

The whole FlagShip 7 manual consist of following sections:

Section Content Pages

GEN General information: License agreement & warranty,
installation and de-installation, registration and support 18

LNG
FlagShip language: Specification, database, files,
language elements, multiuser, multitasking, FlagShip
extensions and differences

176

FSC Compiler & Tools: Compiling, linking, libraries, make,
run-time requirements, debugging, tools and utilities 90

CMD Commands and statements: Alphabetical reference of
FlagShip commands, declarators and statements 486

FUN Standard functions: Alphabetical reference of FlagShip
functions 640

OBJ
Objects and classes: Standard classes for Get,
Tbrowse, Error, Application, GUI, as well as other
standard classes

368

RDD Replaceable Database Drivers 38

EXT
C-API: FlagShip connection to the C language, Extend
C System, Inline C programs, Open C API, Modifying
the intermediate C code

160

FS2 Alphabetical reference of FS2 Toolbox functions 376

QRF Quick reference: Overview of commands, functions and
environment 40

PRE Preprocessor, includes, directives 30

SYS
System info, porting: System differences to DOS, porting
hints, data transfer, terminals and mapping, distributable
files

42

REL Release notes: Operating system dependent informa-
tion, predefined terminals 8

APP Appendix: Inkey values, control keys, ASCII-ISO table,
error codes, dBase and FoxPro notes, forms 34

IDX Index of all sections 42

fsman The on-line manual contains all above sections, search
function, and additionally last changes and extensions variable

multisoft Datentechnik, Munich, Germany

Copyright (c) 1992..2009
All rights reserved

Object Oriented Database Development System,
Cross-Compatible to UNIX, Linux and MS-Windows

Section CMD

Manual release: 7.1

For the current program release see label on distribution disk and
your Activation Card, or check on-line by issuing FlagShip -version

Copyright
Copyright © 1992..2009 by multisoft Datentechnik, D-81545 Munich, Germany. All rights
reserved worldwide. Manual authors: Jan V. Balek, Ibrahim Tannir, Sven Koester

No part of this publication may be copied or distributed, transmitted, transcripted, stored in a
retrieval system, or translated into any human or computer language, in any form or by any
means, electronic, mechanical, magnetic, manual, or otherwise; or disclosed to third parties
without the express written permission of multisoft Datentechnik. Please see also "License
Agreement", section GEN.2

Made in Germany. Printed in Germany.

Trademarks
FlagShip™ is trademark of multisoft Datentechnik. Other trademarks: dBASE is trademark
of Borland/Ashton-Tate, Clipper of CA/Nantucket, FoxBase of Microsoft/Fox, UNIX of
AT&T/USL/SCO, AIX of IBM, MS-DOS and MS-Windows of Microsoft. Other products
named herein may be trademarks of their respective manufacturers.

Headquarter Address
Headquarter:

multisoft Datentechnik
Harthauser Str. 85
81545 München
Germany

Telephone: (+49-89) 6490040
Fax: (+49-89) 6412974

E-mail: support@flagship.de
support@multisoft.de
sales@multisoft.de

Web/Ftp: http://www.fship.com
ftp://mult-soft.de/pub

Call or e-mail multisoft for your local dealer or distributor

CMD 1

FlagShip Commands

Notation Used ...7
! | RUN ..11
* && // /*...*/ NOTE..14
? | ?? ...16
?# | ??# | ??## ..20
@... ...22
@...BOX..23
@...CLEAR ...28
@...DRAW ARC..30
@...DRAW CIRCLE ..33
@...DRAW ELLIPSE...35
@...DRAW IMAGE..37
@...DRAW LINE ...39
@...DRAW PIE..41
@...DRAW POLYGON ...44
@...DRAW RECTANGLE ...46
@...PROMPT..48
@...SAY ..53
@...SAY BITMAP @...SAY IMAGE ..60
@...[SAY..] GET..64
@...[SAY..] GET CHECKBOX ..76
@...GET COMBOBOX..80
@...GET LISTBOX..82
@...GET PUSHBUTTON ..88
@...[SAY..] GET RADIOBUTTON ..93
@...GET RADIOGROUP ..97
@...GET TBROWSE...102
@...TO ..104
ACCEPT ... TO ...106
ACCESS METHOD ASSIGN METHOD ...107
ANNOUNCE ...108
APPEND BLANK ..110
APPEND ... FROM..111
AVERAGE ... TO...115
BEGIN SEQUENCE...END...116
CALL ...121
CANCEL / QUIT..123
CLASS, INSTANCE..124
CLEAR ..131
CLEAR ALL...132
CLEAR GETS ...133
CLEAR MEMORY...134
CLEAR MENU ..135
CLEAR SCREEN / CLS..136

CMD 2

CLEAR TYPEAHEAD ...138
CLOSE..139
COMMIT ...141
CONTINUE ...144
CONSTANT ..145
COPY FILE ... TO ...146
COPY TO..147
COPY STRUCTURE TO ..151
COPY TO...STRUCT EXTENDED ...152
COUNT ... TO ...154
CREATE ...155
CREATE ... FROM..156
DECLARE...159
DELETE..161
DELETE FILE ...162
DELETE TAG..163
DIR..165
DISPLAY...167
DO...168
DO CASE..CASE ... ENDCASE ...170
DO WHILE ... ENDDO ..172
EJECT...174
ERASE..175
EXPORT INSTANCE..176
EXTERNAL...177
FIELD..178
FIND..180
FOR ... NEXT..182
FUNCTION ...184
GLOBAL ... AS..189
GLOBAL_EXTERN ... AS ...192
GO | GOTO...194
HIDDEN INSTANCE...196
IF ... ENDIF ...197
INDEX ON...TO...199
INPUT ... TO ...206
INSTANCE..208
JOIN WITH...TO... ..209
KEYBOARD..210
LABEL EDIT..212
LABEL FORM ...215
LIST ..217
LOCAL ..219
LOCAL ... AS ..222
LOCATE ... FOR...228
MEMVAR ..230
MENU TO ...232
METHOD ..235
NOTE..239

CMD 3

ON ANY KEY ON KEY ...240
ON ERROR...241
ON ESCAPE ...243
PACK ..244
PARAMETERS ...246
PRIVATE...248
PROCEDURE ...250
PROTECT INSTANCE..255
PROTOTYPE..256
PUBLIC ...261
PROTECT PUBLIC...264
PUSH KEY POP KEY...265
QUIT..266
READ ..267
RECALL ..275
REFRESH...276
REINDEX ..277
RELEASE ...279
RENAME ... TO...280
REPLACE ... WITH...282
REPORT EDIT..286
REPORT FORM ...288
REQUEST...290
RESTORE FROM ...291
RESTORE SCREEN...293
RETURN ...294
RUN ..295
SAVE TO ..301
SAVE SCREEN ..303
SEEK...305
SEEK EVAL ..307
SELECT ..309
SET ALTERNATE...312
SET ANSI..314
SET AUTOCOMMIT ...315
SET AUTOLOCK ..316
SET BELL ...319
SET CENTURY...320
SET CHARSET...321
SET COLOR TO ...322
SET COORD...328
SET CONFIRM ...330
SET CONSOLE ..331
SET COORDINATE UNIT...332
SET CURSOR ..333
SET DATE ..334
SET DBREAD SET DBWRITE ...336
SET DECIMALS TO..338
SET DEFAULT TO..339

CMD 4

SET DELETED ...340
SET DELIMITERS ..341
SET DEVICE TO...343
SET DIRECTORY TO...344
SET EJECT...346
SET EOFAPPEND..347
SET EPOCH ...348
SET ESCAPE ...350
SET EVENTMASK..351
SET EXACT..352
SET EXCLUSIVE..354
SET EXTRA..356
SET FILTER TO..358
SET FIXED ...360
SET FONT ..362
SET FONT ALIGN SET FONT BASELINE...365
SET FORMAT TO...367
SET FUNCTION ... TO ...369
SET GOTOP...371
SET GUIALIGN...372
SET GUICOLORS ..373
SET GUICURSOR..374
SET GUIPRINTER..376
SET GUITRANSL ...377
SET HTMLTEXT...381
SET INDEX TO...384
SET INPUT ...387
SET INTENSITY ...388
SET KEY ... TO...389
SET KEYTRANSL ..393
SET LARGEFILE ..395
SET MARGIN TO..396
SET MESSAGE TO ..398
SET MULTIBYTE..399
SET MULTILOCKS...401
SET NFS...403
SET OPENERROR...405
SET ORDER TO...406
SET OUTMODE..408
SET PATH TO ..410
SET PIXEL..412
SET PRINTER ..413
SET PROCEDURE TO...420
SET RELATION..421
SET ROWADAPT ...425
SET ROWALIGN ..426
SET SCRCOMPRESS..429
SET SCOREBOARD ..430
SET SOFTSEEK...431

CMD 5

SET SOURCE...433
SET TYPEAHEAD TO ..436
SET UNIT..437
SET UNIQUE ..438
SET WRAP ...439
SETSTANDARD SETENHANCED SETUNSELECTED ..440
SET ZEROBYTEOUT...441
SKIP..442
SORT ...ON...TO...444
STATIC ...446
STATIC ... AS ...448
STORE..451
SUM ..453
TEXT ... ENDTEXT...454
TOTAL ..455
TYPE...457
UNLOCK ...458
UPDATE ...460
USE...462
WAIT ...470
ZAP ...473
Index CMD ..475

CMD 6

CMD 7

FlagShip Commands

Notation Used
The syntax of the FlagShip commands is the same as in other xBase languages, such as
dBASE or Clipper. The following notation is used throughout this manual:

COMMAND [arguments] [KEYWORD [arguments]]
COMMAND

One or more special keywords (or symbols) at the beginning of a source line
(leading spaces and tabs are not significant) define the commands, such as RUN, ?
APPEND etc. The command keywords are case insensitive and may be shortened
to 4 characters, so APPEND, APPEN and APPE represent the same command
keyword, but APPEX will produce a compile-time error.

KEYWORD
The keyword (or clause) modifies the command to perform and satisfy additional
special actions and requirements. The keywords are also case insensitive and may
be shortened to 4 characters.

<argument>
Some commands and keywords require additional specification (arguments). The
syntax used for the arguments is always "exp?" where "?" is the type of the
expression e.g. "expC" for character, "expN" for numeric and so on. This means,
that the argument may be entered as a constant, variable or any expression of the
required type. If the type is not given, any type is allowed. The usual syntax is
KEYWORD constant or KEYWORD "constant" or KEYWORD ¯o. or
KEYWORD (expression), see details in each command syntax. Note that the
parenthesis () does not specify here the priority of the evaluation like a
mathematical parentheses, but tells the compiler: "use/calculate an expression
instead of constant". So the arguments "abc.efg" and (xyz + ".efg") are valid
(constant vs. expression), but (xyz)+".efg" is an invalid argument syntax, although it
is a valid expression in all other context.

<item>
The text within the angle brackets informs you which type of information you should
specify; not the item itself. Do not enter the brackets.

item1|item2
If more than one kind of syntax is allowed, the different syntax keywords or options
are separated with the | sign. The items are mutually exclusive, you may use only
one of them. Do not type the | sign.

item [item ...]
The item may be entered more than once. Do not type the [] brackets.

CMD 8

[item]
The entry is optional, you may either specify it or not. Do not type the [] brackets.

[item1 [,item2]]
The entry of both item1 and item2 is optional, you may give item1 or item1,item2 or
nothing at all. Do not type the [] brackets themselves.

(item)
The parentheses are part of the syntax and must be entered.

exp
Constant, variable or expression of any type.

expC, expN, expD, expL
Constant, variable or expression of type character, numeric, date or logical (see
LNG.2.8).

varS
Variable of type screen (see LNG.2.6).

expList, argList, fieldList
List of expressions (or arguments, fields etc.) in the syntax exp1 [,exp2 [, exp3 ...]].
If two or more expressions (or arguments, fields etc.) are specified, a comma is
used as a separator between each of the single expressions <exp>; see also
LNG.2.8.

on|OFF|(<expL>)
The ON or OFF switch (flag) activates or deactivates the command and is specified
as a literal (meaning the letters "on" or "off"). Alternatively, the parenthesized
<expL> (logical expression or constant) can be used, whereby logically TRUE is the
same as ON. The default switch is given in capital letters.

<scope>
In some database commands, partial execution can be specified. The valid
<scope> arguments are: ALL (all database records), NEXT <expN> (next n
records), REST (from the current record to the end of the database), RECORD
<expN> (the given record number). Additional filters are available using FOR and
WHILE clauses.

...FOR <condition> ...WHILE <condition>
In some database commands, the FOR clause specifies that the command will be
repeatedly executed for all records meeting the logical expression given as
<condition>. The WHILE clause stops the repetition of the command when the first
record which does not meet the condition is reached. The <scope> option, if given,
restricts the FOR and WHILE clause.

...TO PRINTER
This clause echoes the output of the console command (per default ADDITIVE) to a
printer file or to the device set by the SET PRINTER TO command. The ..TO
PRINTER clause is equivalent to automatically echoing output to a printer file or
device, already activated by the SET PRINTER ON command. If the SET PRINTER

CMD 9

TO <file> (or device) was not specified, the output is redirected to the FlagShip's
standard spooler file, see LNG.3.4 and LNG.5.1.6.

...TO FILE <file>
This clause echoes the output of the console command to the specified ASCII file. If
the file extension is not specified, .txt is assumed. If the additional ADDITIVE option
is given, an addition in made to the output instead of the <file> being overwritten.
The TO FILE.. ..ADDITIVE clause is equivalent to automatically echoing output to a
SET EXTRA file or device which has been already opened and activated by ON.
Additional redirections of the sequential (console) output are available using the
SET PRINTER ON and SET ALTERNATE ON/TO commands.

Syntax:
The required syntax, keywords and arguments of the command.

Arguments/Options:
Explanation of the required or optional command modifiers or entries.

Multiuser:
Where special or additional requirements or actions in the multi- user and/or multi-
tasking (or network) environment are necessary, they will be listed in this
paragraph.

Example:
Example of one or more command usage possibilities, in a program context.

Classification:
Classification of the command, e.g. input, output, database etc..

Compatibility:
The commands, keywords and arguments have the same syntax as in other xBASE
dialects, like Clipper. If differences exist, they are noted here.

Include:
If a special #include file is available or affected (except the default std.fh), it will be
listed.

Translation:

Most commands will be translated by the FlagShip preprocessor to equivalent
functions, according to the file <FlagShip_dir>/include/ std.fh. The actual translation
may differ, and is given for your orientation only. The std.fh file and the internal,
undocumented functions (where the name starts with an underscore) may be
changed without prior notice.

Related:
Equivalent, related or similar commands and functions.

PROCEDURE example
Typography used for program examples or command usage.

CMD 10

$ input
Typography used for user input from the UNIX shell.

<FlagShip_dir>
The <FlagShip_dir> is usually the directory /usr/local/FlagShip7 in Unix and Linux,
or C:\Program Files\FlagShip in MS-Windows, but may differ according to your
setup choice and MS-Windows defaults. The real path is displayed by "FlagShip -
v" or "FlagShip -h".

COMMANDS, KEYWORDS and standard FUNCTIONS will be specified in this manual in
uppercase, but their case is disregarded during compilation.

The FlagShip preprocessor translates standard commands to their equivalent functions
according to the definitions in the std.fh include file (see translation above). FlagShip also
supports user-defined-commands (UDC), which are translated via the #command or
#xcommand preprocessor directive to other functions or commands. See more in section
PRE.

The commands that follow are listed in alphabetical order and may be used as the language
reference. For a summary of the commands, see sections QRF and LNG.

CMD 11

! | RUN
Syntax:

! [WAIT|NOWAIT]
[MESSAGE <expC1>]
<UNIX command|Windows command>|(<expC2>)

or:
RUN [WAIT|NOWAIT]

[MESSAGE <expC1>]
<UNIX command|Windows command>|(<expC2>)

Purpose:
Executes a UNIX or MS-Windows command, program or script within the actual
application. This enables harnessing the power of UNIX or Windows commands.

Arguments:
<UNIX command> may be any executable program or script within the path. All
character expressions must be enclosed in parentheses. Macro expressions can
also be used and will be expanded before submitting the command to the shell.

Options:
WAIT or NOWAIT: optional modifier. With WAIT (default), the application will wait
until the command will finish. NOWAIT will trigger the command to background and
continue execution of the application. NOWAIT is similar to Unix command
"shell_call &". Do not use WAIT/NOWAIT clause together with the "&" postfix.

MESSAGE <expC1> is an optional, user defined message to be printed on the
screen, when the executed UNIX command is finished. Note, no FlagShip output
mapping is active when the MESSAGE is printed; it works as does the "echo
<expC1>" from the UNIX shell would. Before <expC1> is printed, a NEW LINE is
executed (similar to the WAIT command).

Note that both options, if any given, needs to precede the command.

Return code:
The return code may be checked via DosError() function. Note: this return code is
system dependant and correspond to the return value of system function system()
or of errno if system() returns -1. On some oper. systems, you will get the true exit
code by calculating nRet := int(DosError() / 256). You may display the clean error
msg by Doserror2str()

Description:
At RUN command, FlagShip invokes a new shell and passes it the UNIX or
Windows command to be executed. The required command must be available in
the current path or else given with an absolute path.

When the <Unix/Windows command> ends (or when the background process is
started by "&" postfix or by NOWAIT clause), the control returns back to the
application, executing the next FlagShip statement.

CMD 12

In MS-Windows, the ! or RUN command works by the same way as in Unix. See
further details in CMD.RUN description.

To enable the inspection of the output from the called program, print a prompt
(using e.g. the MESSAGE clause or the equivalent statement "; echo...") and stop
the further execution using INKEY(0) after the RUN command; see example on the
RUN command.

Shell access: You may run a shell by specifying the argument "sh" (or "csh", "ksh"
respectively) to the RUN command. To exit the shell, type "exit". In MS-Windows,
invoke "CMD" or COMMAND for that reason.

Background processing: the executable or script called may run in background, if
the RUN command specification ends with an ampersand (&) character or by using
the NOWAIT clause. The current application will not wait for the called executable
to finish, but will carry on with its own execution immediately. The program called
becomes a child of the calling executable and will terminate latest when the current
application terminates. Applicable in Unix/Linux only. Note that any input to, or
output from the background program may cause the called application to hang.

User break: when the called program is a FlagShip application, both programs will
receive the break and debug signals (^K and ^O).

Screen output: In Terminal i/o, output from the called application goes to the
application screen, and may garbage it. In GUI mode, the output goes to stdout or
stderr, which is usually assigned to the console (or console window), and hence
does not affect the current screen. See more in (CMD) RUN.

Compatibility note: since the Unix and MS-Windows commands usually differs
from each other, you may use
#ifdef FS_WIN32

RUN Windows-Command...
#else

RUN Unix-Command...
#endif

Example:
This example shows how to use RUN in combination with MEMOREAD() and
MEMOWRIT() to create a user-defined function that calls the editor with the current
memo field:

PUBLIC FlagShip, Clipper
editor = if (FlagShip, "vi", "edlin")
success = MemoEditor (editor, "Notes")

FUNCTION MemoEditor (editor, memofld)
IF MEMOWRIT ("myedit.txt", &memofld)

RUN (editor + " myedit.txt")
REPLACE &memofld WITH MEMOREAD ("myedit.txt")
RETURN 0 // success

ELSE
RETURN -1 // error

ENDIF

CMD 13

Example:
Start MS-Word (Winword) in Windows as sub-process, continue processing of the
application. Note the notification of path and/or file name including spaces: the
executable (with path) and/or the file name needs to be passed to Windows
enclosed in double quotas. When the command uses variables, enclose it in
parentheses.

? "Invoking MS-Word as separate process..."
RUN NOWAIT '"C:\Programs\Microsoft Office\Office\Winword.exe" /w'
WAIT "press any key to continue this application..."

// or:
cDocFile := '"D:\Documens and Settings\Default User\' + ;

'My Documents\myfile.doc"'
cCommand := '"C:\Program Files\Microsoft Office\' + ;

'Office\Winword.exe"'
RUN NOWAIT (cCommand + " " + cDocFile)

Example:
See additional examples in the RUN command.

Classification:
system call

Compatibility:
As opposed to the equivalent DOS execution, there are practically no limits to the
use of RUN on UNIX. If the available RAM space is insufficient, the additional swap
disk area will be used automatically. Similarly works also Windows NT..XP.

Keep in mind the differences in system command names on DOS and UNIX (ls
instead of DIR etc.) and the different DOS vs. UNIX screen handling. For portability,
#ifdef FlagShip... #else...#endif or the PUBLIC FLAGSHIP variable can be used to
compile platform specific code selectively.

The MESSAGE clause is new in FS4, WAIT/NOWAIT in FS6 and both are not
available in Clipper.

Translation:
__RUN (expC)

Related:
RUN, REFRESH

CMD 14

* && // /*...*/ NOTE
Syntax:

NOTE [<text>]
or:

* [<text>]
or:

[<command>] && [<text>]
or:

[<command>] // [<text>]
or:

[<command>] /* [<text>] */ [<command>]
Purpose:

Various kind of program comments: full-line, in-line and special comments.

Arguments:
<text> is a character string ending with a new line.

Description:
NOTE and * at beginning of the source line (leading spaces and TABs are not
significant) marks the whole line as a (full-line) comment.

A double ampersand (&&) or double slashes (//) can be placed after the command,
if there is one on the same line, the text followed && or // is a user comment, not
evaluated by the compiler. Slash + star (/*) marks all following text as comment until
star + slash (*/) is detected. This comment can continue over new lines and is
accepted within an expression.

A full-line or inline comment cannot be continued in a new line with a semicolon.

Example:

* Comment *

a = b && Inline comment,
a = b + ; && usable also for

c + d && continued statement

NOTE That is an comment line,
NOTE same as these
* or these line.
* The ¯o will be not evaluated
// and commands (e.g. @ 5,1 CLEAR) not executed.

REPLACE name WITH var_name, ; // Inline-
zip WITH VAL(zip_var) // comment

USE address
/* here starts a
special comment, continued
on several lines */

USE /* means open a database address.dbf: */ address

CMD 15

/* Command SELECT will be executed: */ SELECT 5
// Command SELECT will be not executed: SELECT 5
&& Command SELECT will be not executed: SELECT 5
* Command SELECT will be not executed: SELECT 5

/* this comment
is continued
over several lines */

value = am /* amount */ + tx /* plus tax */

Classification:
programming

Related:
#comment, #nocomment

CMD 16

? | ??
Syntax:

? [<expList>]
? [SPLIT | COLUMN [<expN5>,<expN6>]]

[COLOR <expC1>]
[GUICOLOR <expC2>]
[PRINTCOLOR <expC3>]
[FONT <expO4>] [FONT FontNew(...)]
<expList>

Syntax:
?? [<expList>]
?? [SPLIT | COLUMN [<expN5>,<expN6>]]

[COLOR <expC1>]
[GUICOLOR <expC2>]
[PRINTCOLOR <expC3>]
[FONT <expO4>] [FONT FontNew(...)]

<expList>
Purpose:

Evaluates and displays the results of one or more expressions to the console or to
GUI printer.

Arguments:
<expList> is a list of values or expressions to be evaluated and displayed. If there
are more than one expression, the expressions must be separated by commas. The
expressions can be of any data type, including memos.

If no <expList> argument is specified in the ? command, a NEW LINE code is sent
to the console. If the ?? command is used without <expList>, nothing happens.

Options:
SPLIT will split long string into two or more lines. The available size is calculated
from current Col() position up to MaxCol() for current line and MaxCol() -1 for
subsequent lines. If PrintGui(.T.) is active or SET GUIPRINT is ON,
oPrinter:GuiMaxCol() is used instead. The string is splitted at the left next space or
tab or dash if any. You may add conditional split position (separators) by chr(1) or
chr(247), which are then interpreted as dash at line end and ignored otherwise.

COLUMN <expN5>,<expN6> or SPLIT <expN5>,<expN6> is similar to SPLIT, but
instead of full line, it will split the large text column-wise, from column <expN5> to
<expN6> (in row/cols). Note that <expList> may contain only single character string
or expression. See example in <FlagShip_dir>/examples/printergui.prg

COLOR <expC1> specifies the color for displaying the <expList> data. Only the
first color pair (standard) is significant. If this clause is not given, the current color
setting is used. In GUI mode, first the GUICOLOR clause is checked. If not set, the

CMD 17

COLOR <expC1> or the current color is used, but only when SET GUICOLOR is
ON. Specifying COLOR and GUICOLOR allows you to handle different colors for
GUI and Terminal mode, without switching the SET COLOR and SET GUICOLOR
setting.

GUICOLOR <expC2> specifies the color for displaying the <expList> data
considered in GUI mode. Only the first color pair (standard) is significant. Instead of
string, you also may use RGB triplets (or stringified triplets), see SET COLOR for
details, and example below. If GUICOLOR is set, this color is used in GUI mode
regardless the current SET GUICOLOR on/off. If omitted and SET GUICOLOR is
ON, either the COLOR <expC1> is used if given, or the current SetColor() is used.
The GUICOLOR clause apply for GUI mode only, and is ignored otherwise.

PRINTCOLOR <expC3> specifies the color for printing. If not given, GUICOLOR is
used also for printer. Considered only in GUI mode when SET GUIPRINT is ON or
with PrintGui(.T.), and ignored otherwise.

FONT <expO4> is a font specification, considered only for screen and/or SET
GUIPRINT output in GUI mode and ignored otherwise. The <expO3> is already
instantiated font object, which allows you to set the font/family name, size and
additional attributes like bold, underscore, italic and so on, independent on the
current SET FONT setting. Alternatively, instead of <expO4>, you may instantiate
font directly, by specifying e.g. FONT FontNew("courier",12,"BI"). Note that the
Col() is adapted automatically to a larger/smaller font size but the Row() only when
SET ROWADAPT is ON (default is OFF). You may force the adaption manually by
invoking RowAdapt().

Description:
The displayed results of the expressions are separated by a space character. The ?
command outputs a linefeed (the NEW LINE code) before displaying the
expressions.

The ?? command omits the linefeed and thus allows you to display multiple
expressions on one line continuing the previous output at the current screen or
printhead position.

FlagShip supports echoing of console commands (see LNG.5.1.1) to four different
devices/files at a time: to the default SCREEN device, and additionally to the
PRINTER, ALTERNATE, and EXTRA text files or devices. Each of these SET
commands can be enabled/disabled using the ON/OFF switch; the PRINTER,
ALTERNATE and EXTRA output can be redirected to any file or device using the
SET...TO option. SET CONSOLE OFF can be used to suppress displaying to the
screen without affecting output to the echoed device or text file.

After completing the ? / ?? command, the cursor or printhead is located one position
to the right of the last character displayed. ROW() and COL() are updated to reflect
the new cursor position. With SET PRINTER ON, PROW() and PCOL() are also
updated with the new printhead position. When a different than the standard FONT
is used, you may force the ROW() setting to correspond to the used font in the
output either by the global switch SET ROWADAPT ON, or by invoking RowAdapt()

CMD 18

thereafter. To align output using different fonts on the same base line, use SET
ROWALIGN BASELINE.

To format any of the specified expressions, TRANSFORM() or a user- defined
function can be used. If you need to pad a variable length value for column
alignment, you can use any of the PAD() functions to left-justify, right-justify, or
center the value.

Terminal i/o mode: If the output from ? or ?? command reaches the edge of the
screen as reported by MAXCOL(), it wraps to the next line. If the output reaches the
bottom of the screen as reported by MAXROW(), normally the screen scrolls up one
line.

In GUI mode, you may include RichText/HTML tags into the output string and either
use SET HTMLTEXT ON or preface the string by "<HTML>" to interpret the tags.
See more in SET HTMLTEXT.

Note: to display array elements, either specify the element (e.g. ? myarray[5,3]), or
use separate Aeval() or _DisplArrStd() function. To display object properties, either
specify ? myObj:objInstance or ? myObj:objMethod(), or use _DisplObjStd()

Example:
* This will be displayed on separate lines
? "First line"
? "Second line"

* This will be displayed on the same line with different colors
? "Today is", CDOW(DATE()), " " COLOR "R+/B" GUICOLOR "R+/W"
?? DATE()

oFont := Font{"Arial",150}
oFont:Bold := .T.
? "Big!" FONT oFont COLOR "B" GUICOLOR "B+"
RowAdapt() // adapt current Row() setting to larger font
wait

Example:
#include "color.fh"
? "hello light blue on std. GUI Windows background" ;

COLOR "B+/N" ; // Terminal mode
GUICOLOR {{0,0,255},{RGBCOLOR_BG_WINDOWS}} // GUI mode

? "hello dark red on std. GUI background (Windows or Linux)" ;
GUICOLOR ("R/" + RGBSTRING_BG) COLOR ("R/N")

Classification:
sequential screen output (SET CONSOLE ON) sequential printer output (SET
PRINTER ON) sequential file output (SET EXTRA|ALTERNATE ON)

CMD 19

Compatibility:
FS4 and later supports embedded zero bytes by default. The COLOR and
GUICOLOR clause is available in FS5 and later, SPLIT and PRINTCOLOR since
VFS7.

Translation: see also std.fh file
? => QOUT (exp1 [, exp2 ...])
?? => QQOUT (exp1 [, exp2 ...])

? COLOR/GUICOLOR/PRINTCOLOR/FONT
=> QOUT6 (col,guiCol,font,prCol,,,exp1 [,exp2 ...])

?? COLOR/GUICOLOR/PRINTCOLOR/FONT
=> QQOUT6(col,guiCol,font,prCol,,,exp1 [,exp2 ...])

?? SPLIT/COLOR/GUICOLOR/PRINTCOLOR/FONT
=> QsplitText(exp,c1,c2,,font,col,guiCol,prCol,,.T.)

Related:
@...SAY, @..DRAW, TEXT, COL(), ROW(), SET CONSOLE, SET ALTERNATE,
SET EXTRA, SET HTMLTEXT, SET ROWADAPT, SET ROWALIGN, SET
PRINTER, PrintGui()

CMD 20

?# | ??# | ??##
Syntax:

?# [<expList>]
Syntax:

??# [<expList>]
Syntax:

??## [<expList>]
Purpose:

Evaluates and displays the results of one or more expressions to the standard error
device (stderr, usually console).

Arguments:
<expList> is a list of values or expressions to be evaluated and displayed. If there
are more than one expression, the expressions must be separated by commas. The
expressions can be of any data type, including memos.

If no argument is specified and the ?# command is used, a NEWLINE code is sent
to stderr.

Description:
This command is often used for debugging purposes, where

?# ... is similar to ? or Qout() and prints NewLine + text to stderr, same as the C
statement fprintf(stderr,"\n...")

??# ... is similar to ?? or Qqout() and prints text to stderr, same as the C statement
fprintf(stderr,"...")

??##... is similar to ?# but print text + NewLine to stderr, same as the usual C
statement fprintf(stderr,"...\n")

The commands SET CONSOLE, SET ALTERNATE, SET FILE, SET PRINTER are
not affected here and are also not considered.

Redirection: you may redirect this stderr output to a file (here named 'myfile') at the
time of invoking your application 'myapp' (with optional command-line arguments):

•in Unix/Linux using sh, ksh, bash shell:
myapp [cmd-line arguments] 2>myfile #overwrites myfile
myapp [cmd-line arguments] 2>>myfile #appends to myfile

•in Unix/Linux using csh, tcsh shell:
(myapp [cmd-line arguments] >/dev/tty) >& myfile #overwrites
(myapp [cmd-line arguments] >/dev/tty) >>& myfile #appends

•in MS-Windows:
myapp [cmd-line arguments] 2>myfile #overwrites myfile
myapp [cmd-line arguments] 2>>myfile #appends to myfile

CMD 21

In Unix/Linux, the 'myfile' may also be any device of your choice, e.g. /dev/lpt0 or
/dev/pts/12. In Windows, you may redirect it to printer by specifying e.g. PRN: or
LPT2: for 'myfile'.

If no start-up/command-line redirection was specified, the ?[?#]# output appears in
GUI mode on the console screen, in terminal and basic i/o mode intermixed with the
standard ?, ?? and @... output.

Example:
? "Hello world"
?# "hello from stderr"
?# procstack(), "reaching at", time()

Compatibility:
New in FS5.

Related:
?, ??, OutErr(), OutStd(), Qout(), Qqout()

CMD 22

@...
Syntax:

@ <expN1>, <expN2>
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]

Purpose:
Clears to the end of line.

Arguments:
<expN1> and <expN2> are the starting row and column coordinates to clear.

PIXEL : the <expN1>, <expN2> are values in pixel

NOPIXEL : the <expN1>, <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN5> specifies unit
for <expN1> .. <expN4> coordinates. The <expN5> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

Description:
This command is used to clear the rest of the line <expN1> beginning at column
<expN2>.

In GUI mode, if there is a (part of) widget in the cleared area, the widget is cleared
as well, see also LNG.5.3.

After executing the command, the cursor (and ROW(), COL()) is set to <expN1>,
<expN2>.

Example:
@ 10,15 // clear from 10,15 to eol
@ 11,0 // clears whole line 11

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND()

Translation:
SCROLL (expN1, expN2, expN1) ; SETPOS (expN1, expN2)

Related:
@...CLEAR, @...CLEAR TO, CLEAR, LNG.5.3

CMD 23

@...BOX
Syntax:

@ <expN1>,<expN2>,<expN3>,<expN4>
BOX [<expC5>]

[COLOR <expC6>]
[GUICOLOR <expC7>] [PRINTCOLOR <expC8>]
[LINEWIDTH <expN9>]
[SUNKEN|RAISED|PLAIN]
[FRAMEONLY]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|

(<expN10>)]
Syntax:

@ <expN1>,<expN2>,<expN3>,<expN4>
GUI BOX [<expC5>]

[COLOR <expC6>]
[GUICOLOR <expC7>] [PRINTCOLOR <expC8>]
[LINEWIDTH <expN9>]
[SUNKEN|RAISED|PLAIN]
[FRAMEONLY]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|

(<expN10>)]
Syntax:

@ <expN1>,<expN2>,<expN3>,<expN4>
TERM BOX [<expC5>]

[COLOR <expC6>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|

(<expN10>)]
Purpose:

Draws a customized box on the screen.

Arguments:
GUI BOX the box is driven only in GUI mode and ignored otherwise TERM BOX the
box is driven only in Terminal mode and ignored otherwise.

<expN1...expN4> are the coordinates, upper, left, lower, and right respectively. The
row coordinates can range from zero to 24, and the column coordinates can range
from zero to 79 (or MAXROW() and MAXCOL() respectively, depending on the
used terminfo description or the set screen size. In GUI mode, the coordinates
specify mid of the character so the look-and-feel is comparable to Terminal i/o
mode; to set the coordinate exactly at pixel value, use the PIXEL clause (or enable

CMD 24

SET PIXEL ON). In GUI mode, you may use numeric values with decimal fractions
for row and column, which are then rounded to integer if Terminal i/o mode is used.

<expC5> is a character string containing eight border characters and one fill
character. The first character is used for the upper left-hand corner, the next for the
upper line, and so on, the clockwise. The box is filled with the ninth character. If
<expC5> is a variable named same as the significant part of BOX clauses, e.g.
FRAM*, COLO*, LINE*, SUNK* etc, enclose the variable in parentheses to avoid
confusions. If <expC5> is not specified, the default value is taken from global
variable _aGlobSetting[GSET_T_C_AT_TO_SINGLE] or _aGlobSetting [GSET_T_
C_AT_TO_DOUBLE] defined in initio.prg. The border is always applicable in
Terminal i/o but in GUI mode only if neither LINEWIDTH nor SUNKEN, RAISED,
PLAIN was specified and SET GUITRANSL BOX is ON, or the GUI clause is used.

COLOR <expC6> is an optional color specification (according to SET COLOR). If
not specified, the box is drawn using the current color setting. Only the first color
pair is used. The frame is drawn by foreground/background, the box is filled by the
background color. Apply for Terminal i/o. Apply also for GUI mode when SET
GUICOLOR is ON, otherwise the GUICOLOR clause is used.

GUICOLOR <expC7> is an optional color specification (according to SET COLOR).
If not specified, the box is drawn using the current color setting. Only the first color
pair is used. The frame is drawn by foreground/background, the box is filled by the
background color. Apply for GUI mode only and overrides the optional COLOR
clause. If not specified, the default color is used to fill the box area, except the
FRAMEONLY clause was given.

PRINTCOLOR <expC8> is an optional color specification (according to SET
COLOR) for GUI/GDI printout by SET GUIPRINT ON. Only the first color pair
(foreground or foreground/background) is considered. If not given, GUICOLOR is
used also for printer, but with foreground only.

LINEWIDTH <expN9> is optional line width (in pixel) of the frame used in GUI
mode, overrides the <expC5> setting. If the argument is 0, no frame is drawn, only
background color is filled. When LINEWIDTH is not specified, and neither SUNKEN,
RAISED, PLAIN or FRAMEONLY is used, the frame is drawn by the <expC5>
characters.

SUNKEN : creates 3-dim panel with sunken effect, ignores foregr.color

RAISED : creates 3-dim panel with raised effect, ignores foregr.color

PLAIN : draws plain (2-dimensional) box frame using foreground color

These three clauses apply for GUI mode and overrides <expC5>. All are ignored in
Terminal i/o mode.

FRAMEONLY : draw the sunken/raised/plain box frame but don't fill the inside box
area by COLOR or GUICOLOR; the current screen content within the box area
remain visible.

PIXEL : the <expN1> .. <expN4> are values in pixel

CMD 25

NOPIXEL : the <expN1> .. <expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN10> specifies
unit for <expN1> .. <expN4> coordinates. The <expN10> is parenthesed numeric
value in range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is
not specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

Description:
The command @...BOX is used for drawing boxes using a configurable border and
filling it with a specified character. After @...BOX is executed, the cursor and
ROW(), COL() are set into the boxed region at <expN1> +1, <expN2> +1.

In GUI mode, you may:
•use sunken, raised or plain box frame, when SUNKEN, RAISED, PLAIN,

FRAMEONLY or LINEWIDTH clause is specified. The background color of
GUICOLOR is considered, filling character of <expC5> is ignored.

•use the semi-graphic characters in <expC5>, simulated via line drawing, when
SET GUITRANSL BOX is ON, or the GUI clause was specified, and no SUNKEN,
RAISED, PLAIN, FRAMEONLY, LINEWIDTH clauses was given. The background
color and filling character in <expC5> is ignored, since almost unwanted results
occurs with proportional fonts. This is the "old", backward compatible syntax.

In Terminal i/o mode, the box is always drawn by the <expC5> chars. The optional
SUNKEN, RAISED, PLAIN, LINEWIDTH, GUICOLOR, FRAMEONLY and PIXEL
clauses are ignored. The color set by COLOR clause, as well as the fill character of
<expC5> are considered.

Note that @...BOX does not create new widget (control) but draws a rectangle filled
by the specified color directly in the user window (or in current sub-window). It
frame may therefore be overwritten by subsequent @..SAY, ?, ?? or Qout() output.
If you wish to create new widget (sub-window) with protected frame, use either
Wopen() from the FS2 Toolbox, or it subset MDIopen() for MDI based GUI
application.

The @..BOX command is processed also for GUI/GDI printout (when SET
GUIPRINT ON is active) and accepts only PRINTCOLOR, LINEWIDTH, PIXEL and
UNIT= clauses, other (incl. <expC5>) are ignored.

An alternative to @..BOX in GUI mode is @..DRAW RECTANGLE which does not
require GUITRANSL BOX ON and optionally draws rounded rectangle.

CMD 26

Example:
* Draw box with standard or extended ASCII char set:
*
* ##
* ###+----------+#####╔═══════════╗########┌──────────┐###
* ###| |#####║xxxxxxxxxxx║########│##########│###
* ###| |#####║xxxxxxxxxxx║########│##########│###
* ###+----------+#####╚═══════════╝########└──────────┘###
* ##
*

// SET GUITRANSL BOX ON
// SET GUICOLOR ON
#include "box.fh" // for B_DOUBLE and B_SINGLE

filler1 = "+-+|+-+| " // filler2 = replicate(chr(219), 8) + "x"
filler2 = chr(201, 205, 187, 186, 188, 205, 200, 186) + "x"
filler3 = chr(218, 196, 191, 179, 217, 196, 192, 179)

@ 1, 8,15,79 BOX replicate("#", 9) // Background
@ 3,10,14,20 BOX filler1 // Box 1
@ 3,30,14,50 BOX B_DOUBLE + "x" // Box 2
@ 3,60,14,78 BOX filler3 COLOR "R+/B" // Box 3
@ 16,60,20,78 BOX B_SINGLE // Box 3

Example:
// Draw double-line box in Terminal i/o mode and raised box
// panel in GUI mode with thick frame, fill by red background.

#include "box.fh"
@ 2,10,20,72 BOX B_DOUBLE COLOR "N/R" ;

RAISED LINEWIDTH 4 GUICOLOR "N/#FF6464"

Example:
See <FlagShip_dir>/examples/boxcommand.prg for additional examples

Include:
The #include file "box.fh" contains predefined PC-8 border character combinations.

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND() as well as GUI
printout

Compatibility:
The physical output on the screen depends on the terminal description selected
(environment variable TERM), the ability of the terminal to output mapping applied
via FSchrmap.def. See also LNG.5.1.4, section SYS, and FS_SET ("outmap")

Defaults for <expC5> in initio.prg, and LINEWIDTH, PIXEL|NOPIXEL, GUICOLOR,
SUNKEN|RAISED|PLAIN clauses are new in FS5

GUI printout (by SET GUIPRINT ON) is available in GUI mode only.

