: LOCATE, CONTINUE, oRdd:LOCATE(), oRdd:CONTINUE(), oRdd:INFO()

oRdd:GETLOOKUPTABLE ([expN1...]) ─> retA Method

Assigns the values of several records of the specified fields into a two-dimensional
array. This method is a subset of the oRdd:GETARRAYFIELDS() method with a
slightly different syntax.

retA = oRdd:GETLOOKUPTABLE ([expN1], [expC2|expN2],
[expC3|expN3], [exp4])

Options: <expN1> is the maximum number of records that should be retrieved and
the size of the returned array. If omitted, 100 records is the default.
<expN2>|<expC2> is the ordinal position of the first retrieved field in the record
structure, or the field name. If omitted, values of the first field are stored into the
array.
<expN3>|<expC3> is the ordinal position of the second retrieved field in the record
structure, or the field name. If omitted, values of the second field are stored into the
array.
<exp4> is a "seek" expression for searching for the first value to retrieve, equivalent
to executing the oRdd:SEEK() method with the same parameter. If not specified,
the storage of field values starts at the current record, considering the global scope,
according to chapter 6.1.

Returns: <retA> is a two-dimensional array with the retrieved field values. If the
end-of-file is reached or the scope is out of range before the given record count is
proceeded, the array size is adapted accordingly. If no record is found, the
LEN(retA) is 0.

Example:

oMyDbf := DBSERVERNEW ("address")
if oMyDbf:USED .and. oMyDbf:SETINDEX("addrname")

aField := GETLOOKUPTABLE (500, "First", "Name", "SMITH")
? "All Smith's:"
AEVAL (aField, {|elem| QOUT(elem[1], elem[2]) })

endif

OBJ 332

Compatibility: The VO symbols for the 2nd and 3rd argument are not supported by
FS.

Related: FIELDGET(), oRdd:FIELDGET(), oRdd:GETARRAAY(), oRdd:GET-
ARRFIELDS()

oRdd:GOBOTTOM () ─> retL Method

Moves the database pointer to the last logical record. Equivalent to and invoked
from the GO BOTTOM command and the DBGOBOTTOM() function.

retL = oRdd:GOBOTTOM ()
Returns: <retL> signals success. On error, FALSE is returned, which reports that
the database is empty, or the conditional index, general filters or scope do not
match any record of the database.

Related: GOBOTTOM, oRdd:GOTO(), oRdd:GOTOP(), oRdd:SKIP()

oRdd:GOTO (expN1) ─> retL Method

Moves the database pointer to the specified record. Equivalent to and invoked from
the GO TO command and the DBGOTO() function.

retL = oRdd:GOTO (expN1)
Arguments: <expN1> is the record number at which the server should be
positioned. Neither the filters, nor global scope according to chapter 6.1 apply for
this fix-record movement.

Returns: <retL> signals success. On error, FALSE is returned, which reports that
the specified record is out of the current database size.

Related: GOTO, oRdd:GOTOP(), oRdd:GOBOTTOM(), oRdd:SKIP()

oRdd:GOTOP () ─> retL Method

Moves the database pointer to the first logical record. Equivalent to and invoked
from the GO TOP command and DBGOTOP() function.

retL = oRdd:GOTOP ()
Returns: <retL> signals the success. On error, FALSE is returned, which reports
that the database is empty, or the conditional index, general filters or scope do not
match any record of the database.

Related: GOTOP, oRdd:GOTO(), oRdd:GOBOTTOM(), oRdd:SKIP()

OBJ 333

oRdd:HEADER ─> expN Access

Determines the size of the database file header in bytes. Equivalent to and invoked
from the HEADER() function or the oRdd:INFO(DBI_GETHEADERSIZE) method.

Related: HEADER(), oRdd:INFO()

oRdd:INDEXCHECK ([expN1]) ─> retN Method

Checks the index integrity, whether the database is consistent with its associated
indices. Equivalent to and invoked from the INDEXCHECK() function.

retN = oRdd:INDEXCHECK ([expN1])
Options: <expN1> is the ordinal position of the index in the list of currently open
indices, starting at one. Zero specifies the current controlling index, which is the
default value, if the argument is not given.

Returns: <retN> is a numeric value indicating the integrity status of the index file: -1
signals error, 0 a correct integrity, 1 a possible corruption, 2 a found integrity
corruption. See the additional description in the INDEXCHECK() function and in
section LNG.4.5.

Compatibility: Not available in VO.

Related: INDEXCHECK()

oRdd:INDEXCOUNT ─> expN Access

Determines the number of open indices (0...15) used in this RDD. Equivalent to and
invoked from the INDEXCOUNT() function.

Compatibility: Not available in VO.

Related: INDEXEXT(), oRdd:INFO()

oRdd:INDEXEXT ─> expC Access

Determines the default extension of index files of this RDD driver, e.g. ".idx" for the
DBFIDX server. Equivalent to and invoked from the INDEXEXT() function or the
oRdd:INFO (DBI_INDEXEXT) method.

Related: INDEXEXT(), oRdd:INFO()

OBJ 334

oRdd:INDEXKEY ─> expC Access

Determines the key expression of the current controlling index. Equivalent to the
INDEXKEY() function or the oRdd:INDEXKEY(0) method.

Compatibility: Not available in VO.

Related: INDEXKEY(), oRdd:INDEXKEY()

oRdd:INDEXKEY (expN1) ─> retC Method

Determines the key expression of a specified index. Equivalent to and invoked from
the INDEXKEY() function.

retC = oRdd:INDEXKEY (expN1)
Arguments: <expN1> is the ordinal position of the index in the list of currently open
indexes, starting at one. Zero specifies the current controlling index, equivalent to
the oRdd:INDEXKEY instance.

Returns: <retC> is the required key expression, stored in the index file header by
oRdd:CREATEINDEX() or oRdd:CREATEORDER(). On error, i.e. if no index file is
open, null string "" is returned.

Related: INDEXKEY(), oRdd:INDEXKEY

oRdd:INDEXORD () ─> retN Method

Returns the ordinal position of the controlling order in the order list. Equivalent to
and invoked from the INDEXORD() function.

Returns: <retN> is equal to the position of the controlling index in the list of open
indexes for the current work area. A zero value indicates that the current database
is treated in the natural order.

Related: INDEXORD(), SET ORDER, oRdd:SETORDER(), oRdd:SETINDEX()

oRdd:INFO (expN1...) ─> ret Method

Returns and optionally changes information about a data server. Additional
information is also available by invoking the oRdd:ORDERINFO() method.

ret = oRdd:INFO (expN1, [exp2])

OBJ 335

Arguments: <expN1> is a numeric value or a constant (preferred, see "rddsys.fh")
specifying the type of the information.

Constant Value Ret Returns Change
DBI_ALIAS 33* retC alias name = oRdd:ALIAS yes
DBI_ACCESSRIGHTS 5000* retN dbf access rights from DBSERVERNEW()

in octal representation,e.g. 644 for rw-r--r--
no

DBI_BOF 26 retL BOF status = oRdd:BOF yes
DBI_CANPUTREC 2 retL Replace supported by RDD ? no
DBI_CHILDCOUNT 22 retN number of open relations no
DBI_DBFILTER 28 retC global filter = oRdd:FILTER yes
DBI_DB_VERSION 101 retN release of the host RDD driver no
DBI_EOF 27 retL EOF status = oRdd:EOF yes
DBI_FCOUNT 30 retN no. of fields = oRdd:FCOUNT no
DBI_FILEHANDLE 23 retN the used file handle no
DBI_FILTERBLOCK 5001 retB global filter, code block, set by

oRdd:SETFILTER()
yes

DBI_FOUND 29 retL FOUND status = oRdd:FOUND yes
DBI_FULLPATH 24 retC dbf name incl.path no
DBI_GETDELIMITER 5 retC delimiter for oRdd:COPYDELI../

oRdd:APPENDDELIMITED()
yes

DBI_GETHEADERSIZE 3 retN header size = oRdd:HEADER no
DBI_GETLOCKARRAY 8 retA array of RLOCKs() = oRdd:RLOCKLIST no
DBI_GETRECSIZE 7 retN record size = oRdd:RECSIZE no
DBI_GETSCOPE 34 retB locate condition = oRdd:GETLOCATE() yes
DBI_INDEXEXT 5002* retC default extension of the index file, e.g.

".idx". See oRdd:ORDERINFO()
yes

DBI_ISANSI 25 retL the database supports ANSI PC-8 char
set, ISO otherwise

no

DBI_ISDBF 1 retL is the .dbf format supported? no
DBI_ISFLOCK 20 retL is FLOCK() active? no
DBI_LASTUPDATE 4 retD date of last .dbf modif. no
DBI_LOCKCOUNT 31 retN number of RLOCKed() records no
DBI_LOCK_MODE 5016* retN locking scheme currently used no
DBI_MEMOBLOCKSIZE 39 retN block size of .dbt file no
DBI_MEMOEXT 37 retC default extension of the memo file, e.g.