CMD 27

Translation:
DISPBOX (expN1, expN2, expN3, expN4, expC5, [color], [lPixel],

[lGUI], [GuiColor], [nPlainMode], [nLineWidth], [lFrame],
[PrintColor])

Related:
@..DRAW RECTANGLE, @...CLEAR, @...TO, LNG.5.3

CMD 28

@...CLEAR
Syntax:

@ <expN1>,<expN2> CLEAR
[TO <expN3>,<expN4>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]

Purpose:
Clears a screen region.

Arguments:
<expN1> and <expN2> are the row and column coordinates of the upper left
corner. In GUI mode, you may use numeric values with decimal fractions for row
and column, which are then rounded to integer if Terminal i/o mode is used.

Options:
TO <expN3> and <expN4> are the row and column coordinates of the lower right
corner. If this option is not specified, the screen is cleared from the specified upper
left corner to 24,79 (or MAXCOL() and MAXROW() respectively), as specified in the
terminfo description used.

PIXEL : the <expN1> .. <expN4> are values in pixel

NOPIXEL : the <expN1> .. <expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN5> specifies unit
for <expN1> .. <expN4> coordinates. The <expN5> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

Description:
This command can be used to clear a rectangular region of the screen by filling it
with space characters of the current color setting.

After @...CLEAR erases the designated region, the cursor is positioned in the
upper left corner of the cleared region at <expN1> and <expN2>. In GUI mode, if
there is a (part of) widget in the cleared area, the widget is erased as well. ROW()
and COL() coordinates are updated to reflect the new cursor position.

In Terminal i/o mode, the screen background corresponds to the standard color
pair, set by SetColor() or SET COLOR TO command.

In GUI mode, the background color (assigned by SET COLOR) is set only when
SET GUICOLOR is ON (default is OFF - according to GUI design specs). You may
set the background also explicitly by invoking SetColorBackground(cColor) followed
by CLS, CLEAR SCREEN, Scroll() or @ ... CLEAR [TO..]

CMD 29

Example:
LOCAL scr
scr = SAVESCREEN (10,10,20,60)
@ 10,10 CLEAR TO 20,60
@ 10,10 TO 20,60 DOUBLE
*
* additional output in the window
*
RESTSCREEN (10,10,20,60,scr)

Classification:
screen oriented output, in terminal i/o mode buffered via DISPBEGIN()..DISPEND()

Compatibility:
FS5: [PIXEL|NOPIXEL] clause is new

Translation:
SCROLL (expN1, expN2 [, expN3, expN4])
SETPOS (expN1, expN2)

Related:
@...BOX, @...TO, CLEAR, RESTSCREEN(), SAVESCREEN(), LNG.5.3

CMD 30

@...DRAW ARC
Syntax 1:

@ <expN1>,<expN2> [GUI]
DRAW ARC RADIUS <expN3> ANGLE <expN5>,<expN6>
[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC7>]
[LINEWIDTH <expN8>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN9>)]

#Syntax 2:
@ <expN1>,<expN2>, <expN3>,<expN4> [GUI]

DRAW ARC ANGLE <expN5>,<expN6>
[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC7>]
[LINEWIDTH <expN8>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN9>)]

Purpose:
Draws circle or ellipse part in GUI mode, specified by radius or bounding rectangle.

Arguments Syntax 1:
<expN1>, <expN2> are row/col or y/x coordinates of the circle center in specified or
default <units>.

RADIUS <expN3> is the circle radius in specified or default <units>. With row/cols
unit, <expN3> is assumed as (fractional) number of columns.

ANGLE <expN5>,<expN6> are the start angle and the arc length in positive or
negative degrees (-360..0..360). Positive values mean counter-clockwise while
negative values mean the clockwise direction. Zero degree of <expN5> is at the 3
o'clock position, the 12 o'clock position is either 90 or -270. The arc length <expN6>
is the drawn part of circle or ellipse in positive or negative degrees starting at
<expN5>. The direction is clockwise when both <expN5> and <expN6> are positive
or negative, or counter-clockwise otherwise, see also example below.

Arguments Syntax 2:
<expN1>, <expN2> are top left row/col or y/x coordinates of the bounding rectangle
in specified or default <units>.

<expN3>, <expN4> are bottom right row/col or y/x coordinates of the bounding
rectangle in specified or default <units>. If the bounding rectangle (calculated in
pixels) is quadratic, circle arc is drawn.

CMD 31

ANGLE <expN5>,<expN6> are the start angle and the arc length in positive or
negative degrees (or degree fractions), same as in Syntax 1 above.

Options:
COLOR <color> or GUICOLOR <color> is optional color specification. The circle
or ellipse arc is drawn by foreground color in width of <expN8> pixel, background
color is ignored.

PRINTCOLOR <expC7> specifies the color for printing by SET GUIPRINT ON, or
with PrintGui(.T.). The circle or ellipse arc is drawn by foreground color. If
PRINTCOLOR is not given, GUICOLOR is used also for printer.

LINEWIDTH <expN8> is the line width of the circle or ellipse arc in pixels. If not
given, line width of 1 pixel is used.

PIXEL : the <expN1>..<expN4> are values in pixel

NOPIXEL : the <expN1>..<expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN9> specifies unit
for <expN1> .. <expN4> coordinates. The <expN9> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

Description:
@...DRAW ARC draws parts of ellipse or circle specified by rounding rectangle or
circle radius on screen and/or printer in GUI mode. It is processed also for GUI/GDI
printout (when SET GUIPRINT ON or PrintGui(.T.) is active).

The row() and col() values are set accordingly to draw end.

To draw full circle or ellipse, @..DRAW CIRCLE or @..DRAW ELLIPSE may be
used instead which supports also filling color. The @..DRAW PIE command is
another alternative to @..DRAW ARC.

Tuning:
In GUI mode, drawing graphic lines sometimes requires refresh. If your display
flickers, you may disable the refresh by assigning _aGlobSetting[GSET_G_N_
REFRESHDRAW] := -1 // default = 300 ms

Example:
@ 5,15, 11,20 DRAW ARC ANGLE -90, 180 LINEW 2 // ")"
@ 5,25, 11,30 DRAW ARC ANGLE 90,-180 LINEW 2 // ")"
@ 5,35, 11,40 DRAW ARC ANGLE 90, 180 LINEW 2 // "("
@ 5,45, 11,50 DRAW ARC ANGLE -90,-180 LINEW 2 // "("
@ 5,55, 11,60 DRAW ARC ANGLE 0, 90 LINEW 2 // ")" top
@ 5,57, 11,62 DRAW ARC ANGLE 0, -90 LINEW 2 // ")" bott

CMD 32

@ 15,10 DRAW ARC RADIUS 4 ANGLE -90, 180 GUICOLOR "B+" // ")"
@ 15,20 DRAW ARC RADIUS 4 ANGLE 90,-180 GUICOLOR "N" // ")"
@ 15,30 DRAW ARC RADIUS 4 ANGLE 90, 180 GUICOLOR "R+" // "("
@ 15,40 DRAW ARC RADIUS 4 ANGLE -90,-180 GUICOLOR "G+" // "("
@ 15,50 DRAW ARC RADIUS 4 ANGLE 0, 90 GUICOLOR "R+" // ")" top
@ 15,52 DRAW ARC RADIUS 4 ANGLE 0, -90 GUICOLOR "G+" // ")" bott

Example:
See complete example in <FlagShip_dir>/examples/printergui.prg

Classification:
screen oriented output in GUI mode, GUI printout

Compatibility:
New in FS7, not available in Clipper nor in FoxPro.

Translation: in std.fh
GuiDrawArc(...)

Related:
@..DRAW CIRCLE, @..DRAW ELLIPSE, @..DRAW PIE, @..DRAW LINES,
@..DRAW IMAGE, @..DRAW POLYON, @..DRAW RECTANGLE, @...BOX,
@...TO.., SET GUIPRINT, PrintGui()

CMD 33

@...DRAW CIRCLE
Syntax:

@ <expN1>,<expN2> [GUI]
DRAW CIRCLE RADIUS <expN3>
[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC5>]
[LINEWIDTH <expN6>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN7>)]

Purpose:
Draws a circle in GUI mode (ignored in Terminal i/o) of specified radius, color and
line width, optional fill.

Arguments:
<expN1, expN2> are row/col or y/x coordinates of the circle center in specified or
default <units>.

RADIUS <expN3> is the circle radius in specified or default <units>. With row/cols
unit, <expN3> is assumed as (fractional) number of columns.

Options:
COLOR <color> or GUICOLOR <color> is optional color specification. The circle is
drawn by foreground color in width of <expN6> pixel, and filled by background color
(if such given). To draw circle in mono color, use the same color for foreground and
background.

PRINTCOLOR <expC5> specifies the color for printing by SET GUIPRINT ON, or
with PrintGui(.T.). The circle is drawn by foreground and filled by background color.
If PRINTCOLOR is not given, GUICOLOR is used also for printer.

LINEWIDTH <expN6> is the line width of the circle in pixels. If not given, line width
of 1 pixel is used.

PIXEL : the <expN1>, <expN2> are values in pixel

NOPIXEL : the <expN1>, <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN7> specifies unit
for <expN1> .. <expN2> coordinates. The <expN7> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

CMD 34

Description:
@...DRAW CIRCLE draws a circle of specified radius (the diameter is twice of the
radius) on screen and/or printer in GUI mode. This command is processed also for
GUI/GDI printout (when SET GUIPRINT ON or PrintGui(.T.) is active).

The row() and col() values are set accordingly to draw end.

To draw circle fragments, use @..DRAW ARC or @..DRAW PIE instead. To draw
circle specified by bounding rectangle, use @..DRAW ELLIPSE.

Tuning:
In GUI mode, drawing graphic lines sometimes requires refresh. If your display
flickers, you may disable the refresh by assigning

_aGlobSetting[GSET_G_N_REFRESHDRAW] := -1 // default = 300 ms

Example:
@ 13, 15 DRAW CIRCLE RADIUS 5 // diameter is 10 columns
@ 13, 25 DRAW CIRCLE RADIUS 5.6 GUICOLOR "R+/G+" LINEWIDTH 3
@ 8.3,5.5 DRAW CIRCLE RADIUS 2.4 GUICOLOR "RG+/RG+" UNIT=CM

Example:
See complete example in <FlagShip_dir>/examples/printergui.prg

Classification:
screen oriented output in GUI mode, GUI printout

Compatibility:
New in FS7, not available in Clipper nor in FoxPro.

Translation: in std.fh
GuiDrawCircle(...)

Related:
@..DRAW ELLIPSE, @..DRAW ARC, @..DRAW PIE, @..DRAW LINES,
@..DRAW POLYON, @..DRAW IMAGE, @..DRAW RECTANGLE, @...BOX,
@...TO.., SET GUIPRINT, PrintGui()

CMD 35

@...DRAW ELLIPSE
Syntax:

@ <expN1>,<expN2>, <expN3>,<expN4> [GUI]
DRAW ELLIPSE
[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC5>]
[LINEWIDTH <expN6>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN7>)]

Purpose:
Draws ellipse or circle (specified by bounding rectangle) in GUI mode, optional fill
by specified color.

Arguments:
<expN1>, <expN2> are top left row/col or y/x coordinates of the bounding rectangle
in specified or default <units>.

<expN3>, <expN4> are bottom right row/col or y/x coordinates of the bounding
rectangle in specified or default <units>.

Options:
COLOR <color> or GUICOLOR <color> is optional color specification. The ellipse
(or circle) is drawn by foreground color in width of <expN6> pixel, and filled by
background color (if such given). To draw it in mono color, use the same color for
foreground and background.

PRINTCOLOR <expC5> specifies the color for printing by SET GUIPRINT ON, or
with PrintGui(.T.). The ellipse or circle is drawn by foreground and filled by
background color. If PRINTCOLOR is not given, GUICOLOR is used also for
printer.

LINEWIDTH <expN6> is the line width of the ellipse or circle in pixels. If not given,
line width of 1 pixel is used.

PIXEL : the <expN1>, <expN2> are values in pixel

NOPIXEL : the <expN1>, <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN7> specifies unit
for <expN1> .. <expN2> coordinates. The <expN7> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

CMD 36

Description:
@...DRAW ELLIPSE draws ellipse on screen and/or printer in GUI mode. If the
bounding rectangle (calculated in pixels) is quadratic, circle is drawn. This
command is processed also for GUI/GDI printout (when SET GUIPRINT ON or
PrintGui(.T.) is active).

The row() and col() values are set accordingly to draw end.

To draw ellipse or circle fragments, use @..DRAW ARC or @..DRAW PIE instead.
To draw circle specified by it radius, use @..DRAW CIRCLE.

Tuning:
In GUI mode, drawing graphic lines sometimes requires refresh. If your display
flickers, you may disable the refresh by assigning

_aGlobSetting[GSET_G_N_REFRESHDRAW] := -1 // default = 300 ms

Example:
@ 10,10,20,20 DRAW ELLIPSE // ellipse, not a circle
rSize := pixel2row(col2pixel(10)) // = 10 columns into rows
@ 10,30,10+rSize,40 DRAW ELLIPSE // circle
@ 100,50,150,100 DRAW ELLIPSE GUICOLOR "R+/RG+" UNIT=MM // circle

Example:
See complete example in <FlagShip_dir>/examples/printergui.prg

Classification:
screen oriented output in GUI mode, GUI printout

Compatibility:
New in FS7, not available in Clipper nor in FoxPro.

Translation: in std.fh
GuiDrawEllipse(...)

Related:
@..DRAW CIRCLE, @..DRAW ARC, @..DRAW PIE, @..DRAW LINES, @..DRAW
POLYON, @..DRAW IMAGE, @..DRAW RECTANGLE, @..BOX, @...TO.., SET
GUIPRINT, PrintGui()

CMD 37

@...DRAW IMAGE
Syntax 1:

@ <expN1>, <expN2>, [<expN3>], [<expN4>]
DRAW IMAGE
[USING] <expC5>
[SCALE] [CLIP|NOSCALE]
[IMGTYPE <expC7>]
[BORDER|FRAME <expN8>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN9>)]

Syntax 2:
@ <expN1>, <expN2>, [<expN3>], [<expN4>]

DRAW IMAGE
[FROM] FILE <expC6>
[SCALE] [CLIP|NOSCALE]
[IMGTYPE <expC7>]
[BORDER|FRAME <expN8>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN9>)]

Purpose:
Display bitmap image at specified screen position. Applicable in GUI mode only,
ignored otherwise.

Syntax 1 uses image data stored in database or character variable, Syntax 2 reads
the image from file.

Arguments:
This command and it arguments is fully equivalent to @...SAY IMAGE, see detailed
description there.

Description:
This command displays bitmap image at specified position in GUI mode, considered
also by GUI/GDI printout (when SET GUIPRINT ON or PrintGui(.T.) is active). This
is an alternative syntax for the @...SAY IMAGE command, see the full description
there.

Example:
#include "box.fh"
@ 10,40 DRAW IMAGE file "myimg.gif"
cImgVar := "..\images\otherimage.bmp"
@ 15,50,18 DRAW IMAGE from file (cImgVar)
@ 350,500,480,600 SAY IMAGE file myimg.jpg PIXEL NOSCALE

local cImgData := memoread("../images/myimg.png")
@ 10,40, ,20 DRAW IMAGE cImgData SCALE border BOX_SUNKEN

CMD 38

Example:
see also <FlagShip_dir>/examples/images.prg and printergui.prg for
additional examples

Classification:
screen oriented output in GUI mode as well as GUI printout

Compatibility:
New in FS7

Translation:
DispImageData() or DispImageFile()

Related:
@..DRAW CIRCLE, @..DRAW ELLIPSE, @..DRAW ARC, @..DRAW LINES,
@..DRAW PIE, @..DRAW POLYON, @..DRAW RECTANGLE, @...BOX, @...TO..,
SET GUIPRINT, PrintGui(), MemoCode(), MemoDecode()

CMD 39

@...DRAW LINE
Syntax 1:

@ <expN1>,<expN2> [GUI]
DRAW [LINES] [TO] <expN3>,<expN4>
[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC5>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN6>)]
[WIDTH <wpix> | LINEWIDTH <wpix>]

Syntax 2:
@ [GUI] DRAW [LINES] [TO] <expN3>,<expN4>

[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC5>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN6>)]
[WIDTH <wpix> | LINEWIDTH <wpix>]

Purpose:
Draws a line in GUI mode (ignored in Terminal i/o) of specified width.

Arguments:
<expN1...expN4> are the start and end coordinates of the drawn line With Syntax
2, the line drawing is continued from the current position. You may use numeric
values with decimal fractions for row and column, or the PIXEL clause (or SET
PIXEL ON) to set the pen exactly at specified pixel position relative to the user
screen.

Options:
COLOR <color> or GUICOLOR <color> is optional color specification. Only the
foreground color is considered.

PRINTCOLOR <expC5> specifies the color for printing. If not given, GUICOLOR is
used also for printer. Considered only in GUI mode when SET GUIPRINT is ON, or
with PrintGui(.T.), and ignored otherwise.

PIXEL : the <expN1> .. <expN4> are values in pixel

NOPIXEL : the <expN1> .. <expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN6> specifies unit
for <expN1> .. <expN4> coordinates. The <expN6> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not

CMD 40

specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

WIDTH <wpix> is the width of the drawn line in pixels

Description:
@...DRAW draws a line from the start to the end coordinate (syntax 1) or from the
current position to the end coordinate (syntax 2). It apply for GUI mode only,
ignored in other modes. The setting of SET GUITRANSL LINES is not relevant
here.

You alternatively may use @..DRAW POLYGON to draw lines specified in array of
coordinate pairs, and optionally fills the polygon area by background color.

The @..DRAW command is processed also for GUI/GDI printout (when SET
GUIPRINT ON or PrintGui(.T.) is active) and accepts only PRINTCOLOR, WIDTH,
PIXEL and UNIT=... clauses, other are ignored.

Tuning:
In GUI mode, drawing graphic lines sometimes requires refresh. If your display
flickers, you may disable the refresh by assigning

_aGlobSetting[GSET_G_N_REFRESHDRAW] := -1 // default = 300 ms

Example:
Draw a large "X" and "L"

@ 3, 5 DRAW TO 20,40 COLOR "B+"
@ 3,40 DRAW TO 20,5 COLOR "B+"
@ 3, 5 DRAW TO 20,5 COLOR "R+" WIDTH 5
@ DRAW TO 20,40 COLOR "R+" WIDTH 5

Classification:
screen oriented output in GUI mode, GUI printout

Compatibility:
New in FS5, not available in Clipper. GUI printout is available since VFS7.

Translation:
GuiDrawLine(...)

Related:
@..DRAW CIRCLE, @..DRAW ELLIPSE, @..DRAW ARC, @..DRAW PIE,
@..DRAW POLYON, @..DRAW IMAGE, @..DRAW RECTANGLE, @...BOX,
@...TO.., SET GUIPRINT, PrintGui()

CMD 41

@...DRAW PIE
Syntax 1:

@ <expN1>,<expN2> [GUI]
DRAW PIE RADIUS <expN3> ANGLE <expN5>,<expN6>
[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC7>]
[LINEWIDTH <expN8>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN9>)]

Syntax 2:
@ <expN1>,<expN2>, <expN3>,<expN4> [GUI]

DRAW PIE ANGLE <expN5>,<expN6>
[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC7>]
[LINEWIDTH <expN8>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN9>)]

Purpose:
Draws circle or ellipse pie (i.e. closed and filled part of ellipse or circle) in GUI
mode, specified by radius or bounding rectangle.

Arguments Syntax 1:
<expN1>, <expN2> are row/col or y/x coordinates of the circle center in specified or
default <units>.

RADIUS <expN3> is the circle radius in specified or default <units>. With row/cols
unit, <expN3> is assumed as (fractional) number of columns.

ANGLE <expN5>,<expN6> are the start angle and the arc length in positive or
negative degrees (-360..0..360). Positive values mean counter-clockwise while
negative values mean the clockwise direction. Zero degree of <expN5> is at the 3
o'clock position, the 12 o'clock position is either 90 or -270. The arc length <expN6>
is the drawn part of circle or ellipse in positive or negative degrees starting at
<expN5>. The direction is clockwise when both <expN5> and <expN6> are positive
or negative, or counter-clockwise otherwise, see also example below.

Arguments Syntax 2:
<expN1>, <expN2> are top left row/col or y/x coordinates of the bounding rectangle
in specified or default <units>.

<expN3>, <expN4> are bottom right row/col or y/x coordinates of the bounding
rectangle in specified or default <units>. If the bounding rectangle (calculated in
pixels) is quadratic, circle pie is drawn.

CMD 42

ANGLE <expN5>,<expN6> are the start angle and the arc length in positive or
negative degrees (or degree fractions), same as in Syntax 1 above.

Options:
COLOR <color> or GUICOLOR <color> is optional color specification. The circle
or ellipse arc and closing lines are drawn by foreground color in width of<expN8>
pixel, the pie area is filled by background. To draw and fill it in mono color, use the
same color for foreground and background.

PRINTCOLOR <expC7> specifies the color for printing by SET GUIPRINT ON, or
with PrintGui(.T.). The circle or ellipse arc is drawn by foreground color and the pie
filled by background. If PRINTCOLOR is not given, GUICOLOR is used also for
printer.

LINEWIDTH <expN8> is the line width of the circle or ellipse arc in pixels. If not
given, line width of 1 pixel is used.

PIXEL : the <expN1>..<expN4> are values in pixel

NOPIXEL : the <expN1>..<expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN9> specifies unit
for <expN1> .. <expN4> coordinates. The <expN9> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

Description:
@...DRAW PIE draws parts of ellipse or circle specified by rounding rectangle or
circle radius on screen and/or printer in GUI mode. It is often used to draw pie
charts by using the same coordinates and different angles. This command is
processed also for GUI/GDI printout (when SET GUIPRINT ON or PrintGui(.T.) is
active).

The row() and col() values are set accordingly to draw end.

To draw full circle or ellipse, @..DRAW CIRCLE or @..DRAW ELLIPSE may be
used instead. The @..DRAW ARC command is another alternative to draw part of
circles or ellipses w/o filling the area.

Tuning:
In GUI mode, drawing graphic lines sometimes requires refresh. If your display
flickers, you may disable the refresh by assigning

_aGlobSetting[GSET_G_N_REFRESHDRAW] := -1 // default = 300 ms

CMD 43

Example:
@ 5,15, 11,20 DRAW PIE ANGLE -70, 140 GUICOLOR "B+/BG+" // <)
@ 5,25, 11,30 DRAW PIE ANGLE 70,-140 GUICOLOR "N/W+" // <)
@ 5,35, 11,40 DRAW PIE ANGLE 110, 140 GUICOLOR "R+/RG+" // (>
@ 5,45, 11,50 DRAW PIE ANGLE -110,-140 GUICOLOR "G+/G+" // (>
@ 5,55, 11,60 DRAW PIE ANGLE 0, 90 GUICOLOR "R+/GR+" // <) top
@ 5,65, 11,70 DRAW PIE ANGLE 0, -90 GUICOLOR "G+/BG+" // <) bot

@ 15,10 DRAW PIE RADIUS 4 ANGLE -70, 140 GUICOL "B+/BG+" // <)
@ 15,20 DRAW PIE RADIUS 4 ANGLE 70,-140 GUICOL "N/W+" // <)
@ 15,30 DRAW PIE RADIUS 4 ANGLE 110, 140 GUICOL "R+/RG+" // (>
@ 15,40 DRAW PIE RADIUS 4 ANGLE -110,-140 GUICOL "G+/G+" // (>
@ 15,50 DRAW PIE RADIUS 4 ANGLE 0, 90 GUICOL "R+/GR+" // <) top
@ 15,60 DRAW PIE RADIUS 4 ANGLE 0, -90 GUICOL "G+/BG+" // <) bot

Example:
See complete example in <FlagShip_dir>/examples/printergui.prg

Classification:
screen oriented output in GUI mode, GUI printout

Compatibility:
New in FS7, not available in Clipper nor in FoxPro.

Translation: in std.fh
GuiDrawPie(...)

Related:
@..DRAW CIRCLE, @..DRAW ELLIPSE, @..DRAW ARC, @..DRAW LINES,
@..DRAW POLYON, @..DRAW IMAGE, @..DRAW RECTANGLE, @...BOX,
@...TO.., SET GUIPRINT, PrintGui()

CMD 44

@...DRAW POLYGON
Syntax:

@ [GUI] DRAW POLYGON <expA1>
[CLOSED]
[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC2>]
[LINEWIDTH <expN3>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN4>)]

Purpose:
Draws (open or closed) polygon according to given array of coordinate pairs.
Applicable in GUI mode only.

Arguments:
<expA1> is a two-dimensional array of coordinates in specified or default <units>,
e.g. {{row,col},{row,col},{row,col},...}. At least two coordinate pairs are required.

Options:
CLOSED forces to close the polygon, i.e. the last point in <expA1> array is implicitly
connected to the first point, and the polygon is filled by background color, if any.

COLOR <color> or GUICOLOR <color> is optional color specification. The
polygon lines are drawn by foreground color in width of <expN6> pixel, and with
CLOSED clause filled by background color. To draw the polygon in mono color, use
the same color for foreground and background.

PRINTCOLOR <expC5> specifies the color for printing by SET GUIPRINT ON, or
with PrintGui(.T.). The polygon is drawn by foreground and with CLOSED clause
filled by background color. If PRINTCOLOR is not given, GUICOLOR is used also
for printer.

LINEWIDTH <expN6> is the line width in pixels. If not specified, line width of 1 pixel
is used.

PIXEL : the <expN1>, <expN2> are values in pixel

NOPIXEL : the <expN1>, <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN7> specifies unit
for <expN1> .. <expN2> coordinates. The <expN7> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

CMD 45

Description:
@...DRAW POLYGON connects given coordinate points by lines; with the CLOSED
clause it also closes the polygon, and fills it by background color. It may also be
used to draw line charts, see example. This command is processed also for
GUI/GDI printout (when SET GUIPRINT ON or PrintGui(.T.) is active).

The row() and col() values are set accordingly to draw end.

You alternatively may use @..DRAW LINES to draw lines, it is similar to @...DRAW
POLYGON without CLOSED clause.

Tuning:
In GUI mode, drawing graphic lines sometimes requires refresh. If your display
flickers, you may disable the refresh by assigning

_aGlobSetting[GSET_G_N_REFRESHDRAW] := -1 // default = 300 ms

Example:
aCoord := {{34.5,8},{32.5,13},{34.5,18},{38,18},{38,14},{36,14}, ;

{36,12},{38,12},{38,8}}
@ DRAW POLYGON (aCoord) GUICOLOR "R+/RG+" PRINTCOLOR "R+/RG+" ;

LINEWIDTH 2 CLOSED NOPIXEL

Example:
See complete example in <FlagShip_dir>/examples/printergui.prg with
body of diagram chart.

Classification:
screen oriented output in GUI mode, GUI printout

Compatibility:
New in VFS7, not available in Clipper nor in FoxPro.

Translation: in std.fh
GuiDrawPolygon(...)

Related:
@..DRAW CIRCLE, @..DRAW ELLIPSE, @..DRAW ARC, @..DRAW PIE,
@..DRAW LINES, @..DRAW IMAGE, @..DRAW RECTANGLE, @..BOX, @...TO..,
SET GUIPRINT, PrintGui()

CMD 46

@...DRAW RECTANGLE
Syntax:

@ <expN1>,<expN2>,<expN3>,<expN4> [GUI]
DRAW RECTANGLE
[ROUNDED <expN5>]
[COLOR <color>]
[GUICOLOR <color>]
[PRINTCOLOR <expC6>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN7>)]
[LINEWIDTH <expN8>]

Purpose:
Draws rectangle (in GUI mode) optionally rounded and filled by background color.

Arguments:
<expN1...expN4> are the coordinates, upper, left, lower, and right respectively,
starting at 0. With the default row/col units, the coordinates specify mid of the
character or line.

Options:
ROUNDED <expN5> is a rounding ratio (0..99) for the corners. Zero value draws
angled corners, 99 is maximum roundedness.

COLOR <color> or GUICOLOR <color> is optional color specification. Rectangle
lines (and corners) are drawn by foreground color in width of <expN8> pixel, the
rectangle is filled by background color (if such given).

PRINTCOLOR <expC6> specifies the color for printing. If not given, GUICOLOR is
used also for printer. Considered only in GUI mode when SET GUIPRINT is ON, or
with PrintGui(.T.), and ignored otherwise.

PIXEL : the <expN1> .. <expN4> are values in pixel

NOPIXEL : the <expN1> .. <expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN7> specifies unit
for <expN1> .. <expN4> coordinates. The <expN7> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

LINEWIDTH <expN8> is the line width in pixels. If not given, line width of 1 pixel is
used.

CMD 47

Description:
@...DRAW RECTANGLE is an alternative command to @..BOX and supports also
rounded corners. Applicable on screen and/or printer output in GUI mode. This
command is processed also for GUI/GDI printout (when SET GUIPRINT ON or
PrintGui(.T.) is active).

Tuning:
In GUI mode, drawing graphic lines sometimes requires refresh. If your display
flickers, you may disable the refresh by assigning

_aGlobSetting[GSET_G_N_REFRESHDRAW] := -1 // default = 300 ms

Example:
@ 3, 5, 8, 16 DRAW RECTANGLE COLOR "B+/BG+" PRINTCOLOR "B/B+"
@ 3,15, 8, 26 DRAW RECTANGLE ROUNDED 75 COLOR "R+/RG+"

Example:
See complete example in <FlagShip_dir>/examples/printergui.prg with
alternative rounded corners by given radius.

Classification:
screen oriented output in GUI mode, GUI printout

Compatibility:
New in FS7.

Translation:
GuiDrawRectangle(...)

Related:
@..DRAW CIRCLE, @..DRAW ELLIPSE, @..DRAW ARC, @..DRAW PIE,
@..DRAW POLYON, @..DRAW IMAGE, @..DRAW LINE. @...BOX, @...TO.., SET
GUIPRINT, PrintGui()

CMD 48

@...PROMPT
Syntax:

@ <expN1>, <expN2>
PROMPT <expC3>
[MESSAGE <expC4>]
[FONT <oFont>]
[HEIGHT <nRows>]
[WIDTH <nCols>]
[CENTER]
[COLOR <color>] [GUICOLOR <guicol>]
[STYLE <naBox>]
[LINEWIDTH <naPix>]
[SELECT <block>]
[TOOLTIP <cTip>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN6>)]

Purpose:
Defines menu prompts and their messages used in MENU TO and displays them
on the screen.

Arguments:
<expN1> and <expN2> are the row and column where the prompt is displayed. In
GUI mode, you may use numeric values with decimal fractions for row and column,
which are then rounded to integer in Terminal i/o mode. To set coordinates at exact
pixel value, use the PIXEL clause (or enable SET PIXEL ON).

<expC3> is the character string displayed in the menu. If null- string "" is given, an
un-selectable item is generated. You may specify hot-key by prefacing the selected
character by "&", "\&" or "\<". If you wish to display ampersand "&", add a space
behind it. The hot-key is displayed underscored in GUI mode. In Terminal i/o mode,
the hot-key it is displayed by using the 4th color pair of COLOR clause if such
available, otherwise using inverse intensity of 1st (standard) color pair.

Options:
MESSAGE <expC4> is the character string displayed on the message line. If this
option is specified, the message of the highlighted prompt is displayed on the line
defined with SET MESSAGE. The screen section below the message is saved, and
restored later at clear of the next MESSAGE, or manually by invoking _Message("")
function. In GUI mode, the message is displayed in status bar. In Terminal i/o
mode, the message is displayed either in the status bar (if active) or in the SET
MENU row otherwise. The <expC4> message can also be a code block which is
evaluated at the time of MENU TO and must return a string to be displayed,
otherwise no status bar message appears.

FONT <oFont> (GUI only) You may specify other than the default font e.g.
@...PROMPT...FONT Font{"Helvetica",12}

CMD 49

HEIGHT <nRow> specifies the height (rows/pixel) of prompt (GUI mode only). For
horizontal prompt menus, a pleasant display is achieved with HEIGHT 1.0 (default)
to 1.5.

WIDTH <nCol> specifies the width (chars/pixels) of the prompt text, which may be
displayed centered when the CENTER clause is used.

COLOR <color> overwrites temporarily (for this PROMPT) the standard SET
COLOR specification in Terminal i/o mode. The <color> parameter is a string
containing at least two (standard, enhanced) color pairs.

GUICOLOR <guicol> specifies colors of this PROMPT in GUI mode. The <guicol>
is either a string containing at least two (std, enh) color pairs, or ColorPair object or
an array of RGB triplets. Considered in GUI mode, when the STYLE clause is also
given. When the GUICOLOR clause is not specified and SET GUICOLOR is ON,
the COLOR <color> specification is used (if given) also in GUI mode.

STYLE <nBox> is either numeric expression or an array of two numeric elements
specifying the frame around the prompt. When <nBox> is an array, the first element
is the style of standard display, and 2nd element the style of selected prompt via
MENU TO. When <nBox> is numeric, the same style is used for both menu states.
For the <nBox> or {<nBox>,<nBox>} styles, use constants specified in box.fh:

BOX_NONE 0 display the prompt plain, w/o any frame
BOX_PLAIN 1 draw plain 2-d frame around the prompt
BOX_SUNKEN 2 draw sunken 3-d frame around the prompt
BOX_RAISED 3 draw raised 3-d frame around the prompt

When the STYLE clause is not given, or the <nBox> style is invalid, a standard
button-alike prompt is used. STYLE is considered in GUI mode only, and ignored
otherwise.

LINEWIDTH <nPix> is optional numeric value specifying the line width (in pixel) of
a box drawn by the STYLE clause. The default value is 2. Same as with STYLE,
you may specify <nPix> as array of two numeric elements for the standard and
selected item. LINEWIDTH is ignored when STYLE is not used or when in other
than GUI mode.

SELECT <block> is optional codeblock evaluated in MENU TO when the item was
selected (by enter or mouse double-click or hotkey). The code block receives three
parameters: <posOfSelItem>, <oMenuItem>, <oPrompt>. If the codeblock returns
.F., MENU TO selection will be continued, otherwise MENU TO is terminated
thereafter.

TOOLTIP <cTip> (GUI only) short pop-up message/info displayed when mouse
cursor is over the PROMPT item, even w/o focus

PIXEL : the <expN1>,<expN2> are values in pixel

NOPIXEL : the <expN1>,<expN2> are row/col values

CMD 50

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN6> specifies unit
for <expN1> .. <expN2> coordinates. The <expN6> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

Description:
A highlight bar menu is constructed in two stages. First the menu choices are
painted on the screen using @...PROMPTs. Then, MENU TO may be used to
activate the highlight-bar. The highlight-bar can be navigated by the cursor keys in
the same order that the prompts were specified. In addition to, you may select an
item via hotkey. In GUI mode also mouse left(double)click activates the prompt
item. See details about navigation keys in MENU TO command.

Menu items can be specified in any order and configuration of row and column
positions. MENU TO, however, navigates the current list of menu items in the order
they were defined. After a choice is made, its sequence number is returned in the
MENU TO variable.

After each @...PROMPT command, the cursor is placed one column position to the
right of the last menu item character and ROW() and COL() are updated to reflect
the new cursor position, so the next @ ROW(),COL() PROMPT.... aligns to
previous. In GUI mode, the COL() position is set so, that also the next @
ROW(),COL() PROMPT.. aligns to previous one.

Colors: in Terminal i/o mode, either the supplied colors via COLOR clause is used,
or the standard color otherwise. In GUI mode, the GUICOLOR clause is considered
together with STYLE, if both are given. The standard, unselected @..PROMPT item
is displayed by the 1st color pair, selected item in MENU TO by using 2nd color
pair. Hot-keys, if specified, are underscored (in GUI mode) or displayed in Terminal
i/o by using the 4th color pair. Unselectable items are displayed by the 5th color
pair. See SET COLOR for further details.

Nesting: FlagShip supports nested @...PROMPT / MENU TO, triggered either by
SET KEY TO <myUdf> or by SELECT <block> clause. The only pre-requirement is,
you declare either LOCAL _oPrompt [AS Usual] or PRIVATE _oPrompt := NIL
variable which then automatically hold the nested prompts. If _oPrompt is not
explicitly declared, internally declared PUBLIC _oPrompt variable is used otherwise.

Selection: The selection of @..PROMPT items is handled by MENU TO command.
Refer there for further information about navigation and supported keys. If you wish
to clear all @..PROMPT items without invoking MENU TO, use the CLEAR MENU
command or _oPrompt:Clear()

The Prompt class is used internally for @..PROMPT items and MENU TO
processing, the object is hold in _oPrompt. See also menuclass.fh

CMD 51

Example:
SET MESSAGE TO (MAXROW())
@ 10,20 PROMPT "One"
@ 12,20 PROMPT "Two" MESSAGE "Help message for option Two"
@ 14,20 PROMPT "Three"
MENU TO ch

Example:
Build an SAA look-alike menu, using un-nested @..PROMPT/MENU TO:

PRIVATE choice1 := 1, choice2 := 0, action := -1, submenu
DO WHILE .T.

@ 0, 0 CLEAR
@ 0, 0 PROMPT "Main menu &1"
@ 0,20 PROMPT "Main menu &2"
@ 0,40 PROMPT "Main menu &3"
@ 0,60 PROMPT "Exit "
MENU TO choice1 // --horizontal--

SET KEY 4 TO my_right_left // CuR passed to UDP
SET KEY 19 TO my_right_left // CuL passed to UDP

submenu := 0
DO WHILE choice1 > 0 .AND. choice1 < 4

@ 1,(choice1-1)*20 TO 5,(choice1-1)*20+19
DO CASE
CASE choice1 = 1

@ 2,1 PROMPT "1.text" // choice1=1, choice2=1
@ 3,1 PROMPT "2.text" // choice1=1, choice2=2
@ 4,1 PROMPT "3.text" // choice1=1, choice2=3

CASE choice1 = 2
@ 2,21 PROMPT "Submen.1"
@ 3,21 PROMPT "Submen.2"

CASE choice1 = 3
@ 2,41 PROMPT "text" ; @ 3,41 PROMPT "other text"

ENDCASE
action := -1; submenu := 1
MENU TO choice2 // --vertical--
IF action != -1 // left /right

@ 1, action * 20 CLEAR TO 5, action * 20 + 19
ELSEIF LASTKEY() = 13 .OR. LASTKEY() = 27

EXIT // exit the submenu
ENDIF

ENDDO // ESC: exit
SET KEY 4 TO ; SET KEY 19 TO // disable CuR/CuL
IF (choice2 > 0 .and. lastkey() = 13) .OR. ;

(LASTKEY() = 27 .AND. submenu = 0)
EXIT

ENDIF
ENDDO
? "choice1=",choice1,"choice2=",choice2

CMD 52

PROCEDURE my_right_left (p1, p2, p3)
action := choice1 - 1 // leave Submenu
choice1 = IF(LASTKEY()==4,if(choice1 >= 4,4,choice1+1), ;

if(choice1 <= 1,1,choice1-1))
KEYBOARD chr(3) // leave Submenu
RETURN

Example:
for using the HEIGH, WIDTH, COLOR, GUICOLOR, STYLE, SELECT clauses and
nesting, see complete example in .../examples/prompt.prg

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND()

Compatibility:
Unlimited PROMPTs for one MENU TO are supported in FlagShip, up to 32 in
Clipper, which also does not support nesting.

Translation:
__ATPROMP2 (@_oPrompt, expN1, expN2, expC3 [, expC4], ...)
old syntax (FS4.48 and VFS up to 5.1.4), w/o nesting:
__ATPROMPT (expN1, expN2, expC3 [, expC4])

Related:
MENU TO, CLEAR MENU, SET MESSAGE, SET WRAP, ACHOICE()

CMD 53

@...SAY
Syntax:

@ <expN1>,<expN2>
SAY <exp3>

[PICTURE <expC4>]
[COLOR <expC5>]
[GUICOLOR <expC5>]
[PRINTCOLOR <expC6>]
[FONT <expC7>, <expN8>]
[FONT <expO9>]
[PIXEL|NOPIXEL]
[SPLIT | COLUMN [<expN10>,<expN11>]]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|

(<expN12>)]
Purpose:

Displays data at the specified row and column positions according to an optional
picture format on screen or printer.

Arguments:
<expN1>, <expN2> are numeric expressions for positioning data at specific row
and column coordinates (0..24 and 0..79 for 25x80 screen or MAXROW() and
MAXCOL() respectively). In GUI mode, you may use numeric values with decimal
fractions for row and column, which are then rounded to integer in Terminal i/o
mode. To set coordinates at exact pixel value, use the PIXEL clause (or enable
SET PIXEL ON).

<exp3> is evaluated by SAY and the result of a character, date, logical, or numeric
expression is shown on the display (or the current DEVICE).

Options:
COLOR <expC5> specifies the color in which to display <exp3>. Only the first color
pair (standard) is significant. If this clause is not given, the current color setting is
used. In GUI mode, first the GUICOLOR is checked if set. If not, the COLOR
<expC5> or the current color is used, but only when SET GUICOLOR is ON.
Specifying COLOR and GUICOLOR allows you to handle different colors for GUI
and Terminal i/o mode w/o switching the SET GUICOLOR setting.

GUICOLOR <expC5> specifies the color for the <exp3> data display considered in
GUI mode, where only the first color pair (standard) is significant. Instead of string,
you also may use RGB triplets (or stringified triplets), see SET COLOR for details,
and example below. If GUICOLOR is set, it is used regardless the current SET
GUICOLOR on/off setting. If omitted and SET GUICOLOR is ON, either the COLOR
<expC5> is used if given, or the current SetColor() is used. The GUICOLOR clause
apply for GUI mode only, and is ignored otherwise.

CMD 54

PRINTCOLOR <expC6> specifies the color for printing. If not given, GUICOLOR is
used also for printer. Considered only in GUI mode when SET GUIPRINT is ON, or
with PrintGui(.T.), and ignored otherwise.

FONT <expC7>, <expN8> (GUI only) You may specify other than the default font
e.g. @...SAY...FONT "Helvetica",12

FONT <expO9> (GUI only) This is alternative font specification. The <expO9> is
already instantiated font object, which allows also setting of font attributes like bold,
underscore, italic and so on.

PICTURE <expC4> gives formatting rules for outputting <exp3>. When no
PICTURE is given, the format is determined by analyzing the value of <exp3>.

PIXEL : the <expN1>, <expN2> are values in pixel

NOPIXEL : the <expN1>, <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

SPLIT will split long string into two or more lines. The available size is calculated
from current Col() position up to MaxCol() for current line and MaxCol() -1 for
subsequent lines. If PrintGui(.T.) is active or SET GUIPRINT is ON,
oPrinter:GuiMaxCol() is used instead. The string is splitted at the left next space or
tab or dash if any. You may add conditional split position (separators) by chr(1) or
chr(247), which are then interpreted as dash at line end and ignored otherwise.

COLUMN <expN10>,<expN11> or SPLIT <expN10>,<expN11> is similar to
SPLIT, but instead of full line, it will split large text column- wise, from column
<expN5> to <expN6> (in row/cols or units). Note that FONT <expC7>,<expN8> is
not accepted here, only FONT <expO9>. See example in <FlagShip_dir>/
examples/printergui.prg

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN12> specifies
unit for <expN1>...<expN2> and <expN10>,<expN11> coordinates. The <expN6> is
parenthesed numeric value in range 0 to 5 (i.e. UNIT_MM or UNIT_ROWCOL etc).
If the UNIT=.. clause is not specified, default is row/col, or the current setting by
SET(_SET_PIXEL, logVal) or SET(_SET_COORD_UNIT, numVal). Apply for GUI
mode only, ignored otherwise.

Description:
SAY <exp3> displays the result of the expression at the given coordinates on the
current device (printer, screen). The output obeys the optional PICTURE formatting.

SAY uses the "standard" pair from the current or given SET COLOR string. See
also SETENHANCED and SETUNSELECTED commands to use another color pair.

By default, the output is directed to the screen, but if SET DEVICE TO PRINT is
specified, the output is re-directed to the printer. To direct the output to a text file,
use SET PRINTER TO <file_name> followed by SET DEVICE TO PRINT. Unlike
console commands (like ? and ??), the @...SAY output to the printer is not echoed
to the screen and SET CONSOLE has no effect on SAY output.

CMD 55

When using SAY to produce printer output, care must be taken to proceed
sequentially from top to bottom. An EJECT is performed if the current row is less
than the last position printed. If the column is greater than the previous one
(including the SET MARGIN), BACKSPACEs are sent to reposition the printer head.
To override such default repositioning, SETPRC() can be used to define a new
logical "printer head" position. You may tune the printer device driver by
FS_SET("prset").

After @..SAY output, the cursor is left one column position to the right of the last
character displayed. ROW() and COL() (or PROW() and PCOL() respectively) are
then updated with this position. Note that when different FONT is used, the COL() is
adapted automatically to a larger/smaller font size but the ROW() only when SET
ROWADAPT is ON (default is OFF). You also may force the adaption manually by
invoking RowAdapt() thereafter. To align an output using different fonts on the same
base line, use SET ROWALIGN BASELINE.

In GUI mode, any output is pixel oriented. For your convenience and to achieve
cross compatibility to textual based applications, FlagShip supports also
coordinates in common row/column values. It then internally re-calculates the given
rows by using Row2pixel() and columns by using Col2pixel() function. The line and
character spacing is affected by the currently used default font. For minimal porting
effort, best to use fixed fonts (SET FONT "Courier", 12).

For additional hints how to manage proportional fonts, see further details in
LNG.5.3, LNG.5.4, Col2pixel(), Row2pixel(), SET FONT, SET ROWALIGN, SET
ROWADAPT.

In GUI mode, you may include RichText/HTML tags into the output string and either
use SET HTMLTEXT ON or preface the string by "<HTML>" to interpret the tags.
See more in SET HTMLTEXT.

The @..SAY command is processed also for GUI/GDI printout (when SET
GUIPRINT ON is active) and accepts PRINTCOLOR, PICTURE, FONT, PIXEL and
UNIT= clauses, other are ignored.

Picture:
<expC4>, the PICTURE clause, is a string and consists of two optional parts, the
FUNCTION and the TEMPLATE, separated by at least one blank when both are
present. Functions apply to the entire <exp3> while templates mask corresponding
characters of <exp3>. Function and template symbols are not case sensitive.

The FUNCTION part, when given, must precede the template and start with the "@"
sign. All the symbols which follow the first blank are interpreted as functions. The
rest is taken as TEMPLATE. In the absence of the "@", the whole string is
considered a template.

Picture FUNCTIONS are applied to the entire SAY <exp>. Multiple function
definitions are allowed. Characters not belonging to the TEMPLATE symbol set
overwrite existing characters of the <exp>. The "@R" function enables the insertion
instead of the overwriting of non-template characters.

CMD 56

If you set FS_SET("devel", .T.), PICTURE problems and fixes are displayed as
developer's warning.

Picture FUNCTION Symbols "@x". For @..SAY, the SAY or S/G apply:

Func Type used Definition
A C GET in SAY: same as 'X' template
B N SAY Numbers are displayed left-justified
C N SAY 'CR' for credit is displayed after positive numbers
D D S/G Dates are displayed in the SET DATE format
E D S/G Dates are displayed in European format (day and month are exchanged)
E N S/G Numerics are displayed in European format (comma & period are

exchanged)
K all GET GET is cleared if the first key is not a cursor or Insert key
P C GET Password: display '*' instead of text
R C S/G Non-template characters from the TEMPLATE part of picture are

inserted during in/output but removed from the value
Sn C S/G Horizontal scrolling within a GET window of <n> columns is allowed,

SAY displays only the first <n> characters
X N SAY 'DB' for debit is displayed after negative numbers
Z ND S/G Leading zeros are displayed as blanks
(N SAY Negative numbers are enclosed in parentheses with leading spaces
) N SAY Negative numbers are enclosed in parentheses without leading spaces
! C S/G Alphabetic characters are converted to uppercase
F N SAY fill leading spaces with stars "*"
T all SAY remove leading and trailing spaces

Picture TEMPLATE Symbols:

TEM Type used Definition
X C S/G Any character is accepted
A C GET in SAY: same as 'X' template
B C GET in SAY: same as 'X' template
N C GET in SAY: same as 'X' template
9 CND S/G Digits for any data type including the sign for numerics are displayed
CND S/G Digits, signs and spaces for any data type are displayed
L L S/G The logicals "T" or "F" are displayed
Y CL S/G Only "Y" or "N" are allowed
! all S/G An alphabetic character is converted to uppercase
$ N SAY The Dollar sign $ is displayed in place of a leading space in a numeric
* N SAY The asterisk is displayed in place of a leading space in a numeric
. N S/G The period defines the decimal point position, regardless of the given @E

conversion
, N S/G The comma defines the 'thousands' comma position, regardless of the

given @E conversion

CMD 57

Tuning:
In GUI mode, drawing graphic lines sometimes requires refresh. If your display
flickers, you may disable the refresh by assigning

_aGlobSetting[GSET_G_N_REFRESHDRAW] := -1 // default = 300 ms

If you write to row or column not currently visible on the screen, you may force an
automatic horizontal/vertical scroll by assigning

_aGlobSetting[GSET_G_L_ROW_VISIBLE] := .T. // default = .T.
_aGlobSetting[GSET_G_L_COL_VISIBLE] := .T. // default = .F.

Example:
The string is shown in the 11th row and the 5th column. Non- template characters
will overwrite a part of the value string if no @R function is used.

value = "Peter"
@ 11,5 SAY value // Result: Peter
@ 11,5 SAY value PICTURE "@!" // Result: PETER
@ 11,5 SAY value PICTURE "xx-x" // Result: Pe-e
@ 11,5 SAY value PICT "@! xxtxx" // Result: PEtER
@ 11,5 SAY value PICT "@R! xx xxx" // Result: PE TER

value1 = "long pict"
value2 = "long string"
@ 5,5 SAY value1 PICT "xxxxxxxxxxxxxxx" // "long pict"
@ 6,5 SAY value2 PICT "XXXX" // "long"

Example:
With an 80 column terminal, the string value will be shown on screen as depicted,
starting from 11th row and 77th column.

value = "abcdefgh" // Result : ─────┐
@ 11,77 SAY value // line 11: abc│

// line 12: def│
// line 13: gh │

Example:
Numbers are converted by default, according to the SET DEFAULT or the current
field length, or by using the PICTURE clause

value = 12345.67
negval = -123.45
@ 12,12 SAY value // 12345.67
@ 12,12 SAY value PICT "999999.99" // 12345.67
@ 12,12 SAY value PICT "99,999.99" // 12,345.67
@ 12,12 SAY value PICT "9,999.99" // 12345.67<-note!
@ 12,12 SAY value PICT "9999.99" // 12345.6 <-note!
@ 12,12 SAY value PICT "99.99" // 12345 <-note!
@ 12,12 SAY value PICT "9999" // **** <-note!

@ 12,12 SAY value PICT "@E 99,999.999" // 12.345,670
@ 13,12 SAY value PICT "@B 99999999.99" // 12345.67
@ 13,12 SAY value PICT "@C 999999.99" // 12345.67 CR
@ 13,12 SAY negval PICT "@(99999.99" // (123.45)
@ 13,12 SAY negval PICT "@) 99999.99" // (123.45)

CMD 58

Example:
The date may be displayed and entered according to PICTURE and/or settings by
SET DATE and SET CENTURY

value = CTOD("12/31/93")
@ 14,10 SAY value // 12/31/93
@ 14,10 SAY value PICTURE "@D" // 12/31/93
@ 14,10 SAY value PICTURE "@E" // 31/12/93
@ 14,10 SAY value PICTURE "@E 99.99.99" // 31.12.93
SET CENTURY ON
@ 14,10 SAY value PICTURE "@E" // 31/12/1993
SET DATE USA
@ 14,10 SAY value PICTURE "@D" // 12-31-1993
SET DATE GERMAN
@ 14,10 SAY value // 31.12.1993
@ 14,10 SAY value PICTURE "@E" // 12.31.1993

Example:
SET FONT "Helvetica", 12
@ 0,0 say "Hello" ; ?? COL() // text columns differs
@ 1,5 say "Hello" ; ?? COL() // with proportional font
SET FONT "Courier", 12
@ 2,0 say "Hello" ; ?? COL() // text columns aligns
@ 3,5 say "Hello" ; ?? COL() // with fixed font

Example:
#include "color.fh"
@ 5,2 SAY "hello light blue on std. GUI Windows background" ;

COLOR "B+/N" ; // Terminal mode
GUICOLOR {{0,0,255},{RGBCOLOR_BG_WINDOWS}} // GUI mode

@ 6,2 SAY "hello dark red on std. background (Windows or Linux)" ;
GUICOLOR ("R/" + RGBSTRING_BG) COLOR ("R/N")

Classification:
screen oriented output (SET DEVICE TO SCREEN), buffered via DISPBEGIN() ...
DISPEND() coordinates oriented printer/file output (SET DEVICE TO PRINT)

Compatibility:
Clipper ignores illegal PICTURE characters, FlagShip reports them in developer
mode. FlagShip tries to correct them: if no space is given between the PICTURE
function and template, it will be corrected by inserting the whitespace character.
The leading and trailing spaces in the PICTURE definition will be truncated.

FlagShip does not cut off the most significant digits of numeric output within short
pictures, it tries, if possible, to output the whole number by removing inserted chars
or by shortening the PICTURE deci part containing zeros. To disable this feature,
and to display stars instead, assign _aGlobSetting[GSET_L_ADAPT_PICT] := .F.

When using a numeric PICTURE which does not display all decimal digits stored in
the variable, FlagShip cuts the remaining decimal digits like all other Xbase dialects,
but unlike Clipper which rounds it. For example, the statement

@ y,x SAY 1234.567 PICT "9999.99"

CMD 59

will display 1234.57 in Clipper 5.2, but 1234.56 in FlagShip and other Xbase
dialects. For fully compatible output to Clipper 5.2, use e.g.

num = ROUND(num,2)
@..GET num PICTURE "99.99"

or
@..SAY ROUND(num,2) PICTURE "99.99"

etc.

Similarly to strings: if the template PICTURE characters does not match the string
length, the template is automatically extended by "X" instead of truncating the
output (like Clipper illegally do). This means in generally: FlagShip does not modify
the output variable length, but only the PICTURE template, if required.

If the line number <expN1> is out of range, FlagShip displays the text at the first or
last line available, according to C87. When the text is longer than the available
column, and the "@S" picture is not specified, the rest will be continued in
subsequent lines, see example above.

The physical output on the screen depends on the chosen terminal emulation
(environment variable TERM), the ability of the terminal to display the required
graphical characters, and the output mapping defined in the file FSchrmap.def.

In contrast to DOS, the color capability and the size of the screen is not fixed to
80x25, but depends on the current terminal used (environment variable TERM) and
the terminal description in the terminfo file, e.g. FStinfo.src. If possible, use one of
the extended terminal descriptions FSxxx, see (REL) Predefined Terminals.

In GUI mode, the @..SAY cannot overwrite widgets located in higher layer, see also
LNG.5.3

Embedded zero bytes are not supported.

Note: because some older UNIX terminals allow only 24 instead of 25 lines to be
used, use @ MAXROW(),x SAY... instead of @ 24,x SAY... for programs running
on different terminals. See also LNG.5.1, section SYS, and FS_SET ("outmap").

Translation:
DEVPOS (expN1, expN2) ; DEVOUT (exp3 [, expC5])
DEVPOS (expN1, expN2) ; DEVOUTPICT (exp3, expC4 [, expC5])

Related:
?/??, @...GET, @...TO, @...CLEAR, CLEAR, SET DEVICE, COL(), ROW(),
FS_SET("devel"), FS_SET("term"), FS_SET("prset"), PCOL(), PROW(), SETPRC(),
SETSTANDARD, SETENHANCED, SETUNSELECTED, SET HTMLTEXT, SET
ROWADAPT, SET ROWALIGN, SET GUIPRINT, description in LNG.5.1, LNG.5.3
and sections REL, SYS.

CMD 60

@...SAY BITMAP
@...SAY IMAGE
Syntax 1:

@ <expN1>, <expN2>, [<expN3>], [<expN4>]
SAY IMAGE|BITMAP
[USING] <expC5>
[SCALE] [CLIP|NOSCALE]
[IMGTYPE <expC7>]
[BORDER|FRAME <expN8>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN9>)]

Syntax 2:
@ <expN1>, <expN2>, [<expN3>], [<expN4>]

SAY IMAGE|BITMAP
[FROM] FILE <expC6>
[SCALE] [CLIP|NOSCALE]
[IMGTYPE <expC7>]
[BORDER|FRAME <expN8>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN9>)]

Purpose:
Display bitmap image at specified screen position. This command is equivalent to
@...DRAW IMAGE command. It is considered also by GUI printout (when SET
GUIPRINT ON or PrintGui(.T.) is active). Applicable in GUI mode only, ignored
otherwise.

Syntax 1 uses image data stored in database or character variable, Syntax 2 reads
the image from file.

Arguments:
<expN1>, <expN2> are numeric expressions, specifying the row and column
coordinates (i.e. the top left corner) where the image is displayed. You may use
numeric values with decimal fractions for row and column. To set coordinates at
exact pixel value, use the PIXEL clause (or enable SET PIXEL ON).

<expN3> is optional numeric value, specifying the bottom line (or Y pixel value)
bounding the image height. If not given, the image height is used.

<expN4> is optional numeric value, specifying the right column (or X pixel value)
bounding the image width. If not given, the image width is used.

[USING] <expC5> is the character variable or field containing the image data
displayed according to Syntax 1.

CMD 61

[FROM] FILE <expC6> is the image file name (optionally with path) displayed
according to Syntax 1, optionally with path. The file name extension is not relevant;
FlagShip determines the image type from the data self, or by considering the
IMGTYPE clause.

CLIP or NOSCALE will clip the image at bottom and/or right if it does not fit into the
specified rectangle <expN1>...<expN4>. If neither CLIP nor NOSCALE was
specified, SCALE is the default.

SCALE will scale the image to fit into the specified rectangle <expN1>...<expN4>. If
<expN3> is not given, the image is scaled to fit into width of <expN4> - <expN2>. If
<expN4> is not given, the image is scaled to fit into height of <expN3> - <expN1>. If
neither <expN3> nor <expN4> was specified, the image is displayed as is.

IMGTYPE <expC7> is optional image specification. If not given, FlagShip reads few
bytes of the image to determine the image type. You may override this pre-scan by
specifying <expC7>:

"BMP" (Windows Bitmap) is uncompressed image format common on MS-
Windows

"GIF" (Graphic Interchange Format) is compressed lossless image format used
often for Web images. Note: GIF format uses LZW compression patented
by Unisys and needs to be licensed (by Unisys) in some countries
(alternative is PNG format).

"JPEG" (Joint Photographic Experts Group) is a compressed lossy image format
that gives high compression for real-world and photo-realistic images.

"PNG" (Portable Network Graphics) is compressed lossless image format, offering
almost better compression than JPEG, used also as patent-free
replacement of GIF or TIFF images.

"PPM" (Portable PixMap) is uncompressed image format common on Unix,
offering few advantages over PNG or JPEG

"XBM" (X11 BitMap) is uncompressed monochrome image format.

"XPM" (X11 PixMap) is uncompressed image format, which can be trivially
included in source files as they are C code.

BORDER <expN8> or FRAME <expN8> specifies optional frame around the
image, where the <expN8> is a constant specified in box.fh:

BOX_NONE 0 don't draw any border around image (default)
BOX_PLAIN 1 draw plain 2-d frame around the image
BOX_SUNKEN 2 draw sunken 3-d frame around the image
BOX_RAISED 3 draw raised 3-d frame around the image

PIXEL : the <expN1> ... <expN4> are values in pixel

CMD 62

NOPIXEL : the <expN1> ... <expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified, the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN9> specifies unit
for <expN1> .. <expN4> coordinates. The <expN9> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

Description:

This command is supported in GUI mode and ignored otherwise. It displays bitmap
image at specified position, optionally scaled or circumcised and/or surrounded by a
frame. The image is either read from any named file (when using the FILE ...
clause) or is passed as data stream in a character variable. The image may be
cleared by usual CLS, CLEAR SCREEN, @..CLEAR TO.. command and
corresponding functions.

Supported image types are bmp, gif, jpeg/jpg, png, ppm, xbm and xpm. See their
description in the IMGTYPE clause. All other file types can easily be converted to
one of these supported formats by any graphic image program like Gimp,
Photoshop, Paint, IfranView etc. (use export to... or save as...).

When you want to store images in databases, use MEMO field and MemoCode() to
store and MemoDecode() to access the image. If the image size is too large for
MEMO fields (32/64kb), you may compress/uncompress it by CharPack() /
CharUnpack() from the FS2 Toolbox. Alternatively, you may use directly FlagShip's
variable database fields VB or VBZ to store images up to 2GB, see also DbCreate()
for details.

The @..SAY IMAGE command is processed also for GUI/GDI printout (when SET
GUIPRINT ON is active) and accepts all except BORDER clauses.

Alternative syntax for @..SAY IMAGE is @..DRAW IMAGE

Example:
#include "box.fh"
@ 10,40 SAY IMAGE file "myimg.gif"
cImgVar := "..\images\otherimage.bmp"
@ 15,50,18 SAY IMAGE from file (cImgVar) border BOX_PLAIN
@ 350,500,480,600 SAY IMAGE file myimg.jpg PIXEL NOSCALE

local cImgData := memoread("../images/myimg.png")
@ 10,40,,20 SAY IMAGE cImgData SCALE border BOX_SUNKEN

Example:
see also <FlagShip_dir>/examples/images.prg and printergui.prg for
additional examples

CMD 63

Classification:
screen oriented output in GUI mode as well as GUI printout

Compatibility:
New in FS5, printer support is new in FS7

Translation:
DispImageData() or DispImageFile()

Related:
@..DRAW CIRCLE, @..DRAW ELLIPSE, @..DRAW ARC, @..DRAW LINES,
@..DRAW PIE, @..DRAW POLYON, @...BOX, @...TO.., SET GUIPRINT,
MemoCode(), MemoDecode(), SET GUIPRINT

CMD 64

@...[SAY..] GET
Syntax 1:

@ <expN1>,<expN2>
GET <variable>

[CAPTION <capt>]
[CLEAR|DESTROY]
[COLOR <expC9>]
[GUICOLOR <expC9>]
[DEFAULT <defa>]
[ENABLE|DISABLE]
[ERRORVALID <errBlk>]
[GUIFAST]
[MESSAGE <text>]
[NOALIGN]
[PICTURE <expC4>]
[RANGE <expN6>,<expN7>]
[SEND <exp11>]
[TOOLTIP <ttip>]
[USERMSG <exp10>]
[USING <obj>]
[VALID <expL8>]
[WHEN <expL5>]
[HEIGHT <expN11>]
[WIDTH <expN12>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|

(<expN13>)]
Syntax 2:

@ <expN1>,<expN2>
SAY <exp3>

[PICTURE <expC4>]
[COLOR <expC9>]
[GUICOLOR <expC9>]

GET <variable>
[CAPTION <capt>]
[CLEAR|DESTROY]
[COLOR <expC9>]
[GUICOLOR <expC9>]
[GUIFAST]
[DEFAULT <defa>]
[ENABLE|DISABLE]
[ERRORVALID <errBlk>]
[MESSAGE <text>]
[NOALIGN]

CMD 65

[PICTURE <expC4>]
[RANGE <expN6>,<expN7>]
[SEND <exp11>]
[TOOLTIP <ttip>]
[USERMSG <exp10>]
[USING <obj>]
[VALID <expL8>]
[WHEN <expL5>]
[HEIGHT <expN11>]
[WIDTH <expN12>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|

(<expN13>)]
Purpose:

Prepares one entry field for the full-screen data input using the READ command.
Displays the current data at the specified row and column positions. Creates a new
object within the GETLIST array. Optionally, displays an additional text using the
SAY clause.

Syntax 2 represents a combination of syntax 1 and the command @...SAY. In the
following description syntax 1 will normally be referred to.

Arguments:
<expN1>, <expN2> are numeric expressions, specifying the row and column
coordinates of the input field (syntax 1) or of the text being displayed (syntax 2). In
GUI mode, you may use numeric values with decimal fractions for row and column,
which are then rounded to integer in Terminal i/o mode. To set coordinates at exact
pixel value, use the PIXEL clause (or enable SET PIXEL ON).

The coordinates are in the range 0..24 and 0..79 for a 25x80 screen or MAXROW()
and MAXCOL() respectively. With syntax 2, the input field starts at the end of the
<exp3> text and an additional space character. Output which extends beyond the
visible end of the display is clipped and does not appear.

GET <variable> is a database field or a memory variable, the contents of which is
displayed and added to the list of pending GETs to be enabled for input and editing
by the READ command. The <variable> can be of the type character, numeric, date
or logical. If the storage class is ambiguous, FIELD is assumed. Fields from other
working areas can be used as <variable> by referring to them via their alias.

Options: (in alphabetical order)
CAPTION <capt> is the displayed text instead of @..SAY

CLEAR|DESTROY forces to clear the GET display at the end of variable visibility
scope. See also READ CLEAR

COLOR <expC9> is a standard color string with 5 to 8 color pairs for displaying the
GET field <variable>. An inactive GET field is displayed by using color pair 5
(unselected), an active GET field with input focus (get:HasFocus) is displayed by
color pair 2 (enhanced). Disabled GETs by using the DISABLE clause is displayed

CMD 66

by color pair 7 if such is available, otherwise by pair 5. In GUI mode the color pair 8,
if available, is used for GETs in unselected window. See SET COLOR for more
details. With syntax 2, different colors for the SAY and GET command parts can be
used. If omitted, the current color setting is used. In GUI mode, first the GUICOLOR
is checked if set. If not so, either this COLOR <expC9> or the current color is used,
but only when SET GUICOLOR is ON. Specifying COLOR and GUICOLOR allows
you to handle different colors for Terminal and GUI i/o mode.

DEFAULT <defa> set the GET <variable> to <defa> value if <variable> is NIL,
empty() or of different type than <defa>

ENABLE|DISABLE enable (default) or disable the item from READ processing

ERRORVALID <errBlk> use the code block <errBlk> to display post- validate
error/failure

GUICOLOR <expC9> specifies the color for the display of the input field <variable>
considered in GUI mode only. If set, it is used regardless the current SET
GUICOLOR setting. If omitted and SET GUICOLOR is ON, either the COLOR
<expC9> is used if given, or the current SetColor() is used. The GUICOLOR clause
applies for GUI mode only, and is ignored otherwise. <expC9> is a standard color
string with 5 to 8 pairs, where color pair 2 is used to display the active GET, color
pair 5 is used for the unselected GETs, color pair 7 for disabled GETs, and color
pair 8 for GETs in an unselected window. See 'SET COLOR TO' for more details.

MESSAGE <text> display message <text> in status bar or in the SET MESSAGE
line when the GET field receives focus

NOALIGN don't align this field even if SET GUIALIGN is ON

PICTURE <expC4> gives formatting rules for the <variable> input. With syntax 2,
different pictures for the SAY and GET command parts may be used. When no
PICTURE is given, the format is determined by examining the value in <exp3>
and/or <variable>.

RANGE <expN6>,<expN7> (post-validation) are the lower and upper limits of
acceptable numeric input. The lower limit <expN6> must always precede the upper
limit <expN7>. If the input or the edited value is not inside the interval, a message to
this effect will be displayed and the control will be returned to the GET. This check
is performed only when a new value is entered or the available data edited (same
as in Clipper), except you set

_aGlobSetting[GSET_L_GET_RANGE_ALWAYS] := .T. // default = .F.
which is then tested always at exiting GET, same as VALID clause.

SAY <exp3> is an expression displayed prior to the entry field and evaluated by the
SAY clause (see more @...SAY).

SEND <exp11> is a full object message to be sent to the current object.

TOOLTIP <ttip> (GUI only) short pop-up message/info displayed when mouse
cursor is over the GET field, even w/o focus

CMD 67

USERMSG <exp10> is a message (expression) of any type, which will be sent
(assigned) to the current get:CARGO instance variable.

USING <obj> use already instantiated GET object <obj>, avoid a new
creation/instantiation

VALID <expL8> (post-validation) is a logical expression (or UDF returning a logical
value) which is evaluated whenever the user attempts to leave the corresponding
GET. Should the expression return a .F. value, the cursor will remain on the current
field. Note: return value other than logical assumes success and developer warning
occurs when FS_SET("devel", .T.) was set. This feature is often used for lookups
using post-processing functions.

WHEN <expL5> (pre-validation) specifies an expression (or UDF or codeblock
returning a logical value) that must be satisfied in order to enter the GET field during
a READ. Note: return value other than logical assumes success, additionally a
developer's warning occurs when FS_SET("devel", .T.) was set.

HEIGHT <expN11> specifies the widget height in rows or pixels according to the
current SET PIXEL on/OFF setting. This clause is considered in GUI mode only and
is equivalent to the oGet:Height access.

WIDTH <expN12> specifies the widget width in columns or pixels according to the
current SET PIXEL on/OFF setting. This clause is considered in GUI mode only and
is equivalent to the oGet:Width access. It behaves similarly to PICTURE "@S..." but
is applicable also for non-character fields.

PIXEL : the <expN1>, <expN2> are values in pixel

NOPIXEL : the <expN1>, <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN13> specifies
unit for <expN1> .. <expN2> coordinates. The <expN13> is parenthesed numeric
value in range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is
not specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

Description:
The @...GET command performs several actions. It displays the default contents of
a variable or a database field at row and column, and formats the output according
to the optional picture format. Appending it to the GETLIST array will create a new
GET object. The <variable> is associated with that object, as well as the other,
optional modifiers. A subsequent READ command enables full-screen editing, using
the data stored by the GET command.

In GUI mode, the GET field appears in widget (control), which is a kind of small sub-
window. You therefore cannot overwrite the GET field by subsequent SAY or by
other widget. The GET will be cleared automatically by CLEAR GETS, end of READ
or by any kind of CLEAR.

CMD 68

When SET DELIMITERS are set ON, the @...GET command will display the default
or user defined delimiters around the GET edit field and will shift the GET object
display by one column right. This is fully supported in Terminal i/o mode; in GUI
mode the delimiters are not displayed, but the GET column is corrected.

If the GETLIST variable has not been declared PRIVATE or LOCAL in the current
procedure, the predefined PUBLIC GETLIST variable is used. Declaring a
PRIVATE, LOCAL (or STATIC) array allows you to nest GET/READs to any depth.

The READ command performs a full-screen edit of the GETs in the GETLIST array.
As the user moves the cursor into each GET field, evaluating the user defined or
default code block saved in the GET object retrieves the value of the associated
<variable>. The value is converted to textual form and placed in a buffer within the
GET field (object). This buffer is displayed on the screen, and the user is allowed to
edit the text from the keyboard. When the user moves the cursor out of the GET,
the updated buffer is converted back to the appropriate data type and assigned to
<variable>.

For more information, refer to (CMD) READ.

Color:
If the COLOR clause is not specified, the GET field is displayed in the current
"enhanced" color pair (see SET COLOR and SETCOLOR()). If the "unselected"
color is specified in SETCOLOR() as well, only the currently active GET is displayed
in enhanced color while executing READ. All the other GET fields are then
displayed in the "unselected" color.

Each GET field can have a different color specification defined by using the COLOR
clause or the command SET COLOR; the current color setting is stored in the GET
object during execution of the @...GET command.

When the COLOR clause of @..GET is specified, this color attributes are passed to
the instance variable get:COLORSPEC (see sect. OBJ). Since the special
COLORSPEC notation <inactiveField>,<activeField>, the COLOR clause of
@...GET..COLOR command differ from the standard SETCOLOR() notation. For
your convenience, you may use the SETCOL2GET() function to transform the
current (or any user defined) color setting into the proper notation, see example
below.

In GUI mode, colors are disabled by default. You may enable it by SET GUICOLOR
ON and/or use the GUICOLOR clause, see details above.

Picture:
<expC4>, the PICTURE clause, is a string and consists of two optional parts, the
FUNCTION and the TEMPLATE, separated by at least one blank. Functions apply
to the entire <variable> while templates mask corresponding characters of
<variable>. Function and template symbols are not case-sensitive.

The FUNCTION part, when given, must precede the template and start with the "@"
sign. All the symbols thereafter up to the first blank are interpreted as functions. The
rest is taken as TEMPLATE. In the absence of the "@", the whole string is

CMD 69

considered a template. Picture FUNCTIONS are applied to the entire <variable>
field. Multiple function definitions are allowed.

A TEMPLATE part specifies formatting or validation rules on a character by
character basis. The template string consists of a series of characters, some of
which have special meanings (see the following table). Each position in the
template string corresponds to a position in the displayed GET value. Characters in
the template string that do not have assigned meanings are copied verbatim into
the displayed GET value as un-editable characters. If you use the @R picture
FUNCTION, these characters are inserted between characters of the display value,
and are automatically removed when the display value is reassigned to <variable>;
otherwise, they overwrite the corresponding characters of the display value and
also affect the value assigned to <variable>. You may specify a template string
alone or with a function string. If you use both, the function string must precede the
template string, and the two must be separated by a single space.

If you set FS_SET("devel", .T.), PICTURE problems and fixes are displayed as
developer's warning.

Picture FUNCTION Symbols "@x". For @..GET, the GET or S/G apply:

Func Type used Definition
A C GET Only alphabetic characters are allowed
B N SAY Numbers are displayed left-justified
C N SAY 'CR' for credit is displayed after positive numbers
D D S/G Dates are displayed in the SET DATE format
E D S/G Dates are displayed in European format (day and month are

exchanged)
E N S/G Numerics are displayed in European format (comma & period are

exchanged)
K all GET GET is cleared if the first key is not a cursor or Insert key
P C GET Password, displayed as '*'
R C S/G Non-template characters from the TEMPLATE part of picture are

inserted during in/output but removed from the value
Sn C S/G Horizontal scrolling within a GET window of <n> columns is

allowed, SAY displays only the first <n> characters
X N SAY 'DB' for debit is displayed after negative numbers
Z ND S/G Leading zeros are displayed as blanks
(N SAY Negative numbers are enclosed in parentheses with leading

spaces
) N SAY Negative numbers are enclosed in parentheses without leading

spaces
! C S/G Alphabetic characters are converted to uppercase
F N SAY fill leading spaces with stars "*"
T all SAY remove leading and trailing spaces
_ C S/G (= underscore) replace "_" in template picture to protected space.
~ C S/G (= tilde) replace "~" in template picture part to protected space.

CMD 70

Picture TEMPLATE symbols. For @..GET, the S/G and GET apply:

TEM Type used Definition
X C S/G Any character is accepted
A C GET Only alphabetic characters w/o space are accepted
B C GET Only alphabetic characters and space are accepted
N C GET Only alphanumeric characters w/o space are accept.
9 CND S/G Digits for any data type including the sign for numerics are

accepted
CND S/G Digits, signs and spaces for any data type are accepted
L L S/G The logicals "T" or "F" are accepted
Y CL S/G Only "Y" or "N" are allowed
! all S/G An alphabetic character is converted to uppercase
$ N SAY The dollar sign $ is displayed in place of a leading space in a

numeric
* N SAY The asterisk is displayed in place of a leading space in a numeric
. N S/G The period defines the decimal point position, regardless of the

given @E conversion
, N S/G The comma defines the 'thousands' comma position, regardless

of the given @E conversion
^ C S/G (= circumflex) Un-editable (protected) output char
_ C S/G (= underscore) Set un-editable space in output when also "@_"

is set, as alternative to " " in picture
~ C S/G (= tilde) Alternative to "_", set un-editable space in output when

also "@~" is set
any other Template symbol is copied to output and treated as un-editable

character

Validation:
During GET execution, no validation takes place. The READ command checks the
pre-valid condition (WHEN clause) to decide whether to enter the corresponding
field. If the condition returns FALSE, the field is skipped. Post-validation, (RANGE
and VALID clause) will be done any time the user wants to leave the current field. If
the VALID condition returns TRUE, the user is allowed to leave; otherwise, the
cursor remains in the current GET field.

If RANGE is specified, the data entered has to be within the defined limits to enable
leaving the field. If the test fails, a message appears on the screen. In FlagShip, the
message is user- definable using FS_SET("load"/"set") and can be enabled or
disabled using the SET SCOREBOARD command.

With SET ESCAPE ON, no post-validation is performed.

Executing an UDF:
For user friendly programs, it is common to create a context sensitive help system,
using F1 (or other key) for the current data being edited: the command SET KEY
TO may redefine any required key to execute a user procedure. On application
start, FlagShip pre-defines SET KEY 28 TO HELP, so that by adding the
PROCEDURE HELP to your application, you may access it automatically when

CMD 71

pressing [F1] in any READ field. You may also use other keys or redefine F1 using
SET KEY <code> TO <udp> prior the READ command and, if necessary, disable it
afterwards using SET KEY <code> TO. For information, refer to LNG.5.2.2 and
(CMD) SET KEY.

Within the UDP or UDF, the current <variable> being edited can be determined by
READVAR() or with the current GET object using GETACTIVE().

The UDP or UDF may change the contents of any GET field being edited. To abort
the READ, CLEAR, CLEAR GETS or KEYBOARD CHR(27) commands can be
used.

Cut & Paste:
Depending on the currently used i/o mode (GUI, Terminal), you may insert/overwrite
characters in the GET field by cut and paste.

In GUI mode, FlagShip supports the global X11 or Windows clipboard for
exchanging/transfer keyboard data. You may copy and paste text via clipboard
from/to other windows or applications on the screen, or from/to other/current GET
field or MemoEdit() text. Insert the clipboard text into GET field by Alt-V key, copy
by Alt-C key (both user modifiable). See CMD.READ for further details and
settings.

In Terminal i/o mode, similar functionality is provided (in Unix) via the "gpm" cut-
and-paste console utility/daemon and FlagShip keyboard buffer by using it pre-
defined keys and/or mouse buttons. To copy large strings, you probably may need
to extend the buffer size by SET TYPEAHEAD, e.g. SET TYPEAHEAD TO 500.

Tuning:
In GUI mode with proportional font, @ 5,1 SAY "XXXX" get var1 and @ 6,1 SAY
"iiii" get var2 would set fields var1 and var2 at different column position, since the
GET column in this compound statement is calculated from the last SAY position +
one space. Because the width of "XXXX" differs from "iiii" with proportional font,
also these GET columns differs. FlagShip's READ therefore re-calculates and
adjust all GETs to fit among each other, if applicable. You may disable this feature
by NOALIGN clause or globally by SET GUIALIGN OFF.

In GUI mode, drawing graphic lines sometimes requires refresh. If your display
flickers, you may disable the refresh by assigning

_aGlobSetting[GSET_G_N_REFRESHDRAW] := -1 // default = 300 ms

In GUI mode, the @..GET/READ field size width is calculated to fit the requested
amount of characters. In some cases and fonts, you may need to add a small
displacement to avoid horizontal scrolling, by assigning some more pixel to

_aGlobSetting[GSET_G_N_GET_WIDTH] := 8 // default = 8 pixel

You also may modify general adjustment to field width/height
_aGlobSetting[GSET_G_L_GET_ADJ] := .T. // adjust row/col?
_aGlobSetting[GSET_G_N_GET_ROW] := 0 // add pix Get row
_aGlobSetting[GSET_G_N_GET_COL] := -2 // add pix Get column
_aGlobSetting[GSET_G_N_GET_HEIGHT] := 0 // add pix Get height

Additional tuning is described in the READ command.

CMD 72

Example:
The cursor is positioned under the first element (during the READ command) of the
string and the program waits for input. Only numerical input is allowed for the first
three positions. Three non-template symbols then follow, which allows no input. The
rest of the string allows only alphabetic input. The blank is a non- template
character and input is not possible in its place in the PICTURE string.

value = "123---paris london"
@ 11,11 GET value PICTURE "@! 999---AAAAA XXXXXX"
READ
* Result: 123---PARIS LONDON

Example:
When the first key pressed is not a cursor key, the input field will be cleared. The
same effect appears on numeric data entry, where the "@K" is by default.

value = "Text "
@ 11,11 GET value PICTURE "@K! XXXXXX"
* Result : TEXT

Example:
The entry of long string within a short input window is supported using the "@S"
format function:

@ 6,5 GET value PICTURE "@S10 !!!!XXXXXXXXXXXXX"
* Result : THE long string
* pressing the -> key THE long string
* etc. THE long string
* │ │

│ └── currently invisible
└────────── the input field

Example:
All the following statements set the active GET field to yellow on red, the inactive
GET field is displayed in white on cyan:

SET COLOR TO "W+/B,GR+/R,,,W+/BG"
xxx = "W+/BG,GR+/R"
@...GET varname // uses automatically SETCOL2GET()
@...GET varname COLOR SETCOL2GET() // the same color as above
@...GET varname COLOR xxx // passes xxx to get:COLORSPEC
GETNEW (,,,,,SETCOL2GET()) // sets get:COLORSPEC to curr.color
get:COLORSPEC := SETCOL2GET() // sets get:COLORSPEC to curr.color
get:COLORSPEC := "W+/BG,GR+/R" // equivalent to the above

Example:
Example of several validity checks:

LOCAL value := 0, passw := space(10)
PRIVATE numzip := 0, country := " ", city := space(30)
@ 10,11 SAY "Please enter a two-digit number: " ;

GET value PICTURE "99" RANGE 10, 99
@ 11,11 SAY "Enter your password : " ;

GET passw VALID ","+trim(passw)+"," $ ",Peter,Paul,"
@ 15,10 SAY "Country : " GET country PICTURE "@!"

CMD 73

@ 16,10 SAY "Zip code : " GET numzip ;
PICTURE "99999" ;
WHEN TRIM(country) == "D" ;
VALID check_zip()

@ 17,10 SAY "City : " GET city
READ
if lastkey() = 27 // Exit per ESC ?
return // yes, back to menu

endif

FUNCTION check_zip /* check zip codes */
LOCAL act_select, ok
act_select = SELECT() // save act.working area
SELECT 25 // select ZIP database
SEEK numzip // seek current entry
ok = FOUND() // found ?
IF ok // yes,
city := FIELD->zip_city // predefine city name

ENDIF
SELECT (act_select) // restore act.working area
RETURN (ok) // validation .T. or .F.

Example:
Example of an array validation. Do not use the FOR index ii to VALIDate, since in
READ it will already have the value 4.

LOCAL ii, arr := {1,2,3}, check := {{1,10}, {2,22}, {3,33}}
LOCAL col := {SETCOLOR(), "W+/B,GR+/G,,,W+/R", "W/B,N/W"}
FOR ii := 1 TO LEN(arr)
@ ii,1 GET arr[ii] PICTURE "999" COLOR (col[ii]) ;

SEND CARGO := ii ; // or: USERMSG ii;
VALID arrcheck (arr, check)

NEXT
READ

FUNCTION arrcheck (inarr, checkarr)
LOCAL element := GETACTIVE():CARGO, value
value := inarr [element]
IF value >= checkarr[element, 1] .AND. ;

value <= checkarr[element, 2]
RETURN .T.