".dbt"
yes

DBI_MEMOHANDLE 38 retN handle no. of memo file no
DBI_RDD_VERSION 102 retN release no. of this RDD no
DBI_READONLY 203* retL is database open read-only? no
DBI_RELAT_COUNT 5017* retN number of relations in current WA no
DBI_SETDELIMITER 6 retC equiv.to DBI_GETDELIMITER yes
DBI_SHARED 36 retL shared usage = oRdd:SHARED no
DBI_TABLEEXT 9 retC default extension of the database file, e.g.

".dbf"
yes

DBI_VALIDBUFFER 32 retL is the access buffer valid? no
DBI_USER 1000* retN users active = USERSDBF() no

OBJ 336

Options: <exp2> is the new value to be set. Considered only when the value is
changeable (see table above).

Returns: <ret> is the required information or the current setting before resetting. If
<expN1> is invalid, NIL is returned.

Example:

oMyDbf := DBSERVERNEW ("address")
// or: USE address ; oMyDbf := DbObject()
if oMyDbf:USED

? "The " + oMyDbf:INFO(DBI_FULLPATH) + ;
" database is open in " + ;
if (oMyDbf:SHARED, "", "non-") + "shared, read-" + ;
if (oMyDbf:READONLY, "only", "write") + " mode and " + ;
str(oMyDbf:INFO(DBI_ACCESSRIGHTS),3) + " permission."

? "The RDD " + oMyDbf:RDDNAME + ", rel." + ;
ltrim(str(oMyDbf:INFO(DBI_RDD_VERSION),6,2) + " does " + ;
if (oMyDbf:INFO(DBI_CANPUTREC), "", "not") + ;
" support APPENDing and REPLACEing."

endif

Compatibility: Items marked with "*" perform extended functionality or are not
supported by VO.

Related: most of these information is also handled by other instances and methods
or functions.

oRdd:INIT (expC1...) ─> SELF Method

Initializes the object and its default values, opens the database, passes data to the
FlagShip run-time system. This method is invoked automatically from
DBSERVERNEW(), you should not invoke it manually. See the additional
description in section LNG.11.3 and RDD.2.3.1. To ensure its functionality, a class
inheriting this one should invoke the SUPER:INIT(...) method, if a separate
oRdd:INIT() method is specified.

retO = oRdd:INIT (expC1, [expL2], [expL3], [expC4],
[expA5], [expL6])

Arguments: <expC1> is equivalent to the first DBSERVERNEW() argument.

Options: <expL2>...<expL6> are equivalent to the 2nd to 6th DBSERVERNEW()
optional arguments.

Returns: <retO> is the server object SELF.

Related: DBSERVERNEW(), oRdd:AXIT(), <FlagShip_dir>/system/rddcb4a.c
available in the .../RDDcb4.tar.Z file.

OBJ 337

oRdd:ISRELATION <─> expL Access/Assign

Determines if a relation is active (TRUE), or temporarily activates/deactivates all
relations set with the oRdd:SETRELATION() method or SET RELATION command.
Assigning FALSE temporarily disables the relation movement and evaluation, whilst
TRUE activates it again.

Compatibility: not available in CA/VO.

Related: oRdd:RELATION(), oRdd:SETRELATION(), oRdd:RELATIONOBJECT(),
SET RELATION

oRdd:JOIN (expC1...) ─> retL Method

Creates a new database by merging certain specified records with another
database (or DBserver). Equivalent to the JOIN command.

retL = oRdd:JOIN (expC1|expO1, expC2|expO2,
[expA3], [expB4])

Arguments: <expC1>|<expO1> specifies the second source, an already opened
database, which should be merged with the current DBserver. The argument is
either the alias name <expC1>, or the RDD object <expO1>.
<expC2>|<expO2> is the database file name or RDD object of the target database,
holding the merging results.

Options: <expA3> is an array of fields to be included in the join operation, similar to
the FIELDS clause of JOIN. If omitted, all records are included.
<expB4> is the condition evaluated for each record in the scope; if TRUE, the
record is included in the processing. It provides the same functionality as the FOR
clause of record processing commands. If not specified, the global scope according
to chapter 6.1 is considered. If not available, the target database contains the
product of records of both source files.

Returns: <retL> signals success, otherwise FALSE is returned.

Multiuser: if the <expO2> database is opened (or the class instantiated) in SHAREd
mode, at least FLOCK() is required, if oRdd:CONCURRENCY is set to 0. The newly
created database <expC2> is opened in exclusive mode.

Related: JOIN

oRdd:LASTREC ─> expN Access

Specifies the number of records in the current database. Filtering commands such
as SET FILTER or SET DELETED have no effect on the return value. Equivalent to
and invoked from the LASTREC() or RECCOUNT() function.

Related: LASTREC(), RECCOUNT()

OBJ 338

oRdd:LOCATE ([expC1...]) ─> retL Method

Searches for the first record meeting the specified condition. Equivalent to and
invoked from the LOCATE command.

retL = oRdd:LOCATE ([expC1|expB1], [expC2|expB2],
[expN3|expL3])

Options: <expC1>|<expB1> is equivalent to the FOR scope of LOCATE. The
condition, given as a string or code block, is evaluated for each record of the scope.
This condition is used for subsequent CONTINUE operations and may be retrieved
or modified by the oRdd:GETLOCATE(), oRdd:INFO (DBI_GETSCOPE) or cleared
by the oRdd:CLEARLOCATE() method.
<expC2>|<expB2> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position until
<expB2> returns FALSE. This condition is not used for subsequent CONTINUE
operations.
<expN3>|<expL3> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.
This condition is not used for subsequent CONTINUE operations.

Scope: If none of the arguments 1 to 3 are specified, the global source server scope
is used, see chapter 6.1.

Returns: <retL> signals success, if TRUE, or failure otherwise. If the search was
successful, the matching record becomes the current record, and this method, the
FOUND() function or oRdd:FOUND instance returns TRUE. If not found, the record
pointer is positioned on EOF or the next record outside the FOR scope, and FALSE
is returned.

Related: LOCATE, CONTINUE, oRdd:CONTINUE(), oRdd:CLEARLOCATE(),
oRdd:FOUND, oRdd:INFO()

oRdd:LOCKCURRENTRECORD () ─> retL Method

Locks the current record to perform a write access or to protect this record against
write access from another user or process. Meaningful in SHAREd mode only.
Equivalent to and invoked from the RLOCK() function, or identical to invoking the
oRdd:RLOCK(oRdd:RECNO) method. The superset of this method is
oRdd:RLOCKVERIFY().

Returns: <retL> signals success. On error, FALSE is returned, which reports that
the database is FLOCKed or the record RLOCKed by another user, application or
DBserver, or that the record pointer is on EOF.

Multiuser: if the database is opened in SHAREd mode, and the automatic locking is
disabled (oRdd:CONCURRENCY is set to 0), RLOCK() is required prior to write
accessing a single record. If oRdd:CONCUR- RENCY is active, RLOCK() overrides
the automatic locking and the lock remains active until oRdd:UNLOCK() is

OBJ 339

executed. If the database is opened in EXCLUSIVE mode (the default), no locking
is required and RLOCK() is ignored.

Related: RLOCK(), oRdd:RLOCK(), Rdd:RLOCKLIST, oRdd:RLOCKVERIFY(),
oRdd:UNLOCK(), oRdd:CONCURRENCY

oRdd:LUPDATE ─> expD Access

Retrieves the last modification date of the database file. Equivalent to and invoked
from the LUPDATE() function.

Related: LUPDATE(), oRdd:INFO(DBI_LASTUPDATE)

oRdd:NAME ─> expC Access

Returns the main part of the used database file name. It returns e.g. "MyFile" for the
obj := DBSERVER {"MyFile"} usage, also if a path or extension was specified; or
"myfile" when the file is named "myfile.dbf" and fs_set("lower",.T.) is active. Refer to
oRdd:INFO(DBI_FULLPATH) for the full naming information.

oRdd:NOIVARGET (expC1) ─> ret Method

Provides general error interception that is automatically called (in any class)
whenever an access reference is made to a non-existent exported instance variable
or Access method, see also LNG.2.11.3. In the DBServer class, it is used to
implement the access to a virtual field variable (since the name is known first at run-
time). This method is called by the FIELDGET() method, it should not be called
directly from the application.

ret = oRdd:NOIVARGET (expC1)
Arguments: <expC1> is the name of the referenced instance, e.g. the field name.

Returns: <ret> is the contents of the virtual instance (i.e. the field contents). If the
instance (the field) or Access method does not exist, a run-time error occurs and is
reported via the oRdd:ERROR() method if available, or via the standard error
handler otherwise.