END
inarr[element] += 1 // assign new value
RETURN .F.

Example:
The same array check routine, generalized for any GET type and for multi-
dimensional GET array entry and access. The SEND clause in a @..GET statement
is used for checking purposes only and may be omitted, using e.g.
get:SUBSCRIPT[1].

FUNCTION arrcheck (inarr, checkarr)

LOCAL get := GETACTIVE(), elem, value, chkidx
PRIVATE arrname := get:NAME
PRIVATE &arrname := inarr // get orig.arr ptr

CMD 74

elem := READVAR() // e.g. "ARR[3]"
value := &(elem) // current value
chkidx:= get:CARGO // or get:SUBSCRIPT[1]

IF value < checkarr[chkidx, 1] .OR. ;
value > checkarr[chkidx, 2]
RETURN .F.

ENDIF
&(elem) += 1 // assign new value
RETURN .T.

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND(), used for
subsequent screen oriented input (via READ)

Compatibility:
New in FS4 are the clauses SEND and USERMSG, as well as the usage of the
GET object.

In FlagShip, both the RANGE and the VALID clauses may be specified. RANGE is
checked first.

Clipper ignores wrong PICTURE characters, FlagShip reports them in development
mode. When there are no separating spaces between the function and the template
part, FlagShip tries to determine the template from the context, where possible.

FlagShip does not truncate the most significant digits of numeric output within short
pictures; it tries, if possible, to output the whole number by removing inserted chars
or by shortening the PICTURE deci part containing zeros. To disable this feature,
and to display stars instead, assign _aGlobSetting[GSET_L_ADAPT_PICT] := .F.

Similarly to strings: if the template PICTURE characters does not match the string
length, the template is automatically extended by "X" instead of truncating the input
variable (as Clipper illegally do). This means in generally: FlagShip does not modify
the input variable length, but only the PICTURE template, if required.

FlagShip's GETs are performed via the GET class (see section OBJ), and are
therefore fully user modifiable. The standard READ command is available in source
code in the getsys.prg file.

See also terminal & GUI information in @..SAY and LNG.5.

The clauses DEFAULT, GUICOLOR, USING, ERRORVALID, CAPTION,
MESSAGE, TOOLTIP, CLEAR, DESTROY, ENABLE, DISABLE, PIXEL, NOPIXEL,
NOALIGN, WIDTH are new in FS5

Class:
GET, prototyped in <FlagShip_dir>/include/getclass.fh

Translation:
__SUBSCARR (.T.) ; __scratch := variable ; __SUBSCARR (.F.)
AADD (GetList, _FSGET_ (expN1, expN2, "variable", ;

Standard_GET_CodeBlock, [expC4], ;
[Range_Valid], [{expL4}], [expC9], _subscarr))

CMD 75

[ATAIL(GetList):Cargo := exp10]
[ATAIL(GetList):exp11]

Standard_GET_CodeBlock := {|input| ;
IF(input == NIL, variable, variable := input) }

Range_Valid := {|input| .T. ;
[.AND. RANGE_CHECK (input, expN6, expN7)] ;
[.AND. expL8] }

Related:
?/??, @...SAY, @...TO, @...CLEAR, CLEAR, CLEAR GETS, KEYBOARD, READ,
SET BELL, SET CONFIRM, SET DELIMITERS, SET DEVICE, SET FORMAT, SET
INTENSITY, SET KEY, COL(), FS_SET(), READVAR(), ROW()

CMD 76

@...[SAY..] GET CHECKBOX
Syntax 1:

@ <expN1>,<expN2>
GET <varL> CHECKBOX
[CAPTION <cCapt>]
[COLOR <cColor>]
[DEFAULT <lDef>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SEND|GUISEND <snd>]
[STATE <sBlock>]
[STYLE <cStyle>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[USING <obj>]
[VALID <lValid>]
[WHEN <lWhen>]

Syntax 2:
@ <expN1>,<expN2>

SAY <cSaytext>
[PICTURE <cSayPict>]
[COLOR <cSayColor>]

GET <varL> CHECKBOX
[CAPTION <cCapt>]
[COLOR <cGetColor>]
[DEFAULT <lDef>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SEND|GUISEND <snd>]
[STATE <sBlock>]
[STYLE <cStyle>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[USING <obj>]
[VALID <lValid>]
[WHEN <lWhen>]

CMD 77

Purpose:
Creates CheckBox widget and let it process via common READ.

Arguments:
<expN1>, <expN2> are numeric expressions, specifying the row and column
coordinates. With Syntax 1: coordinates of the widget. With Syntax 2: coordinate of
the capture text, the widget column coordinate is the over-next column behind the
text <cSaytext> end, same as in @..SAY..GET. In GUI mode, you may use numeric
values with decimal fractions for row and column, which are then rounded to integer
in Terminal i/o mode. To set coordinates at exact pixel value, use the PIXEL clause
(or enable SET PIXEL ON)

SAY <cSaytext> is a text caption identifying the CheckBox on the screen.

GET <varL> is a database field or a memory variable of logical type storing the
"checked" status of the CheckBox.

CHECKBOX clause is mandatory here.

Options:
CAPTION <cCapt> is a text explaining the CheckBox

COLOR <cSayColor> is an optional color specification for the @..SAY text.

COLOR <cGetColor> defines the color settings for the check box, applicable for
Terminal i/o only. The string may contain 5 color pairs:

Pair# Used for Default
1 Check box without input focus Unselected
2 Check box with input focus Enhanced
3 The check box's caption Standard
4 The check box caption's accelerator key Background
5 Border Border

For not specified pair, the default from current SetColor() is used

DEFAULT <lDef> set the GET <varL> to <lDef> value if <varL> is NIL, empty() or
of different type than <lDefa> which must be logical.

ENABLE|DISABLE enable (default) or disable the item from READ processing

ERRORVALID <bError> specifies to use the <bError> code block to display post-
validate error/failure

FOCUS <fblock> specifies a code block that is evaluated each time the CheckBox
receives focus. The code block receives two parameters, the current CheckBox
object, and the oBox:HasFocus status.

MESSAGE <cText> displays message <text> in status bar or in the SET
MESSAGE line when the CheckBox receives focus

PICTURE <cSayPict> is the optional picture of @..SAY text

PIXEL : the <expN1> and <expN2> are values in pixel

CMD 78

NOPIXEL : the <expN1> and <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN5> specifies unit
for <expN1> .. <expN2> coordinates. The <expN5> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

SEND <instance> } allows you to assign any valid class instance
GUISEND <instance> } or method. Supported for Clipper compatibility.

STATE <sBlock> specifies a code block that is evaluated each time the CheckBox
state changes, i.e. is checked or unchecked. The code block receives two
parameters, the current CheckBox object, and the oBox:Buffer status.

STYLE <cStyle> specifies a character string that indicates the CheckBox delimiter
characters for Terminal i/o. The default style is pre-defined in the global array
element _aGlobSetting[GSET_T_C_CHBOX_STYLE] := "[X]?" which is used when
the STYLE clause is omitted.

TOOLTIP <cTip> (GUI only) short pop-up message/info displayed when mouse
cursor is over the CheckBox widget, even w/o focus

USERMSG <cargo> assigns the <cargo> value to the CheckBox:Cargo instance

USING <obj> use already instantiated CheckBox object <obj>, avoid a new
creation/instantiation

VALID <lValid> (post-validation) is a logical expression (or UDF returning a logical
value) which is evaluated whenever the user attempts to leave the corresponding
GET. Should the expression return a .F. value, the cursor will remain on the current
field. This feature is often used for lookups using post-processing functions.

WHEN <lWhen> (pre-validation) specifies an expression that must be satisfied in
order to enter the CheckBox during a READ

Description:
The @...GET...CHECKBOX uses the CheckBox class. You may use it additional
properties by e.g. Atail(GetList):<instance> := <value>

Tuning:
The action on a key or mouse button press is defined in the user modifiable handler
<FlagShip_dir>/system/checkboxhand.prg. Mouse is supported in GUI mode only.
The default behavior on mouse button click is: Left mouse click selects/clears the
CheckBox and leaves the CheckBox to next GET (if any), same as the +, -,
space, x, y, t, n, f key press. Mid and right mouse button toggles the
button but stays in the CheckBox until the corresponding key leaves it. Space or 'x'
key toggles the status, the +, y, t key sets the CheckBox on, and -, n, f key
press sets it off.

CMD 79

By assigning _aGlobSetting[GSET_G_L_CHBOX_SINGLE] := .F. you may avoid
leaving CheckBox by left mouse button. The supported mouse buttons are specified
in _aGlobSetting[GSET_G_A_CHBOX_MOUSE] array, see <FlagShip_dir>/system/
initio.prg

Example:
local lBox1 := .F., lBox2 := .T., cText := space(20)
@ 10,5 get lBox1 CHECKBOX CAPTION "Checkbox 1"
@ 12,5 get lBox2 CHECKBOX CAPTION "Checkbox 2"
@ 14,5 get cText
read
setpos(15,0)
? "box1=", lBox1, "box2=", lBox2
wait

Example:
see <FlagShip_dir>/examples/getread*.prg

Classification:
screen oriented i/o (via READ)

Compatibility:
New in FS5

Related:
@..GET, READ, CheckBox class

CMD 80

@...GET COMBOBOX
Syntax 1:

@ <expN1>,<expN2>,<expN3>,<expN4>
GET <varN>
COMBOBOX <aData>
[CAPTION <cCapt>]
[COLDBOX <cFrame>]
[COLOR <cColor>]
[GUICOLOR <cGuiColor>]
[DEFAULT <defN>]
[DROPMARK <cDrop>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[HOTBOX <cFrame>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SCROLLBAR]
[SEND|GUISEND <snd>]
[STATE <sBlock>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[USING <obj>]
[VALID <lValid>]
[WHEN <lWhen>]

Syntax 2:
@ <expN1>,<expN2>,<expN3>,<expN4>

GET <varN>
COMBOBOX USING <obj>
[CAPTION <cCapt>]
[COLDBOX <cFrame>]
[COLOR <cColor>]
[GUICOLOR <cGuiColor>]
[DEFAULT <lDef>]
[DROPMARK <cDrop>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[HOTBOX <cFrame>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SCROLLBAR]

CMD 81

[SEND|GUISEND <snd>]
[STATE <sBlock>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[VALID <lValid>]
[WHEN <lWhen>]

Purpose:
Creates ComboBox widget and let it process via common READ. ComboBox is a
special case of the ListBox and can be created also by using the @..GET..
..LISTBOX command with DROPDOWN clause.

Arguments:
<expN1>,<expN2>,expN3>,<expN4> are numeric expressions, specifying the top,
left, bottom, right coordinates (in that order) of the open ComboBox widget. In GUI
mode, you may use numeric values with decimal fractions for row and column,
which are then rounded to integer in Terminal i/o mode. To set coordinates at exact
pixel value, use the PIXEL clause (or enable SET PIXEL ON)

GET <varN> is a database field or a memory variable of numeric type specifying
the start item (if > 0) in the list, and returning the selected position (or 0 on ESC).

COMBOBOX USING <obj> is an alternative syntax, specifying to use an already
instantiated object <obj> of ComboBox class with assigned items. When the
coordinates <expN1>...<expN4> are 0 or positive, they will overwrite previously set
<obj> coordinates, negative coordinate let previous setting untouched.

Options:
The optional clauses of ComboBox are equivalent to Listbox, please refer to the
@...GET..LISTBOX command.

Description:
The @...GET...COMBOBOX command uses the ComboBox class. You may add
other class properties by e.g.

Atail(GetList):<ComboBox_instance> := <value>

or by instantiating the object extra, set instances and using the USING <obj> clause
in this @..GET..COMBOBOX command.

Example:
see <FlagShip_dir>/examples/getread*.prg

Classification:
screen oriented i/o (via READ)

Compatibility:
New in FS5

Related:
@..GET, READ, @..GET..LISTBOX, ComboBox class

CMD 82

@...GET LISTBOX
Syntax 1:

@ <expN1>,<expN2>,<expN3>,<expN4>
GET <varN>
LISTBOX <aData>
[CAPTION <cCapt>]
[COLDBOX <cFrame>]
[COLOR <cColor>]
[GUICOLOR <cGuiColor>]
[DEFAULT <defN>]
[DROPDOWN]
[DROPMARK <cDrop>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[HOTBOX <cFrame>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SCROLLBAR]
[SEND|GUISEND <snd>]
[STATE <sBlock>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[USING <obj>]
[VALID <lValid>]
[WHEN <lWhen>]

Syntax 2:
@ <expN1>,<expN2>,<expN3>,<expN4>

GET <varN>
LISTBOX USING <obj>
[CAPTION <cCapt>]
[COLDBOX <cFrame>]
[COLOR <cColor>]
[GUICOLOR <cGuiColor>]
[DEFAULT <lDef>]
[DROPDOWN]
[DROPMARK <cDrop>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[HOTBOX <cFrame>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]

CMD 83

[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SCROLLBAR]
[SEND|GUISEND <snd>]
[STATE <sBlock>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[VALID <lValid>]
[WHEN <lWhen>]

Purpose:
Creates ListBox or ComboBox widget and let it process via common READ.

Arguments:
<expN1>,<expN2>,expN3>,<expN4> are numeric expressions, specifying the top,
left, bottom, right coordinates (in that order) of the ListBox widget. In GUI mode, you
may use numeric values with decimal fractions for row and column, which are then
rounded to integer in Terminal i/o mode. To set coordinates at exact pixel value,
use the PIXEL clause (or enable SET PIXEL ON)

GET <varN> is a database field or a memory variable of numeric type specifying
the start item (if > 0) in the list, and returning the selected position (or 0 on ESC).

LISTBOX <aData> is one- or two-dimensional array. With one-dimensional, the
array elements contain the displayed text. With two- dimensional, the aData[n,1] is
the displayed text and aData[n,2] is a "hidden" item value available via obj:Value for
the selected item, or obj:GetVal(pos) for any item. The current <obj> object is
passed to the FOCUS and STATE code block.

LISTBOX USING <obj> is an alternative syntax, specifying to use an already
instantiated object <obj> of ListBox or ComboBox class with assigned items.

Options:
CAPTION <cCapt> is a text explaining the ListBox

COLDBOX <cFrame> (considered in Terminal i/o mode only) specifies the frame
displayed when the ListBox has no input focus. The default style is pre-defined in
the global array element

_aGlobSetting[GSET_T_C_COLDBOX] := B_SINGLE
which is used when the COLDBOX clause is omitted.

COLOR <cColor> (considered in Terminal i/o mode only) defines the color settings
for the ListBox. The string may contain 8 color pairs:

Pair# Used for Default
1 Unselected items, without input focus Standard
2 Selected item, without input focus Unselected
3 Unselected items with input focus Standard
4 Selected item with input focus Enhanced
5 The list box's border Border
6 The list box's caption Standard
7 The list box caption's accelerator key Background
8 The list box's drop-down button Standard

CMD 84

For not specified pair, the default from current SetColor() is used

GUICOLOR <cGuiColor> (considered in GUI i/o mode only) defines the color
settings for the ListBox. The string may contain 4 color pairs:

Pair# Used for Default
1 Unselected items, without input focus black/white
2 Selected item, without input focus white/blue
3 Unselected items with input focus black/white
4 Selected item with input focus white/blue

For not specified pair or for pair specified N/N, the default is used. Note that the
standard background for selected item (with and without input focus) is usually set
by the window manager and may hence differ according to the used platform. It is
usually W+/RGB(49,106,195) = W+/#316AC3 in Windows, and W+/RGB(8,93,139)
= W+/#085D8B in Linux/KDE.

DEFAULT <defN> set the GET <varN> to <defN> value if <varN> is NIL, empty() or
of different type than <defN> which must be numeric.

DROPDOWN indicates to create ComboBox instead of ListBox.

DROPMARK <cDrop> (considered in Terminal i/o mode only) specifies the drop-
down character displayed for ComboBox. The default style is pre-defined in the
global array element _aGlobSetting[GSET_T_C_COMBOMARK] := chr(31) which is
used when the DROPMARK clause is omitted.

ENABLE|DISABLE enable (default) or disable the item from READ processing

ERRORVALID <bError> specifies to use the <bError> code block to display post-
validate error/failure

FOCUS <fblock> specifies a code block that is evaluated each time the ListBox
receives focus. The code block receives two parameters, the current ListBox object,
and the obj:HasFocus status.

HOTBOX <cFrame> (considered in Terminal i/o mode only) specifies the frame
displayed when the ListBox has input focus. The default style is pre-defined in the
global array element _aGlobSetting[GSET_T_C_HOTBOX] := B_DOUBLE which is
used when the HOTBOX clause is omitted.

MESSAGE <cText> displays message <text> in status bar or in the SET
MESSAGE line when the ListBox receives focus

PIXEL : the <expN1> and <expN2> are values in pixel

NOPIXEL : the <expN1> and <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN5> specifies unit
for <expN1> .. <expN2> coordinates. The <expN5> is parenthesed numeric value in

CMD 85

range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

SCROLLBAR is available for Clipper compatibility only. In FlagShip, the scrollbar is
used automatically when the list is larger than the available widget size.

SEND <instance> } allows you to assign any valid class instance
GUISEND <instance> } or method. Supported for Clipper compatibility.

STATE <sBlock> specifies a code block that is evaluated each time the ListBox
selection changes, i.e. is checked or unchecked. The code block receives two
parameters, the current ListBox object and the select status.

TOOLTIP <cTip> (GUI only) short pop-up message/info displayed when mouse
cursor is over the ListBox widget, even w/o focus

USERMSG <cargo> assigns the <cargo> value to the ListBox:Cargo instance

USING <obj> specify to use an already instantiated object <obj> of ListBox or
ComboBox class. Optional only with Syntax 1, i.e. when LISTBOX <aData> is used.
When the coordinates <expN1>...<expN4> are 0 or positive, they will overwrite
previously set <obj> object coordinates; negative <expN> coordinate let previous
<obj> setting untouched.

VALID <lValid> (post-validation) is a logical expression (or UDF returning a logical
value) which is evaluated whenever the user attempts to leave the corresponding
field. Should the expression return a .F. value, the cursor will remain on the current
field. This feature is often used for lookups using post-processing functions. To
determine the currently selected Listbox item number, use

item := GetActive():Buffer

WHEN <lWhen> (pre-validation) specifies an expression that must be satisfied in
order to enter the ListBox during a READ

Description:
The @...GET...LISTBOX command uses the ListBox or ComboBox class. You may
add other class properties by e.g.

Atail(GetList):<ListBox_instance> := <value>
or by instantiating the object extra, set instances and using the USING <obj> clause
in this @..GET..LISTBOX command.

The ListBox class is also used per default in Achoice().

Tuning:
The <expN1>..<expN4> coordinates usually specifies the outer box frame, common
for both GUI and Terminal i/o mode. If you wish in GUI mode these coordinates
specify the inner box, set

_aGlobSetting[GSET_G_L_LISTBOX_BOX] := .F. // default = .T.

CMD 86

If you don't wish to automatically adjust row/col in GUI mode, set

_aGlobSetting[GSET_G_L_LISTBOX_ADJ] := .F. // default = .T.

If the above adjustment is on (.T.), you may set the pixel values

_aGlobSetting[GSET_G_N_LISTBOX_TOP] := -2 // default
_aGlobSetting[GSET_G_N_LISTBOX_BOT] := 2 // default
_aGlobSetting[GSET_G_N_LISTBOX_LEFT] := -7 // default
_aGlobSetting[GSET_G_N_LISTBOX_RIGH] := 6 // default
_aGlobSetting[GSET_G_N_COMBO_HEIGHT] := 4 // default

where the defaults are set in the <FlagShip_dir>/system/initio.prg file

The action on a key or mouse button press is defined in the user modifiable handler
<FlagShip_dir>/system/listboxhand.prg. Mouse is supported in GUI mode only.

The default behavior on mouse button click is:

- Left mouse click selects the ListBox item and leaves the ListBox to next GET (if
any), same as press of the Enter or Space key.

- Mid and right mouse button select the item but stays in the ListBox until the
Enter or Space key leaves it, except when the object instance SelectBySingle-
Click is set .T. (default is .F.) which then behaves same as left mouse click.

By assigning _aGlobSetting[GSET_G_L_LISTBOX_SINGLE]:= .F. you may avoid
leaving ListBox by left mouse button. Assigning .F. to SelectBySpace instance
prevent selection by Space key. The supported mouse buttons are specified in the
array _aGlobSetting[GSET_G_A_LISTBOX_MOUSE], see <FlagShip_dir>/system/
initio.prg

Example:
local ii, aItem, nListb, cTxt := "any text "

set font "courier", 10
// _aGlobSetting[GSET_G_L_LISTBOX_BOX] := .F. // coord = inner
aItem := {}
nListb := 1
for ii := 1 to 20
aadd(aItem, "Listbox (array) line#" + ltrim(ii))

next
@ 4, 5, 11,35 GET nListb LISTBOX aItem
@ 12,5 get cTxt
read
wait

Example:
local ii, oLBox, nListb, cTxt := "any text "

oLBox := Listbox{} // instantiate object
nListb := 3 // start at line 3
for ii := 1 to 20
oLBox:AddItem("Listbox (object) line#" + ltrim(ii))

next

CMD 87

@ 4,5, 11,35 GET nListb LISTBOX USING oLBox ;
GUICOLOR ",W+/#C0C0C0" ;
WHEN myReport(0) VALID myReport(1)

// STATE {|obj,selected| myReport(2) }
@ 12,5 get cTxt
read
wait

Function myReport(mode)
local rr := row(), cc := col(), obj := getactive()
if mode == 0 // clear

@ 10,40 say space(30)
else // display curr. selection

@ 10,40 say "Return: " + ltrim(obj:Buffer) + space(5)
endif
setpos(rr, cc)

return .T.

Example:
see <FlagShip_dir>/examples/getread*.prg

Classification:
screen oriented i/o (via READ)

Compatibility:
New in FS5, available also (with less options) in CL53

Related:
@..GET, READ, @..GET..COMBOBOX, ListBox and ComboBox classes

CMD 88

@...GET PUSHBUTTON
Syntax:

@ <expN1>,<expN2>
GET <varL>
PUSHBUTTON
[CAPTION <cCapt>]
[COLOR <cColor>]
[DEFAULT <defL>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[FONT <oFontObj>]
[FONT <cFontName> [, <nFontSize>]]
[MESSAGE <cText>]
[NOTIFY <nBlock>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SEND|GUISEND <snd>]
[SKIP]
[STATE <sBlock>]
[STYLE <cFrame>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[USING <obj>]
[VALID <lValid>]
[WHEN <lWhen>]

Purpose:
Creates PushButton widget and let it process via common READ.

Arguments:
<expN1>,<expN2> are numeric expressions, specifying the row and column
coordinate of the push button widget. In GUI mode, you may use numeric values
with decimal fractions for row and column, which are then rounded to integer in
Terminal i/o mode. To set coordinates at exact pixel value, use the PIXEL clause
(or enable SET PIXEL ON)

GET <varL> is a database field or a memory variable of logical type returning the
status, i.e. TRUE if the push button was pressed.

PUSHBUTTON is a mandatory clause.

Options:
CAPTION <cCapt> is a text displayed in the push button

COLOR <cColor> (considered in Terminal i/o mode only) defines the color settings
for the PushButton. The string may contain 4 color pairs:

CMD 89

Pair# Used for Default
1 push button w/o input focus Unselected
2 push button with input focus, not pressed Enhanced
3 push button with input focus, pressed Enhanced
4 push button caption's accelerator key Background

For not specified pair, the default from current SetColor() is used

DEFAULT <defL> set the GET <varL> to <defL> value if <varL> is NIL, empty() or
of different type than <defL> which must be logical.

ENABLE|DISABLE enable (default) or disable the item from READ processing.
See also SKIP clause for partial disabling.

ERRORVALID <bError> specifies to use the <bError> code block to display post-
validate error/failure

FOCUS <fblock> specifies a code block that is evaluated each time the
PushButton receives focus. The code block receives two parameters, the current
obj:HasFocus status and PushButton object.

FONT <oFontObj> displays button caption using font object <oFontObj>

FONT <cFontName> displays button caption using font name <cFontName>

FONT <cFontName>,<nFontSize> displays button caption using font name
<cFontName> and font size <nFontSize>

MESSAGE <cText> displays message <text> in status bar or in the SET
MESSAGE line when the PushButton receives focus

NOTIFY <nBlock> specifies a code block that is evaluated each time the
PushButton is pressed or clicked by mouse, to enable the application to react on
the Enter or mouse button press. The code block takes one argument, the
PushButton object self. Since the code block is evaluated immediately at mouse
click on the button, even if the current GET object yet differs, it is not advisable to
push key(s) via KEYBOARD within the Notify code block body; it may cause
unexpected READ behavior. Instead, assign key value(s) to be processed to
objPush:OnClickKeys instance. Alternatively, you may specify action to be taken
next in READ by assigning GE_* value to the objPush:OnClickAction instance.
The GE_* values are defined in getexit.fh and described in OBJ.Get:ExitState; e.g.
GE_WRITE = 6 to save GETs by simulating press of Ctrl-W key, or GE_ESCAPE =
7 to exit READ same as press on ESC key, or GE_TOP to skip to first item, etc. To
be able to check READ exit, LASTKEY() is set K_CTRL_W on GE_WRITE and
K_ESC on passing GE_ESCAPE. See example in section FUN.ReadSelect() and
below.

PIXEL : the <expN1> and <expN2> are values in pixel

NOPIXEL : the <expN1> and <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

CMD 90

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN5> specifies unit
for <expN1> .. <expN2> coordinates. The <expN5> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

SEND <instance> } allows you to assign any valid class instance
GUISEND <instance> } or method. Supported for Clipper compatibility.

SKIP disables selecting this button by cursor movement within READ, the item is
accessible by mouse click or by SELECT or ReadSelect() assignment from/within
READ only. If you wish to generally disable this item, use DISABLE clause (or
objPush:Enabled := .F.) instead.

STATE <sBlock> specifies a code block that is evaluated each time the
PushButton selection changes, i.e. is pressed or released. The code block receives
two parameters, the obj:Buffer indicating the button status (pressed/released) and
the current PushButton object.

STYLE <cFrame> (considered in Terminal i/o mode only) specifies a character
string that indicates the PushButton delimiters. The default style is pre-defined in
the global array element _aGlobSetting[GSET_T_C_PUSHB_STYLE] := "<>" which
is used when the STYLE clause is omitted.

TOOLTIP <cTip> (GUI only) short pop-up message/info displayed when mouse
cursor is over the PushButton widget, even w/o focus

USERMSG <cargo> assigns any <cargo> value to the PushButton:Cargo instance

USING <obj> specify to use an already instantiated object <obj> of PushButton
class.

VALID <lValid> (post-validation) is a logical expression (or UDF returning a logical
value) which is evaluated whenever the user attempts to leave the corresponding
field. Should the expression return a .F. value, the cursor will remain on the current
field. This feature is often used for lookups using post-processing functions. At this
stage, as opposite to NOTIFY, you also may push keys by KEYBOARD in UDF, the
code block however need to return logical.

WHEN <lWhen> (pre-validation) specifies an expression that must be satisfied in
order to enter the PushButton during a READ. At this stage, as opposite to NOTIFY,
you also may push keys by KEYBOARD in UDF, the code block however need to
return logical.

Description:
The @..GET..PUSHBUTTON command uses the PushButton class. You may add
other class properties (for example a bitmap image) by e.g.

Atail(GetList):<PushButton_instance> := <value>
or by instantiating the object extra, set instances and using the USING <obj> clause
in this @..GET..PUSHBUTTON command.

CMD 91

Pressing the button by mouse click (GUI only) or by Enter, space, X, Y, T or P keys
calls the codeblock specified by STATE option, which then performs the requested
program action. The codeblock may also perform e.g. KEYBOARD chr(K_DOWN)
or chr(K_ESC) to skip to next @..GET field or to terminate the READ, otherwise the
GET field is not left. But since the code block my be entered twice (one time at key
press and once on key release), better is to use obj:OnClickAction instead of
KEYBOARD, see NOTIFY above. If there is neither STATE nor FOCUS codeblock,
the default behavior at pressing the button simulates Enter key to continue READ
process in next GET field.

Example:
lPush := lPush2 := lPush3 := lExit := .F.
cText := space(20)
@ 5,15 GET lPush PUSHBUTTON CAPTION "List .prg files" ;

STATE {|push, obj| myList(push, obj) } ;
TOOLTIP "List sources in current directory"

@ 7,15 GET lPush2 PUSHBUTTON CAPTION "Other button" SKIP ;
NOTIFY {|obj| myUdf(obj) } ;
FONT "Arial",12 ; // or FONT font{"Arial",12}
TOOLTIP "Other button accessible by mouse only"

@ 7,25 GET lPush3 PUSHBUTTON NOTIFY {|obj| myUdf2(obj) }
Atail(getlist):Width(120, .T.) // width = 120 pixel
Atail(getlist):Height(0) // height = auto
Atail(getlist):SetImage("mypicture.jpeg") // auto-scale to width
Atail(getlist):Display()
@ 9, 5 SAY "any text"
@ 9,15 GET cText
@ 5,50 GET lExit PUSHBUTTON CAPTION "Exit" ;

NOTIFY {|obj| obj:OnClickKeys := chr(K_ESC) } ;
SKIP TOOLTIP "Accessible by mouse click only"

READ
setpos(16,0)
? "lastkey()=",ltrim(lastkey())
wait

FUNCTION myList(lPressed, oPush)
local aDir, iWin, ii
if !lPressed // button released:

return // nothing to do
endif
aDir := Directory("*.prg")
// uses sub-window via FS2 toolbox
iWin := Wopen(3,3, min(Maxrow()-1,len(aDir)+6), 25)
for ii := 1 to len(aDir)

@ ii-1, 1 say aDir[ii,1]
next
?
wait
Wclose(iWin) // close sub-window
KEYBOARD chr(K_DOWN) // exit PushButton

return

CMD 92

FUNCTION myUdf(oPush)
alert("button named '" + oPush:Caption + "' pressed")

return

FUNCTION myUdf2(oPush)
#include "getexit.fh"
alert("button 3 pressed")
oPush:OnClickAction := GE_WRITE // go to next GET

return

Example:
see FUN.ReadSelect() and <FlagShip_dir>/examples/getread*.prg

Classification:
screen oriented i/o (via READ)

Compatibility:
New in FS5, available also (with less options) in CL53

Related:
@..GET, READ, PushButton class

CMD 93

@...[SAY..] GET RADIOBUTTON
Syntax 1:

@ <expN1>,<expN2>
GET <varL> RADIOBUTTON
[CAPTION <cCapt>]
[COLOR <cColor>]
[DEFAULT <lDef>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SEND|GUISEND <snd>]
[STATE <sBlock>]
[STYLE <cStyle>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[USING <obj>]
[VALID <lValid>]
[WHEN <lWhen>]

Syntax 2:
@ <expN1>,<expN2>

SAY <cSaytext>
[PICTURE <cSayPict>]
[COLOR <cSayColor>]

GET <varL> RADIOBUTTON
[CAPTION <cCapt>]
[COLOR <cGetColor>]
[DEFAULT <lDef>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SEND|GUISEND <snd>]
[STATE <sBlock>]
[STYLE <cStyle>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[USING <obj>]
[VALID <lValid>]
[WHEN <lWhen>]

CMD 94

Purpose:
Creates RadioButton widget and let it process via common READ. Usually, the
radio button is not used stand alone, but is grouped in RadioGroup to get an
exclusive ON status of one button of the group.

Arguments:
<expN1>, <expN2> are numeric expressions, specifying the row and column
coordinates. With Syntax 1: coordinates of the widget. With Syntax 2: coordinate of
the capture text, the widget column coordinate is the over-next column behind the
text <cSaytext> end, same as in @..SAY..GET. In GUI mode, you may use numeric
values with decimal fractions for row and column, which are then rounded to integer
in Terminal i/o mode. To set coordinates at exact pixel value, use the PIXEL clause
(or enable SET PIXEL ON)

SAY <cSaytext> is a text caption identifying the RadioButton on the screen. Better,
common practice is to use the CAPTION clause.

GET <varL> is a database field or a memory variable of logical type storing the "on"
status of the RadioButton.

RADIOBUTTON clause is mandatory here.

Options:
CAPTION <cCapt> is a text explaining the radio button

COLOR <cSayColor> is an optional color specification for the @..SAY text.

COLOR <cGetColor> (considered in Terminal i/o mode only) defines the color
settings for the radio button. The string may contain 8 color pairs:

Pair# Used for Default
1 Radio button without input focus, unselected Unselected
2 Radio button without input focus, selected Unselected
3 Radio button with input focus, unselected Unselected
4 Radio button with input focus, selected Enhanced
5 Radio button's caption Standard
6 Radio button caption's accel. key w/o focus Standard
7 Radio button caption's accel. key with focus Background
8 Radio button and caption, disabled Border

For not specified pair, the default from current SetColor() is used

DEFAULT <lDef> set the GET <varL> to <lDef> value if <varL> is NIL, empty() or
of different type than <lDefa> which must be logical.

ENABLE|DISABLE enable (default) or disable the item from READ processing

ERRORVALID <bError> specifies to use the <bError> code block to display post-
validate error/failure

CMD 95

FOCUS <fblock> specifies a code block that is evaluated each time the Radio
button receives focus. The code block receives two parameters, the current
RadioButton object, and the oBox:HasFocus status.

MESSAGE <cText> displays message <text> in status bar or in the SET
MESSAGE line when the RadioButton receives focus

PICTURE <cSayPict> is the optional picture of @..SAY text

PIXEL : the <expN1> and <expN2> are values in pixel

NOPIXEL : the <expN1> and <expN2> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN5> specifies unit
for <expN1> .. <expN2> coordinates. The <expN5> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

SEND <instance> } allows you to assign any valid class instance
GUISEND <instance> } or method. Supported for Clipper compatibility.

STATE <sBlock> specifies a code block that is evaluated each time the
RadioButton state changes, i.e. is checked or unchecked. The code block receives
two parameters, the current RadioButton object, and the oBox:Buffer status.

STYLE <cStyle> (considered in Terminal i/o mode only) specifies a character string
that indicates the RadioButton delimiter characters and status display. The default
style is pre-defined in the global array element _aGlobSetting[GSET_T_C_
RADBUT_STYLE] := "(*)" which is used when the STYLE clause is omitted.

TOOLTIP <cTip> (GUI only) short pop-up message/info displayed when mouse
cursor is over the RadioButton widget, even w/o focus

USERMSG <cargo> assigns the <cargo> value to the RadioButton:Cargo instance

USING <obj> use already instantiated RadioButton object <obj>, avoid a new
creation/instantiation

VALID <lValid> (post-validation) is a logical expression (or UDF returning a logical
value) which is evaluated whenever the user attempts to leave the corresponding
GET. Should the expression return a .F. value, the cursor will remain on the current
field. This feature is often used for lookups using post-processing functions.

WHEN <lWhen> (pre-validation) specifies an expression that must be satisfied in
order to enter the RadioButton during a READ

Description:
The @...GET...RADIOBUTTON uses the RadioButton class. You may add other
class properties by e.g. Atail(GetList):<RadioButton_instance> := <value> or by

CMD 96

instantiating the object extra, set instances and using the USING <obj> clause in
this @..GET..RADIOBUTTON command.

Example:
see <FlagShip_dir>/examples/getread*.prg

Classification:
screen oriented i/o (via READ)

Compatibility:
New in FS5

Related:
@..GET, READ, @..GET..RADIOGROUP, RadioButton class

CMD 97

@...GET RADIOGROUP
Syntax 1:

@ <expN1>,<expN2>,<expN3>,<expN4>
GET <varN> RADIOGROUP <aData>
[CAPTION <cCapt>]
[COLDBOX <cFrame>]
[COLOR <cColor>]
[DEFAULT <defN>]
[ENABLE|DISABLE]
[NONEXCLUSIVE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[HOTBOX <cFrame>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SEND|GUISEND <snd>]
[STATE <sBlock>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[USING <obj>]
[VALID <lValid>]
[WHEN <lWhen>]

Syntax 2:
@ <expN1>,<expN2>,<expN3>,<expN4>

GET <varN> RADIOGROUP USING <obj>
[CAPTION <cCapt>]
[COLDBOX <cFrame>]
[COLOR <cColor>]
[DEFAULT <lDef>]
[ENABLE|DISABLE]
[NONEXCLUSIVE]
[ERRORVALID <bError>]
[FOCUS <fblock>]
[HOTBOX <cFrame>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SEND|GUISEND <snd>]
[STATE <sBlock>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[VALID <lValid>]
[WHEN <lWhen>]

CMD 98

Purpose:
Creates RadioGroup widget and let it process via common READ. The radio group
summarizes radio buttons and allows to exclusively select one button at a time. You
may change this behavior to non- exclusive choice allowing multiple button
selection by assigning Atail(GetList):Exclusive := .F. or by using already instantiated
RadioGroup object and Syntax 2.

Arguments:
<expN1>,<expN2>,expN3>,<expN4> are numeric expressions, specifying the top,
left, bottom, right coordinates (in that order) of the RadioGroup widget. In GUI
mode, you may use numeric values with decimal fractions for row and column,
which are then rounded to integer in Terminal i/o mode. To set coordinates at exact
pixel value, use the PIXEL clause (or enable SET PIXEL ON)

GET <varN> is a database field or a memory variable of numeric type specifying
the pre-selected button (if > 0) in the list, and returning the selected position (or 0
on ESC).

RADIOGROUP <aData> is one-dimensional array containing the buttons capture
(string text) or RadioButton objects. You may instantiate the row/col of each
RadioButton absolutely or relative if the coordinate is negative. In such a case,
row/col == -1 is 1st row/column of the RadioGroup, -2 is the 2nd row or column of
the RadioGroup, and so forth.

RADIOGROUP USING <obj> is an alternative syntax, specifying to use an already
instantiated object <obj> of RadioGroup class with assigned RadioButton items.
You may use absolute or relative RadioButton coordinates, see above.

Options:
CAPTION <cCapt> is a text explaining the RadioGroup

COLDBOX <cFrame> (considered in Terminal i/o mode only) specifies the frame
displayed when the RadioGroup has no input focus. The default style is pre-defined
in the global array element _aGlobSetting[GSET_T_C_COLDBOX] := B_SINGLE
which is used when the COLDBOX clause is omitted.

COLOR <cColor> (considered in Terminal i/o mode only) defines the color settings
for the RadioGroup. The string may contain 3 color pairs:

Pair# Used for Default
1 Radio group border Border
2 Radio group caption Standard
3 Radio group capt key Background

For not specified pair, the default from current SetColor() is used

DEFAULT <defN> set the GET <varN> to <defN> value if <varN> is NIL, empty() or
of different type than <defN> which must be numeric.

CMD 99

ENABLE|DISABLE enable (default) or disable the item from READ processing

NONEXCLUSIVE The default RadioGroup behavior is "exclusive", which allows to
set only one button within the group. When specifying the NONEXCLUSIVE clause,
you may select any RadioButton within the group and/or disable it. It is equivalent to
oGetItem:Exclusive := .F. assignment. In non-exclusive mode, the return value is
the first selected item, see example below for determining all of them. In the default
handler <FlagShip_dir>/system/radgrouphand.prg, the LeftMouse Button selects
and RightMouseButton de-selects the status.

ERRORVALID <bError> specifies to use the <bError> code block to display post-
validate error/failure

FOCUS <fblock> specifies a code block that is evaluated each time the
RadioGroup receives focus. The code block receives two parameters, the current
RadioGroup object, and the obj:HasFocus status.

HOTBOX <cFrame> (considered in Terminal i/o mode only) specifies the frame
displayed when the RadioGroup has input focus. The default style is pre-defined in
the global array element _aGlobSetting[GSET_T_C_HOTBOX] := B_DOUBLE which
is used when the HOTBOX clause is omitted.

MESSAGE <cText> displays message <text> in status bar or in the SET
MESSAGE line when the RadioGroup receives focus

PIXEL : the <expN1> ... <expN4> are values in pixel

NOPIXEL : the <expN1> ... <expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN5> specifies unit
for <expN1> .. <expN2> coordinates. The <expN5> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

SEND <instance> } allows you to assign any valid class instance
GUISEND <instance> } or method. Supported for Clipper compatibility.

STATE <sBlock> specifies a code block that is evaluated each time the
RadioGroup selection changes, i.e. if one radio button is set ON or OFF. The code
block receives two parameters, the current RadioGroup object, and the obj:Buffer
content specifying the selected position of the button. To check the button status,
you may determine it from the radio button object available via obj:GetItem():Buffer
or obj:GetItem(pos):Buffer

TOOLTIP <cTip> (GUI only) short pop-up message/info displayed when mouse
cursor is over the RadioGroup widget, even w/o focus

USERMSG <cargo> assigns the <cargo> value to the RadioGroup:Cargo instance

CMD 100

USING <obj> specify to use an already instantiated object <obj> of RadioGroup
class. Optional only with Syntax 1, i.e. when the clause RADIOGROUP <aData> is
used.

VALID <lValid> (post-validation) is a logical expression (or UDF returning a logical
value) which is evaluated whenever the user attempts to leave the corresponding
field. Should the expression return a .F. value, the cursor will remain on the current
field. This feature is often used for lookups using post-processing functions.

WHEN <lWhen> (pre-validation) specifies an expression that must be satisfied in
order to enter the RadioGroup during a READ

Description:
The @...GET...RADIOGROUP command uses the RadioGroup class. You may add
other class properties by e.g. Atail(GetList):<RadioGroup_instance> := <value> or
by instantiating the object extra, set instances and using the USING <obj> clause in
this @..GET..RADIOGROUP command. Note that some instances/settings apply
after displaying the buttons.

Tuning:
The action on a key or mouse button press is defined in the user modifiable handler
<FlagShip_dir>/system/radgrouphand.prg. Mouse is supported in GUI mode only.
The default behavior on mouse button click is: Left mouse click selects the
RadioButton and leaves the RadioGroup to next GET (if any), same as the +, -,
space, x, y, t, n, f key press. Mid and right mouse button select the button
but stays in the RadioGroup until the corresponding key leaves it. With non-
exclusive RadioGroup, left, mid and right mouse click toggles the button on/off
status, same as space or 'x' key, the +, y, t key sets the RadioButton on, and -,
n, f key press sets it off.

By assigning _aGlobSetting[GSET_G_L_RADBUT_SINGLE] := .F. you may avoid
leaving RadioGroup by left mouse button. The supported mouse buttons are
specified in _aGlobSetting[GSET_G_A_RADBUT_MOUSE] array, see
<FlagShip_dir>/system/initio.prg

Example:
local nButt := 1, nButt2 := 2, cTxt := space(10)
@ 4,10 say "select: +|y|t|-|n|f|space|x|LMB|RMB"
@ 5,10,9,25 GET nButt RADIOGROUP ;

{ RadioButton{-1,-1, "&First", ""} , ;
RadioButton{-2,-1, "&Second", ""}, ;
RadioButton{-3,-1, "&Third", ""} }

@ 5,30,9,45 GET nButt2 RADIOGROUP {"One","Two","T&hree"}
@ 11,10 GET cTxt
READ
setpos(15,0)
? "Selected buttons=", ltrim(nButt), ltrim(nButt2)
wait

CMD 101

Example:
local aGroup := array(3), nButt := 2, cTxt := space(10)
local aButtons := {}
aGroup[1] := RadioButton{-1,-1, "&First", ""}
aGroup[2] := RadioButton{-2,-1, "&Second", ""}
aGroup[3] := RadioButton{-3,-1, "&Third", ""}

@ 3,10 say "non-exclusive"
@ 4,10 say "select: +|y|t|LMB, clear: -|n|f|RMB, toggle:space|x"

@ 5,10,9,25 GET nButt RADIOGROUP aGroup NONEXCL ;
VALID CheckButtons(@aButtons)

aGroup[3]:Checked := .T. // set addit. button 3 on
@ 11,10 GET cTxt
READ

setpos(15,0)
? "Selected buttons:"
aeval(aButtons, {|x| qqout(x)})
wait

FUNCTION CheckButtons(arr) // called in Valid()
local ii, obj := GetActive()
arr := {}
if IsObjProperty(obj, 2, "exclusive") .and. !obj:Exclusive
for ii := 1 to obj:ItemCount

if obj:getitem(ii):Checked // RadioButton item
aadd(arr, ii)

endif
next

endif
return .T.

Example:
see <FlagShip_dir>/examples/getread*.prg

Classification:
screen oriented i/o (via READ)

Compatibility:
New in FS5, available also (with less options) in CL53

Related:
@..GET, READ, @..GET..COMBOBOX, RadioGroup and ComboBox classes

CMD 102

@...GET TBROWSE
Syntax:

@ <expN1>,<expN2>,<expN3>,<expN4>
GET <var>
TBROWSE [USING] <obj>
[CAPTION <cCapt>]
[COLDBOX <cFrame>]
[COLOR <cColor>]
[ENABLE|DISABLE]
[ERRORVALID <bError>]
[HOTBOX <cFrame>]
[MESSAGE <cText>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN5>)]
[SEND|GUISEND <snd>]
[TOOLTIP <cTip>]
[USERMSG <cargo>]
[VALID <lValid>]
[WHEN <lWhen>]

Purpose:
Creates TBrowse widget and let it process via common READ.

Arguments:
<expN1>,<expN2>,expN3>,<expN4> are numeric expressions, specifying the top,
left, bottom, right coordinates (in that order) of the TBrowse widget. In GUI mode,
you may use numeric values with decimal fractions for row and column, which are
then rounded to integer in Terminal i/o mode. To set coordinates at exact pixel
value, use the PIXEL clause (or enable SET PIXEL ON)

GET <var> is a memory variable of any type not explicitly used but required for
READ.

TBROWSE [USING] <obj> specifies the already instantiated object <obj> of
TBrowse class with assigned TbColumn items.

Options:
CAPTION <cCapt> is not used by @..GET..TBROWSE but is supported for cross-
compatibility purpose to other @..GET commands only.

COLDBOX <cFrame> (considered in Terminal i/o mode only) specifies the frame
displayed around the TBrowse widget, containing either zero or at least eight
characters (e.g. the B_SINGLE constant in box.fh). The default is no frame, see
Tbrowse:Border instance.

COLOR <cColor> (considered in Terminal i/o mode only) defines the color settings
for the TBrowse. Unlike in other @..GET.. commands, this clause assigns the

CMD 103

Tbrowse:ColorSpec instance which can contain many different color pairs as you
need and the pair is selected thereof via Tbrowse:ColorBlock.

ENABLE|DISABLE enable (default) or disable the item from READ processing

ERRORVALID <bError> specifies to use the <bError> code block to display post-
validate error/failure

HOTBOX <cFrame> (considered in Terminal i/o mode only) is equivalent to the
COLDBOX <cFrame> clause and supported for cross-compatibility purpose to other
@..GET commands only.

MESSAGE <cText> displays message <text> in status bar or in the SET
MESSAGE line when the TBrowse receives focus

PIXEL : the <expN1> ... <expN4> are values in pixel

NOPIXEL : the <expN1> ... <expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN5> specifies unit
for <expN1> .. <expN4> coordinates. The <expN5> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

SEND <instance> } allows you to assign any valid class instance
GUISEND <instance> } or method. Supported for Clipper compatibility.

TOOLTIP <cTip> (GUI only) short pop-up message/info displayed when mouse
cursor is over the TBrowse widget, even w/o focus

USERMSG <cargo> assigns the <cargo> value to the TBrowse:Cargo instance

VALID <lValid> (post-validation) is a logical expression (or UDF returning a logical
value) which is evaluated whenever the user attempts to leave the corresponding
field. Should the expression return a .F. value, the cursor will remain on the current
field. This feature is often used for lookups using post-processing functions.

WHEN <lWhen> (pre-validation) specifies an expression that must be satisfied in
order to enter the TBrowse during a READ

Description:
The @...GET...TBROWSE command uses the TBrowse class.

Classification:
screen oriented i/o (via READ)

Compatibility:
New in FS5, available also (with less options) in CL53

Related:
@..GET, READ, TBrowseArr(), TBrowseDb(), TBrowse class

CMD 104

@...TO
Syntax:

@ <expN1>,<expN2>
TO <expN3>,<expN4>
[DOUBLE]
[COLOR <expC5>]
[GUICOLOR <expC6>]
[PRINTCOLOR <expC7>]
[PIXEL|NOPIXEL]
[UNIT=ROWCOL|PIXEL|MM|CM|INCH|DOT|(<expN8>)]

Purpose:
Draws boxes on the screen using single or double lines using the IBM-PC8 semi-
graphic character set.

Arguments:
<expN1...expN4> are the coordinates for the upper, left and lower, right corners
respectively. If <expN1> and <expN3> are the same, a horizontal line is drawn. If
<expN2> and <expN4> are the same, a vertical line is drawn. The <expN3> and
<expN4> are limited by MAXROW() and MAXCOL(). In GUI mode, you may use
numeric values with decimal fractions for row and column, which are then rounded
to integer in Terminal i/o mode. To set coordinates at exact pixel value, use the
PIXEL clause (or enable SET PIXEL ON).

Options:
DOUBLE: If this clause is specified, a double-line box or otherwise a single-line box
is drawn.

COLOR <expC5> defines the color string (see SET COLOR) in which to display the
box lines. If not specified, the box is drawn using the current color setting. The
"standard" color pair is used.

GUICOLOR <expC6> specifies the color of box lines in GUI mode. Only the first
color pair (standard) is significant. If GUICOLOR is set, this color is used in GUI
mode regardless the current SET GUICOLOR on/off. If omitted, default color is
used. This clause apply for GUI mode only, and is ignored otherwise.

PRINTCOLOR <expC7> specifies the color for printing. If not given, GUICOLOR is
used also for printer. Considered only in GUI mode when SET GUIPRINT is ON, or
with PrintGui(.T.), and ignored otherwise.

PIXEL : the <expN1> ... <expN4> are values in pixel

NOPIXEL : the <expN1> ... <expN4> are row/col values

If [PIXEL|NOPIXEL] is not specified: the current SET PIXEL status is used. PIXEL
is shortcut for UNIT=PIXEL, NOPIXEL is shortcut for UNIT=ROWCOL

CMD 105

UNIT=ROWCOL or PIXEL or MM or CM or INCH or DOT or <expN8> specifies unit
for <expN1> .. <expN2> coordinates. The <expN8> is parenthesed numeric value in
range 0 to 5 (i.e. UNIT_ROWCOL to UNIT_DOT). If the UNIT=... clause is not
specified, default is row/col, or the current setting by set(_SET_PIXEL, log) or
set(_SET_COORD_UNIT, num). Apply for GUI mode only, ignored otherwise.

Description:
@...TO draws a single or double line box on the screen. The cursor is set into the
boxed region at <expN1> +1, <expN2> +1. For customized or filled boxes, use the
@...BOX command instead.

It draws always in Term mode, in GUI only if SET GUITRANSL LINES is ON. See
also @..DRAW for GUI only drawing

Example:
SET COLOR TO "W+/B"
@ 10,10 CLEAR TO 20,60
@ 16,10 TO 20,60 // box single lines
@ 10,10 TO 15,60 DOUBLE COLOR "GR+/B" // box double lines
@ 10,15 TO 20,15 // vertical line

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND()

Compatibility:
The COLOR option is new in FS4. The physical output on the screen depends on
the terminal emulation chosen (environment variable TERM), the ability of the
terminal to display the required graphical characters, and the via FSchrmap.def
output mapping applied. See also LNG.5.1.4, section SYS, and FS_SET
("outmap").

Translation:
DISPBOX (expN1, expN2, expN3, expN4, 1|2 [, expC5])

Related:
@...BOX, @...CLEAR, SCROLL(), SET COLOR, FS_SET("outmap")

CMD 106

ACCEPT ... TO
Syntax:

ACCEPT [<exp>] TO <memvar>
Purpose:

Waits for a string to be typed in from the keyboard. The result is placed in a memory
variable.

Arguments:
<memvar> is the memory variable where the input is stored. If the variable is not
declared or is not visible, a new autoPRIVATE is created.

Options:
Prompt: <exp> is the prompt which is displayed in front of the entry area. It can be
an expression of any data type. If not given, no prompt is displayed.

Description:
ACCEPT is a waiting console command. First, a NEW LINE and the prompt (or "")
is displayed. The characters typed in from the keyboard are stored in the specified
memory variable. Keyboard entry is terminated by the ENTER key. If nothing was
typed in, the variable contains a null string "".

BACKSPACE is the only special key supported.

Example:
ACCEPT "Enter your name: " TO name

Classification:
sequential screen output, waiting keyboard input

Translation:
<memvar> := __ACCEPT (exp)

Related:
@...SAY...GET, INPUT, WAIT, KEYBOARD, INKEY()

CMD 107

ACCESS METHOD
ASSIGN METHOD
Syntax:

ACCESS [METHOD] <methName> [()]
CLASS <className> [AS <type>]

Syntax:
ASSIGN [METHOD] <methName> (<par>)

CLASS <className> [AS <type>]

See detailed description in the METHOD command.

CMD 108

ANNOUNCE
Syntax:

ANNOUNCE <module>
Purpose:

Declares a module identifier for the linker.

Arguments:
<module> is the identifier name, given as literal. The name may be of any length
and is case-insensitive. Only the first 10 characters are significant. The name may
not start with an underscore. The <module> name must be unique for the whole
application.

Description:
The ANNOUNCE declaration statement specifies a module identifier (reference
name or tag) to satisfy the REQUEST declaration (external request) from other .prg
files during the link phase.

ANNOUNCE is generally used together with the -na compilation switch to generate
a linker definition point, when the UDFs or UDPs declared there are exclusively
referred to by macro or are declared as INIT/EXIT PROCEDUREs only.

Note: If the -na compiler switch is omitted, the FlagShip compiler produces an
automatic procedure <file>, which will also satisfy an EXTERN <file> or REQUEST
<file> declaration given elsewhere. See also the PROCEDURE command.

Only one ANNOUNCE declaration for a .prg file is allowed. All subsequent
ANNOUNCE declarations produce a compiler warning and will be ignored.

The ANNOUNCE statement is nearly same as a declaration of

PROCEDURE <module>

RETURN .T.

Example:
*** file test.prg, compiled with: FlagShip test*.prg ***
REQUEST test1
// or: EXTERNAL test1
// or: EXTERNAL test2
var := "test2"
DO &var
QUIT

*** file test1.prg ***
*** PROCEDURE test1 // automatic procedure
*** RETURN .T. // generated by FlagShip
PROCEDURE test2
? "being now in test2"
RETURN

CMD 109

Example:
*** file test.prg, compiled with: FlagShip test*.prg -na
REQUEST test1
// or: EXTERNAL test2
var := "test2"
DO &var
QUIT

*** file test1.prg ***
PROCEDURE test2
? "being now in test2"
RETURN

Example:
*** file test.prg, compiled with: FlagShip test*.prg -na
REQUEST test5
// or: EXTERNAL test2
var := "test2"
DO &var
QUIT

*** file test1.prg ***
ANNOUNCE test5 // new module name
PROCEDURE test2
? "being now in test2"
RETURN
EXIT PROCEDURE endproc // called by FlagShip only
? "bye, bye"
RETURN

Compatibility:
Available in FS4 and C5.2 only.

Classification:
compiler/linker

Related:
REQUEST, EXTERNAL

CMD 110

APPEND BLANK
Syntax:

APPEND BLANK
Purpose:

Adds a new empty record to the end of the currently selected database.

Description:
After APPENDing, the new blank record becomes the current record. The new field
values are initialized to the empty values for each data type: character fields are
filled with spaces; numeric fields are zero; logical fields are assigned false (.F.);
date fields are assigned CTOD(""); and memo fields are left empty.

Multiuser:
In shared mode, APPEND BLANK automatically locks the new record. The lock
remains active until UNLOCK or another lock (or APPEND BLANK) is executed in
the corresponding working area. This automatic lock does not release an FLOCK()
setting. If another application or user has locked the database with FLOCK(), the
record is not APPENDed and NETERR() function returns TRUE.

When performing operations on the SAME physical database (used concurrently in
different working areas), see chapter LNG.4.8.7.

Example:
Appending a new record in multiuser/multitasking mode:

SET EXCLUSIVE OFF // SET.. is not necessary,
USE employee // if USE...SHARED is used
? RECCOUNT() //100
APPEND BLANK
WHILE NETERR()
? "waiting for successful append..."
INKEY (1) // delay 1 second
APPEND BLANK // try again

ENDDO
? LASTREC(), RECNO() // 101 101
FOR i = 1 TO FCOUNT()
fldnam = FIELD(i)
? EMPTY(&fldnam) // .T.

NEXT // All fields are empty
REPLACE name WITH "Smith"
UNLOCK

Classification:
database

Translation:
DBAPPEND ()

Related:
APPEND FROM, NETERR(), RLOCK(), FLOCK(), UNLOCK, oRdd:APPEND()

CMD 111

APPEND ... FROM
Syntax:

APPEND FROM <file>|(<expC1>)
[<scope>]
[FIELDS <fieldList>]
[FOR <condition>]
[WHILE <condition>]
[SDF | DELIMITED [WITH

BLANK|<delimiter>|(<expC2>)]]
[VIA <expC3>]

Purpose:
Adds records to the current database file from an ASCII or CSV text file, or another
database file.

Arguments:
FROM <file>|(<expC1>) is the name of the source file. If no extension is specified,
it is assumed to be .dbf. When specifying the clause SDF or DELIMITED, the
default is the .txt extension and the file is assumed to be an ASCII text.

Options:
FIELDS <fieldList> If given, data is APPENDed only to the specified fields. For SDF
or DELIMITED, it determines the order of fields in the text file according to the
currently open & selected database; otherwise the field order of the target database
apply.

<scope> is the part of the source database file to APPEND FROM. The default
scope is ALL source records. See other valid scope options in the general
command description at begin of this section.

<condition> specifies additional FOR and/or WHILE filtering of the records to be
appended within the given <scope>. See the general command description at begin
of the CMD section.

SDF identifies a System Data Format ASCII file. Each record is of a fixed length
and ends with a line feed (LF) or CR/LF. Data are read until end-of-file or up to the
DOS mark Ctrl-Z (1A hex), when scope is not given.

SDF: file format
Field separator None
Record separator LF or CR/LF = 0A hex or 0D+0A hex
End of file marker file-end or the DOS eof = 1A hex
Character fields Padded with trailing blanks
Numeric fields Padded with leading blanks or zeros
Date fields YYYYMMDD or MM/DD/[YY]YY or DD.MM.[YY]YY
Logical fields 'T' is true, anything else is false
Memo fields Ignored

CMD 112

DELIMITED identifies an ASCII text file, where fields are separated by commas and
character fields are bounded by double quotation marks, which are the default
delimiters. Note that character fields not bounded by delimiters will be appended
correctly, if commas are not part of the field contents. Fields and records are
variable length and end with a line feed or CR/LF. When scope is not given, data
are read until end of the text file, or up to the DOS mark Ctrl-Z (1A hex).

DELIMITED [WITH delimiter]:
file format
Field separator Comma (,) or specified in <delimiter>
Record separator LF or CR/LF = 0A hex or 0D+0A hex
End of file marker file-end or the DOS eof = 1A hex
Character fields May be delimited by quotas ("...") or

the <delimiter>, trailing blanks or TABs may be
truncated

Numeric fields Leading blanks and zeros may be truncated
Date fields YYYYMMDD or MM/DD/[YY]YY or DD.MM.[YY]YY
Logical fields 'T' is true, anything else is false
Memo fields Ignored

The date field is checked for YYYYMMDD like STOD(), and on failure by
DD.MM.[YY]YY or MM/DD/[YY]YY etc. like CTOD() according to current SET DATE
setting.

DELIMITED WITH <delimiter>|(<expC2>) identifies a delimited ASCII text file,
where character fields are delimited with the specified delimiter, and the fields are
separated by comma or given separator. Note: this clause, if given, must be the last
one in the command. To avoid misinterpretation, it is better to enclose the delimiter
in quotas. DELIMITED WITH '"' is the same as DELIMITED only clause, and
assumes fields either w/o any delimiter, or enclosed in "..." quotas. The <delimiter>
string may contain 0, 1, 2 or 3 characters:

0 char: equivalent to DELIMITED WITH '"' or WITH '",' or WITH '"",'
1 char: left + right field delimiter, field separator is comma (,)
2 char: 1st=left + right field delimiter, 2nd=field separator
3 char: 1st=left, 2nd=right field delimiter, 3rd=field separator

Field delimiters are considered only when the first character after field separator is
the left delimiter and the last character before next separator is the given right
delimiter. Delimiters are mostly used to store field separators (like commas) within
the field, or to avoid skipping leading/trailing spaces and TABs of the character field.

For CSV text files (like export from Excel etc.), the common clause is DELIMITED
WITH '"";' or DELIMITED WITH ('""' + chr(9))

DELIMITED WITH BLANK identifies an ASCII text file, where fields are separated
by one space and character fields are not bounded by delimiters. It is equivalent to
DELIMITED WITH (space(3)) clause.

CMD 113

DELIMITED WITH BLANK: file
format
Field separator Single blank space or TAB = 20 or 09 hex
Record separator LF or CR/LF = 0A hex or 0D+0A hex
End of file marker file-end or the DOS eof = 1A hex
Character fields Not delimited, trailing blanks may be

truncated, no leading blanks or TABs are
allowed.

Numeric fields Leading zeros may be truncated
Date fields YYYYMMDD or MM/DD/[YY]YY or

DD.MM.[YY]YY
Logical fields 'T' is true, anything else is false
Memo fields Ignored

VIA <expC3> specifies the name of the RDD (replaceable database driver) to be
used to import the desired data, given as a quoted string or character variable. The
default driver is "DBFIDX".

Description:
If the source file is a database, only fields with the same name are appended.
Fields of different type or size are automatically converted by FlagShip.

Deleted records in the source database are also appended, but not marked as
deleted in the target file. If SET DELETED is ON, deleted records from the source
file are not appended.

Appending from an ASCII file: if the FIELD clause is not specified, the fields are
assumed to be in the order of the target file. Specifying the FIELD clause also
declares the order of the fields in the source file.

If the ASCII record is too short, only the available fields will be accepted. An empty
source line will be appended as an empty record in the target database.

Note: It is not recommended to use TABs in ASCII files, especially not within the
SDF file. FlagShip expands the TAB mark (Ctrl-I, 09hex) to one space only,
because the TAB width is variable on UNIX. When editing the ASCII file, use
spaces instead of TABs and do not use the auto-indent option of your text editor.

Multiuser:
APPEND FROM automatically locks and unlocks the new record. FLOCK() or
exclusive usage by the programmer may be specified but is not required. The
source database will be opened in SHARE mode, the text source in read-only
mode. If access is denied, a run-time error occurs.

CMD 114

Example:
Get the first 10 records from waitlist.dbf into the current database orders.dbf, also
remove them in waitlist.

USE orders
? RECCOUNT() // 255
APPEND NEXT 10 FROM waitlist
USE waitlist NEW
DELETE NEXT 10
PACK
SELECT orders
? RECCOUNT() // 265

Example:
APPEND FROM file1 SDF
APPEND FROM file2 SDF FIELDS name,address,earning
APPEND FROM file3.xyz FIELDS address, name, city, memo ;

NEXT 50 FOR upper(SUBSTR(name,1)) >= "M" ;
DELIMITED WITH ";"

Classification:
database and ASCII file import

Compatibility:
The automatic data conversion is new in FS4 and is not supported by Clipper.
FlagShip supports both UNIX and MS-DOS ASCII text files. Also the end-of-line
mark LF or CR/LF and the end-of-file CR/LF/EOF are supported.

Source:
The text file for SDF or DELIMITED clause is read by ASCIRDD driver, available
(and user-modifiable) in <FlagShip_dir>/system/ascirdd

Translation:
__DBAPP ("file", {"field1" [,"field2.."]}, ;

{forCond}>, {whileCond}, [next], [record], [.rest.])
__DBAPPSDF ("file", {"field1" [,"field2.."]}, ;

{forCond}>, {whileCond}, [next], [record], [.rest.])
__DBAPPDELIM ("file", "delim", {"field1" [,"field2.."]}, ;

{forCond}>, {whileCond}, [next], [record], [.rest.])

Related:
COPY, FREAD(), MEMOREAD(), oRdd:AppendDB, oRdd:AppendSDF(),
oRdd:AppendDelimited()

CMD 115

AVERAGE ... TO
Syntax:

AVERAGE [<scope>] <expList> TO <memvarList>
[FOR <condition>]
[WHILE <condition>]

Purpose:
Averages a list of numeric expressions for a range of records in the current
database file and puts the results in the memory variables specified.

Arguments:
<expList> is a list of numeric expressions to AVERAGE each processed record.

<memvarList> specifies the set of variables in which the results of averaging are to
be put. This list must have the same number of elements as the <expList>. Existing
variables with the same names are overwritten; non-existing ones are created as
autoPRIVATE.

Options:
<scope> is the part of the current database file to be averaged. The default scope
is ALL.

<condition> specifies additional FOR and/or WHILE filtering of the averaged
records within the given <scope>. See the general command description.

Example:
Check the average age of the male employees. Note the usage of the WHILE
clause for other purposes, here for counting:

LOCAL count := 0, male := 0
USE employee
year = YEAR(DATE())
AVERAGE year - YEAR(birthdate) TO aver_age ;
FOR UPPER(sex) == "M" ;
WHILE (count++, IF(UPPER(sex)=="M",++male,0), .T.)

? "The average age of", male, "men, i.e.", ;
male * 100/count, "% of the staff is", aver_age, "years"

Classification:
database

Translation:
M->__Avg := var := 0
DBEVAL ({|| M->__Avg := M->__Avg + 1, var := var+ field },;

{for}, {while}, [next], [rec], [.rest.])
var := var / M->__Avg

Related:
SUM, TOTAL, oRdd:Average()

CMD 116

BEGIN SEQUENCE...END
Syntax:

BEGIN SEQUENCE
<statements>

[BREAK [<exp>]]
<statements>

[RECOVER [USING <var>]]
<statements>

END|ENDSEQUENCE
Purpose:

A control structure to handle program exceptions.

Arguments:
BEGIN SEQUENCE defines the start of the control structure.

END[SEQUENCE] defines the end of the structure. Executing BREAK without
RECOVER passes the control past this statement. On nested BEGIN..END, the
higher control structure becomes active for the next BREAK.

Options:
BREAK: when encountered, terminates the sequence by branching the execution
to the first statement following the corresponding RECOVER statement if one is
specified, or the matching ENDSEQUENCE statement. If executed outside of the
BEGIN..END structure, run- time errors occur.

BREAK <exp> passes the <exp>, which is usually an error object, to the <var> of
the RECOVER USING clause.

RECOVER defines an entry point in the BEGIN..END sequence where control
branches, following a BREAK statement.

RECOVER USING <var> receives the value returned by the BREAK <exp>. In
general, <var> is an error object.

Description:
BEGIN SEQUENCE...END allows to BREAK from anywhere inside a sequence of
statements, similar to a GOTO or JUMP <label> in other programming languages.

The BREAK statement can also be placed in nested procedures or functions,
causing the same effect. FlagShip has no limitation in nesting BEGIN..END, just as
with other control structures or UDFs.

A typical use of BEGIN SEQUENCE...END is to define a section of code where
errors may occur, as a sequence structure. You can customize the error routines to
allow BREAKing the sequence from within. After being out of the sequence, or
within the RECOVER section, you can inform the user to check the access rights,
turn the printer on-line or whatever happened.

CMD 117

By using the ISBEGSEQ() function, you may check elsewhere in the application, if
the BREAK will reach a RECOVER or ENDSEQUENCE statement.

Example:
To exit nested control structures at once:

BEGIN sequence
break_yes = .T.
if ...

if ...
do while .T.

if error
BREAK ──┐ Jump to end of structure

endif │
enddo │
BREAK ──┤ Jump to end of structure

endif │
endif │
break_yes = .F. │

END <─┘
IF break_yes

? "Error break... "
QUIT, LOOP, RETURN etc.

ENDIF

Example:
Exit above structures using RECOVER:

BEGIN sequence
if ...

if ...
BREAK ──┐ Jump to the recover section

end │
BREAK ──┤ Jump to the recover section

endif ──┐ │
RECOVER │ <─┘

? "Error handling" │
END <─┘ Continue std. execution
? "Continuing..."

CMD 118

Example:
Exit nested procedures

BEGIN sequence
DO first
? "all o.k." <───┐

END <─┐│
? "watch for ok" ││

││
PROCEDURE first ││
if error ││

BREAK ──┤│
endif ││
DO nextproc ││
return ──│─┘ normal return

│
PROCEDURE nextproc │
if error │

BREAK ──┘ Error, jump to end of structure
endif

Example:
LOCAL name, path := ""
DO WHILE .T.

BEGIN SEQUENCE
IF ! FILE("test.prg")

BREAK "text file test.prg"
ENDIF
TYPE test.prg
IF ! FILE("mydbf.dbf")

BREAK "database mydbf.dbf"
ENDIF
USE mydbf

RECOVER USING name
IF empty(path)

path = "/usr/data"
SET PATH TO (path)
LOOP // try another path

ENDIF
? "cannot open " + name
QUIT

ENDSEQUENCE
EXIT // exit the loop

ENDDO

Example:
Check for correctly OPENing the database. One error handle will be activated. The
error may be triggered in any UDF called from here:

LOCAL brEobj, saveEobj
LOCAL errHand := {|e| my_err(e) }
saveEobj := ERRORBLOCK (errHand) // install error handler

CMD 119

DO WHILE .T.
BEGIN SEQUENCE // start of sequence

my_open_dbf ("address")
? ".dbf correctly opened" // and jump to ENDSEQUENCE

RECOVER USING brEobj // receives error object
IF brEobj == NIL // BREAK only, message

: (statements) // already printed
ELSE // BREAK with object

? "Error :"
IF !EMPTY(brEobj:CARGO)

?? brEobj:CARGO // print user message
ELSE

?? LTRIM(STR(brEobj:GENCODE)) + ;
" on file access " + brEobj:FILENAME + ;
":" + brEobj:DESCRIPTION

ENDIF
ENDIF
IF myErrObj:CANRETRY

LOOP
ENDIF
QUIT

ENDSEQUENCE // end of sequence
EXIT // exit the loop

ENDDO
ERRORBLOCK (saveEobj) // reset ErrorObj
QUIT

FUNCTION my_open_dbf (filename) /* may be included in
-------------------- another .prg file */
IF !FILE(filename + ".dbf")
? "Install/copy database " + filename + " first."
if ISBEGSEQ()

BREAK // BREAK w/o object
else

QUIT
endif

ENDIF
USE (filename) SHARE // BREAK may cause
RETURN NIL // in my_err()

FUNCTION my_err (myErrObj) /* executed by the
--------------- error handler */
IF myErrObj:OSCODE == 32 // SHARE error
myErrObj:CARGO := "Database " + ;

myErrObj:FILENAME + ;
" opened by other user"

myErrObj:CANRETRY := .T.
ENDIF
BREAK myErrObj // pass it to RECOVER
RETURN NIL

CMD 120

Classification:
programming

Compatibility:
Unlike C5, FlagShip also supports the branching out of a FOR or WHILE loop.

Related:
ISBEGSEQ(), RETURN, ERRORBLOCK(), (OBJ) Error objects

CMD 121

CALL
Syntax:

CALL <name> [WITH <paramList>]
Purpose:

Execute an external or inline C function.

Arguments:
<name> is the true name of the external or inline C (void) function. The default
"_bb_" prefix of FlagShip UDFs is not added to the function name by the compiler.
Neither will upper/lower conversion be done or the name captured.

Options:
WITH <paramList>: up to 8 parameters passed by reference into the C function.
The parameters are comma separated FlagShip variables, constants, fields, array
elements or expressions. They are passed as pointers to regular C variable types:

"N" type as: double *doubleCvar ptr to (IEEE) double
"D" type as: long *longCvar ptr to julian days
"L" type as: unsigned char *chrCvar ptr to T or F char
"C" type as: unsigned char *chrCvar ptr to \0 termin.string
"S" type as: WINDOW *windCvar ptr to window struct.

When attempting to pass a constant or expression, a pointer to the contents of the
resulting temporary variable is passed. The WORD() function converts the FlagShip
numeric value to an (int) value and passes it by value rather than through a pointer
to the C function.

Description:
CALL executes an independent or an inline C (void) function. The parameters are
placed on the stack using the C parameter passing convention. External C functions
are compiled by cc or by FlagShip.

Warning: different number or types of arguments passed / parameters received,
extending the string length and incorrect usage or manipulation of the variable
pointer will inevitably result in an application crash; sometimes not in the C function
itself, but later during the regular program execution.

It is safer to use the FlagShip Extend System to execute a C function because of
parameter checking and passing.

CMD 122

Example:
#Cinline
void My_C_Function (aaCvar, bbCvar, ccCvar, ddCvar, iiCvar)

double *aaCvar; /* ptr to FS var "N" */
unsigned char *bbCvar; /* ptr to FS var "L" */
unsigned char *ccCvar; /* ptr to FS var "C" */
long *ddCvar; /* ptr to FS var "D" */
int iiCvar; /* passed by WORD() */

{
int my_integer; /* local integer */
char my_string[100]; /* local string */

(*aaCvar)--; /* aa = aa - 1 */
bbCvar = 'T'; / bb = .T. */
(ccCvar +3) = 'X'; / cc = "my Xtring" */
ddCvar += 2; / dd = date + 2 */
typed_ee = sqrt(typed_ee); /* TYPED FS vars */
my_integer = (int) (*aaCvar);
my_integer *= 10;
strncpy (my_string, ccCvar, 100); my_string[99] = 0;
if (strlen(my_string) < 85)

strcat (my_string, " ... added in C");
printw ("\nmy_integer=%d iiCvar=%d my_string=%s",

my_integer, iiCvar * 2, my_string);
}
#endCinline

STATIC_DOUBLE typed_ee := 9.1 // typed FS var

FUNCTION main ()
LOCAL aa := 22, bb := .F.
PRIVATE cc := "my string"
STATIC dd := DATE()
CALL My_C_Function WITH aa, bb, cc, dd, WORD(aa)
? ; ? aa, bb, cc, dd, typed_ee

// Compile: $ FlagShip test.prg -na -Mmain

Classification:
programming

Compatibility:
Using inline C code or typed variables is not supported by Clipper. LOADing the
object program as used in dBASE is not supported, because the required function
must already be available when linking. The contents of the logical value pointer
differs to Clipper: (char) instead of (short int) and is stored as 'F'/'T' instead of 0/1.
The (int) value passed by WORD() is usually the same size as (long) on UNIX.

Related:
WORD(), (LNG,EXT) Open C System, (PRE) #Cinline

CMD 123

CANCEL / QUIT
Syntax:

CANCEL
or:

QUIT
Purpose:

Terminates program execution, closes all open files, and returns control to UNIX.

Description:
CANCEL or QUIT may be used from anywhere in a program to end the program
and return to the operating system. The same result is achieved if the RETURN
command is used at the top level (main module). Pressing the break key ^K twice
also terminates program execution, if the break key was not disabled with
SETCANCEL().

Example:
IF LASTKEY() = 27 // ESC key pressed?
WAIT "Terminate (y/n) ? " TO answer // confirm,
IF UPPER(answer) == "Y" // accept Y,y

QUIT // terminate
ENDIF

ENDIF

Classification:
programming (and database)

Translation:
__QUIT ()

Related:
QUIT, RETURN, FS_SET ("break"), SETCANCEL(), oRdd:Close()

CMD 124

CLASS, INSTANCE
Syntax 1:

[STATIC] CLASS <ClassName>
[INHERIT <SuperClass>]
[ALIAS <AliasName>]

and optional:
INSTANCE <Name> [:= <exp>] [AS <type>]
EXPORT [INSTANCE] <Name> ...
HIDDEN [INSTANCE] <Name> ...
PROTECT [INSTANCE] <Name> ...

Syntax 2:
PROTOTYPE [STATIC] CLASS <ClassName>

[INHERIT <SuperClass>]
and optional:

INSTANCE <Name> [AS <type>]
EXPORT|HIDDEN|PROTECT [INSTANCE] <Name> [AS <type>]

Purpose:
Syntax 1 declares a class name and optional its instances to the compiler. Syntax 2
specifies an already elsewhere declared class to the compiler, without declaring the
class again.

Arguments:
STATIC restricts the visibility of the class and its entities to the file in which it is
declared. If omitted, the class has application-wide visibility. If a same named global
class is already available, it will be hidden by the STATIC CLASS. But you cannot
use a globally defined class and same named STATIC class within the same file.
This may cause unpredictable results.

PROTOTYPE informs the compiler about the CLASS structure (and it's instances)
which is defined elsewhere later in the application. The class entities becomes
visible and their usage will be optimized, although the CLASS declaration was not
(yet) specified in the same source file. PROTOTYPEing is required, when a class
module (or access, assign) declaration is placed before (or in another file than) the
class declaration itself. Refer also to chapter LNG.2.11.1 and the PROTOTYPE
statement.

All instance names of the PROTOTYPEd class have to be declared (in any order,
but with the same names) for proper compile-time addressing. Note: the FlagShip
compiler automatically creates the prototyping file named "reposit.fh" (or a file of
your choice) for you, see chapters FSC.1.4.2 and LNG.2.11.5. For the FlagShip
standard classes, the prototypes are specified in the "stdclass.fh" file, which may be
#include'd in your .prg source or in the local copy of the "std.fh" file.

CMD 125

CLASS <ClassName> is the class identifier, in the variable naming convention (10
significant characters). The only restriction is, that the resulting string of
LEFT("ClassName"+"NEW",10) may not conflict with the same named function (std
or UDF), or another class, since this name becomes the creator function.

INHERIT <SuperClass> automatically defines all instances (except hidden
instances) and methods (including access and assign methods) from the
<SuperClass> for the current <ClassName>. Hidden instances and all the methods
may be overloaded by a local entity. Since the structure of the parent class
<SuperClass> must be known for the compiler, use PROTOTYPE CLASS and
PROTOTYPE METHOD. Note that standard FlagShip naming convention
(abbreviation to 10 significant characters) is valid also for the <ClassName> and it
is therefore recommendable to use INHERIT myLongClas instead of
myLongClassName.

ALIAS <AliasName> defines an descriptor which remain unchanged for the current
and all inherited sub-classes. It allows you to specify a global name for a group of
single classes, and later check an object by using IsObjProperty(obj,6,"aliasName").
For example, the FlagShip's standard classes are usually splitted to a basic class
and specialized sub-classes for the corresponding i/o mode. But regardless how the
class is instantiated, the object variable can be tested by using it global alias name.
An alternative global descriptor used in many standard classes is the ClassName()
method.

Options:
INSTANCE <Name> declares instance variables that are visible only in methods of
the class being defined, and its INHERITed subclasses (except hidden).

EXPORT | HIDDEN | PROTECT [INSTANCE] <Name> additionally protects the
instances and specifies its visibility and accessibility, see the description below.

AS <type> optionally specifies the data type associated with the instance variable.
The valid <type>s are all usual and object types according to LOCAL..AS, with
exception of the C-like types. If omitted, the instance variables will be polymorphic
(an usual, untyped variable) and will have an initial value of NIL.

If the initializer (:= <exp>) is not given, the instance variable will be initialized to NIL
or the empty <type>, resp. The assignment is ignored, if specified within the
PROTOTYPEd class.

Description:
After the CLASS declarator statement, any number of optional INSTANCE
declarations may follow. The instances are entities of the class, and have to be
specified altogether in the same source file. The class declaration ends with any
executable statement, another declarator (e.g. ACCESS, ASSIGN, MODULE,
FUNCTION, CLASS etc.) or by the end-of-file.

You cannot declare the same class twice in the application, except for the STATIC
class, which is then local to the UDF or source file only, similar to a STATIC
variable or function.

CMD 126

Prototyping:
When the CLASS <name> is declared elsewhere, you can inform the compiler
about its structure, to enable the compile-time optimization (see also chapter
LNG.2.11.6). Otherwise, if the class structure, and/or the type of the object variable
is unknown to the compiler (when encountering an object entity access), the slower
run-time addressing is generated; this applies for using the class in the application
only.

During the class property declaration (i.e. when creating the access, assign and
method body), the whole CLASS structure must be known for the compiler.
Therefore, if the CLASS statement is not specified in the same file, you have to
PROTOTYPE the CLASS and all of its METHODs (see example 1 below). The
same applies, when you declare a new, inherited CLASS. When the CLASS is
specified in the same file, you have to use prototyping for forward declarations. As a
rule of thumb: it is always a good programming style to prototype all the used class
entities (i.e. all instances and methods). You will so avoid confusions when
modifying the application later.

When using (the preferred) include file, it is a common mistake to declare "CLASS
xyz" instead of "PROTOTYPE CLASS xyz", resulting in compiler or linker error once
#including this header file in different sources. Since the "CLASS xyz" is a
declaration (similar to the FUNCTION or PROCEDURE declarator), it hence can be
declared only once per application; best in a .prg file.

Instances:
The difference between the INSTANCE and EXPORT, PROTECT and HIDDEN
instances is:

•EXPORT does not protect the instance at all, but makes it visible (accessible and
assignable) both for the application, and the class methods. The name cannot be
overloaded by same named ACCESS and/or ASSIGN method.

•INSTANCE is hidden for the application, but visible in the class methods. If the
same named ACCESS and/or ASSIGN method exists, such is invoked instead of
the instance itself (except within the same named Access/ Assign body).

•PROTECT is very similar to a usual INSTANCE, except that the instance itself is
always invoked in the class method, even if same named ACCESS and/or
ASSIGN method exists.

•HIDDEN is very similar to the PROTECT instance, except that this instance is not
overtaken into inheriting subclasses.

The following table summarizes the instance properties:

Inst.type applic method inherit acc/ass acc/ass pref
EXPORT yes yes yes no no
INSTANCE no yes yes yes yes
PROTECT no yes yes yes no
HIDDEN no yes no yes no

CMD 127

where: (applic) is the visibility of the instance to the application; (method) is the
visibility of the instance to the class methods; (inherit) whether the instance is
inherited into a subclass; (acc/ass) if an access or assign method of the same name
may be specified; (acc/ass pref) whether the access or assign method of the same
name is preferred in the ACCESS, ASSIGN and METHOD body.

Note: Compound send operators are also supported, e.g.
self:fillname(cParam):coAutName := cVar

which is resolved from left to right, as
oTemp := self:fillname(cParam) ; oTemp:coAutName := cVar

Since the temporarily created object variable (here named as oTemp) is late
evaluated (when the method is not explicitly typed as class name), it requires to un-
hide the instance "coAutName" (by EXPORT or ACCESS). Therefore, the
equivalent program notation
self:fillname(cParam) ; coAutName := cVar

is usually better, since it may be early evaluated and can use any instance type.