Compatibility: symbolic names of VO are not supported.

Related: oRdd:NOIVARPUT(), oRdd:FIELDGET(), oRdd:ERROR(), <ret> :=
<expC1>

OBJ 340

oRdd:NOIVARPUT (expC1...) ─> retL Method

Provides general error interception that is automatically called (in any class)
whenever an assign reference is made to a non-existent exported instance variable
or Assign method, see also LNG.2.11.3. In the DBServer class, it is used to
implement the assign to a virtual field variable (since the name is known first at run-
time). This method is called by the FIELDPUT() method, it should not be called
directly from the application.

retL = oRdd:NOIVARPUT (expC1, exp2)
Arguments: <expC1> is the name of the referenced instance, e.g. the field name.
<exp2> is the value to assign to the field. The data type must be equivalent or
compatible to the datatype of the field.

Returns: <retL> signals success. On error, FALSE is returned, which reports e.g. a
lock failure according to oRdd: FIELDPUT().

Compatibility: symbolic names of VO are not supported.

Related: oRdd:NOIVARGET(), oRdd:FIELDPUT(), <expC1> := <exp2>, REPLACE

oRdd:NOMETHOD (expC1...) ─> ret Method

Provides general error interception that is automatically called (in any class)
whenever a method reference is made to a non-declared method, see also
LNG.2.11.3. In the DBServer class, it is used to display an RTE error, if the method
does not exist. This method is called by the FlagShip run-time system, it should not
be called directly from the application.

ret = oRdd:NOMETHOD (expC1, exp2...)
Arguments: <expC1> is the name of the referenced method.
<exp2>...<expN> are the parameters passed to the virtual method.

Returns: <ret> is the value returned from the variable method. If no such method
exist, a run-time error occurs and is reported via the oRdd:ERROR() method if
available, or via the standard error handler otherwise.

Compatibility: not supported by VO.

oRdd:ORDERBOTTOMSCOPE <─> exp Access/Assign

A value, controlling the last visible index key of the current selected order and is
considered for all database movement operations. Together with
oRdd:ORDERTOPSCOPE, it allows to "filter" the index for a specified range of
index keys. Assigning NIL (the default value) to the instance will reset the bottom
boundary to the last available key. See example in oRdd:ORDERSCOPE().

Related: SKIP, GOBOTTOM, oRdd:ORDERTOPSCOPE, oRdd:ORDERCOPE()

OBJ 341

oRdd:ORDERDESCEND ([expN1...]) ─> retL Method

Returns or dynamically changes the descending flag of an order, regardless of the
original indexing strategy.

retL = oRdd:ORDERDESCEND ([expN1|expC1], [expC2],
[expL3])

Options: <expN1>|<expC1> is the ordinal position of the order in the list of open
indices (similar to SET ORDER), or the order name. If omitted, the controlling order
is assumed.
<expC2> is the name of the index file, if <expC1> was specified.
<expL3> is the new, temporary descending flag. Specifying TRUE dynamically
turns on the descending sequence, regardless of the indexing method. It is
considered for all movement and search operations. Similarly, FALSE dynamically
activates an ascending order sequence. This flag does not affect the
stored/replaced sequence order, but the current database movement only.

Returns: <retL> is the current descending flag, or the value of the previous setting.

Example:

oAdr := DBSERVER {"address"}
if !oAdr:USED ; return ; endif
oAdr:SETINDEX("adrname")

flag := oAdr:ORDERDESCEND()
? "Default" ; oAdr:GOTOP() ; mydisplay (oAdr, 10, flag)
flag := oAdr:ORDERDESCEND(,,!flag)
? "New" ; oAdr:GOTOP() ; mydisplay (oAdr, 10, flag)

function mydisplay (oRdd AS DBSERVER, max, flag)
LOCAL oii := 1
?? " = " + if(flag, "des","as") + "cending order"
oRdd:EVAL ({|| QOUT(oRdd:name)},,{|| ii++, if(ii <= max,.T.,F.)})
return NIL

Related: SKIP, GOTOP, GOBOTTOM, SEEK, LOCATE

OBJ 342

oRdd:ORDERINFO (expN1...) ─> ret Method

Returns and optionally changes information about orders and index files.

ret = oRdd:ORDERINFO (expN1, [expC2],
[expN3|expC3], [exp4])

Arguments: <expN1> is a numeric value or constant (preferred, see "rddsys.fh")
specifying the type of information.

rddsys.fh Value Ret Returns Change
DBOI_CONDITION 1 retC order condition string no
DBOI_CUSTOM 45 retL custom RDD order built ? *yes
DBOI_DBFNAME 5001 retC FS only, dbf name of INDEX *no
DBOI_EXPRESSION 2 retC order expression string no
DBOI_FILEHANDLE 21 retN file handle no *no
DBOI_FULLPATH 20 retC full path & name no
DBOI_HPLOCKING 29 retL high perform CA/VO lock *no
DBOI_INDEXCHECK 5002 retN FS only, index ok? *no
DBOI_INDEXEXT 8 retC index extension (".cdx") yes
DBOI_INDEXNAME 7 retC index file name main part no
DBOI_ISCOND 23 retL condition flag set ? no
DBOI_ISDESC 22 retL descending flag set? no
DBOI_KEYCOUNT 26 retN no.of records in the order *no
DBOI_KEYDEC 28 retN no.of decimals in the key no
DBOI_KEYSINCLUDED 48 retN no.of keys of cond.index no
DBOI_KEYSIZE 25 retN size of the key no
DBOI_KEYTYPE 24 retC type of the key no
DBOI_KEYVAL 38 ret value of the current key *no
DBOI_LOCKOFFSET 35 retL lock offset NewIndexLock() *no
DBOI_NAME 5 retC order name no
DBOI_NUMBER 6 retN posit.of the order in list no
DBOI_ORDERCOUNT 44 retN no.of orders in the file no
DBOI_POSITION 3 retN logical record no.in order *no
DBOI_RECNO 4 retN physic. record no.in order no
DBOI_SCOPEBOTTOM 40 ret bottom boundary value or NIL *no
DBOI_SCOPETOP 39 ret top boundary value or NIL *no
DBOI_SETCODEBLOCK 27 retB key converted to code block no
DBOI_UNIQUE 43 retL unique flag set? no

Options:
<expC2> is the name of the index file, if <expN3> is specified.
<expN3>|<expC3> is the ordinal number specifying the order position in the open

order list, or the order name. If neither argument 2 nor argument 3 is specified
or is NIL, the controlling order is assumed.

<exp4> is the new value to be set.

OBJ 343

Returns: <ret> is the required information or the current value setting before
resetting. If <expN1> is invalid, NIL is returned.

Example:

SET PATH TO ./;/usr/data;/tmp
oAdr := DBSERVER {"address"}
if !oAdr:USED ; return ; endif
oAdr:SETINDEX("adrname")
oAdr:SETINDEX("adrcity")

? oAdr:INFO(DBI_NAME) // "address"
? oAdr:ORDERINFO(DBOI_FULLPATH) // "/usr/data/adrname.idx"
oAdr:SETORDER(2)
? oAdr:ORDERINFO(DBOI_FULLPATH) // "/tmp/adrcity.idx"
? oAdr:ORDERINFO(DBOI_EXPRESSION) // "str(zip,5)+name"
? INDEXKEY() // "str(zip,5)+name"

Compatibility: The items marked with "*" cannot be set by the default RDD driver.

Related: the results are equivalent to several Access/Assign instances or DBserver
Methods, especially oRdd:ORDER*(). For additional settings, see also
oRdd:INFO(), oRdd:RECINFO() and oRdd:RDDINFO() methods as well as the
SET() and INDEX*() functions .

oRdd:ORDERISUNIQUE ([expN1...]) ─> retL Method

Returns the status of the unique flag for a given order. Equivalent to invoking the
oRdd:ORDERINFO(DBOI_UNIQUE) method.

retL = oRdd:ORDERISUNIQUE ([expN1|expC1], [expC2])
Options:
<expN1>|<expC1> is the ordinal position of the order in the list of open indices

(similar to SET ORDER), or the order name. If omitted, the controlling order is
assumed.

<expC2> is the name of the index file, if <expC1> was specified.

Returns: <retL> is the unique flag of the order, set on indexing.

Related: oRdd:ORDERINFO(), oRdd:SETORDER(), oRdd:CREATEORDER(),
oRdd:CREATEINDEX(), INDEX ON, SET UNIQUE

OBJ 344

oRdd:ORDERKEYCOUNT ([expN1...]) ─> retN Method

Returns the number of keys (records) in an order. Equivalent to invoking the
oRdd:ORDERINFO(DBOI_KEYCOUNT) method.

retN = oRdd:ORDERKEYCOUNT ([expN1|expC1], [expC2])
Options: <expN1>|<expC1> is the ordinal position of the order in the list of open
indices (similar to SET ORDER), or the order name. If omitted, the controlling order
is assumed.
<expC2> is the name of the index file, if <expC1> was specified.

Returns: <retN> is the number of keys (database records) included in the order. If
the order is not conditional or unique, and no scope has been set for it, the return
value is equal to oRdd:RECCOUNT. Note, that depending on the RDD, the key
counting may be a time consuming task for large indices.

Related: oRdd:ORDERINFO(), oRdd:SETORDER(), oRdd:CREATEORDER(),
oRdd:CREATEINDEX(), oRdd:RECCOUNT, INDEX ON, SET UNIQUE

oRdd:ORDERKEYGOTO (expN1) ─> retL Method

Moves to a record specified by its logical record number in the controlling order.

retL = oRdd:ORDERKEYGOTO (expN1)
Arguments: <expN1> is the logical record number. If the value specified does not
satisfy the scope or FOR condition for the order, the record pointer is positioned at
the end-of-file.

Returns: <retL> reports success. It returns FALSE if the <expN1> is out of range.

Related: oRdd:SKIP(), oRdd:GOTOP(), oRdd:GOBOTTOM(),
oRdd:ORDERKEYCOUNT(), oRdd:ORDERKEYNO()

oRdd:ORDERKEYNO ([expN1...]) ─> retN Method

Returns the logical record number of the current record. Equivalent to invoking the
oRdd:ORDERINFO(DBOI_POSITION) method.

retN = oRdd:ORDERKEYNO ([expN1|expC1], [expC2])
Options: <expN1>|<expC1> is the ordinal position of the order in the list of open
indices (similar to SET ORDER), or the order name. If omitted or NIL, the controlling
order is assumed.
<expC2> is the name of the index file, if <expC1> was specified.

Returns: <retN> is the relative position of the current record in the specified order.
Zero is returned if the current record is out of scope or positioned on EOF().

OBJ 345

Related: oRdd:ORDERINFO(), oRdd:SETORDER(), oRdd:CREATEORDER(),
oRdd:CREATEINDEX(), oRdd:ORDERKEYGOTO()

oRdd:ORDERKEYVAL ─> exp Access

Returns the value of the current index (order) key. This value and its type is
equivalent to macro-evaluating the &(INDEXKEY()) function or to invoking the
oRdd:ORDERINFO(DBOI_KEYVAL) and oRdd:ORDERINFO(DBOI_KEYTYPE)
methods.

Related: oRdd:ORDERINFO(), INDEXKEY()

oRdd:ORDERSCOPE (expN1...) ─> ret Method

Sets the boundaries for scoping key values in the controlling order.

ret = oRdd:ORDERSCOPE (expN1, [exp2])
Arguments: <expN1> is a numeric value or constant (preferred, see "rddsys.fh")
specifying the type of information.

Constant Value Specifies
TOPSCOPE 0 top of the index boundary
BOTTOMSCOPE 1 bottom of the index boundary

Options: <exp2> is the new top or bottom value to be set. The comparison of the
current key against the top/bottom boundary is performed by the usual <= and >=
relational operators, similar to ok := IF (oRdd:ORDERKAYVAL >= <topboundary>
.and. oRdd:ORDERKAYVAL <= <bottomboundary>), therefore the comparison
rules according to section LNG.2.9 apply. Omitting this argument or specifying it NIL
resets the boundary to its original default (the first or last logical record) position.

Returns: <ret> is the current set boundary value (before resetting), equivalent to
oRdd:ORDERINFO(DBOI_SCOPE*). If <expN1> is invalid or not set, NIL is
returned.

Example:

oAdr := DBSERVER {"address"}
oAdr:SETINDEX("adrname")
oAdr:ORDERINFO(DBOI_EXPRESSION) // "upper(NAME)"
oAdr:GOTOP() ; ? oAdr:Name // "Anders"
oAdr:GOBOTTOM() ; ? oAdr:Name, Name // "address", "Zulu"
oAdr:ORDERSCOPE(TOPSCOPE, padr("MILLER",20))
oAdr:ORDERSCOPE(BOTTOMSCOPE, "S")
SET EXACT OFF // soft comparison
oAdr:GOTOP() ; ? oAdr:Name // "Miller"
oAdr:GOBOTTOM() ; ? oAdr:Name // "Smith"

OBJ 346

Related: oRdd:GOTOP(), oRdd:GOBOTTOM(), oRdd:SKIP(),
oRdd:ORDERKEYGOTO(), oRdd:ORDERINFO(), oRdd:ORDERKEYCOUNT(),
oRdd:BOTTOMSCOPE, oRdd:TOPSCOPE, oRdd:SEEK(), oRdd:LOCATE(),
SKIP, GO TOP, GO BOTTOM, FIND, SEEK, LOCATE

oRdd:ORDERSKIPUNIQUE ([expN1]) ─> retL Method

Moves the record pointer to the next or previous keys which differs from the current
one, regardless of the UNIQUE index flag. Note that for many equivalent keys, a
UNIQUE indexed order may result in faster movement than this filtering.

retL = oRdd:ORDERSKIPUNIQUE ([expN1])
Options: <expN1> is the skip direction, similar to the oRdd:SKIP(). Positive values
skip forward in the end-of-file direction, negative backward. If not specified, 1 is
assumed.

Returns: <retL> reports the success. It returns FALSE if the EOF() or

BOF() is reached. Example:

oAdr := SEEK ("MILLER ")
while !eof() .and. "MILLER" == upper(trim(oAdr:Name))

oAdr:SKIP()
enddo
? oAdr:Name // Millerman
* is equivalent to:

oAdr := SEEK ("MILLER ")
oAdr := ORDERSKIPUNIQUE()
? oAdr:Name // Millerman

Related: oRdd:SKIP(), oRdd:EOF, oRdd:BOF, oRdd:ORDESCOPE(),
oRdd:ORDERINFO(), oRdd:ORDERISUNIQUE()

oRdd:ORDERTOPSCOPE <─> exp Access/Assign

A value, controlling the first visible index key of the currently selected order and
considered for all database movement operations. Together with
oRdd:ORDERBOTTOMSCOPE, it allows to "filter" the index for a specified range of
index keys. Assigning NIL (the default value) to the instance will reset the top
boundary to the first available key. See example in oRdd:ORDERSCOPE().

Related: oRdd:ORDERSCOPE(), oRdd:ORDERBOTTOMSCOPE, SKIP, GO TOP

OBJ 347

oRdd:PACK () ─> retL Method

Removes all records marked for deletion from the DBserver database. Equivalent to
the PACK command.

retL = oRdd:PACK ()
Returns: <retL> signals the success.

Multiuser: the database must be opened (or the class instantiated) in EXCLUSIVE
mode.

Related: PACK, DELETE, oRdd:DELETE()

oRdd:QUICKFIELDGET (...) ─> ret Method

Retrieves a field value, by knowing the internal field address. This method is used
internally in the RDD and compiler (instead of FieldGet for accessing a field by
name), if specified. It is NOT designed for use by the user's .prg program, use
oRdd:FIELDGET() instead. See the rddcb4a.c and rddcb4b.c files for additional
descriptions, if required. This method is NOT a part of the default DataServer class.

oRdd:QUICKFIELDPUT (...) ─> ret Method

Stores a value into a field, by knowing the internal field address. This method is
used internally in the RDD and compiler (instead of FieldPut for assigning a field by
name), if specified. It is NOT designed for use by the user's .prg program, use
oRdd:FIELDPUT() instead. See the rddcb4a.c and rddcb4b.c files for additional
descriptions, if required. This method is NOT a part of the default DataServer class.

OBJ 348

oRdd:RDDINFO (expN1...) ─> ret Method

Returns and optionally changes information about the currently used RDD.

ret = oRdd:RDDINFO (expN1, [exp2])
Arguments: <expN1> is a numeric value or constant (preferred, see "set.fh")
specifying the type of information.

Constant Value Ret Description Change
_SET_AUTOOPEN 104 retL automatically opens the pro-

duction indices together with
the .dbf

*yes

_SET_AUTOORDER 105 retN 1

2

specifies, that the production
index automatically sets the
con- trolling order.
indicates the requirement of
SETORDER() invocat.

*yes

_SET_AUTOSHARE 108 retN 0

1

2

disables the automatic sharing
control, it overrides the SET
AUTOLOCK command.
will use the files in the specified
mode.
will open all files in exclusive
mode, overriding the SET
EXCLUSIVE command and the
SHARE clause.