Example 1:
Defines two classes and theirs entities in two different files. The prototyping in file2
is required for the inheritance and used also (together with typing the object
variables) for the compile- time resolution of the object entity addresses (see
LNG.11.6).

*** file1.prg *******************
CLASS authors
INSTANCE name := ""
INSTANCE first := "" AS character
PROTECT title
EXPORT issue AS date

* PROTOTYPE ACCESS name CLASS authors // note 1
* PROTOTYPE ASSIGN name(cValue) CLASS authors // note 1
* PROTOTYPE METHOD init(cName) CLASS authors // note 1
* PROTOTYPE METHOD fillname(cInput) CLASS authors // note 1
ACCESS name CLASS authors
return name

ASSIGN name(cValue) CLASS authors
if valtype(cValue) == "C" .and. !empty(cValue)

name := cValue
endif
return name

METHOD init(cName) CLASS authors
name := if(valtype(cName) == "C", cName, "")
issue:= date()
return self

*** eof file1 ***

CMD 128

*** file2.prg *******************

PROTOTYPE CLASS authors // note 3
INSTANCE name
INSTANCE first AS character
PROTECT title
EXPORT issue AS date

PROTOTYPE ACCESS name CLASS authors // note 2
PROTOTYPE ASSIGN name(cValue) CLASS authors // note 2
PROTOTYPE METHOD init(cName) CLASS authors // note 2
PROTOTYPE METHOD fillname(cInput) CLASS authors // note 2

CLASS coAuthors INHERIT authors // note 3
HIDDEN coAutName AS character

* PROTOTYPE METHOD fillSubAuth() CLASS coAuthors // note 1

METHOD fillname(cInput) CLASS authors // note 2
cInput := trim(strtran(cInput, ",", " "))
if " " $ cInput

name := left(cInput, at(" ", cInput)-1)
first:= substr(cInput,at(" ", cInput)+1)

else
name := cInput
first:= ""

endif
return name

METHOD fillSubAuth(cAuth, cSubAuth) CLASS coAuthors
self:fillname(cAuth) ; coAutName := cSubAuth
return NIL

FUNCTION start() // program start
LOCAL oAuth AS authors // typed Locals for
LOCAL oSub1, oSub2 AS coAuthors // speed-up only
oAuth := AUTHORS {"Miller"} // instantiate oAuth
oSub1 := COAUTHORS {} // instantiate oSub1
oSub1:fillSubAuth("Smith", "Maier")
* oSub2 := COAUTHORS {} // instantiate new obj, or:
* oSub2 := oSub1 // oSub2 points to oSub1 obj
oSub2:fillName("Johnson") // otherwise, RTE occurs here
? oSub1:name, oSub2:name, oSub1:issue
? oAuth:name, oAuth:issue
quit

*** eof file2 ***

*** Compile: FlagShip file?.prg -na -m -Mstart

Note 1: it is a good programming style to prototype all the used class entities, even
if declared later. Therefore, un-comment it.

Note 2: you have to PROTOTYPE the whole class and all its properties, to be able
add/define its entities in another source file.

Note 3: the whole "parent" class must be known when inheriting it.

CMD 129

Example 2:
The same example, but the class declaration and its methods are specified in the
same file. In the second (user) file, run-time evaluation takes place, since the class
structure and/or object type is unknown at compile time. You may avoid it, and
speed-up the execution by prototyping the CLASSes in file2.prg, e.g. by #include-
ing the "reposit.fh" file.

*** file1.prg ***
CLASS authors
INSTANCE name := ""
INSTANCE ...

ACCESS name CLASS authors
return name

ASSIGN name(cValue) CLASS authors
if ...
return .T.

METHOD init(cName) CLASS authors
name := ...
return self

METHOD fillname(cInput) CLASS authors
cInput := ...
return NIL

CLASS coauthors INHERIT authors
HIDDEN coAutName AS character

METHOD fillSubAuth(cAuth, cSubAuth) CLASS coAuthors
self:fillname(cAuth)coAutName := cSubAuth
return NIL

*** eof file1 ***

*** file2.prg ***
FUNCTION start()
// program start

LOCAL oAuth AS AUTHORS
LOCAL oSub1, oSub2
oAuth := AUTHORS {"Miller"}
oSub1 := COAUTHORS {}
...
quit

*** eof file2 ***

Example 3:
The same application, but the class is declared in an already compiled file 'file1.o',
available for the user as a black box (or in an object library). The application
(file2.prg) knows the class structure and uses prototyping for the compile-time
address resolution.

*** file2.prg ***
#include "file1.fh" // includes prototypes
FUNCTION start() // program start
LOCAL oAuth, oSub1, oSub2
oAuth := AUTHORS {"Miller"}
oSub1 := COAUTHORS {}
...

CMD 130

*** eof file2 ***

*** file1.fh *** (created e.g. from reposit.fh)
PROTOTYPE CLASS authors
EXPORT issue AS date
INSTANCE name := "" // assignment is ignored
PROTECT title
INSTANCE first AS character

PROTOTYPE ACCESS name CLASS authors
PROTOTYPE ASSIGN name(cValue) CLASS authors
PROTOTYPE METHOD init(cName) CLASS authors
PROTOTYPE METHOD fillname(cInput) CLASS authors
PROTOTYPE CLASS coauthors INHERIT authors
HIDDEN coAutName AS character

PROTOTYPE METHOD fillSubAuth()
CLASS coAuthors
*** eof file1.fh ***

*** Compile: FlagShip file2.prg file1.o -na -Mstart

Example 4:
For additional examples, see chapter LNG.2.11 and the METHOD declarator.

Classification:
programming

Compatibility:
Not available in Clipper, but compatible to CA/VO. The PROTOTYPE and ALIAS
clause is available in FlagShip only.

Related:
[ACCESS, ASSIGN] METHOD, PROTOTYPE, LOCAL..AS, (OBJ)DBSERVER,
LNG.2.11

CMD 131

CLEAR
Syntax:

CLEAR
Purpose:

Clears the screen and all active GET fields, homes the cursor.

Description:
CLEAR is a full-screen command that erases the screen using the current color
setting and releases pending GET objects in the currently visible GETLIST array.
When the screen is cleared, the cursor is set to the upper left corner (0,0).

When this command is used in a VALID or SET KEY routine while being in READ,
the active READ aborts on returning from the UDF.

If you want only to clear the screen without releasing the GETs, use CLEAR
SCREEN, CLS or @..CLEAR commands instead.

In GUI mode, the widgets are erased by CLS (or by @..CLEAR TO..) as well, see
also LNG.5.3

Example:
CLEAR
USE authors
LIST Firstname, Lastname

Classification:
screen oriented output

Translation:
SCROLL() ; SETPOS(0,0)
__KILLREAD() ; GetList := {}

Related:
@...CLEAR, @...GET, CLEAR GETS, CLEAR SCREEN, CLS, SCROLL()

CMD 132

CLEAR ALL
Syntax:

CLEAR ALL
Purpose:

Closes all open databases, indices, format files, releases all PUBLIC and PRIVATE
memory variables, clears all GETs and selects working area 1.

Description:
CLEAR ALL does not release LOCAL, STATIC or typed variables. This command is
a superset of CLOSE DATABASES, CLOSE FORMAT, CLEAR MEMORY, CLEAR
GETS and SET ALTERNATE TO.

Files associated with working areas can be explicitly closed with one of the various
forms of the CLOSE command. Private and public variables can be released using
the RELEASE command, although explicitly releasing variables is not generally
recommended. For more information on the scope and lifetime of variables, refer to
the LNG section.

Classification:
database, programming

Translation:
CLOSE DATABASES => DBCLOSEALL()
CLOSE FORMAT => __SET FORMAT TO;

__SETFORMAT({|| })
CLEAR MEMORY => __MCLEAR()
CLEAR GETS => __KILLREAD() ; GetList := {}
SET ALTERNATE OFF => SET (_SET_ALTERNATE, OFF)
SET ALTERNATE TO => SET (_SET_ALTFILE, "")

Related:
CLEAR MEMORY, CLEAR GETS, CLOSE, RELEASE, SET(), oRdd:Close()

CMD 133

CLEAR GETS
Syntax:

CLEAR GETS
Purpose:

Clears the active set of GETs.

Description:
This command explicitly releases all GET objects in the current and visible
GETLIST array and terminates the current READ if executed within a UDF of the
VALID clause or if invoked by a SET KEY procedure.

There are three other mechanisms that automatically release GET objects: the
CLEAR command, and READ specified without the SAVE clause, and invoking the
ReadKill(.T.) function. The last will not delete the GetList[] entries when executing
ReadSave(.T.), so you may re-issue READ without filling the GETs anew.

Note that CLEAR GETS does not clear the GET fields on the screen, but objects in
the GetList buffer. To clear the display, use CLS or CLEAR SCREEN or CLEAR or
@ row,col CLEAR TO row,col or READ CLEAR. This is also required, when you
wish to overwrite inactive GETs by @..SAY in GUI mode.

Example:
LOCAL var1 := 10.5, var2 := "text text "
SET COLOR TO "W+/B, GR+/BG"
@ 1,2 GET var1 // display with
@ 2,2 GET var2 // "GR+/BG" color
? "Getlist{} length=", len(Getlist) // 2
CLEAR GETS // GETs yet visible
? "Getlist{} length=", len(Getlist) // 0
wait
@ 1,2 CLEAR TO 2,maxcol() // un-display these GETs

Example: Emulate @..GET display
LOCAL var1 := 10.5, var2 := "text text "
SET COLOR TO "W+/B, GR+/BG"
SETENHANCED
@ 1,2 SAY var1 // display with
@ 2,2 SAY var2 // "GR+/BG" color
SETSTANDARD

Classification:
programming

Translation:
ReadKill(.T.) ; getlist := {}

Related:
@...CLEAR, @...GET, CLEAR, READ, ReadKill(), ENHANCED, STANDARD

CMD 134

CLEAR MEMORY
Syntax:

CLEAR MEMORY
Purpose:

Clears all PUBLIC and PRIVATE memory variables.

Description:
CLEAR MEMORY deletes all public and private variables from the internal memory
variable table, unlike RELEASE ALL, which assigns NIL to PRIVATEs of the
procedure where issued.

In FlagShip, there is no real need to RELEASE or CLEAR variables since the
number of variables is not limited. Returning from the UDP or UDF automatically
releases all the PRIVATE and autoPRIVATE variables declared or created there.

LOCAL, STATIC and typed variables are not affected by CLEAR MEMORY or
RELEASE. See also (LNG) Variable scope and Visibility.

Example:
LOCAL locvar := 1
PUBLIC pub1, pub2, pub3 := .F.
PRIVATE priv1 := 1234, priv2 := 5678
STORE "test" TO pub1, pub2
priv3 = 9876 && autoPRIVATE

? TYPE("pub1"), TYPE("priv1"), ;
TYPE("pub3"), TYPE("priv3") && C N L N

RELEASE ALL
? TYPE("pub1"), TYPE("priv1"), ;
TYPE("pub3"), TYPE("priv3") && C U L U

CLEAR MEMORY
? TYPE("pub1"), TYPE("priv1"), ;
TYPE("pub3"), TYPE("priv3") && U U U U

? VALTYPE(locvar) && N

Classification:
programming

Translation:
__MCLEAR()

Related:
CLEAR ALL, RELEASE, RELEASE ALL

CMD 135

CLEAR MENU
Syntax:

CLEAR MENU
Purpose:

Clears all @..PROMPT items without user interaction.

Description:
CLEAR MENU deletes all menu items previously created by @..PROMPT and not
yet processed by MENU TO. The next @..PROMPT command will then start a new
menu item sequence.

This command does not clear the items/text displayed on the screen, but the menu
items only. It is similar to executing MENU TO, but there is no user interaction with
CLEAR MENU.

The Prompt class is used internally for @..PROMPT items and MENU TO
processing, the object is hold in _oPrompt. See also menuclass.fh. The CLEAR
MENU command is equivalent to _oPrompt:Clear()

Example:
LOCAL _oPrompt, lastCol

@ 1,0 PROMPT "Item 1"
@ 1,col()+3 PROMPT "Item 2"
@ 1,col()+3 PROMPT "Item 3"
lastCol := col()
...
if myConditionIsMet
MENU TO myChoice //perform user selection

else
CLEAR MENU // cancel it
@ 1,0 CLEAR TO 1,lastCol // and remove from screen
myChoice := 0 // for later processing...

endif

Classification:
programming

Translation:
_oPrompt:Clear()

Related:
@...PROMPT, MENU TO

CMD 136

CLEAR SCREEN / CLS
Syntax:

CLEAR SCREEN
or:

CLS
Purpose:

Clears the screen and homes the cursor.

Description:
CLEAR SCREEN (or CLS) is a full-screen command that erases the screen using
the current color setting. It is identical to the @ 0,0 CLEAR or @ 0,0 CLEAR TO
MAXROW(),MAXCOL() command. When the screen is cleared, the cursor is set to
upper left corner (0,0).

As opposed to CLEAR, the current GETs are not cleared/deleted by CLEAR
SCREEN or CLS.

In Terminal i/o mode, the screen background corresponds to the standard color
pair, set by SetColor() or SET COLOR TO command.

In GUI mode, the background color (assigned by SET COLOR) is set only when
SET GUICOLOR is ON (default is OFF - according to GUI design specs). You may
set the background also explicitly by invoking SetColorBackground(cColor) followed
by CLS, CLEAR SCREEN, Scroll() or @ ... CLEAR [TO..]

Example:
CLEAR SCREEN
USE authors
LIST Firstname, Lastname, Title
WAIT
CLS

Example:
SET GUICOLOR ON // use colors also in GUI mode (default is OFF)
SET COLOR TO "W+/B,R+/GR,,,B/W"
CLS
? "hello world" // white text on blue background
wait

Classification:
programming

Compatibility:
Unlike DOS, the size of the screen and the color capability is not fixed in UNIX, but
depends on the terminal emulation chosen (environment variable TERM) and the
terminal description in the terminfo file. Where possible, use one of the extended
terminal descriptions FSxxx. See (REL) Predefined Terminals and LNG.2.1.

CMD 137

Translation:
SCROLL() ; SETPOS(0,0)

Related:
@...CLEAR, @...CLEAR TO, CLEAR, COL(), ROW(), MAXCOL(), MAXROW(),
SET GUICOLOR, SetColorBackgr()

CMD 138

CLEAR TYPEAHEAD
Syntax:

CLEAR TYPEAHEAD
Purpose:

Clears the keyboard buffer.

Description:
CLEAR TYPEAHEAD is used to make sure that no keystrokes remain pending in
the FlagShip buffer. This could happen if the user typed several keystrokes in
advance, which were then stored in an internal type-ahead buffer, see LNG.5.2.1.

This command is often used prior to executing a @..GET/READ,
@..PROMPT/MENU, DBEDIT(), ACHOICE() etc. or before setting up keyboard
trapping using SET KEY TO, to avoid side effects from characters pending in the
buffer.

Commands KEYBORD and SET TYPEAHEAD also clear the type-ahead buffer.

Note: some Clipper versions clears (undocumented-wise) the LastKey buffer by
CLEAR TYPEAHEAD, some do not. If you wish to clear the LastKey buffer in
FlagShip, use LastKey([pos],,.T.).

Example:
@...PROMPT...
? NEXTKEY() && 27
CLEAR TYPEAHEAD
? NEXTKEY() && 0
MENU TO choice

Classification:
programming

Translation:
__KEYBOARD ()

Related:
KEYBOARD, SET TYPEAHEAD, NEXTKEY(), INKEY(). LASTKEY()

CMD 139

CLOSE
Syntax:

CLOSE [<Alias> | ALL | ALTERNATE | DATABASES |
FORMAT | INDEXES]

Purpose:
Closes all files of the specified type.

Arguments:
CLOSE with no argument closes the current database file and its indices, producing
the same effect as USE without an argument.

Options:
<Alias> does the same as CLOSE, but with a specified working area where the
files given are closed rather than the default current working area.

ALL: Closes the database and index files in all working areas, as well as the format
and alternate files, and releases active filters and relations.

ALTERNATE: Closes the currently open alternate file, with the same effect as SET
ALTERNATE TO.

DATABASES: Closes database and index files in all working areas and releases
active filters and relations.

FORMAT: Closes the active format file, with the same effect as SET FORMAT TO.

INDEXES: Closes all open indices in the current working area.

Description:
There are other commands besides CLOSE, which also close files. These are:
QUIT/CANCEL, RETURN from the main procedure, CLEAR ALL and USE without
an argument.

The "fatal error" runtime error or user termination via ^K also closes all files by
using QUIT before exiting a program.

Multiuser:
If a record or the whole file is locked by RLOCK() or FLOCK(), all the locks are
automatically removed when the database file is closed.

CMD 140

Example:
DO WHILE .T.
CLOSE DATABASES
choice = my_menu ()
DO CASE
CASE choice = 1

CLOSE ALL
USE personal
DO pers_proc

CASE choice = 2
USE stock NEW
DO stock_proc

ENDCASE
ENDDO
QUIT

Classification:
programming, database

Compatibility:
The option <Alias> is new in FS4.

Translation:
CLOSE => DBCLOSEAREA()
CLOSE ALIAS => <alias>->(DBCLOSEAREA())
CLOSE ALL => CLOSE DATA ; SELE 1; CLOSE FORMAT
CLOSE ALTERNATE => SET(_SET_ALTFILE, "")
CLOSE DATABASES => DBCLOSEALL()
CLOSE FORMAT => __SETFORMAT(NIL)
CLEAR INDEX => DBCLEARINDEX()

Related:
CLEAR ALL, QUIT, RETURN, SET ALTERNATE TO, SET FORMAT TO, USE,
SETCANCEL(), FS_SET("break"), oRdd:Close()

CMD 141

COMMIT
Syntax:

COMMIT [ALL]
Purpose:

Writes the internal UNIX (or Windows) buffers of all used working areas to the hard
disk.

Options:
COMMIT ALL will commit both SHARED and EXCLUSIVE open databases. If ALL
is not given, only SHARED open databases are committed. You may set the global
switch

_aGlobSetting[GSET_L_DBCOMMIT_EXCL] := .T. // default is .F.
whereby COMMIT behaves then same as COMMIT ALL

Description:
FlagShip stores the current .dbf record in internal working area buffers. These get
flushed to the UNIX (or Windows) buffer upon:

•any record movement (GOTO, SKIP, SEEK etc.) SHARED
•SKIP 0 SHARED
•SELECT SHARED
•CLOSE / USE SHARED/EXCL
•QUIT, user abort (Ctrl-K) SHARED/EXCL
•COMMIT or DbCommit() or DbCommitAll() SHARED(EXCL)
•COMMIT ALL or DbCommit(.T.) or DbCommitAll(.T.) SHARED/EXCL

When executing any of the above commands, the current database changes
become visible to other users in a multi-user/multi- tasking environment.

COMMIT, however, updates the internal buffers for all working areas as well as the
UNIX (or Windows) file buffers, writing them physically to the hard disk (very similar
to the system command "sync") and reads them back again into the internal buffers.
Note that the executable waits until the disc access is performed successfully.

Setting the _aGlobSetting[GSET_L_DBCOMMIT_EXCL] := .T. will flush also
EXCLUSIVE open databases, hence COMMIT behaves like COMMIT ALL or
DbCommitAll(.T.). This setting however does not affect flushing on record move-
ments or in SELECT, which is done for SHARED open dbf only.

COMMIT is equivalent to DbCommitAll() function, COMMIT ALL is same as
DbCommitAll(.T.). To commit only current database, use DbCommit() function.

CMD 142

Multiuser:
Use this command to make sure that the data is immediately physically written to
the disc. The USE and CLOSE commands and the database movement implicit the
DBCOMMIT() which flushes the changes of the current database to the disc.
Executing this COMMIT command or DbCommit*() functions will make the
database and index changes available to other users. See also LNG.4.8.5.

You may also use COMMIT prior to outputting the database record (if not SKIPped
before) to make sure the current data (which had been probably changed in the
meantime by another user) will be read from the file and not from the internal buffer
only.

COMMIT should be executed before you free the by Flock() or Rlock() locked
records or database, especially on heavy loaded database. If SET AUTOLOCK is
ON (the default), COMMIT is executed automatically in AutoUnlock(), see also
<FlagShip_dir>/system/autolock.prg.

Tuning:
You may configure COMMIT, or execute it also at the time of UNLOCK, see Tuning
in FUN.DbCommitAll()

Example:
USE stock SHARED // check by USED()
SET INDEX TO stockno // check by NETERR()
SEEK 12345 // check by FOUND()
WHILE !FLOCK() // wait for file-lock
SleepMs(50) // with small delay to

ENDDO // avoid heavy CPU load
DO WHILE !EOF() .AND. stock_no = 12345
REPLACE sold_out WITH .T., act_item WITH 0
SKIP

ENDDO
COMMIT // update all buffers
UNLOCK // release file-lock

Example:
Display data, check the actuality every 5 seconds and redisplay new data, if
changes detected:

LOCAL changed = .T., key, act_items
FIELD stock_no, text, item_avail
USE stock SHARED // check by USED()
SET INDEX TO stockno // check by NETERR()
SEEK 12345 // check by FOUND()

WHILE .T.
IF changed // avoid permanent display

@ 1,0 say stock_no
@ 2,0 say text
@ 3,0 say item_avail
act_items = item_avail
changed = .F.

ENDIF
key = INKEY(5) // wait 5 sec or user key

CMD 143

IF key # 0
EXIT // exit the loop
ENDIF
COMMIT // or: SKIP 0
IF act_items # item_avail // data changed,

?? chr(7) // sound bell
changed = .T.

ENDIF
ENDDO
IF key = 27 ... // process pressed key

Classification:
database

Compatibility:
The following commands produce the same effect as COMMIT:

SKIP 0
or

act_rec := RECNO() ; GOTO act_rec

Translation:
DBCOMMITALL()

Related:
GOTO, SKIP, REPLACE, UNLOCK, DBCOMMIT(), DBCOMMITALL(),
oRdd:Commit()

CMD 144

CONTINUE
Syntax:

CONTINUE
Purpose:

Continues the pending LOCATE search in the current working area.

Description:
The search is continued from the current record. It terminates when the first record
which meets the most recent LOCATE condition, is found, or, the end of LOCATE
scope is reached.

If the search was successful, the matching record becomes the current record, and
FOUND() returns .T. Else, FOUND() returns .F., and the record pointer is positioned
on EOF or the next record outside the FOR scope.

Each working area may have an active LOCATE condition which remains pending
until a new condition is issued or a new database file is used in that area. No other
actions release the LOCATE condition.

The <scope> and WHILE conditions of the initial LOCATE are ignored; only the
FOR condition is used with CONTINUE. If you are using a LOCATE with a WHILE
condition and want to continue the search for a matching record, use SKIP and then
repeat the original LOCATE statement adding REST as the scope.

Example:
USE employee
? RECCOUNT() && 100
LOCATE FOR Salary > 50000
? FOUND(), EOF(), RECNO() && .T. .F. 21
CONTINUE
? FOUND(), EOF(), RECNO() && .T. .F. 53
CONTINUE
? FOUND(), EOF(), RECNO() && .F. .T. 101

Classification:
database

Translation:
__DBCONTINUE()

Related:
LOCATE, FOUND(), oRdd:Continue(), oRdd:GetLocate()

CMD 145

CONSTANT
Syntax:

CONSTANT <memvar> := <exp>
Purpose:

Creates and initializes the specified memory variable similar to PUBLIC but not re-
assignable. If you wish to declare re-assignable public variable, use PROTECT
PUBLIC instead.

Arguments:
<memvar> is the variable to be created as fix PUBLIC. The name may be of any
length, but only the first 10 characters are significant (see more LNG.2.6). Variable
names in the FlagShip language are not case sensitive.

Initializing:
<exp> is any valid FlagShip expression including a literal (constant) array to
initialize the variable. Since the CONSTANT is not re-assignable, the initializer must
be specified at the time of declaration.

Scope, Visibility:
CONSTANT variables have the same scope and visibility as the PUBLIC variables,
i.e. are available (after the declaration) for the whole life-time of the application.

Classification:
programming

Compatibility:
New in FS5

Related:
PUBLIC, MEMVAR

CMD 146

COPY FILE ... TO
Syntax:

COPY FILE <file1>|(<expC1>)
TO <file2>|(<expC2>)

[ADDITIVE]
Purpose:

Duplicates a file regardless of its type.

Arguments:
<file1> is the name of the source file, including extension, according to UNIX
conventions; DOS filenames are also supported. Standard UNIX wildcards are
allowed.

<file2> is the name of the target file, including extension, according to UNIX
conventions. Standard UNIX and Windows wildcards (or a path only, but not the
period . alone) are allowed.

Option:
ADDITIVE appends the contents of <file2> to <file1>. <file2> must be explicitly
specified. If a wildcard is given in <file1>, all files found are copied to <file2>. When
the ADDITIVE option is omitted, <file2> is overwritten.

Description:
COPY FILE copies files located in the SET DEFAULT TO path if set, or the current
directory, unless a path is specified. The success or error may be checked using
DOSERROR(). Both <file1> and <file2> (if such exists) must be closed before being
copied. The file's permission of <file2> is set according to umask.

Example:
FS_SET ("lower", .T.) && automat. translation
COPY FILE TestFile.tmp TO test.dummy
? DOSERROR(), FILE("test.dummy") && 0 .T.
COPY FILE [a-d]*x.p?g /usr/smith/allfiles.prg ADDITIVE
TYPE /usr/smith/allfiles.prg
COPY FILE [a-d]*x.p?g /usr/smith && directory

Classification:
system, file access

Compatibility:
The COPY FILE command is equivalent to the UNIX command "cp file1 file2" or
"cat file1 >> file2" respectively, if the ADDITIVE option is used. The ADDITIVE
clause, wildcard support and DOSERROR() checking is available in FlagShip only.

Translation:
__COPYFILE ("file1", "file2", .add.)

Related:
RENAME, COPY TO, SET DEFAULT, RUN, UNIX: cp, cat

CMD 147

COPY TO
Syntax:

COPY TO [<file>|(<expC1>)]
[<scope>]
[FIELDS <fieldList>]
[FOR <condition>]
[WHILE <condition>]
[SDF | DELIMITED

[WITH BLANK|<delimiter>|(<expC2>)]
[FLDSEP (<expC4>)]
[CHARSEP (<expC5>)]
[LINESEP (<expC6>)]
[WITHMEMO [<expN7>]]]

[VIA <expC3>]
Purpose:

Copies specified parts or the whole current database to a new file.

Arguments:
TO <file>|(<expC1>) is the name of the new file. If an extension is not specified, it
is assumed to be .dbf when no type clause is given, or .txt otherwise. The <file>
name may be omitted, with the SDF or DELIMITED clause, when an SET EXTRA
file already opened is to be used ADDITIVEly.

Options:
FIELDS: Specifies the list of fields to copy to the target file. The default is all fields.
In text files the fields will appear in the order given by the FIELDS clause, if
specified.

<scope> is the part of the current database file to COPY. The default scope is ALL.

<condition> specifies additional FOR and/or WHILE filtering of the copied records
within the given <scope>. See the general command description.

SDF: Specifies the output data type to be a System Data Format ASCII file.
Records are of a fixed length, separated by a line feed, without a field separator.
Character fields are padded with trailing blanks, numeric fields are padded with
leading blanks, date fields are written in the form "yyyymmdd", and logical fields are
written in the form T/F.

SDF: file format
Field separator None or <expC4>
Record separator LF or CR/LF = 0Ahex or <expC6>
End of file marker file-end or the DOS eof = 1Ahex
Character fields Delimited by <expC5>...<expC5>, padded with trailing blanks
Numeric fields Padded with leading blanks for zeros
Date fields YYYYMMDD
Logical fields T or F
Memo fields Ignored without WITHMEMO <expN7> clause

CMD 148

DELIMITED identifies an ASCII text file, where fields are separated by commas and
character fields are bounded by double quotation marks, which are also the default
delimiters. Fields and records are of variable length and end with a line feed.
Leading and trailing spaces for numeric and character fields are truncated, date
fields are written in the "yyyymmdd" form, and logical fields are written as T/F.

DELIMITED [WITH delimiter]: file format
Field separator Comma (,) or <expC4>
Record separator LF or CR/LF = 0Ahex or 0D+0Ahex
End of file marker None, file-end
Character fields Delimited by quotas ("...") or by <expC2>

or by <expC5>, trailing blanks truncated
Numeric fields Leading zeros truncated
Date fields YYYYMMDD
Logical fields T or F
Memo fields Ignored without WITHMEMO clause

DELIMITED WITH <delimiter>|(<expC2>) identifies a delimited ASCII text file,
where character fields are delimited with the specified delimiter. Note: this clause, if
given, must be the last one within the command. To avoid misinterpretation, it is
better to enclose the delimiter in quotes. DELIMITED WITH '"' is the same as the
clause DELIMITED only. This clause can be overwritten by FLDSEP clause.

DELIMITED WITH BLANK identifies an ASCII text file, where fields are separated
by one space and character fields are not bounded by delimiters (except when
FLDSEP and/or CHARSEP is specified).

DELIMITED WITH BLANK: file format
Field separator Single blank space or <expC4>
Record separator LF or CR/LF = 0Ahex or 0D+0Ahex
End of file marker None, file-end
Character fields Not delimited (or delimited by <expC5>),

trailing blanks are truncated
Numeric fields Leading zeros truncated
Date fields YYYYMMDD
Logical fields T or F
Memo fields Ignored without WITHMEMO clause

FLDSEP <expC4> is optional field separator. If given, overrides the comma or
space field separator of DELIMITED WITH, or is added into SDF output.

CHARSEP <expC5> is optional separator/delimiter of character fields. If given,
overrides the quota (") or <delimiter> of DELIMITED WITH, or is added in SDF
output. If you wish different left and right delimiters, pass an array of two elements,
where the first is left, and second is the right delimiter character/string.

LINESEP <expC6> is optional record separator. If given, overrides the default LF =
chr(10) or CR+LF = chr(13,10) separator specified in _aGlobSetting[GSET_C_
COPY_TO_NEWLINE]. You may assign any other separator either globally by

CMD 149

assigning value to this _aGlobSetting element, or temporary by this LINESEP
clause.

WITHMEMO [<expN7>] includes also memo and variable length fields in the
DELIMITED or SDF output. The field is TRIM()ed, soft-CR are replaced by space,
and hard-CR by chr(20). You may re-define these replace characters by your own,
see "Tuning" below. For DELIMITED output, the memo field is delimited same as
character field by quotas or by <expC5> and the <expN7> value is ignored. For
SDF output, the string is padded by space or trimmed to total <expN7> length. If
<expN7> is not given for SDF or is less than or equal 0, memo field is not
processed.

VIA <expC3> specifies the name of the RDD (replaceable database driver) to use
to export the desired data, given as quoted string or character variable. The default
FlagShip driver is "DBFIDX".

Description:
All records from the current database file are copied, unless limited by: scope, FOR
or WHILE conditions, filter, or SET DELETED ON. Records are copied in controlling
index order if such is set, otherwise in natural order. The file's permission of <file> is
set according to the current database.

Since the DELIMITED [WITH] clause is ambiguous in dBase specification (it defines
field separator or character delimiter), FlagShip allows you to specify explicitly the
field separator by FLDSEP and the character delimiter by CHARSEP clauses, for
both DELIMITED and SDF output format.

Multiuser:
If the output file is a database (i.e. neither SDF nor DELIMITED clause is used), it
will be created and opened in EXCLUSIVE mode, and then closed again. If the
target database or file exists, it will be deleted without notice before COPYing.

To avoid inconsistent target data when the source database is open in SHARED
mode and SET AUTOLOCK is ON, the database may be automatically FLOCK()ed
during the COPY TO operation, see Tuning below. Otherwise, you should lock it
programmatically by FLOCK() before COPY TO... (and UNLOCK thereafter), so it
cannot be changed by others during the COPY process.

Tuning:
When SET AUTOLOCK is ON (the default), you may force the FLOCK() and
UNLOCK automatically by assigning

_aGlobSetting[GSET_L_DBCOPY_LOCK] := .T. // default is .F.
The replace characters for memo field can be re-defined by

_aGlobSetting[GSET_A_COPYDELIM_MEMO] := {" ", chr(20) } // def

CMD 150

Example:
Prepare a mail-merging list

USE employee SHARED
local iCount := 0
while ! FLOCK() // on lock failure, retry
if ++iCount > 20 // with msg every 2 seconds

InfoBox("waiting for lock employee.dbf")
iCount := 0

endif
sleepms(100) // wait 0.1 seconds

enddo
COPY TO address FIELDS Name, Lastname, Address SDF
UNLOCK

Classification:
database and export to ASCII file

Compatibility:
The new file will be created with the current access rights of the database. The
output text file is created using the UNIX (or Windows) convention. To translate it to
the DOS format (CR/LF), use the "unix2dos" utility. Omitting the <file> argument is
possible in FlagShip only. The FLDSEP, CHARSEP and WITHMEMO clauses are
available in FlagShip only.

Translation:
__DBCOPY ("file", {"field1" [,"field2.."]}, ;

{forCond}>, {whileCond}, [next], [record], [.rest.])
__DBCOPYSDF ("file", {"field1" [,"field2.."]}, ;

{forCond}>, {whileCond}, [next], [record], [.rest.])
__DBCOPYDELIM ("file", "delim", {"field1" [,"field2.."]}, ;

{forCond}>, {whileCond}, [next], [record], [.rest.])

Related:
APPEND FROM, COPY FILE, COPY STRUCTURE, SET DELETED,
oRdd:CopyDB(), oRdd:CopySDF(), oRdd:CopyDelimited()

CMD 151

COPY STRUCTURE TO
Syntax:

COPY STRUCTURE TO <file>|(<expC>)
[FIELDS <fieldList>]

Purpose:
Creates an empty database file with field definitions from the current database file.

Arguments:
<file>|(<expC>) is the name of the file to be created. The default extension is .dbf
unless another extension is explicitly specified.

Options:
FIELDS <fieldList> is the set of fields to copy to the new database file in the order
specified. The default is all fields.

Example:
USE employee
xx = "new_part"
? FCOUNT(), RECCOUNT() && 12 100
COPY STRUCTURE TO new_emp
COPY STRUCTURE TO (xx) FIELDS name,city,zip
USE new_emp
? FCOUNT(), RECCOUNT() && 12 0
USE (xx)
? FCOUNT(), LASTREC() && 3 0

Classification:
database

Translation:
__DBCOPYSTRUCT ("file", {"field1" [, "field2"...]})

Related:
COPY STRUCT EXTENDED, CREATE, CREATE FROM, DBCREATE(),
oRdd:CopyStructure()

CMD 152

COPY TO...STRUCT EXTENDED
Syntax:

COPY TO <file>|(<expC>) STRUCTURE EXTENDED
Purpose:

Creates a structure extended database file containing the field definitions of the
current database.

Arguments:
TO <file>|(<expC>) is the name of the structure extended database file.

Description:
COPY STRUCTURE EXTENDED creates a database file with four fields:
FIELD_NAME, FIELD_TYPE, FIELD_LEN and FIELD_DEC, and fills it with field
definitions of the current database file. Thereby, it is possible to create and modify
structures of database files from within an application. CREATE FROM is used to
create a new database file from a structure extended file. To create only an empty
structure extended file, use the CREATE command.

Field name Type Length, deci
1 FIELD_NAME Character 10
2 FIELD_TYPE Character 1
3 FIELD_LEN Numeric 3 0 see note
4 FIELD_DEC Numeric 3 0

Note: character fields up to 64 Kbytes are supported by FlagShip. Fields greater
than 255 characters are defined with a combination of the FIELD_DEC and
FIELD_LEN fields to remain compatible with other xBASE dialects. After copying
STRUCTURE EXTENDED, you can use the following formula to determine the
length of any character field:

act_len = IF (FIELD_TYPE = "C" .AND. FIELD_DEC != 0, ;
(FIELD_DEC * 256) + FIELD_LEN, FIELD_LEN)

The structure database may be extended with additional fields for the user's own
purposes.

CMD 153

Example:
USE Employee
xx = "new_part"
? FCOUNT(), RECCOUNT() && 12 100
COPY STRUCTURE EXTENDED TO New_stru
COPY STRUCTURE EXTENDED TO (xx) FIELDS name,city,zip, note
USE New_stru
? FCOUNT(), RECCOUNT() && 4 12

USE (xx) NEW
? FCOUNT(), LASTREC() && 4 3
LOCATE FOR UPPER(TRIM(field_name)) == "NOTE"
IF FOUND()

REPLACE field_dec WITH 4, ; // 4 * 256 = 1024
field_len WITH 76 // + 76 = 1100

ENDIF
CLOSE
CREATE new_name FROM (xx)
USE new_name
? LEN(note) // 1100

Classification:
database

Translation:
__DBCOPYXSTRUCT ("file")

Related:
CREATE, CREATE FROM, FIELD(), TYPE(), DBCREATE()

CMD 154

COUNT ... TO
Syntax:

COUNT [<scope>]
[FOR <condition>] [WHILE <condition>]
TO <memvar>

Purpose:
Counts records in the current working area, which fall into the given scope and fulfill
the specified conditions. The result is stored to the specified memory variable.

Arguments:
<memvar> is the memory variable where the result of counting is stored. If the
variable does not exist, a new autoPRIVATE is created as numeric.

Options:
<scope> is the part of the current database file to be counted. The default scope is
ALL.

<condition>: The FOR clause specifies that the set of records meeting the
condition within the given scope, are to be counted. The WHILE clause stops
counting when the first record not fulfilling the condition is reached.

Example:
USE magazine
? RECCOUNT() && 100
COUNT FOR Price > 2 TO Exp && 12
COUNT FOR Price <= 2 TO Cheap && 88

Classification:
database

Translation:
<var> := 0
DBEVAL({|| <var> := <var> + 1}, ;

{forCond}>, {whileCond}, [next], [record], [.rest.])

Related:
AVERAGE, SUM, TOTAL, DBEVAL(), oRdd:Count()

CMD 155

CREATE
Syntax:

CREATE <file>|(<expC>)
[ALIAS <alias>]
[NEW]
[VIA <driver>]

Purpose:
Creates an empty structure extended database file, and leaves it open in the
selected working area.

Arguments:
<file>|(<expC>) is the name of the empty structure extended file.

Options:
ALIAS <alias> is the name to be associated with the working area. If not specified,
the main part of the <file> name is assigned to <alias>.

NEW selects an unused working area making it the current one and opens the
database <file> there. The clause is equivalent to SELECT 0 prior to the CREATE...
command. If this clause is not given, the database is opened in the current
SELECTed working area.

VIA <driver> defines the replaceable database driver (RDD) to process the current
working area. The default driver is "DBFIDX".

Description:
The empty structure extended file consists of four fields: FIELD_NAME,
FIELD_TYPE, FIELD_LEN and FIELD_DEC, see CREATE FROM. To form a new
database file, use CREATE FROM.

Field name Type Length deci
1 FIELD_NAME Character 10
2 FIELD_TYPE Character 1
3 FIELD_LEN Numeric 3 0
4 FIELD_DEC Numeric 3 0

Example:
see example of CREATE FROM... and DBCREATE()

Classification:
database

Translation:
__DBCREATE ("file")

Related:
DBCREATE(), CREATE FROM, COPY STRUCTURE EXTENDED

CMD 156

CREATE ... FROM
Syntax:

CREATE <file1> | (<expC1>) FROM <file2> | (<expC2>)
[ALIAS <alias>]
[NEW]
[VIA <driver>]

Purpose:
Creates a new database file from a structure extended file, and leaves it open in the
selected working area.

Arguments:
<file1>|(<expC1>) is the name of the new database file to be created.

<file2>|(<expC2>) is the name of a structure extended file, from which the field
definitions for <file1> will be used during the creation process.

Options:
ALIAS <alias> is the name to be associated with the working area. If not specified,
the main part of the <file> name is assigned to <alias>.

NEW selects an unused working area making it the current one and opens the
database <file> there. The clause is equivalent to SELECT 0 prior to the CREATE...
command. If this clause is not given, the database is opened in the current
SELECTed working area.

VIA <driver> defines the replaceable database driver (RDD) to process the current
working area. The default driver is "DBFIDX".

Description:
CREATE FROM creates a new database file according to the information contained
in a structure extended file. A database file is regarded as a structure extended file,
if it contains the following four fields:

Field name Type Length deci
1 FIELD_NAME Character 10
2 FIELD_TYPE Character 1
3 FIELD_LEN Numeric 3 0
4 FIELD_DEC Numeric 3 0

A structure extended file can contain any number of fields, providing that these four
fields exist. The order in which the fields appear is of no importance. Only the four
fields are used when creating a new dbf file.

To create a character field longer than 256 characters, specify the FIELD_DEC
equal to the INT() of the required length divided by 256, and the FIELD_LEN equal
to the remainder of the length divided by 256. The formula is

CMD 157

act_len = IF (FIELD_TYPE = "C" .AND. FIELD_DEC != 0, ;
(FIELD_DEC * 256) + FIELD_LEN, FIELD_LEN)

The file's permission of <file2> is set for <file1>.

Note, that the function DBCREATE() performs the same functionality, but is easier
to handle.