*yes

_SET_DEFAULTRDD 102 retC returns the name of the default
RDD driver, equivalent to
RDDSETDEFA() function

no

_SET_HPLOCKING 106 retL not used in FlagShip *yes
_SET_MEMOBLCKSIZE 101 retN block size (in bytes) of the

memo file (.dbt)
*yes

_SET_MEMOEXT 103 retC extension of the memo file,
equiv. to oRdd:ORDERINFO
(DBOI_INDEXEXT)

yes

_SET_NEWINDEXLOCK 107 retL not used in FlagShip *yes
_SET_OPTIMIZE 111 retL additional index optimization

available?
*yes

_SET_STRICTREAD 109 retL not used in FlagShip *yes

Options: <exp2> is the new value to be set.

Returns: <ret> is the required information or the current value before resetting. If
<expN1> is invalid, NIL is returned.

Compatibility: Setting the items marked with "*" is ignored by the default RDD driver
DBFIDX.

Related:oRdd:INFO(), oRdd:RECINFO(), SET() and INDEX*() functions

OBJ 349

oRdd:RDDNAME ─> expC Access

Returns a string representing the name of the RDD. The server can be specified as
a parameter during instantiation, or by invoking the RDDSETDEFAULT() or
DBSETDRIVER() function. If not set, "DBFIDX" is the default driver.

Related: RDDSETDEFAULT(), DBSETDRIVER()

oRdd:READONLY ─> expL Access

Returns a logical value indicating whether the file was opened as a read-only file
during the instantiation.

Related: DBDERVERNEW(), USE, DBUSEAREA()

oRdd:RECALL ([expC1...]) ─> retL Method

Reinstates the current, DELETEd record or a range of records according to the
given scope. Equivalent to and invoked from the RECALL command or the
DBRECALL() function.

retN = oRdd:RECALL ([expC1|expB1], [expC2|expB2],
[expN3|expL3])

Options: <expC1>|<expB1> is equivalent to the FOR clause of RECALL. The
condition, given as a string or code block, is evaluated for each record of the source
scope.
<expC2>|<expB2> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position until
<expB2> returns FALSE.
<expN3>|<expL3> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 1 to 3 are specified, the global scope of the current
server is used, see chapter 6.1. If not set, the current record is RECALLed.

Returns: <retL> signals success, if TRUE, or failure (e.g. failed lock) otherwise.
Non-deleted records are ignored.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at
least RLOCK() for deleting a single record, or FLOCK() for multiple record
processing is required, if oRdd:CONCURRENCY is set to 0.

Related: DELETE, DBDELETE(), DELETED(), oRdd:DELETEALL(),
oRdd:DELETED, oRdd:CONCURRENCYCONTROL

OBJ 350

oRdd:RECALLALL () ─> retL Method

Reinstates all DELETEd records of the database table. Equivalent to the DELETE
ALL command or the oRdd:GOTOP() ; oRdd:DELETE({|| .T.}) sequence.

Scope: The global scope according to chapter 6.1 does not apply. Returns: <retL>
signals success, if TRUE, or failure (e.g. failed lock) otherwise.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode,
FLOCK() is required, if oRdd:CONCURRENCY is set to 0.

Related: RECALL, DBRECALL(), DELETED(), oRdd:RECALL(), oRdd:DELETE(),
oRdd:DELETED, oRdd:CONCURRENCYCONTROL

oRdd:RECCOUNT ─> expN Access

Returns the number of physical records in the database. Equivalent to and invoked
from the RECCOUNT() or LASTREC() function.

Related: RECCOUNT(), LASTREC(), oRdd:RECORDINFO()

oRdd:RECNO <─> expN Access/Assign

A numeric value, representing the current record number. Equivalent to and invoked
from the RECNO() function. Assigning a value to oRdd:RECNO is equivalent to
executing the GOTO() method or DBGOTO() function. See additional details in the
RECNO() function.

Related: oRdd:RECCOUNT, oRdd:GOTO(), oRdd:RECORDINFO(), RECNO(), GO
TO, DBGOTO()

oRdd:RECORDINFO (expN1...) ─> ret Method

Returns information about the current or specified record.

ret = oRdd:RECORDINFO (expN1, [expN2])
Arguments: <expN1> is a numeric value or constant (preferred, see "rddsys.fh")
specifying the type of information.

Constant Value Ret Description
DBRI_DELETED 1 retL is record deleted?
DBRI_LOCKED 2 retL is record locked?
DBRI_RECSIZE 3 retN record size in bytes
DBRI_RECNO 4 retN current record number

Options: <expN2> is the record number for which information is to be retrieved. If
omitted or set to zero (0) or NIL, the current record is assumed.

OBJ 351

Returns: <ret> is the required information or the current or specified record. If
<expN2> is out of range, NIL is returned.

Related:oRdd:DELETED, oRdd:RECSIZE, oRdd:INFO(), SET() and INDEX*()
functions

oRdd:RECSIZE ─> expN Access

Returns the record size in bytes. Equivalent to and invoked from the RECSIZE()
function.

Related: RECSIZE()

oRdd:REFRESH () ─> retL Method

Rereads the current record from the database, discarding (undo) any changes that
have been made. However, it cannot roll back changes that have been committed
with the oRdd:COMMIT(), oRdd:SKIP() or with the associated commands and
functions.

retL = oRdd:REFRESH ()
Returns: <retL> signals success.

Related: oRdd:COMMIT(), oRdd:SKIP(), COMMIT, SKIP, DBCOMMIT()

oRdd:REINDEX () ─> retL Method

Rebuilds all open indices for this DBserver. Equivalent to and invoked from the
REINDEX command or DBREINDEX() function.

retL = oRdd:REINDEX ()
Returns: <retL> signals success.

Multiuser: the database must be opened (or the class instantiated) in the
EXCLUSIVE mode.

Related: oRdd:CREATEINDEX(), REINDEX, DBREINDEX()

oRdd:RELATION ([expN1]) ─> retC Method

Retrieves the relation string, if any, set with SET RELATION command or the
oRdd:SETRELATION() method. Equivalent to and invoked from the
DBRELATION() function.

retC = oRdd:RELATION ([expN1])

OBJ 352

Options: <expN1> is the ordinal number of the relation in the list of current relations
starting at one. Zero and NIL is equivalent to one, the first relation in the list.

Returns: <retC> is the string of the relation expression, if specified, or null string ""
otherwise.

Related: oRdd:SETRELATION(), oRdd:ISRELATION, DBRELATION(), SET
RELATION

oRdd:RELATIONOBJECT ([expN1]) ─> retO Method

Retrieves the DBserver object of the specified relation.

retC = oRdd:RELATIONOBJECT ([expN1])
Options: <expN1> is the ordinal number of the relation in the list of current relations
starting at one. Zero and NIL is equivalent to one, the first relation in the list.

Returns: <retO> is the object of the related DBserver, or NIL if no relation is set.
The object is returned also for temporarily disabled relations with the
oRdd:RELATION assign method.

Compatibility: not available in CA/VO.

Related: oRdd:SETRELATION(), SET RELATION, oRdd:RELATION()

oRdd:REPLACE (exp1...) ─> retL Method

Replaces one or several fields with a new value. Equivalent to and invoked from the
REPLACE command.

retL = oRdd:REPLACE (exp1|expB1|expA1,
expC2|expN2|expA2, [expC3|expB3],
[expC4|expB4], [expN5|expL5])

Arguments: <exp1>|<expB1>|<expA1> is the expression or value, equivalent to
the WITH clause of the REPLACE command. When a code block is specified, the
result of evaluating it replaces the field. If the argument is an array, its elements
specify the expressions or code blocks to yield the replacement value. The type of
the <exp1> expression has to correspond to the field type <exp2>, otherwise RTE
occurs.
<expC2>|<expN2>|<expA2> is the name or ordinal position of the field to be
replaced with the <exp1> value. If the argument is an array, its elements specify the
field names or their ordinal positions. When both of the first two arguments are
arrays, the shorter array dimension is evaluated for any record of the given scope. If
the first argument is a single expression or code block and the second argument an
array, the <exp1> value replaces all fields of <expA2>.

OBJ 353

Options: <expC3>|<expB3> is equivalent to the FOR clause of REPLACE. The
condition, given as a string or code block, is evaluated for each record of the source
scope.
<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position until
<expB4> returns FALSE.
<expN5>|<expL5> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 3 to 5 are specified, the global scope of the current
server is used, see chapter 6.1. If not set, the current record is REPLACEd.

Returns: <retL> signals the success, if TRUE, or failure (e.g. failed lock) otherwise.

Multiuser: if the database is opened (or the class instantiated) in SHAREd mode, at
least RLOCK() for deleting a single record, or FLOCK() for multiple record
processing is required, if oRdd:CONCURRENCY is set to 0.

Related: REPLACE, FIELDPUT(), oRdd:FIELDPUT(), <FieldName> := <exp>

oRdd:RLOCK ([expN1]) ─> retL Method

Locks the specified record to perform a write access or to protect this record against
write access from another user or process. Meaningful in SHAREd mode only.
Equivalent to and invoked from the RLOCK() function, or identical to invoking the
oRdd:RLOCK(oRdd:RECNO) method. The superset of this method is
oRdd:RLOCKVERIFY().

Options: <expN1> specifies the record number to be locked. The current record
pointer RECNO remains unchanged. When omitted, NIL or zero, the current record
is locked, and all previous locks are released.

Returns: <retL> signals success. On error, FALSE is returned, which reports that
the database is FLOCKed or the record RLOCKed by another user, application or
DBserver, or that <expN1> is out of range.

Multiuser: if the database is opened in SHAREd mode, and the automatic locking is
disabled (oRdd:CONCURRENCY is set to 0), RLOCK() is required prior to write
accessing a single record. If oRdd:CONCUR- RENCY is active, RLOCK() overrides
the automatic locking and the lock remains active until oRdd:UNLOCK() is
executed. If the database is opened in EXCLUSIVE mode (the default), no locking
is required and RLOCK() is ignored.

Related: RLOCK(), oRdd:LOCKCURRENTRECORD(), oRdd:RLOCKLIST,
oRdd:RLOCKVERIFY(), oRdd:UNLOCK(), oRdd:CONCURRENCY

OBJ 354

oRdd:RLOCKLIST ─> expA Access

Returns an array of record numbers that are currently RLOCKed. If no records are
RLOCKed, an empty array is returned.

Related: RLOCK(), oRdd:RLOCK()

oRdd:RLOCKVERIFY () ─> retL Method

Determines if the current record is still unmodified since last accessed by the
current application and whether a record update is safe. If so, the record is
RLOCKed. This is a superset of the RLOCK() method.

retL = oRdd:RLOCKVERIFY ()
Returns: <retL> TRUE signals that the record contents is equal to that of the last
field access/assign/positioning of the current application, and the record is
successfully RLOCKed for subsequent field REPLACEment. FALSE signals, that
the record was changed by another user or process in the meantime, the
subsequent RLOCK and replacement may not be safe and therefore no RLOCK is
issued. The application should then determine the changed field to ensure a correct
transaction, see example in the RLOCKVERIFY() function. Since the fields are not
automatically updated after oRdd:RLOCKVERIFY(), you may store the "old" data,
issue oRdd:SKIP(0) and retrieve the new values. A FALSE value may also signal,
that oRdd:RLOCK() failed.

Multiuser: when the database is opened (or the class instantiated) in EXCLUSIVE
mode, the method always returns TRUE.

Related: oRdd:RLOCK(), oRdd:LOCKCURRENTRECORD(), RLOCKVERIFY()

oRdd:SCOPE <─> expL|expN Access/Assign

Determines or sets the general server scope according to chapter 6.2. The scope
provides the same functionality as the ALL, REST and NEXT clause of commands
and affects several processing methods if these are called with no explicit scope.
The constants are available in "rddsys. fh" file.

Scope content Value Description
DBSCOPEALL .F. The scope is ALL records, or REST with WHILE.
DBSCOPEREST .T. The scope is the remaining records starting from the

current position.
any number > 0 The scope is NEXT nRecords.
specifying NIL The scope is ALL records, or REST with WHILE.

OBJ 355

oRdd:SEEK (exp1...) ─> retL Method

Seeks through the current index/order for the first or last key matching the giving
expression, starting at the first logical record. Equivalent to and invoked from the
SEEK command or the DBSEEK() function.

retL = oRdd:SEEK (exp1, [expL2], [expL3])
Arguments: <exp1> is the expression to be matched with the index key, equivalent
to the <exp> of the SEEK command.

Options: <expL2> is equivalent to the SOFTSEEK clause of the SEEK command. If
set to TRUE (or FALSE), a soft seek is (not) performed, regardless to the SET
SOFTSEEK state. If NIL or not specified, the current state of SET SOFTSEEK is
considered.
<expL3> specifies, if the first or last occurrence of the key value is seek'ed for. If
TRUE, the database is positioned to the last matching key; or the first otherwise.
The TRUE option is supported by some RDDs only.

Returns: <retL> signals if the record was found, and is equivalent to the
oRdd:FOUND instance.

Example:

SET EXACT OFF
? oAdr:SEEK ("MILLER") // find first Miller...
? oAdr:SEEK ("MILLER", , .T.) // find last Miller...

Related: SEEK, DBSEEK(), oRdd:SEEKEVAL(), oRdd:FOUND, oRdd:EOF

oRdd:SEEKEVAL (expB1...) ─> retL Method

Seeks through the current index/order for the first or next key matching the
evaluated code block expression, starting with the current record. Equivalent to and
invoked from the SEEK EVAL command.

retL = oRdd:SEEKEVAL (expB1, [expL2])
Arguments: <expB1> is the code block, which performs the comparison of the
index. The current index/order key value and the corresponding record number are
passed to the code block as parameters, the code block should return TRUE if the
match succeeds, or FALSE to continue the index search. The code block body may
not move the database pointer itself by means of GOTO or SKIP.

Options: <expL2> specifies for some RDD drivers, that the corresponding record
number should be read during the index search. If not given, specified TRUE or NIL
(the default), the DBserver will move the database pointer according to the index
key for any index skip. If specified FALSE in some RDD drivers, the database
pointer remains unchanged until the code block returns TRUE or the end of the

OBJ 356

database was reached. This results in significant speed-up; but the record status
and its content are not available for the code block, also SET DELETED and SET
FILTER are ignored in this case. If <expL2> is not specified (or TRUE) in the default
DBSERVER and DBFIDX driver, the database record is repositioned during the
seek process only on request, i.e. if a field access (or field status access) is
specified within the code block body.

Returns: <retL> signals if the record was found, and is equivalent to the
oRdd:FOUND instance.

Example:

? oAdr:INDEXKEY() // "upper(NAME + FIRST)"
bSeek := {|key, rec| ;

"MILLER" $ key .and. "PETER" $ key}
oAdr:GOTOP()
while oAdr:SEEKEVAL (bSeek, .F.) // process index key only
? oAdr:NAME, oAdr:FIRST, CITY // for all ..Peter..Miller..
oAdr:SKIP()

enddo
bSeek := {|key, rec| "MILLER" $ upper(key) .and. ;

!deleted() .and. "MUNICH" $ upper(oAdr:CITY)}
oAdr:GOTOP()
? oAdr:SEEKEVAL (bSeek) // .dbf access enabled

Compatibility: not available in CA/VO.

Related: SEEK EVAL, DBSEEK(), oRdd:SEEK(), oRdd:FOUND, oRdd:EOF

oRdd:SETFILTER (expB1...) ─> retL Method

Sets a global DBserver filter condition (see also chapter 6.1), whereby the specified
or self-created code block is significant. Equivalent to and invoked from the SET
FILTER command or the DBSETFILTER() function.

retL = oRdd:SETFILTER ([expB1], [expC2])
retL = oRdd:SETFILTER (expC2)
Arguments: <expB1> is the code block that is evaluated for any database
movement. If <expC2> is omitted, <expB1> must be specified, but oRdd:FILTER
and DBFILTER() returns a null string.
<expC2> is a string, which is internally macro-compiled into the <expB1> code
block, if <expB1> is not specified. Otherwise, it contains only the information for
oRdd:FILTER and DBFILTER() reports.

Returns: <retL> signals success.

Related: SET FILTER, DBSETFILTER(), oRdd:CLEARFILTER()

OBJ 357

oRdd:SETINDEX (expC1...) ─> retL Method

Opens an index file and select its order as the controlling order, if the order/ index
list is still empty. Equivalent to and invoked from the SET INDEX command or the
DBSETINDEX() function.

retL = oRdd:SETINDEX ([expC1], [expC2], [expL3])
Arguments: <expC1> is the name of the index file, optionally prefaced with the
directory. If no extension is specified, the default oRdd:INDEXEXT is used. If the
path is not specified, the current, SET PATH and SET DEFAULT directories are
searched. If <expC1> is NIL, null string, or not specified, the oRdd:CLEARINDEX()
method is invoked.

Options:<expC2> specifies the order tag name within the index file in multiple tag
indices, ignored otherwise.
<expL3> specifies whether the index should be opened EXCLUSIVE to that
application. If not given, the default is FALSE, which opens the index in shared
mode.

Returns: <retL> signals success.

Compatibility: only one argument is available in CA/VO.

Related: SET INDEX, DBSETINDEX(), oRdd:CLEARINDEX(), oRdd:SETORDER()

oRdd:SETORDER (expN1...) ─> retC Method

Selects an index/order from the list of open indices and makes it to the controlling
order. Moves the record pointer to the first logical record. Equivalent to and invoked
from the SET ORDER command or the DBSETORDER() function.

retC = oRdd:SETORDER ([expN1|expC1], [expC2])
Arguments: <expN1>|<expC1> is the ordinal number (1..15) specifying the position
in the list of open indices/ orders. Zero (0), NIL or null string "" disables the
controlling index order, but all indices remain open. <expC1> will search for the
order name in the list of open orders.