Example 1:
CREATE New_stru
USE New_stru
APPEND BLANK
REPLACE Field_name WITH "Id", ;

Field_type WITH "N",;
Field_len WITH 5, ;
Field_dec WITH 0

APPEND BLANK
REPLACE Field_name WITH "Lastname", ;

Field_type WITH "C", ;
Field_len WITH 20, ;
Field_dec WITH 0

APPEND BLANK
REPLACE Field_name WITH "Birthdate", ;

Field_type WITH "D", ;
Field_len WITH 8, ;
Field_dec WITH 0

APPEND BLANK
REPLACE Field_name WITH "Longfield", ;

Field_type WITH "C", ;
Field_len WITH 160, ; // 4000 % 256
Field_dec WITH 15 // int(4000/256)

USE
CREATE New_file FROM New_stru

** use the new database

USE New_file
? FCOUNT(), FIELD(1), RECCOUNT() // 4 ID 0
? LEN(longfield) // 4000

Example 2:
This example is equivalent to Example 1:

aDbStru := {{"Id", "N", 5, 0}, ;
{"Lastname","C",20,0}, ;
{"Birthdate","D",8,0}, ;
{"Longfield","C", 4000, 0}}

DbCreate ("New_file", aDbStru)

CMD 158

Classification:
database

Compatibility
FlagShip supports character field length up to 64534 bytes (FIELD_DEC = 252,
FILED_LEN = 85), Clipper up to 32 or 64 Kbytes (release dependent), dBASE III up
to 256 Bytes. To remain compatible to DOS, the maximal record length (the sum of
field lengths) is in all cases 64534 Bytes.

Translation:
__DBCREATE ("file1", "file2")

Related:
DBCREATE(), COPY STRUCTURE EXTENDED, CREATE, oRdd:CreateDB()

CMD 159

DECLARE
Syntax:

DECLARE <array> [<dim>]
DECLARE <array> [<dim1>,<dim2>,<dimn>]
DECLARE <array> [<dim1>][<dim2>][<dimn>]
DECLARE <array> := {<initializer>}

Purpose:
Creates the specified one-dimensional or multi-dimensional array(s) of class type
PRIVATE.

Arguments:
In this case, the square brackets around <dim> do not specify an optional
argument, but are a required part of the syntax.

<array> is the name of the array to be created.

<dim> is the dimension of the array. With one-dimensional arrays, its syntax is
[<expN>]. With multi-dimensional arrays, the dimensions may be given together in
the [] bracket separated by commas or each dimension separately in [] brackets
without commas. You may declare more than one array in one DECLARE
statement.

Array elements can be handled like ordinary memory variables. Different elements
of the same array can have different types. Each element may contain another sub-
array (non-symmetric structure), see LNG.2.6.4.

Initializing:
Array elements can be declared and initialized with a starting value using an array
(literal) constant (see LNG.2.7) which includes any valid expression, and the assign
:= operator, e.g.:

DECLARE arr1 := {} // creates arr1[0]
DECLARE arr2 := {0,date(),"test",.T.} // creates arr2[4]
DECLARE arr3 := {{1,2},{3,4}} // creates arr3[2,2]
DECLARE arr4:= {1, {2,3}, {"test",.T.,NIL,4, {5,DATE()}},6}

The above arrays arr1, arr2 and arr3 are symmetric, while the declaration of array4
specifies a non-symmetric array. If no explicit <initializer> is specified, the variable
is given an initial value of NIL. The exception is the zero length literal array { }.

Description:
DECLARE creates private arrays. This hides all the private arrays or variables with
the same name created in higher level procedures. Declaring an array LOCAL,
STATIC or PUBLIC is another way of specifying the visibility scope. DECLARE and
PRIVATE are equivalent statements.

FlagShip uses one variable slot per array. The maximum number of array elements
is 65535 per dimension, up to 65535 dimensions will be handled. The theoretical

CMD 160

size of a symmetric array is therefore 4 billion (* 28 bytes), if non-symmetric, even
more.

Arrays can be declared or used from within macro variables, see LNG.2.10. As
parameters to functions and procedures, arrays are passed by reference, while
array elements are passed by the usual (variable) convention. See PROCEDURE
and FUNCTION.

Example:
name = "arr1"
len = 20
DECLARE &name.[len] && arr1[20]
DECLARE arr2[15], arr3[5,6]
AFILL(arr1, "John")

? &name.[5] && "John"
? LEN(arr1), arr3[5,2] && 20 NIL
? TYPE("name"), TYPE(name) && "arr1" "A"
? TYPE("arr1"), TYPE("arr1[1]") && "A" "C"

DECLARE uarr:= {1, {2,3}, {"test",.T.,NIL,4, {5,DATE()}},6}
? VALTYPE(uarr), LEN(uarr) // A 4
? VALTYPE(uarr[2]), LEN(uarr[2]) // A 2
? VALTYPE(uarr[3,5]), LEN(uarr[3,5]) // A 2
? uarr[1], uarr[3][4], uarr[3,5,1] // 1 4 5

Classification:
programming

Compatibility:
Multi-dimensional and non-symmetric arrays are new in FS4 and C5. Clipper allows
arrays with a maximum of 4096 elements, dBASE IV two-dimensional arrays with a
maximum of 1170 elements. Unlike Clipper, FlagShip supports saving and restoring
arrays to .mem files, see SAVE TO.

Related:
PRIVATE, PUBLIC, LOCAL, STATIC, AADD(), ARRAY(), ACOPY(), ACLONE(),
ADEL(), ACHOICE(), ADIR(), AFILL(), AINS(), ASCAN(), ASORT(), DBEDIT()

CMD 161

DELETE
Syntax:

DELETE [<scope>]
[FOR <condition>]
[WHILE <condition>]

Purpose:
Marks records in the current working area for deleting.

Options:
<scope> is the part of the current database file to be deleted. The default scope is
the current record if a condition is not specified, or ALL if a condition is specified.

<condition>: The FOR clause specifies that the set of records meeting the
condition within the given scope is to be deleted. The WHILE clause stops deletion
when the first record not fulfilling the condition is reached.

Description:
After deletion, the records remain in the database until removed by PACK or
reinstated by RECALL. They may be queried with DELETED(), and filtered out with
SET DELETED ON. Removing all records from a database file is done more easily
with ZAP than with DELETE ALL and PACK. If SET DELETED is ON, the record
stays visible until the record pointer is moved.

Multiuser:
In a multiuser / multitasking environment, DELETE requires that the records be
locked with RLOCK() if deleting a single record, or by FLOCK() or an EXCLUSIVE
open, to delete multiple records. Otherwise, AUTORLOCK() is used automatically, if
SET AUTOLOCK is active. See LNG.4.8.

Example:
SET DELETED ON
USE employee
WHILE NETERR() ; USE employee ; END
? RECCOUNT() && 100
COUNT TO Sick_no FOR Sick_days > 30 && 12
WHILE !FLOCK() ; END
DELETE FOR Sick_days > 30
UNLOCK
COUNT TO Healthy_no && 88

Classification:
database

Translation:
DBDELETE ()
DBEVAL ({|| DBDELETE()}, for, while...)

Related:
RECALL, DELETED(), SET DELETED, PACK, ZAP, oRdd:Delete()

CMD 162

DELETE FILE
Syntax:

DELETE FILE <file>|(<expC>)
or

ERASE <file>|(<expC>)
Purpose:

Removes a file from disk.

Arguments:
<file> is the name of the file (including extension) to be deleted. A full path may be
specified. If omitted, only the current directory is searched; the SET PATH or SET
DEFAULT path is ignored. Standard UNIX wildcards using ?, *, [..] are supported.

Description:
The file will be deleted without any warning. The consequences are not
recoverable. The user must have at least "w" access rights for the file and "x" for
the directory.

The success can be checked using DOSERROR().

Example:
? FILE ("data.tmp") && .T.
DELETE FILE dat?.t*p
? FILE ("data.t*p") && .F.
? DOSERROR() && 0

Classification:
system, file access

Compatibility:
Wildcard support and the DOSERROR() checking is available in FlagShip only.

The ERASE or DELETE FILE command is equivalent to the UNIX command "rm" or
similar to the DOS command "DEL".

The command considers the automatic path and/or conversion using e.g.
FS_SET("pathlower") and FS_SET ("lower"), the extension replacement using
FS_SET ("translext") and the drive substitution using the environment variable
x_FSDRIVE.

Translation:
FERASE ("file")

Related:
CLOSE, USE, CURDIR(), FILE(), FS_SET ()

CMD 163

DELETE TAG
Syntax:

DELETE TAG <expC1>
[IN|OF <file1>]
[, <expC2> [IN|OF <file2>]...]

Purpose:
Deletes a tag (subindex) or the whole index file.

Arguments:
<expC1> is a literal string or parenthesized character expression that represents
the subindex (tag) name, within the index file. For the default "DBFIDX" replaceable
driver RDD, the <expC1> is equivalent to <file1>.

IN <file1> (or OF <file1>) is a literal string or parenthesized character expression
that represents the index file name containing the <expC1> subindex (tag). For the
default "DBFIDX" replaceable driver RDD, which contains only one subindex (tag),
the <file1> entry is ignored. If the <file1> is omitted, all active indices in the current
working area are searched for the subindex name <expC1>.

Description:
This command is designed to delete one tag (subindex) in a multiple index file
supplied by other RDDs. With single index files, like the default "DBFIDX", the
whole index file is deleted, equivalent to the DELETE FILE command.

If the removed <expC1> is the active index, the next tag of the index file is selected.
If the removed <expC1> is the last, or the only one subindex (tag) in the index file
<file1>, the index is deselected, equivalent to the CLOSE INDEXES command or
SET INDEX TO without arguments.

Multiuser:
With some RDD drivers, the database must be used exclusively, but is not required
for the default "DBFIDX" driver.

Example:
USE employee VIA "dbfmdx" NEW
SET INDEX TO employee
DELETE TAG persno OF employee

Example:
USE employee NEW
SET INDEX TO persno, persname
? INDEXORD(), pers_num, name // 1 101 Smith
DELETE TAG persname
? INDEXORD(), pers_num, name // 0 295 Miller
? FILE("persname" + INDEXEXT()) // .F.

CMD 164

Classification:
database

Compatibility:
Available in FS4, C5, DB4. The clause OF is not available in C5, but IN only.

Translation:
ORDERDESTROY (exp1, file1)

Related:
USE, ORDDESTROY(), DBSETDRIVER(), oRdd:DeleteOrder()

CMD 165

DIR
Syntax:

DIR [<skeleton>]
Purpose:

Displays a listing of files from the specified path.

Options:
<skeleton> is the standard wildcard notation for files (* and ?) used to select files
for display. It may include a directory path to specify the tree structure from the
current (relative path) or the root (absolute path) directory to the desired files. If it is
omitted, the current directory is assumed. The directory names can be separated by
a slash ("/") or by the back slash ("\") character.

If <skeleton> is not specified, only database files .dbf will be displayed. Otherwise,
all the files that match the skeleton will be displayed.

Description:
The .dbf list includes file name, date of the last update and number of records.
Specifying a <skeleton> displays the files that match a file name pattern. The list
includes file names, attributes, their size and date of the last update, in a format
similar to the UNIX command "ls -l" or Windows DIR.

Note, that the information about specific file is also available via the DIRECTORY()
or ADIR() functions.

Example:
DIR *.* // same as: ls -l *.*
DIR ("./[a-d]*.dbf") // same as: ls -l ./[a-d]*.dbf
DIR // standard header (1)
#ifdef FlagShip
FS_SET ("load", 1, "FSsortab.ger")
FS_SET ("set", 1)
DIR // german header (2)

#endif

------------------- Output using DIR *.* ------------------

-rwxrwxr-x 1 jan program 459198 Sep 23 14:55 a.out
-rw-rw-r-- 1 peter program 1845 Apr 27 19:03 adress.dbf
-rw-rw-r-- 1 hugo user 657 Jul 15 16:08 adress1.dbf
-rw-rw-r-- 1 sven program 30 Sep 01 18:42 dummy.prg
-rw-rw-r-- 1 guest guest 1253 Jun 29 11:52 dummy.txt
-rw-rw-r-- 1 peter program 115 Sep 11 14:28 tvarmac.prg
------------------- Output using DIR *.dbf ----------------

-rw-rw-r-- 1 peter program 1845 Apr 27 19:03 adress.dbf

CMD 166

------------------- Output (1) using DIR ------------------

Database Files # Records Last Update Size
adress.dbf 15 01/27/94 1845
adress1.dbf 4 07/15/93 657

------------------- Output (2) using DIR and FS_SET()------

Datenbanken Saetze Letzt.Aender Groesse
adress.dbf 15 27.01.94 1845
adress1.dbf 4 15.07.93 657

Classification:
system, file access

Compatibility:
The header for displaying the databases is user-definable in FlagShip via
FS_SET("load"). The <skeleton> output on UNIX is the same as in "ls -l" and differs
from the output on DOS.

Translation:
__DIR ("skeleton")

Related:
DIRECTORY(), ADIR(), PUBLIC FlagShip, #ifdef FlagShip, FS_SET()

CMD 167

DISPLAY
Syntax:

DISPLAY [OFF] [<scope>] <expList>
[FOR <condition>]
[WHILE <condition>]
[TO PRINTER]
[TO FILE <file>|(<expC>) [ADDITIVE]]

Purpose:
Displays the result of one or more expressions for each processed record.

Arguments:
<expList> is the list of values displayed for each processed record.

Options:
<scope> is the part of the current database file to display. The default scope is the
current record. If a condition is specified, the scope becomes ALL.
<condition> specifies additional FOR or/and WHILE filtering. See the general
command description.
OFF: Suppresses the display of the record number.
TO PRINTER: echoes output to a printer file. To disable the screen output, use SET
CONSOLE OFF.
TO FILE: echoes output (ADDITIVE) to the specified file. See also the general
command description.

Description:
DISPLAY sends the results of the <expList> to screen in a tabular format, each
column being separated by a space. DISPLAY is similar to LIST, with the difference
that its default scope is NEXT 1, rather than ALL as in LIST.

Example:
// Esc interrupts DISPLAY:

USE Employee
DISPLAY Lastname, Firstname, Birthdate FOR INKEY() <> 27

Classification:
sequential output

Compatibility:
The ADDITIVE option is available in FlagShip only. C5 will accept but ignores it, if
"/ustd.fh" is used.

Translation:
__DBLIST (.off., {exp1 [,exp2...]}, .all., {for}, {while},;

next, rec, .rest., .toPrint., "file")

Related:
LIST, SET EXTRA

CMD 168

DO
Syntax:

DO <procname> [WITH <parameterList>]
Purpose:

Executes a user-defined-procedure (UDP).

Arguments:
<procname> is the name of the procedure to be executed. It can be written either
in FlagShip or in the C language using the Extend System.

Options:
WITH <parameterList> allows to pass any number of arguments, separated by
commas, to the UDP, which receives them as parameters. Each argument may be
a single variable, field, array, array element, expression, or an object. Before
branching to the UDP, the arguments in the <parameterList> are evaluated. When
the argument is an expression, macro-evaluation, constant, or function call, it is
passed as a reference to a temporary variable. Field variables have to be preceded
by an alias-> or FIELD->, or enclosed in parentheses.

Arguments can be skipped or left off the end of the list. The number of arguments
specified does not have to match the number of parameters specified in the called
procedure. If the number of arguments is less than the number of parameters, the
parameter variables with no corresponding arguments are initialized with a NIL
value when the procedure is called.

A skipped argument, given a comma only, also initializes the corresponding
parameter to NIL. To detect the position of the last argument passed in the
<parameterList>, use PCOUNT(). To detect a skipped argument, compare the
receiving parameter to NIL or TYPE() / VALTYPE() to "U".

Parameter passing using the WITH clause is done by reference by default. This
means, the formal parameter receives the address of the current argument.
Changes made to the parameter within the UDP called will be reflected
automatically in the argument; only constants, expressions and database fields
arguments remain unchanged. Closing an argument in parentheses, passes it "by
value" instead.

Description:
The DO statement calls a procedure (UDP), optionally passing arguments to the
called routine. It performs the same action as a user-defined function (UDF) except
that DO passes parameters by reference as a default, and that a UDP has no return
value.

Compilation:
When the FlagShip compiler is invoked without the -m option, it searches the
current directory for a source file with the same name in order to compile it, every
time it finds a DO statement and the name of the procedure is unknown. If it is not

CMD 169

found, the compiler considers the procedure externally. At link-time, the linker looks
for such unresolved externals in other object files or libraries given. If the external
had not been found, the linker prints an error message like "unresolved external
bb<procname>".

Example:
The FlagShip will also compile the file xchange.prg automatically (because of the
DO Xchange... statement) when compiled by: "FlagShip test.prg" (i.e. without -m
switch)

*** File TEST.PRG
DO DispWork WITH "Dept", "Markt"
number1 := 10
number2 := 20
DO Xchange WITH number1, number2
? number1, number2 && 20 10
DO Xchange WITH number1, (number2)
? number1, number2 && 10 10 (unchanged)
QUIT

PROCEDURE DispWork && list fields
PARAMETERS field1, field2
LIST &field1, &field2
RETURN
*** eof TEST.PRG

*** File XCHANGE.PRG && ┐ do not declare PROCEDURE
* PROCEDURE Xchange && ┘ for the same file name
PARAMETERS num1, num2
PRIVATE dummy
dummy = num1
num1 = num2
num2 = dummy
RETURN
*** eof XCHANGE.PRG

Classification:
sequential output

Compatibility:
FlagShip supports any number of parameters, Clipper up to 128, dBASE up to 50.
The file name for additional compilation is searched in lower case only.

Related:
PARAMETERS, PRIVATE, PROCEDURE, PUBLIC, RETURN, SET PROCEDURE

CMD 170

DO CASE..CASE ... ENDCASE
Syntax:

DO CASE
CASE <condition>

<statements> ...
[CASE <condition>

<statements> ...]
[OTHERWISE

<statements> ...]
ENDCASE | END

Purpose:
A control structure to execute a set of statements according to the associated
conditions.

Arguments:
DO CASE defines the structure beginning.

ENDCASE specifies the end of the structure. ENDCASE may be abbreviated with
END.

Options:
CASE <condition>: if the condition given is met, the statements which follow will
be executed until the next CASE, OTHERWISE, or ENDCASE command is
encountered; and the program control is passed to the next statement following the
ENDCASE.

When the condition is not met, the control branches to check the next CASE
condition, the OTHERWISE or ENDCASE command.

OTHERWISE: If all CASE conditions are false, the statements following the
OTHERWISE command up to the ENDCASE are executed. If this option is not
specified, and all the CASE conditions are false, no statements inside the CASE are
executed.

Description:
The DO CASE ...CASE .. .ENDCASE is equivalent to the IF...ELSEIF ...ELSE ...
ENDIF control structure, see also LNG.2.5.

There is no limit to the number of CASEs inside the structure. This structure can be
nested to any depth with other control structures.

CMD 171

Example:
* this structure: * is equivalent to:

hour = VAL(TIME()) | hour = VAL(TIME())
DO CASE |
CASE hour < 10 | IF hour < 10

str="morning" | str="morning"
CASE hour < 15 | ELSEIF hour < 15

str="day" | str="day"
CASE hour < 18 | ELSEIF hour < 18

str="afternoon" | str="afternoon"
CASE hour < 20 | ELSEIF hour < 20

str="evening" | str="evening"
OTHERWISE | ELSE

str="night" | str="night"
ENDCASE | ENDIF

|
@ 10,30 SAY "good " + str + " !" | @ 10,30 SAY "good " + str + " !"

Classification:
programming

Related:
IF, IF() / IIF()

CMD 172

DO WHILE ... ENDDO
Syntax:

[DO] WHILE <condition>
<statements>...

[EXIT]
<statements>...

[LOOP]
<statements>...

ENDDO | END
Purpose:

A control structure to execute a looping when the <condition> is true (.T.).

Arguments:
WHILE <condition> is the controlling condition that is evaluated every time the DO
WHILE or WHILE statement executes.

ENDDO specifies the end of the structure. If encountered, the program control is
passed back for the next DO WHILE condition check. ENDDO may be abbreviated
to END.

Options:
EXIT: The EXIT statement terminates the looping, and branches unconditionally to
the statement following the ENDDO. Any number of EXITs within the structure are
accepted.

LOOP: The LOOP statement repeats the loop by immediately branching back to the
DO WHILE condition check. Any number of LOOPs within the structure are
accepted.

Description:
The DO WHILE structure executes a block of statements repetitively, as long as the
specified condition evaluates to true (.T.). The control is passed into the structure
and proceeds until an EXIT, LOOP or ENDDO is encountered. ENDDO and LOOP
pass control back to the beginning of the DO WHILE statement for a new iteration.

The DO WHILE construct terminates or is not processed at all, when the condition
evaluates to false (.F.). Control is then passed to the statement immediately
following the ENDDO.

Example:
Repeat until construct: You can also use the DO WHILE to create a repeat until
looping construct as follows:

more = .T. * or:
DO WHILE more DO WHILE .T.

IF <end condition> IF <end condition>
more = .F. EXIT

ENDIF ENDIF
ENDDO ENDDO

CMD 173

Example:
Traversing a database file: The DO WHILE looping construct enables you to move
sequentially through a database file, as you can see in the following two examples:

DO WHILE .NOT. EOF()
<statements>...
IF <repeat the same record>

LOOP
ENDIF
SKIP

ENDDO

Example:
This example sequentially scans a database file, processing records that match a
condition:

LOCATE FOR <condition>
DO WHILE FOUND()

<statements>...
CONTINUE
<statements>...

ENDDO

Example:
Macros on the DO WHILE command line: Macro variables can be used without any
limitations in the DO WHILE condition, partially or entirely.

var = "upper(trim(Name)) == 'SMITH'"
DO WHILE &var .and. !EOF()

? name, city
var = "zip = " + STR(zip)
SKIP

ENDDO

Classification:
programming

Compatibility:
Optionally shortening DO WHILE to WHILE is new in FS4, according to Clipper 5.x.

Related:
FOR, IF, RETURN

CMD 174

EJECT
Syntax:

EJECT
Purpose:

Causes an advance to a new page while printing.

Description:
In FlagShip, printer output normally goes to an internal print file, except when SET
PRINTER TO <device> is specified (or with SET GUIPRINT ON). This avoids
printer output being garbaged in multiuser mode.

EJECT sends a form-feed character [chr(12)] to the active SET PRINTER TO file, if
specified, or else to the default spooling file (see SET PRINTER). The form feed is
sent regardless whether the current SET PRINT was ON or OFF.

EJECT also resets the internal printer row and column tracers of PROW() and
PCOL() to zero. You may also reset the tracers only with SETPRC().

You may tune the printer driver by FS_SET("prset").

When printing via GUI/GDI driver (SET GUIPRINT ON), EJECT command send
form-feed, i.e. creates new page and increases the page number. For this mode, it
is equivalent to _oPrinter:GuiNewPage()

Example:
USE stock INDEX stockno
LIST stockno, article, price TO PRINT
EJECT
LIST stockno, article, retail TO PRINT
EJECT
prn_file = FS_SET("printfile") // get to file name
SET PRINT TO // flush file
RUN ("lp -dlaser -s " + prn_file) // spool it

Classification:
sequential and GUI printer output

Compatibility:
Spooled printer output is supported only in FlagShip.

Translation:
__EJECT ()

Related:
SET PRINTER, PCOL(), PROW(), SETPRC(), FS_SET("print"), FS_SET("prset")

CMD 175

ERASE
Syntax:

ERASE <file>|(<expC>)
or

DELETE FILE <file>|(<expC>)
Purpose:

Removes a file from disk.

Arguments:
<file> is the name of the file (including extension) to be deleted. A full path may be
specified. If omitted, only the current directory is searched, the SET PATH or SET
DEFAULT path is ignored. Standard UNIX wildcards using ?, *, [..] are supported.

Description:
The file will be deleted without any warning. The consequences are not
recoverable. The user must have at least "w" access rights for the file and "x" for
the directory.

The success can be checked using DOSERROR().

Example:
? FILE ("data.tmp") && .T.
ERASE data.tmp
? FILE ("data.tmp") && .F.
ERASE "[k-m]d*.tm*"
? DISERROR() && 0
? FILE ("[k-m]d*.tm*") && .F.

Classification:
system, file access

Compatibility:
Wildcard support and the DOSERROR() checking is available in FlagShip only.

The ERASE or DELETE FILE command is equivalent to the UNIX command "rm" or
similar to the DOS command "DEL".

The command considers the automatic path and/or conversion using e.g.
FS_SET("pathlower") and FS_SET ("lower"), the extension replacement using
FS_SET ("translext") and the drive substitution using the environment variable
x_FSDRIVE.

Translation:
FERASE ("file")

Related:
CLOSE, USE, CURDIR(), FILE(), FS_SET ()

CMD 176

EXPORT INSTANCE
Syntax 1:

[STATIC] CLASS <ClassName> [INHERIT <SuperClass>]
and optional:

INSTANCE <Name> [:= <exp>] [AS <type>]
EXPORT [INSTANCE] <Name> ...
HIDDEN [INSTANCE] <Name> ...
PROTECT [INSTANCE] <Name> ...

Syntax 2:
PROTOTYPE [STATIC] CLASS <ClassName>

[INHERIT <SuperClass>]
and optional:

INSTANCE <Name> [AS <type>]
EXPORT|HIDDEN|PROTECT [INSTANCE] <Name> [AS <type>]

See detailed description in the CLASS command.

CMD 177

EXTERNAL
Syntax:

EXTERNAL <nameList>
Purpose:

Explicitly requests the procedures (UDP) or functions (UDF) to be linked into the
application.

Arguments:
<nameList> is a comma separated list of UDP/UDF names, Extend C functions
and format file names which should be added to the symbol table.

Description:
EXTERNAL is used in case where user-defined-procedures or standard functions
are called only from within macro statements, included in the INDEX key, or passed
as a character variable to ACHOICE(), DBEDIT() or MEMOEDIT(). Such
procedures/functions might not be linked in at all if not specified in an EXTERNAL
statement.

Generally: when you are using a UDP, UDF or standard function for the above
purposes, and are not sure about calling it also by name elsewhere in the
application, use EXTERNAL to ensure the name is known to the linker. Otherwise,
a run-time error "unresolved external" may occur during application execution.

Example:
* file test.prg
EXTERNAL my_proc

var = "my_proc"
DO &var WITH 1, 2
* eof test.prg
* File my_proc.prg
* automatically declared: PROCEDURE my_proc
PARAMETERS p1, p2
:
RETURN
* eof my_proc.prg

Classification:
compiler/linker

Compatibility:
FlagShip does not support Clipper's division of pre-linked functions vs. libraries.

Related:
SET PROCEDURE TO, REQUEST

CMD 178

FIELD
Syntax:

FIELD <fieldList> [IN <alias>]
Purpose:

Declares database field names to be used as if implicitly aliased.

Arguments:
<fieldList> is a list of names to be declared as fields to the compiler. The fields
from the <fieldList> are accessed as FIELD->fieldname or <alias>->fieldname.

Options:
IN <alias> specifies an alias to assume when there are unaliased references to the
names specified in the <fieldList>. The fields will be accessed in the same manner
as if <alias>->fieldname is given.

If the IN.. clause is not specified, unaliased references to <fieldList> are treated as if
they are preceded by FIELD->fieldname alias.

Scope:
The scope of the FIELD declaration is normally the procedure or function in which it
occurs. If the declaration is given prior to the first PROCEDURE or FUNCTION and
the compiler switch -na is used, the scope becomes the entire .prg file.

In FlagShip, the declarator may be placed anywhere in the code; the compiler starts
the aliasing of the FIELD variables after encountering the declaration and continues
to the end of the corresponding procedure/ function (or the .prg file).

Description:
The FIELD declaration allows the compiler to resolve references to variables in the
<fieldList> without explicit aliases. The FIELD statement has no effect on
variable/field references within macro expressions.

The FIELD statement neither opens a database file nor verifies the existence of the
specified fields. It is useful primarily to ensure correct references to fields to which
accessibility is known to be guaranteed at runtime. At runtime, the field variables
are made accessible with the USE command. Attempting to access the fields when
the associated database is not in USE will cause a run-time error.

When accessing an ambiguous variable, which was not specified by FIELD,
MEMVAR or <alias>, fields of the current working area have precedence over the
PRIVATE, autoPRIVATE or PUBLIC variables with the same name. The same is
true for accesses/replaces in the @...GET/READ command.

To replace a field value, the REPLACE command, an aliased field name, or the
FIELD declarator have to be used; otherwise a memory variable will be used or a
new autoPRIVATE created.

To check for and/or prevent from ambiguous occurrences of variables, the -w or -
am option of the FlagShip compiler may be used.

CMD 179

Example:
Without the -w compiler option, the missing "FIELD persno" declaration may pass
unnoticed; e.g. the field "persno" below remains unchanged instead of replaced.

FUNCTION output (first, last)
FIELD name, lastname, zip, address, printed
LOCAL record
GOTO (first)
WHILE !EOF() .AND. RECNO() <= last

record = RECNO()
printed := .T. // same as: REPLACE printed WITH .T.
persno := record // PRIVATE persno is created/updated

** REPLACE persno WITH record // field will be replaced
** FIELD->persno := record // field will be replaced
** (ALIAS())->persno := record // field will be replaced

** FIELD persno // the ABOVE persno is not affected
? record, name, lastname, zip, address, ;
persno // output: database field

SKIP
END
RETURN NIL

Classification:
programming, database

Compatibility:
In FlagShip, the declarator may be placed anywhere in the code; in C5, the
declarator position is fixed.

Related:
LOCAL, MEMVAR, PRIVATE, PUBLIC, STATIC, @..GET

CMD 180

FIND
Syntax:

FIND <keyC>|(<expC>)|&<memvar>
Purpose:

Searches through an index to find the first key matching the specified character
string and positions the record pointer onto the corresponding record.

Arguments:
<keyC> is part of or the entire index key to be found. If (<expC>) is specified, FIND
behaves similar to SEEK.

Description:
A search of the master index starts from the first key. If a match is found, the record
pointer is positioned to the record number found in the index, FOUND() returns
TRUE, EOF() returns FALSE.

If the searched for value is not found, the current state of SET SOFTSEEK affects
the values returned from FOUND(), EOF() and the position of the record pointer:

•If SOFTSEEK is OFF (the default), FOUND() returns FALSE, EOF() returns
TRUE, and the database is positioned at eof = LASTREC() +1.

•If SOFTSEEK is ON, and there are keys with values greater than the search
argument, the database pointer is positioned to the first record with a key value
greater than the searched argument, FOUND() returns FALSE and EOF() returns
FALSE.

•If SOFTSEEK is ON, and there is no key greater than the search argument, the
database is positioned at eof = LASTREC() +1, FOUND() returns FALSE and
EOF() returns TRUE.

The SET DELETED switch and SET FILTER condition are considered. The current
state of SET EXACT does not affect the search; the comparison is done as with
SET EXACT OFF.

FIND is identical to SEEK, but has a slightly different syntax: FIND &<var> has the
same effect as SEEK <var>, FIND (<var>) is identical to SEEK <var>.

CMD 181

Example:
USE employee INDEX idnumber, name
* SET ORDER TO 1 && key: idnum (numeric 3)
seek_id = 100
find_id = "100"
FIND 100 && found
FIND 005 && found
FIND 5 && found
FIND (STRZERO(10,3)) && found
FIND find_id && not found
FIND &find_id && found
SEEK seek_id && found
SEEK &seek_id && run-time-error

SET ORDER TO 2 && key: UPPER(name)
find_name = upper("Smith")
FIND SMITH

&& found
FIND Smith && not found
FIND (upper("Smith")) && found
SEEK upper("Smith") && found
SEEK "SMITH" && found
find_name = upper("Smith")
FIND &find_name && found
SEEK find_name && found

Classification:
database

Translation:
DBSEEK (&("key"))

Related:
INDEX, LOCATE, SEEK, SET DELETED, SET EXACT, SET INDEX, SET
SOFTSEEK, EOF(), FOUND(), RECNO(), oRdd:SEEK()

CMD 182

FOR ... NEXT
Syntax:

FOR <memvar> = <expN1> TO <expN2> [STEP <expN3>]
<statements>...

[EXIT]
<statements>...

[LOOP]
<statements>...

NEXT | ENDFOR
Purpose:

A control structure for executing a loop a specified number of times while either
incrementing or decrementing a counter expression.

Arguments:
<memvar> is the variable that controls the loop. If <memvar> is out of the boundary
<expN1>..<expN2>, control is passed to the program statement following the NEXT
command.

<expN1> is the initial value assigned to <memvar> and the lower (upper) boundary
of the looping range.

<expN2> is the upper (lower) boundary of the looping range, see also STEP.

NEXT | ENDFOR determines the end of the loop structure. When this command is
encountered, the <memvar> is increased (decreased) by <expN3> (or by 1) and the
program control is passed to the check boundary against <expN2>. If the check is
fulfilled, execution continues with the next statement following the FOR... command.

Options:
STEP <expN3> sets the increment value. If not specified, the default value is (plus)
one.

Looping stops or is not executed at all when <memvar> is greater than <expN2>. If
<expN3> is negative, the <memvar> is reduced and the looping stopped when
<memvar> becomes lower than <expN2>.

EXIT: The EXIT statement terminates the looping, branching unconditionally to the
statement following the NEXT command. Any number of EXITs within the structure
are accepted.

LOOP: The LOOP statement repeats the looping by branching on to complete the
increment/decrement and then back to the ...TO <expN2> condition check. Any
number of LOOPs within the structure are accepted.

Description:
The FOR...NEXT structure iterates the statements within from an initial value of the
control variable to a specified boundary. The control variable sweeps this range of
values for a increment specified in the STEP clause. In contrast to some other

CMD 183

programming languages, FlagShip evaluates the entire termination and increment
condition each time it is encountered. This means that the upper boundary and
increment are dynamic - they can be changed as the loop operates.

Hint: Using TYPED variables and/or numeric constants for the control variable, step
and the end value increases loop speed significantly, see example LOCAL..AS.

Example:
The FOR...NEXT construct is useful when dealing with arrays.

LOCAL_INT i, len
LOCAL array[1000], count := 1
len = LEN(array)

FOR i = 1 TO len // Runs forward through an entire array
array[i] := i // 1..1000

NEXT

* Runs backwards through an entire array
FOR i = len TO 1 STEP -1

array[i] = count++ // 1000...1
NEXT

Classification:
programming

Compatibility:
The ENDFOR statement is not available in Clipper, but in FoxPro.

Related:
DO WHILE, BEGIN SEQUENCE

CMD 184

FUNCTION
Syntax 1:

FUNCTION <udfname> [AS <type>]
[PARAMETERS <paramList>]

<statements>...
RETURN <exp>

Syntax 2:
FUNCTION <udfname> (<paramList>) [AS <type>]

<statements>...
RETURN <exp>

Syntax 3:
[STATIC|INIT|EXIT] FUNCTION <udfname> (<paramList>)

[AS <type>]
<statements>...

RETURN <exp>
Purpose:

Declares a user-defined function (UDF) written in the FlagShip language and,
optionally, its formal parameters.

Arguments:
<udfname> is the declared name of the user-defined function. The function name
can be of any length, but only the first 10 characters are significant. Upper or lower
case makes no difference. The names can contain any combination of characters
A..Z, numbers, or underscores, but names with a leading underscore are reserved
for internal FlagShip functions.

RETURN <exp> terminates the execution of the UDF and passes control back to
the calling program returning the value of <exp> to the program module called. Any
number of RETURNs, even when they have different types, may be placed within
the UDF. The returned <exp> can be of any type, including array, code block or
object. If <exp> is not given or a RETURN command is not encountered, NIL is
returned. For typed function, the type of <exp> has to match to the declared
function <type>. Where the function returns different types, prototype it AS USUAL.

Options:
STATIC FUNCTION declares a UDF which is visible in the current .prg file only.
Several STATIC UDFs and UDPs (and only one public UDP/UDF) may be defined
with the same name in different .prg files.

Because the references to a STATIC function are resolved at compile-time, they will
hide public UDF carrying the same name. STATIC functions are not generally
visible and therefore cannot be used during a macro evaluation or as UDFs for
ACHOICE(), MEMOEDIT() etc.

CMD 185

When the keyword STATIC is omitted, the UDF becomes public and the name
visible to the entire application.

INIT FUNCTION declares a module, executed at program startup; see description
of INIT PROCEDURE.

EXIT FUNCTION declares a module, executed at program termination; see
description of EXIT PROCEDURE.

PARAMETERS <paramList> specifies one or more comma separated PRIVATE
variables which receive the calling arguments. See more in the PARAMETERS
command.

(<paramList>) is an alternative syntax for the PARAMETERS command, but the
variables in <paramList> have LOCAL type and may optionally be typed, see below.

AS <type> (proto)types the function declaring it to return the specified <type> value
only, see below. The specified type has to correspond to the RETURNed value
type. If different value types (or NIL) is returned, (proto)type the function AS
USUAL. If the AS <type> is omitted, the implicit USUAL type is assumed. Note: only
explicitly typed functions are added to the repository file (e.g. reposit.fh) with the -ru
compiler switch.

Prototyping of parameters and return value:
The local parameters specified in brackets (according to syntax 2) may optionally
be typed (with all usual <type>s according to LOCAL..AS), and/or prototyped as
optional. The syntax is equivalent to (<paramList>) of the PROTOTYPE declarator,
e.g.

FUNCT myUdf (p1 AS CHAR, [p2 as NUMER], p3, [p4]) AS LOGIC

If the <type> is not given (e.g. parameters p3 and p4 in this example), AS USUAL is
assumed. The parameter name enclosed in square brackets [] (visually) signals an
optional parameter, used also in (and passed to) UDF prototypes. It does not
change the behavior of parameter passing, nor the parameter order in any way.

Also the return function <type> may be prototyped by using the syntax 1 or 2.

Purpose of the prototyping:
Declaring a type of the return value allows to check the RETURN statement of a
UDF and its usage (e.g. in assignments) already at compiler time. Giving the
parameters a type allows a compile-time check of the parameters (arguments)
passed to the function at places where it is invoked. Both of these compile-time
checks will help you to avoid unexpected RTEs (run-time errors) and simplify
parameter validation in the function body. See also "parameter passing" below.

Use the PROTOTYPE declarator (e.g. in an #include file), when the UDF is invoked
in other than the current file (prototyping); or when the UDF is specified in the same
file, but is invoked before its declaration (forward prototyping) to take advantage of
the compile-time checking.

CMD 186

Note: the PROTOTYPE statement is automatically created in the repository file (for
typed UDFs only) by using the -ru compiler switch, see FSC.1.3. All standard
FlagShip functions are prototyped in the stdfunct.fh file.

Description:
Functions and procedures increase both readability and modularity, and
standardize a block of frequently used statements.

A user-defined function (UDF) is called using the same notation as when calling a
standard FlagShip function:

[value :=] udfName (parameters)

The UDF may be called within an expression or on a line by itself, ignoring the
return value.

A user-defined function may also be called as an aliased expression by preceding it
with an alias and enclosing it in parentheses, like:

[value :=] alias->(udfName (parameters))
[value :=] ("xyz"+var)->(udfName (parameters))
[value :=] (SELECT()+1)->(udfName (parameters))

Functions called in this way will select the associated working area prior to
execution and re-select the original one on return.

Assigning the UDF return value to a typed variable is checked at compile-time
and/or run-time. If the function type is known at compile-time (see prototyping), an
incorrect assignment is already reported by the FlagShip compiler. Otherwise, if the
declared function type does not match the fixed variable type in the return
statement, a run-time error occurs. Of course, a possible numeric conversion (e.g.
AS NUMER to INTVAR etc.) is accepted and performed automatically.

A UDF may call itself recursively. The number of recursions in FlagShip is limited
only by the available RAM + swap disk space to store the local data of each
recursion.

Parameter passing:
The calling arguments are passed to a user-defined function by value by default,
except for array names and objects, which are always passed by reference.
Variables other than field variables preceded by the @ operator are passed by
reference.

The UDF receives the passed arguments into predefined PRIVATE or LOCAL
variables in the <paramList>. The number of arguments passed and parameters
received does not need to match. Arguments may be skipped or left off the end of
the argument list. A parameter not receiving a value or reference is initialized to
NIL. Refer to LNG.2.3.2 and (CMD) PARAMETERS for a more detailed discussion.

On typed parameters, only arguments of the specified parameter type are accepted.
If the prototype of the UDF is known at compile time (see prototyping), an incorrect
argument passing is reported by the FlagShip compiler. If the prototype or the
argument type is unknown at compile time, and an incorrect argument type is

CMD 187

passed, a run-time error occurs. On optional parameters (i.e. enclosed in square
brackets), only the specified type or NIL is accepted.

UDF vs. UDP
In FlagShip, the only difference between the call to a function (UDF) or procedure
(UDP) is the convention of default parameter passing. Both UDFs and UDPs may
be used interchangeably. Hence, if a function (UDF) is called using the procedure's
DO...WITH invocation, the parameters are passed per default by reference, instead
of by value as with a standard UDF call.