Options: <expC2> specifies the index file name, when an order name <expC1> is
given, which is not unique within the order list. Returns: <retC> is the last order
name or "".
Related: SET ORDER, DBSETORDER(), oRdd:SETINDEX()

OBJ 358

oRdd:SETORDERCONDITION (expN1...) ─> retL Method

Sets conditions that are applied during the index and the order creation. If
oRdd:SETORDERCONDITION() has not been called, orders are not conditional.
This method is called from the INDEX ON FOR.. command and the
ORDCONDSET() function .

retL = oRdd:SETORDERCONDITION ([expC1], [expB2],
[expL3], [expB4], [expB5], [expN6],
[expN7], [expN8], [expN9], [expL10],
[expL11])

Options: <expC1> is a string equivalent to the FOR clause and stored in the index
header. Only this argument affects the later index update and reindex. If conditional
access is not required later, null string "" is equivalent to a NIL value. If no
arguments are specified at all, the condition is reset.
<expB2> is a code block that defines a FOR condition that each record within the
scope must meet in order to include this key into the index/ order file during the
order creation.
<expL3> specifies if all orders in the current or specified working area (if TRUE or
NIL) are affected, which is the default on INDEX ON.
<expB4> is a code block that defines a WHILE condition. The indexing is
performed as long as the code block returns TRUE and is aborted when the
condition return FALSE.
<expB5> is a code block that defines an EVAL clause. This code block is evaluated
for every record that is processed and often used for displaying of the indexing
progress.
<expN6> is a numeric expression, which modifies the number of times <expB5> is
evaluated. It offers a performance enhancement by evaluating the condition for
every nth record instead of for every record ordered. Zero (0) is equivalent to NIL,
the default.
<expN7> is a numeric expression specifying the starting record number, Zero (0) is
equivalent to NIL, which specifies to start from the first record, if such is available.
<expN8> is a numeric expression, equivalent to the NEXT<n> clause, which
specifies the number of records to be processed.
<expN9> is a numeric expression, equivalent to the RECORD<n> clause, which
specifies the record to be processed.
<expL10> is a logical expression, FALSE is equivalent to the ALL clause (default),
whilst TRUE to the REST clause.
<expL11> is a logical expression, FALSE is equivalent to the ASCENDING sort
order (default), whilst TRUE to the DESCENDING clause.

Returns: <retL> signals success.

Related: ORDCONDSET()

OBJ 359

oRdd:SETRELATION (expO1...) ─> retL Method

Sets a relation from this DBserver to a child server. Equivalent to and invoked from
the SET RELATION command or the DBSETRELATION() function.

retL = oRdd:SETRELATION (expO1, expB2|expC2|expA2,
[expC3])

retL = oRdd:SETRELATION ()
Arguments: <expO1> is the object specifying the child database. If omitted, the
oRdd:CLEARRELATION() method is invoked in order to clear all relations for the
current server.
<expB2>|<expC2>|<expA2> is a code block or string specifying the relation,
equivalent to the TO clause of SET RELATION. The <expC2> string (e.g. the field
name, corresponding to the child's index) is automatically macro compiled into a
code block. The elements of an array of strings <expA2> are concatenated with a
plus sign and the result is macro-compiled into a code block. As always, the
expression should match or be a partial index of the controlling index of the child's
work area.

Options: <expC3> specifies the relation string to be reported by ordd:RELATION()
or DBRELATION(), when <expB2> is used.

Returns: <retL> signals success.

Example:

? oAdr:INDEXKEY() // CustID
? oOrd:INDEXKEY() // AdrNum
oAdr:SETRELATION(oOrd, {|| oAdr:CustID}, "CustID")
oAdr:SEEK(12345)
if oAdr:FOUND .and. oOrd:FOUND

? oAdr:CustID, oOrd:Name
endif
oOrd:SETORDER(2)
oAdr:SETRELATION(oOrd, {"Name", "First", "City"})

Related: oRdd:ISRELATION, oRdd:CLERRELATION(), SET RELATION,
DBSETRELATION()

oRdd:SHARED ─> expL Access

Returns a logical value indicating the open mode. If the database is opened or the
object instantiated in SHARED mode, TRUE is returned. FALSE indicates an
exclusive open.

Related: DBSERVERNEW(), USE, DBUSEAREA(), oRdd:INFO(), ISDBEXCL()

OBJ 360

oRdd:SKIP ([expN1]) ─> retN Method

Moves the record pointer forward or backward a specified number of records.
Equivalent to and invoked from the SKIP command or DBSKIP() function.

retN = oRdd:SKIP ([expN1])
Options: <expN1> is the number of records to move, relative to the current record.
A positive value means to move forward, and a negative value means to move
backward. If omitted, 1 is assumed.

Returns: <retN> is the number of records actually skipped.

Related: SKIP, DBSKIP(), oRdd:GOTO()

oRdd:SORT (expC1...) ─> retL Method

Copies records from the current database file (source) in sorted order to another
database file (target). Equivalent to the SORT command.

retL = oRdd:SORT (expC1|expO1, [expA2],
[expC3|expB3], [expC4|expB4],
[expN5|expL5])

Arguments: <expC1>|<expO1> is the name or DBserver object of the target
database. If no extension is specified with <expC1>, it is assumed to be .dbf, or the
standard extension according to the RDD driver. If <expC1> is specified, the target
database is opened exclusively. If <expO1> is given, the RDD server object is used
and the records are appended.

Options: <expA2> is an array of character values, specifying the field names used
as a sorting order. Any field may include the sorting order (/A, /D, /C, see SORT
command). If <expA2> is not specified, the records are transferred in the physical
or logical order of the source server.
<expC3>|<expB3> is equivalent to the FOR scope. The condition, given as a string
or code block, is evaluated for each record of the scope.
<expC4>|<expB4> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position in the
source database until <expB4> returns FALSE.
<expN5>|<expL5> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 3 to 5 are specified, the global scope of the current
server is used, see chapter 6.1. If not set, the default is ALL records.

Returns: <retL> signals success, if TRUE, or failure (e.g. the open mode)
otherwise.

OBJ 361

Example:

ok := oAdr:SORT ("newadr", {"Name /C","First","left(ZIP,3) /D"},;
{|| "MILLER" $ upper(Name)})

// which is equivalent to

oAdr:SETORDERCONDITION ('"MILLER" $ upper(Name)')
oAdr:CREATEINDEX ("tmp", "upper(Name)+First+descend(left(zip,3)))
oAdr:COPYDB ("newadr")

Related: SORT, INDEX, COPY TO

oRdd:SUM (expC1...) ─> retA Method

Calculates the sum of a series of numeric expressions. Similar to the SUM
command.

retA = oRdd:SUM (expC1|expL1|expB1|expA1,
[expC2|expB2], [expC3|expB3],
[expN4|expL4])

Arguments: <expC1>|<expL1>|<expB1>|<expA1> is a single expression (e.g. field
name), a code block or an array of expressions or code blocks to be summarized.
The expression must evaluate to numeric or logical to be summarized, whereby
TRUE adds one to the result.

Options: <expC2>|<expB2> is equivalent to the FOR scope. The condition, given
as a string or code block, is evaluated for each record of the scope.
<expC3>|<expB3> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position in the
source database until <expB3> returns FALSE.
<expN4>|<expL4> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 2 to 4 are specified, the global scope of the current
server is used, see chapter 6.1. If not set, the default is ALL records.

Returns: <retA> is an array that contains the sums for each expression or field
specified. If a single expression is specified, the array dimension is one, otherwise
the dimension of <expA1> is returned.

Example:

aResult := oAdr:SUM ({"Turnover", {||dept >= 4711}, "Commis"} ,;
{|| "MILLER" $ upper(Name)} ,, DBSCOPEREST)

Related: SUM, AVERAGE, TOTAL

OBJ 362

oRdd:TOTAL (expC1...) ─> retL Method

Summarizes records by key value, producing grouped summarizations, and writes
the aggregate values to another (target) database. Similar to the TOTAL command.

retL = oRdd:TOTAL (expC1|expO1, expC2|expB2,
[expA3], [expC4| expB4], [expC5|expB5],
[expN6|expL6])

Arguments: <expC1> is the name of the target database. If no extension is
specified, it is assumed to be .dbf, or the standard extension according to the RDD
driver. The target database is opened exclusively.
<expC2>|<expB2> is the key field that is the basis for the summarization groups,
that produce a new record in the target database. Equivalent to the ON clause of
the TOTAL command. The database should be indexed or sorted on that key.

Options: <expA3> is an array of names of numeric fields to total, equivalent to the
FIELDS clause of TOTAL. If the argument is not specified, the target record
contains the value of the first record matching the second argument.
<expC4>|<expB4> is equivalent to the FOR scope. The condition, given as a string
or code block, is evaluated for each record of the scope.
<expC5>|<expB5> is equivalent to the WHILE scope. The condition, given as a
string or code block, is evaluated for each record from the current position in the
source database until <expB5> returns FALSE.
<expN6>|<expL6> is the range of records, providing the same functionality as the
ALL, REST and NEXT clause of commands. See chapter 6.2 for the scope values.

Scope: If none of the arguments 4 to 6 are specified, the global scope of the current
server is used, see chapter 6.1. If not set, the default is ALL records.

Returns: <retL> signals success.

Example:

? oAdr:INDEXKEY() // str(Departm,5) + city
ok := oAdr:TOTAL ("depsum", "Departm", {"Turnover", "Commis"})
oDep := DBSERVER {"depsum"}
oDep:EVAL ({|| qout(recno(), Turnover, Commis)})

Related: TOTAL, SUM, AVERAGE

OBJ 363

oRdd:UNLOCK ([expN1]) ─> retL Method

Releases a specified lock or all locks. Equivalent to and invoked from the UNLOCK
command.

retL = oRdd:UNLOCK ([expN1])
Options: <expN1> is the number of the desired record. If 0 or omitted, all locks for
this server are released, record locks as well as file locks.

Returns: <retL> signals success.

Multiuser: if the database is opened exclusive, all locks and un-locks are ignored.

Related: UNLOCK, oRdd:RLOCK(), oRdd:FLOCK()

oRdd:UPDATE (expC1...) ─> retL Method

Updates this server (target) with data from another database server (source).
Equivalent to the UPDATE command.

retL = oRdd:UPDATE (expC1|expO1, expC2|expB2,
[expL3], expB4)

Arguments: <expC1>|<expO1> is the name or DBserver object of the source
database, equivalent to the FROM clause of UPDATE. If no extension is specified,
it is assumed to be .dbf, or the standard extension according to the RDD driver. If
<expC1> is specified, the source database is used shared, in read-only mode. If
<expO1> is given, the RDD server object is used.
<expC2>|<expB2> is the key field that defines how records are matched between
the servers. Equivalent to the ON clause of UPDATE.
<expB4> is a code block that manages the update and replace operations.

Options: <expL3> is equivalent to the RANDOM clause. If specified TRUE, it
indicates that the records in the other database are allowed to be unsorted.
Otherwise, the source database must be sorted or indexed on the <exp2> key.

Returns: <retL> signals success, if TRUE, or failure otherwise.

Multiuser: if the (target) database is opened (or the class instantiated) in SHAREd
mode, at least FLOCK() is required, if oRdd:CONCURRENCY is set to 0.

Example:

oFrm:INDEXKEY() // Departm
oAdr:FLOCK()
oAdr:UPDATE (oFrm, {|| Departm}, , ;

{|| oAdr:TurnOver += oFrm:cost, oAdr:Count++ })

Related: UPDATE

OBJ 364

oRdd:USED ─> expL Access

Returns a logical value indicating whether the server is open. Even if the USE
command or instantiating the object fail to open the database, a DBserver object is
created. Also, if the database is closed in the meantime, the object remains visible
during the variable visibility (life-time) scope. Therefore, if the usability status is
unknown, check the oRdd:USED status for TRUE before any DBserver
manipulation. This instance is equivalent to and invoked from the USED() function.

Related: DBSERVERNEW(), USE, DBUSEAREA(), USED(), DBOBJECT()

oRdd:WHILEBLOCK <─> expB|NIL Access/Assign

The WHILE block is a component of the general server scope, described in chapter
1. It affects several bulk processing methods if they are called with no explicit
scope. The WHILE block can be specified as a code block or a string. An access to
this instance always returns a code block or NIL if not set. To reset the global
WHILE block, assign NIL to it or execute oRdd:CLEARSCOPE() for a global reset.

Related: oRdd:FORBLOCK, oRdd:SCOPE, oRdd:CLEARSCOPE()

oRdd:ZAP () ─> retL Method

Permanently removes all records from the DBserver database (and memo file),
leaving the database empty. Equivalent to the ZAP command.

retL = oRdd:ZAP ()
Returns: <retL> signals success.

Multiuser: the database must be opened (or the class instantiated) in EXCLUSIVE
mode.

OBJ 365

Index: OBJ

@

@..GET
- class OBJ-105
- object..................................... OBJ-105

A

Achoice()
- class of OBJ-123

Application
- attributes OBJ-23
- close of OBJ-29
- command-line parameter OBJ-15
- control box............................... OBJ-27
- font .. OBJ-16

-- output OBJ-18
-- widgets OBJ-18

- hidding..................................... OBJ-28
- MDI

-- mode OBJ-28
- Menu OBJ-172
- notification OBJ-29
- print status of........................... OBJ-34
- scroll bar.................................. OBJ-26
- style ... OBJ-34
- title of....................................... OBJ-23
- type of OBJ-15
- window

-- font OBJ-18
-- move................................... OBJ-28
-- re-display............................ OBJ-26
-- resize.................................. OBJ-31
-- size

--- current OBJ-24
--- default............................ OBJ-25

-- visibility OBJ-34

C

CheckBox
- box around OBJ-54
- caption

-- column................................ OBJ-51
-- row...................................... OBJ-51
-- text...................................... OBJ-52

- checked................................... OBJ-52
- clear .. OBJ-55
- color .. OBJ-54
- column..................................... OBJ-53
- display OBJ-55
- execute.................................... OBJ-60
- focus.. OBJ-56
- handler OBJ-56

-- focus................................... OBJ-55
-- state.................................... OBJ-59

- height OBJ-56
- message.................................. OBJ-58
- modified................................... OBJ-58
- mouse click OBJ-56
- row... OBJ-58
- select OBJ-59
- style ... OBJ-60
- tooltip....................................... OBJ-61
- width .. OBJ-62

Class
- Application............................... OBJ-13

-- basic OBJ-13
-- creator OBJ-15
-- window OBJ-19

- CheckBoxOBJ-47 see also CheckBox
- Color.. OBJ-37
- ColorPair OBJ-39
- ComboBox OBJ-66, 123
- DataServer OBJ-296
- DbfIdx.................................... OBJ-296
- DbServer OBJ-296
- Dimension OBJ-40
- Error .. OBJ-67
- ErrorBox OBJ-81
- Font ... OBJ-94
- Get... OBJ-105
- InfoBox OBJ-81
- instance................................... OBJ-10
- ListBox OBJ-123
- MenuItem OBJ-154
- MessageBox OBJ-81
- method OBJ-10

OBJ 366

- Mouse OBJ-41
- object of..................................... OBJ-5
- overview.................................... OBJ-5
- Point .. OBJ-42
- PopUp OBJ-161
- Printer.................................... OBJ-183
- PushButton............................ OBJ-198
- RadioButton OBJ-213
- RadioGroup........................... OBJ-227
- Rectangle OBJ-44
- Size ... OBJ-45
- syntax...................................... OBJ-10
- TbColumn.............................. OBJ-287
- Tbrowse OBJ-249
- TextBox OBJ-81
- TopBar OBJ-172
- WarningBox............................. OBJ-81

Column
- conversion

-- from pixel............................ OBJ-18
-- to pixel OBJ-18

- width in pixel............................ OBJ-15
ComboBox OBJ-see CheckBox

D

Database
- class of OBJ-296
- driver OBJ-324
- info about OBJ-335
- object of................................. OBJ-297
- status..................................... OBJ-335

Desktop
- DPI .. OBJ-17
- height OBJ-16
- size.. OBJ-17
- size, available.......................... OBJ-17
- width.. OBJ-16

E

Error block..................................... OBJ-67
Error handling OBJ-67
Event

- handler
-- call-back OBJ-29
-- close application................. OBJ-29
-- move window OBJ-30

-- resize window..................... OBJ-30
- process.................................... OBJ-30

F

Font
- class .. OBJ-94

I

Index
- info about OBJ-342
- status..................................... OBJ-342

InfoBox()
- class of OBJ-81

M

MDI
- mode OBJ-28

MessageBox()
- class of OBJ-81

O

Object
- overview OBJ-5

P

Printer
- class OBJ-183

R

rddsys.fh include file OBJ-298
Row

- conversion
-- from pixel............................ OBJ-18
-- to pixel OBJ-18

- width in pixel............................ OBJ-18

S

Scroll bar

OBJ 367

- application OBJ-26
Source

- o_printer.prg.......................... OBJ-183

T

TbColumn

- class OBJ-287
Tbrowse

- class OBJ-249
TextBox()

- class of OBJ-81

OBJ 368

OBJ 369

OBJ 370