Example:
The example centers a string using a user-defined function:

center (20, "user message")
text = "Hello!"
@ 30, cent_col(text) SAY text
FUNCTION cent_col (string)
RETURN INT((MAX_COL() - LEN(string)) /2)

FUNCTION center
PARAMETERS row, string
@ row, cent_col(string) SAY string
RETURN NIL

Example:
Usage of typed parameters and typed function. The first parameter is optional:

PROTO FUNCT centOut ([par1 AS nume], par2 AS char) AS NUMER
LOCAL xx AS logical, yy AS numeric
LOCAL tt := "Hello world!" as character

centOut (5, "Text in line 5") // ok
devpos(10,0)
centOut (, "centered text at line 10") // ok
yy := centOut (NIL, tt) // ok
xx := centOut (NIL, tt) // compiler error
centOut (6, xx) // compiler error

FUNCTION centOut ([row AS numer], string AS char) AS NUMER
LOCAL col := INT((MAXCOL() - LEN(string)) /2) // [as numer]
row := min (if (row == NIL, row(), abs(row)), maxrow())
@ row, col SAY string
RETURN col

Example:
In the following example a variable is passed to a user-defined function by value
and then by reference. Note that the second case changes the original variable as
well.

value = 10
? change(value), value // 20 10
? change(@value), value // 20 20

STATIC FUNCTION change (par)
par *= 2 // par = par * 2
RETURN par

CMD 188

Example:
The next example demonstrates how to validate a data entry using a user-defined
function:

x = 0
@ 1,0 SAY "Enter number: " GET x VALID checkit(x, 10, 20)
READ
RETURN

FUNCTION checkit (numb, toolow, toohigh)
RETURN (numb > toolow .AND. numb < toohigh)

Example:
Usage of aliases:

USE address NEW ALIAS addr // field adr_no
? TYPE("adr_no"), TYPE("cust_no") // N U
USE custom NEW INDEX custno // field cust_no
? TYPE("adr_no"), TYPE("cust_no") // U N
? addr->(TYPE("adr_no")), TYPE("cust_no") // N N

SELECT addr
IF custom->(my_replace (adr_no, 55))

? "replacing o.k."
ENDIF
? ALIAS () // addr

FUNCTION my_replace (number, value)
? ALIAS() // custom
SEEK number // search for adr_no
IF FOUND() // in cust_no

REPLACE cust_no WITH value
RETURN .T.

ENDIF
RETURN .F.

Classification:
programming

Compatibility:
The STATIC, INIT and EXIT clause and the use of formal LOCAL parameters is
compatible to C5. FlagShip accepts returning from a UDF by RETURN or when the
end-of-file or next UDF declaration is reached, NIL is returned. In Clipper, the <exp>
value must be specified.

Typed parameters and typed functions are supported by FlagShip and VO. The
definition of optional parameters by using square brackets is available in FlagShip
only.

Related:
PROCEDURE, PARAMETERS, PROTOTYPE, RETURN, SELECT

CMD 189

GLOBAL ... AS
Syntax 1:

GLOBAL <tvarList> [:= <constN>] AS <C-type>
Syntax 2:

GLOBAL_<C-type> <tvarList> [:= <expN>]
Purpose:

Declares and initializes C-TYPED GLOBAL variables.

Arguments:
<tvarList> is a comma separated list specifying the names of variables, to be
declared as TYPED GLOBAL. The same naming convention (10 significant
characters, no case dependence, conversion to lower case) is valid as for the other
typed variables. See LOCAL..AS.

AS <C-type> is the alternate syntax to GLOBAL_<type> where <C- type> is one of
the C-like type keywords listed in LOCAL...AS.

Example of valid syntax:
GLOBAL iVar := 4, ipos := 0, iCount AS INT
CLOBAL_LONG iOther := 5, myCount

Options:
<constN> is a numeric constant within the <type> range to initialize the variable at
program start. If not given, the TYPED GLOBAL variables will be initialized with
zero.

Scope, Visibility:
The TYPED GLOBAL variables may be described also as "STATICs with an
application-wide visibility". They are very similar to global C variables and have a
lifetime of the entire program. They are visible within the entity that defines them;
other entities have to enable the visibility, if needed, using the GLOBAL_EXTERN
declaration.

•UDF wide scope: if the declaration is given within the procedure or function body,
the variables are visible in this module only; all other modules may enable the
visibility using the GLOBAL_EXTERN declaration.

•File-wide scope: if the declaration is placed prior to the first FUNCTION or
PROCEDURE statement and the compiler switch -na is used, the variable is
visible for all UDFs or UDPs within these .prg files. Modules in all other .prg files
can enable the visibility using GLOBAL_EXTERN.

Description:
Using TYPED GLOBAL variables is identical to other typed variables, like
LOCAL..AS. They may be used directly in any expression, command or #Cinline
program part.

CMD 190

Like LOCAL and STATIC, typed GLOBAL variables are invisible within a macro
evaluation and will hide PRIVATE or PUBLIC variables having the same name. The
TYPED variables will always be passed to UDF and UDP by value, regardless of
the calling convention used (@ prefix or using the DO...WITH procedure call).

Normally, only one GLOBAL...AS variable of the same name is allowed for the
whole application. Some linkers accept a multiple declaration, but do not define
which initializing value is used.

Example:
Using typed variables:

*** file test1.prg, calls --> test2.prg ***
#ifndef FlagShip // Clipper compatib.

#define LOCAL_INT LOCAL
#define GLOBAL_EXTERN_LONG MEMVAR

#endif
LOCAL_INT aa, bb := 15
GLOBAL_EXTERN_LONG gg // enable visibility

? VALTYPE(aa), VALTYPE(gg) // N N
? aa, bb, gg // 0 15 1
aa = 3
my_funct (aa, bb)
? aa, bb, gg // 3 15 2
bb *= 2
gg := 5
my_funct (3, 0)
? aa, bb, gg // 3 30 6

*** file test2.prg ***
#ifndef FlagShip // Clipper ?

#define LOCAL_LONG LOCAL
#define GLOBAL_LONG PUBLIC

#endif

function my_funct (p1, p2)
LOCAL_LONG aa, bb
GLOBAL_LONG gg := 1 // declare it
? VALTYPE(aa), VALTYPE(gg), aa, bb, gg // I I 0 0 1
? VALTYPE(p1), VALTYPE(p2), p1, p2 // N N 3 0
p1 := p2 := aa := 5
gg++
? aa, bb, gg, p1, p2 // 5 0 2 5 5
RETURN NIL

Example:
see more examples in GLOBAL_EXTERN, LOCAL...AS, STATIC...AS, CALL,
#Cinline.

Classification:
programming

CMD 191

Compatibility:

Typed variables are available in FlagShip only. To be compatible to Clipper 5, use
PUBLICs:

#ifndef FlagShip
define GLOBAL_INT PUBLIC
define EXTERN_INT MEMVAR
#endif

Related:
GLOBAL_EXTERN, LOCAL, LOCAL...AS, STATIC, STATIC...AS, PRIVATE,
PUBLIC, CALL, FIELDS, DO, FUNCTION, TYPE(), VALTYPE(), #define, #ifdef,
#Cinline

CMD 192

GLOBAL_EXTERN ... AS
Syntax 1:

GLOBAL_EXTERN <tvarList> AS <C-type>
Syntax 2:

GLOBAL_EXTERN_<C-type> <tvarList>
Purpose:

Enables access to a C-TYPED GLOBAL variable from other program modules.

Arguments:
<tvarList> is a comma separated list specifying the names of variables, declared in
other procedure or .prg file as TYPED GLOBAL, see GLOBAL...AS.

AS <C-type> is the alternate syntax to EXTERN_GLOBAL_<type> where <type> is
one of the C-like type keywords listed in LOCAL...AS.

Example of valid syntax:
GLOBAL_EXTERN_INT iVar, ipos, iCount AS INT
CLOBAL_EXTERN_LONG iOther, myCount

The variable's <C-type> specifies the storage range, which must be identical with
the one declared by GLOBAL...AS.

Scope, Visibility:
The GLOBAL_EXTERN scope is similar to that of other typed or local/static
variables:

•UDF wide scope: if the declaration is given within the procedure or function body,
the variable visibility is enabled in this module only.

•File-wide scope: if the declaration is placed prior to the first FUNCTION or
PROCEDURE statement and the compiler switch -na is used, the variable is
visible for all UDFs or UDPs within these .prg files.

Description:
The GLOBAL_EXTERN enables the visibility to a GLOBAL...AS variable of the
same name, declared elsewhere in the application.

The <C-type> of GLOBAL_EXTERN will be not checked against the GLOBAL...AS
declaration; if a different <C-type> is used, unpredictable results will occur. If the
variable is not declared at all, the linker error "unresolved external" occurs.

When the visibility is enabled, the GLOBAL variable can be modified by the current
procedure (or by all UDF/ UDPs of the .prg file, see scope).

Example:
The variable "byte" may be used/accessed also in other .prg files using
GLOBAL_EXTERN. No naming conflicts occurs with other variable types, if
GLOBAL_EXTERN is not used.

CMD 193

FUNCTION my_udf1 (par1)
GLOBAL_BYTE byte
? byte // 0
my_udf2 ()
? byte // 2
my_udf3 ()
? byte // 2
my_udf2 ()
? byte // 4
RETURN NIL

FUNCTION my_udf2
EXTERN_GLOBAL_BYTE byte
byte += 2
RETURN

FUNCTION my_udf3
LOCAL byte
byte := 5
RETURN

Classification:
programming

Compatibility:
Typed variables are available in FlagShip only. To be compatible to Clipper 5, use
PUBLICs:

#ifndef FlagShip
define GLOBAL_INT PUBLIC
define GLOBAL_EXTERN_INT MEMVAR
#endif

Related:
GLOBAL, LOCAL, STATIC, PRIVATE, PUBLIC, FIELDS, DO, FUNCTION, TYPE(),
VALTYPE(), #define, #ifdef, #Cinline

CMD 194

GO | GOTO
Syntax:

GO <expN>|TOP|BOTTOM
or:

GOTO <expN>|TOP|BOTTOM
or:

GO TO <expN>|TOP|BOTTOM
Purpose:

Moves the record pointer to a specific record in the current working area.

Arguments:
<expN> is the record to which the record pointer is to be positioned. Positioning is
done even if the record falls outside the FILTER scope, or SET DELETED is ON.
Records not present in an index created with SET UNIQUE ON or
INDEX...UNIQUE can also be accessed.

TOP: GOTO TOP moves to the first record of the controlling index, if there is one,
or to record 1, if there is no index in use. If there is a filter scope, GOTO TOP
moves to the first record of the scope, as in the command LOCATE. At the time of
opening a database and/or index by USE, USE...INDEX and SET INDEX TO... or
associated functions, GO TOP is executed automatically when SET GOTOP is ON.
The default setting is OFF to enable programmable integrity check.

BOTTOM: GOTO BOTTOM moves to the last record of the controlling index, if
there is one, or to LASTREC(), if there is no index in use. If there is a filter scope,
GOTO BOTTOM moves to the last record of the scope.

Description:
GO and the synonym GOTO are database commands which position the record
pointer in the current working area to a specified physical record or at the (logical)
top or bottom of the file.

Using the TOP or BOTTOM criteria also obeys the SET FILTER and SET
DELETED condition. This may be time consuming on large database, because the
fulfilling criteria has to be looked for, by skipping forward or backwards from the
first/last record.

Using GOTO <expN> is a fast database access. If the required record number
<expN> is out of range, no run time error is generated, but the database pointer is
positioned to LASTREC()+1, EOF() and BOF() are both set to TRUE.

Multiuser:
In multiuser environment, the internal and UNIX buffers can also be refreshed using
GOTO RECNO() (or SKIP 0, COMMIT). See more in LNG.4.8.

CMD 195

Example:
USE employee
? RECCOUNT() && 100
GO 1 + 2 * 3
? RECNO() && 7
GO BOTTOM
? RECNO() && 100
SET INDEX TO Name
GO BOTTOM
? RECNO() && 17
? Lastname && Smith
GO TOP
? RECNO() && 59
? Lastname && Aaron

Classification:
database

Translation:
DBGOTO (expN)
DBGOTOP ()
DBGOBOTTOM ()

Related:
SET GOTOP, SKIP, LOCATE, COMMIT, LASTREC(), RECNO(), oRdd:GOTO(),
LNG.4.8

CMD 196

HIDDEN INSTANCE
Syntax 1:

[STATIC] CLASS <ClassName> [INHERIT <SuperClass>]
and optional:

INSTANCE <Name> [:= <exp>] [AS <type>]
EXPORT [INSTANCE] <Name> ...
HIDDEN [INSTANCE] <Name> ...
PROTECT [INSTANCE] <Name> ...

Syntax 2:
PROTOTYPE [STATIC] CLASS <ClassName>

[INHERIT <SuperClass>]
and optional:

INSTANCE <Name> [AS <type>]
EXPORT|HIDDEN|PROTECT [INSTANCE] <Name> [AS <type>]

See detailed description in the CLASS command.

CMD 197

IF ... ENDIF
Syntax:

IF <condition>
<statements>...

[ELSEIF <condition>]
<statements>...

[ELSE]
<statements>...

ENDIF | END
Purpose:

A control structure to conditionally execute a block of commands.

Arguments:
<condition> is the control expression. If <condition> evaluates to true (.T.) all the
commands following are executed until an ELSEIF, ELSE or ENDIF is encountered.
Otherwise, the control is passed to the next ELSEIF condition if given, or the first
command following the ELSE statement. If there is no ELSE statement, the control
is passed to the next program statement following the ENDIF.

ENDIF may be shortened to END.

Options:
ELSEIF <condition>: The ELSEIF clause will be evaluated if the previous IF and/or
ELSEIF conditions are returned false. If the <condition> evaluates to true (.T.), the
following commands are executed until an ELSEIF, ELSE or ENDIF is encountered.
The control structure may contain any number of ELSEIF clauses.

ELSE: The ELSE clause is used to identify the commands that are to be executed if
neither the previous control expression <condition> was successful.

Description:
IF...ENDIF structures may be nested with other structured programming
commands, and also within other IF...ENDIF structures. This structure is equivalent
to the DO CASE...CASE...END sequence.

Example:
* the structure: * is equivalent to:
DO CASE |

CASE value < 10 | IF value < 10
? "up to 10" | ? "up to 10"

CASE value <= 100 | ELSEIF value <= 100
? "10 to 100" | ? "10 to 100"

CASE value <= 1000 | ELSEIF value <= 1000
? "101 to 1000" | ? "101 to 1000"

OTHERWISE | ELSE
? "1000 and up" | ? "1000 and up"

ENDCASE | ENDIF

CMD 198

IF value < 10 | IF value < 10
? "up to 10" | ? "up to 10"

| ELSE
ELSEIF value <= 100 | IF value <= 100

? "10 to 100" | ? "10 to 100"
| ELSE

ELSEIF value <= 1000 | IF value <= 1000
? "101 to 1000" | ? "101 to 1000"

ELSE | ELSE
? "1000 and up" | ? "1000 and up"

ENDIF | ENDIF
| ENDIF
| ENDIF

Classification:
programming

Related:
DO CASE, IF(), IIF()

CMD 199

INDEX ON...TO
Syntax 1:

INDEX ON <exp> TO <file>|(<expC1>)
[UNIQUE]
[NOLOCK]

Syntax 2:
INDEX ON <exp> TO <file>|(<expC1>)

[TAG <tagName>]
[NOLOCK]
[FOR <condition> [<scope>]

[WHILE <condition>]]
[EVAL <expL2> [EVERY <expN3>]]
[UNIQUE]
[ASCENDING | DESCENDING]

Purpose:
Creates a file that contains an index to records in the current database file.

Arguments:
<exp> is an expression that returns, for each record in the current database file, the
key value to be placed in the index. <exp> can be character, numeric, date, or
logical type.

In the default DBFIDX driver, the maximum length of the given <exp> string, stored
in the index header, is 420 bytes, of the evaluated expression (index key) up to 238
bytes.

<file> is the name of the index file to be created. The default file name extension
with the default DBFIDX driver is .idx if none is specified.

Options:
UNIQUE specifies that index <file> includes only unique key values. The result is
identical to SET UNIQUE ON, but the UNIQUE clause has precedence over the
SET switch.

NOLOCK avoids check for the FLOCK() or EXCLUSIVE open, being in SHARED
mode. See "Multiuser" below.

TAG <tagName> is the name of the order to be created in the <file> bag.
Supported only by RDD drivers with multiple order capability, ignored by RDDs with
single-order bags (like the default DBFIDX).

FOR <condition> creates an index including only a subset of records met by the
<condition>. If the clause is not specified, the index file includes all records of the
database. The <condition> is stored in the .idx header and therefore is considered
when updating or REINDEXing the index file. The maximum length of the FOR
<condition> is 198 bytes.

CMD 200

WHILE <condition> specifies an additional index filter. Applied during indexing,
and together with the FOR clause only; not used for other index operations.

<scope> is the part of the current database file to be indexed. Applied during
indexing, and together with the FOR clause only; not used for other index
operations. The default scope is ALL records.

EVAL <expL2> is similar to the WHILE <condition> but it may be executed at a
specific record interval given by the EVERY <expN3> clause. The <expL2> must
return TRUE to continue the indexing. The EVAL clause may be used, for example
to monitor the progress of the indexing, using an UDF. If <expN3> is not specified,
the default value is one (each record).

ASCENDING | DESCENDING specifies that the index keys are sorted in increasing
or decreasing order. The default is ASCENDING.

Note: the INDEX ON command stores the following data in the header of the .idx
file (the sizes may vary with other RDDs):

•the <exp> string as given (max. 430 bytes),
•the FOR <condition> string (max. 230 bytes),
•the UNIQUE (or current SET UNIQUE) status,
•the ASCEND/DESCEND status.

The REINDEX command takes all these stored parameters into consideration. All
other arguments, like the scope, WHILE, EVAL, EVERY clause are used only
during the INDEX ON process. Additionally the following data is also stored in the
.idx file header (with the DBFIDX driver):

•the name of the active database, and

•the current update counter of the .dbf to synchronize integrity checking (see
LNG.4.5)

Description:
If records are required to appear in a specific order in the database file they could
be SORTed. However, this would cause physical reordering, which is rather time
consuming. If the application later requires ordering according to some other
criterion, it would be very inefficient.

To solve this problem, index files were designed. The command INDEX ON will
build a file consisting of values of key expressions evaluated on the records of the
database and pointers to their physical location in the file. In this manner,
manipulation is much quicker and as many different index files as needed can be
built. Changing the database contents will automatically update all assigned indices,
so re-indexing is not necessary at all.

When INDEX ON is invoked, all open index files in the current working area are
closed and the new index file is created. After the command has been completed,
the index file created remains open becoming the controlling index and the record

CMD 201

pointer is positioned to the first record in the index. The created index file can be
used by the executable which creates it only, until SET INDEX, USE or CLOSE
releases it for sharing.

Indexing may be aborted by invoking oRdd:Abort() or by returning .F. value from
optional codeblock(s) supplied via oRdd:BlockStart() or oRdd:BlockDone() or
oRdd:BlockEval() = DbObject():Block*()

Index key size:
All index keys within the same index file (or tag) must always have the same size.
If TRIM() is used, the key must be extended with spaces to resolve the default key
length:

INDEX ON TRIM(name) + STR(zip,6) + ;
SPACE (LEN(name) - LEN(TRIM(name))) TO ...

INDEX ON PADR(TRIM(name) + STR(zip,6), 50) TO ...

Sorting order:
INDEX orders character keys according to the ASCII value of each character within
the string, numeric values in numeric order, date values chronological order with
blank dates treated as low values, and logical values sorted with the order
FALSE...TRUE. Memo fields cannot be INDEXed.

To create descending order indices use the DESCEND() function or the
DESCENDING clause. The function accepts any data type as an argument and
returns the value in complemented form. Then, when performing a SEEK into the
index, use DESCEND() as a part of the SEEK argument. Using the DESCENDING
clause, use SEEK without the DESCEND() function.

Deleted records:
Deleted and filtered records are included in the index until PACK is executed. To
omit them, the FOR !DELETED() clause can be used.

Using variables:
LOCAL, STATIC and typed variables cannot be used in index key expressions,
because the stored <exp> string is later evaluated as macro to produce the current
key values. For the same reason, the compile-time declarations using MEMVAR or
FIELD, are not valid within an index key expression; but explicit aliasing may be
used instead, if required.

With a numeric key expression (i.e. not a simple database field but a calculation or
an UDF call) returning floating number, a RTE (run-time error) 311 may occur
during adding/replacing the database record because of possible numeric
inaccuracy. To avoid this, you should use INT(expr) or ROUND(expr,n) for the index
key. Otherwise FlagShip changes the index key automatically during INDEX ON ...
to fixed decimals by ROUND(expr,deci), where <expr> is the supplied expression
and <deci> is the current SET DECIMAL value. This manual adjustment of the
decimal precision is not required nor is done automatically when indexing a simple
numeric field (i.e. with the usual INDEX ON operation), since the decimals are
always fix in the database.

CMD 202

Unique and conditional indexes:
If the clause UNIQUE is used, or SET UNIQUE is set to ON during INDEX ON
creation, only the first occurrence of a key will be stored in the index file.
Subsequent REPLACE, PACK and REINDEX commands do not add a new key, if
the same one is already available. Since the unique status is stored in the index file
header, SET UNIQUE only takes effect during the index creation using the INDEX
ON command.

Using the FOR, WHILE or EVAL clause may create an empty index. If such an
index is used or selected thereafter, both BOF() and EOF() return TRUE and the
record pointer is set beyond the end of database file (LASTREC()+1).

Hint: The usage of a filtered index using the FOR, WHILE or EVAL clause is similar
to SET FILTER TO... but may speed-up the searching significantly compared to e.g.
LOCATE, SET FILTER ... GOTO TOP etc. especially on large database. Also, the
usage of filtered index in BROWSE(), DBEVAL() or TBrowse is almost much faster
then SET FILTER.

Multiuser:
During the INDEX ON, the required database must be exclusively opened using
USE...EXCLUSIVE or SET EXCLUSIVE ON. If the index file is not being used by
other users, the FLOCK() can alternatively be used in SHARED mode to ensure
data integrity, or AUTOFLOCK will be used, if not disabled. See also LNG.4.5 and
LNG.4.8. You may avoid the FLOCK() check or the AUTOFLOCK() invocation by
the NOLOCK clause.

Example:
Creates /usr/data1/pers_titl.idx and /usr/data2/pers_bd.idx

#ifdef FlagShip
FS_SET ("lower", .T.)
FS_SET ("pathlower", .T.)
FS_SET ("translext", "ntx", "idx")

#endif

ind1 = "\usr\Data1/pers_titl"
SET DEFAULT TO "\usr\Data2"
USE Adres NEW
if !FILE("Pers_BD.ntx") .or. !FILE(ind1+INDEXEXT())

INDEX ON birth_date TO Pers_bd
INDEX ON title + DESCEND(DTOS(birth_date)) TO &ind1

endif
SET INDEX TO Pers_bd, &ind1

CMD 203

Example:
The same example for multiuser/multitasking:

SET EXCLUSIVE OFF
ind1 = "/usr/data1/pers_titl"
SET DEFAULT TO "/usr/data2"
IF !FILE("Pers_bd.idx") .or. !FILE(ind1+INDEXEXT())

USE adres EXCLUSIVE NEW && open dbf exclusive
DO WHILE NETERR() && if no success:

INKEY(3) && wait and
USE adres EXCLUSIVE && try again

ENDDO
INDEX ON birth_date TO pers_bd
INDEX ON title + DESCEND(DTOS(birth_date)) TO &ind1
USE && close from exclusive

ENDIF

USE adres && open dbf shareable
DO WHILE NETERR() && if no success:

USE adres && try again
ENDDO
SET INDEX TO pers_bd, &ind1

Example:
Report the percentage of the index processed. See other examples in
DBCREATEINDEX().

LOCAL count, perc := 0
USE address NEW EXCLUSIVE
count := LASTREC()
INDEX ON UPPER(name) + STR(zipcode,6) TO namezip ;

EVAL mydisplay(perc++) EVERY INT(count/100) ASCENDING

FUNCTION mydisplay (out)
@ 20,10 say "Indexing, " + STR(out,3) + "% ready"
RETURN .T.

Example:
Filtered database, similar to SET FILTER TO but the access is much faster,
specially on large database. Of course, the special index may be build once only
and assigned thereafter with SET INDEX TO ... SET ORDER.

USE address NEW SHARED
IF !file("special" + indexext())

WHILE !FLOCK(); END // at least Flock required
INDEX ON UPPER(name) + zip ;

FOR TRIM(country)=="D" TO special
UNLOCK // free lock

ENDIF
SET INDEX TO name, special // two indices used
SET ORDER TO 2
GOTO TOP // only indexed records
DBEDIT (1,1, maxrow()-1,78) // are visible now
SET ORDER TO 1 // all records are visible

which is similar to:

CMD 204

USE address NEW SHARED
SET INDEX TO name
SET FILTER TO TRIM(country) == "D" // the filter is slower
GOTO TOP // only filtered records
DBEDIT (1,1, maxrow()-1,78) // are visible now
SET FILTER TO // all records visible

Example:
Check database/index integrity:

USE address INDEX name EXCLUSIVE
? "Integrity: ", INDEXCHECK() // .T.
REPLACE name WITH "nobody"
SET INDEX TO name, zipcodes // index integrity unknown
? INDEXCHECK(1), INDEXCHECK(2) // .T. .F.

FS_SET ("develop", .T.) // set "developer" mode
SET ORDER TO 2
SKIP // RTE warning occurs

FOR ii = 1 TO INDEXCOUNT() // rebuild indices
IF .not. INDEXCHECK(ii) // when integrity violated

REINDEX
EXIT

ENDIF
NEXT

Classification:
database

Compatibility:
The index <file> has the default extension .idx in FlagShip, .NTX in Clipper and
.NDX in dBASE. The internal structures of the index files and the locking
mechanism are not compatible in these different dialects.

Programs ported from DOS or other UNIX systems with different hardware have to
create new indices using INDEX ON. To check the index file existence using FILE(),
either INDEXEXT() or FS_SET("transl") can be used for portable applications.

The integrity check and the NOLOCK clause is available in FlagShip only.

FS support an unlimited number (65000) of indices for each working area/database

The index structure of FS4.x and FS6 is not compatible. On attempt to access the
FS4.x index by application compiled by FS4, run-time error message occur. You will
need INDEX ON..TO.. on the first use by FS6. The new index structure is
significantly faster, support automatic PC8/ANSI conversion and the key size is
increased.

CMD 205

Translation:
Syntax 1: DBCREATEINDEX ("file","exp", {||exp}, ;

.unique., .nolock.)
Syntax 2: ORDCONDSET ("for", {||for}, .all., {||while}, ;

{||eval}, every, RECNO(), next, rec, ;
.rest., .descend.)

ORDCREATE ("file", "tag", "exp", {||exp}, ;
.unique., .nolock.)

Related:
REINDEX, DBCREATEINDEX(), SET INDEX, SET ORDER, SET UNIQUE, USE,
SEEK, FIND, SET EXCLUSIVE, CLOSE, DTOS(), INDEXCHECK(), INDEXEXT(),
INDEXKEY(), INDEXORD(), INDEXCOUNT(), INDEXNAMES(), INDEXDBF(),
NETERR(), FS_SET(), SET AUTOLOCK, AUTOFLOCK(), oRdd:SetOrder-
Condition(), oRdd:CreateOrder()

CMD 206

INPUT ... TO
Syntax:

INPUT [<exp>] TO <memvar>
Purpose:

Waits for an expression to be typed in from the keyboard. The result is placed in a
memory variable.

Arguments:
<memvar> is the memory variable where the entered user input is stored. If the
variable is not visible or does not exist, a new autoPRIVATE variable is created.

Options:
<exp> is the optional prompt which is displayed in front of the entry area. It can be
an expression of any data type. If not given, no prompt is displayed.

Description:
INPUT is a console command with wait state. First, a NEW LINE and the prompt (or
"") is displayed. The user input is evaluated using the macro (&) operator, and the
result is stored in <memvar>. The type of expression entered determines the type of
memory variable which is set.

The entry from the keyboard is terminated by the ENTER <┘key. Among special
keys, only BACKSPACE is supported. If nothing was entered, the variable is not
changed (or created).

If the response should be a character type, it has to be enclosed in single or double
quotes; or the alternate commands ACCEPT, WAIT or @...GET are used. Unlike
these, INPUT allows a complex expression to be entered using variables, functions
etc. If the result of date type is required, the entry must be placed in curly brackets
or evaluated by the program using CTOD().

Example:
This function returns .T. if the user wants to quit

FUNCTION Quitfun (text)
LOCAL answ
PRIVATE yes := y := ja := oui := .T.
PRIVATE no := nein := n := .F.
INPUT text + " ? " TO answ
IF VALTYPE(answ) = "L"

RETURN answ
ENDIF
RETURN .F.

CMD 207

Classification:
sequential screen output, waiting keyboard input

Translation:
IF (!EMPTY (__ACCEPT ("exp")))
<memvar> := &(__ACCEPTSTR ())

END

Related:
@...SAY...GET, ACCEPT, WAIT

CMD 208

INSTANCE
Syntax 1:

[STATIC] CLASS <ClassName> [INHERIT <SuperClass>]
and optional:

INSTANCE <Name> [:= <exp>] [AS <type>]
EXPORT [INSTANCE] <Name> ...
HIDDEN [INSTANCE] <Name> ...
PROTECT [INSTANCE] <Name> ...

Syntax 2:
PROTOTYPE [STATIC] CLASS <ClassName>

[INHERIT <SuperClass>]
and optional:

INSTANCE <Name> [AS <type>]
EXPORT|HIDDEN|PROTECT [INSTANCE] <Name>

[AS <type>]

See detailed description in the CLASS command.

CMD 209

JOIN WITH...TO...
Syntax:

JOIN WITH <alias>|(<expC1>) TO <file>|(<expC2>)
FOR <condition>
[FIELDS <fieldList>]

Purpose:
Creates a new database by merging specified records and fields from two open
database files.

Arguments:
WITH <alias> specifies the file to merge with the database in the current working
area to create the <file>.

TO <file> is the name of the target database file.

FOR <condition> selects only records meeting the <condition>.

Options:
FIELDS <fieldList> specifies comma separated fields from both areas, which will
be the structure of the new file. Fields not from the primary working area have to be
referenced by an alias. Note that, if the primary or secondary areas have relations
set to some other working areas, those relations will be taken care of, so fields from
other working areas can also be specified.

Description:
For each record in the primary area, JOIN analyzes all the records from the
secondary area, and creates a new target record each time the <condition> is
fulfilled. This means, the operation will take time and can create a lot of new
records: the product of both databases, RECCOUNT() * <alias>->(RECCOUNT()) if
no filter is used. JOIN should therefore be used with care.

Example:
USE article
USE authors ALIAS aut NEW
SELECT article
JOIN WITH aut TO artauth FOR name = Authors->name

Classification:
database

Translation:
__DBJOIN ("alias", "file", {"field1",... }, {for})

Related:
APPEND FROM, REPLACE, SET RELATION, oRdd:JOIN()

CMD 210

KEYBOARD
Syntax 1:

KEYBOARD <expC> [ADDITIVE]
Syntax 2:

KEYBOARD <expN> [, <expN>, ...] [ADDITIVE]
Purpose:

Places a string into the keyboard buffer.

Arguments:
<expC> is the string to place into the keyboard buffer. Any INKEY() valid code can
be used, e.g. "Abc" + CHR(13) + CHR(-5). If the character is out of range
CHR(1...255), a two byte character code is placed into the keyboard buffer to be
removed afterwards by any wait status command.

<expN> is the Inkey value to place into the keyboard buffer. Any INKEY() valid
code can be used, e.g. K_F5, K_ALT_X, K_RBUTTONDOWN, ASC("X"). Note: if
you add mouse movement or buttons in keyboard buffer and retrieving it later by
Inkey(), it does neither affect the reported Mrow() and Mcol() position, nor the
automatic mouse movement or button trapping.

Options:
ADDITIVE: If the clause is specified, the string is added at the end of the keyboard
buffer. Otherwise, the current contents of the buffer will be overwritten by the new
contents.

Description:
Normally, FlagShip stores all keystrokes typed on the terminal in an internal buffer
of variable length, cf. LNG.5.2.1. The characters remain in the keyboard buffer until
fetched by a wait state command/function such as ACCEPT, INPUT, READ, WAIT,
ACHOICE(), MEMOEDIT(), DBEDIT(), or INKEY().

KEYBOARD can be used to fill the internal buffer by simulating user input. For
example, filling the buffer from a DBEDIT() user defined function may cause it to
perform more actions at once. It can also be used to position the cursor within a
READ, if it is to be positioned at a specific GET which is not the first one.

Example:
Positions the cursor initially at the fifth GET (city):

USE authors
GO TOP
@ 1,2 GET adrtype
@ 2,2 GET name
@ 3,2 GET firstname
@ 4,2 GET zip PICTURE "99999"
@ 4,9 GET city

CMD 211

KEYBOARD REPLICATE(CHR(13), 4)

READ

Classification:
programming

Compatibility:
The ADDITIVE clause is not supported by Clipper but is the default in dBASE.
Clipper allows characters with INKEY() codes between zero and 255 only. Numeric
parameters are available in FS only.

Translation:
__KEYBOARD ("expC", .add.)

Related:
SET TYPEAHEAD, INKEY(), READ, ACCEPT, INPUT, WAIT, CHR(), LASTKEY(),
NEXTKEY(), REPLICATE(), FS_SET("zerobyte")

CMD 212

LABEL EDIT
Syntax:

LABEL EDIT <file>|(<expC>)
[SIZES <expA1>]
[MESSAGES <expA2>]

Purpose:
Creates/modifies labels in interactive mode for later use by the LABEL FORM
command.

Arguments:
<file> is the file which holds the definition of the report. If the file exists, it is
modified, otherwise a new report is created. The default extension is .lbl.

Options:
SIZES <expA1> specifies the array of available sizes. Per default <expA1> is set
to:

{{'3.5x15", 16x1', 35,5,1, 1,0,0}, ;
{'3.5x15", 16x2', 35,5,2, 1,0,0}, ;
{'3.5x15", 16x3', 35,5,3, 1,0,0}, ;
{'4x17", 16x1', 40,8,1, 1,0,0}, ;
{'3.2x11", 12x3', 32,5,3, 1,2,0}, ;
{'user defined ', 35,5,1, 1,0,0}}

MESSAGES <expA2> specifies the array of query and error messages. It may be
changed for another local human language. Per default <expA2> is set to:

{"LABEL F2:size F3:specify F5:fields F10:save ESC:quit", ;
"CREATE", ;
"MODIFY", ;
"Size, remark :", ;
"Label width (chars) :", ;
"Label hight (lines) :", ;
"Label columns :", ;
"Lines between labels :", ;
"Spaces between cols :", ;
"Left margin (chars) :", ;
"(F2) PgUp/PgDn: select size CursUp/CursDn: move ...", ;
"Line ", ;
"(F3) enter field or expression. CursUp/ ...", ;
"(F5) PgUp/PgDn, CursUp/CursDn: move, scroll ...", ;
"<->", ;
"Wrong file name, press any key to return", ;
"Check the correct entry: TYPE() not character, ...", ;
"No LABEL data specified. Use F3 to specify, ESC ...", ;
"F6:next dbf"}

Description:
If the <file> does not exists, a new .lbl file is created, otherwise the available one is
modified.

CMD 213

If one or more databases are open in the current working area, the user may view
or alter the field names by pressing the F5/F6 key.

By executing the LABEL EDIT command, a full screen label design form appears:

CREATE LABEL persname.lbl F2:size F3:specify F5:fields F10:save ESC:quit
┌F2───┐┌F5:test2.dbf─────────┐
│ Size, remark : 3.2x11", 12x3 <->││ NAME C 25 0 │
│ Label width (chars) : 32 ││ FIRST C 20 0 │
│ Label high (lines) : 5 ││ ZIP N 5 0 │
│ Rows : 3 ││ CITY C 25 0 │
│ Lines between labels : 1 ││ BIRTHDATE D 8 0 │
│ Spaces between rows : 2 ││ EARNING N 8 2 │
│ Left margin (chars) : 0 #3││ OK L 1 0 │
└───┘│ │
╔F3═══╗│ │
║ Line 1: trim(PERSONAL->NAME)+" "+FIRST+if<->║│ │
║ Line 2: PERSONAL->TITLE <->║│ │
║ Line 3: if(!empty(ADDRESS),ADDRESS,"") <->║│ │
║ Line 4: PERSONAL->ZIP + TEST2->CITY <->║│ │
║ Line 5: trim(CITY)+", "+STATE+str(ZIP) <->║│ │
║ ║│ │
║ ║│ │
╚═══╝└──────────F6:next dbf┘
(F3) enter field or express. CursUp/CursDn: select,scroll ENTER: confirm

Pressing PgUp/PgDn in the F2 window, five pre-defined and one user defined label
forms may be selected and/or modified. The first line is used for user comment only,
the rest specifies label size. To be compatible to the .lbl format, the label height may
be up to 16 lines, all other data may contain data in the range 0/1 to 999.

To specify or modify the data to be printed in each label, the F3 key is pressed.
Now, moving the light bar up and down, the label line is selected. Enter <┘ to
specify/modify the expression (e.g. field, visible variable, function) in these label
lines. Any expression may contain up to 60 characters. The contents of these
expressions are evaluated by the LABEL FORM command using a macro operator,
so the result should be a character, number, date or logical. When the line
command is finished, press <┘, the expression will be validated. If the TYPE()
results in unknown or illegal data, a warning appears; it can be safely ignored, if
some databases, variables or functions containing the unknown data are not open
or available yet.

Pressing F5 in the active F3 window, an entry of available database fields may be
accepted into the current expression entry. If more than one data÷ base is opened,
the contents of the next one will be displayed using the F6 key.

To save the entry, press F10 key; to abort the LABEL EDIT command without
saving it, press the ESC key.

CMD 214

Example:
Create and prints labels

USE test2
USE personal INDEX name NEW
IF !FILE(persname.lbl")

LABEL EDIT persname // create label
ENDIF
SEEK UPPER("smith")
IF FOUND()

LABEL FORM personal TO PRINT ;
FOR UPPER(TRIM(name)) = "SMITH" NOCONS

ENDIF

Classification:
programming

Compatibility:
The command is available in FlagShip only. To create/modify labels in dBASE III+,
use CREATE LABEL, in Clipper the program RL.EXE can be used.

Source:
The file <FlagShip_dir>/system/labedit.prg is user modifiable, e.g. to support other
languages or to create context sensitive help.

Translation:
__LABELEDIT ("file")

Related:
LABEL FORM, REPORT EDIT

CMD 215

LABEL FORM
Syntax:

LABEL FORM <file1>|(<expC1>)
[<scope>]
[FOR <condition>]
[WHILE <condition>]
[TO PRINTER]
[TO FILE <file2>|(<expC2>) [ADDITIVE]]
[SAMPLE [<expA>]]
[NOCONSOLE]

Purpose:
Displays labels defined in a .lbl file.

Arguments:
<file1> is the file which holds the definition of the report. The default extension is
.lbl.

Options:
<scope> is the part of the current database file to traverse. The default scope is
ALL.

<condition> The FOR clause specifies that the set of records meeting the condition
within the given scope is to be displayed. The WHILE clause stops displaying labels
when the first record not meeting the condition is reached.

TO PRINTER echoes output to a printer (spool file).

TO FILE <file2> echoes output to the specified file. If extension is not specified, .txt
is assumed. The ADDITIVE clause stops from truncating <file2> if it exists. See
also general command description.

NOCONSOLE suppresses the output to the screen, as when SET CONSOLE OFF
was set.

SAMPLE <expA>: If the SAMPLE clause is given, LABEL FORM displays labels as
rows of asterisks, allowing the correct positioning of the printer paper. After each
row of samples, the program prompts for more samples using the text of <expA> or
the default texts {"Do you want more samples?", "Yy"}, if <expA> is not given. When
no more samples are requested, the printing of normal labels starts. For direct
printer output, use SET PRINTER TO <device>.

Description:
LABEL FORM displays the labels using the definitions stored in a .lbl file. The label
file is created either by the FlagShip's command LABEL EDIT or by using the output
from dBASE command CREATE/MODIFY LABEL or the Clipper's utility RL.EXE.

CMD 216

Example:
Prints labels for given condition

USE article INDEX name
SEEK "RISC Machines"
IF FOUND()

SELECT 2
USE Authors
LABEL FORM authors TO PRINT FOR Id = Article->Id NOCONS

ENDIF

Classification:
programming

Compatibility:
The ADDITIVE clause and the query text <expC3> in the SAMPLE clause is
supported by FlagShip only.

Translation:
__LABELFORM ("file1", .print., "file2", .noconsole., ;

{for}, {while}, next, rec, .rest., ;
.sample., "expC3")

Related:
LABEL EDIT, REPORT FORM, REPORT EDIT

CMD 217

LIST
Syntax:

LIST [OFF] [<scope>] <expList>
[FOR <condition>]
[WHILE <condition>]
[TO PRINTER]
[TO FILE <file>|(<expC>) [ADDITIVE]]

Purpose:
Prints the result of one or more expressions for each processed record to the
console and/or printer or file.

Arguments:
<expList> is the list of values or expressions to be evaluated and displayed for
each record processed.

Options:
<scope> is the part of the current database file to LIST. The default scope is ALL.

<condition> specifies additional FOR or/and WHILE filtering, see the general
command description.

OFF: Suppresses the display of record numbers.

TO PRINTER: echoes output to a printer file. To disable the screen output, use SET
CONSOLE OFF.

TO FILE: echoes output (ADDITIVE) to the specified file. See also general
command description.

Description:
LIST sends the results of the <expList> to screen (with optional echo to printer
and/or file) in a tabular format, where each column is separated by a space. LIST is
similar to DISPLAY, except that its default scope is ALL, rather than NEXT 1.

Deleted records (see the DELETE command) are marked with a star (*). Deleted
records are not displayed when SET DELETED is ON, and/or when the current
index has "FOR !Deleted()" condition, and/or when the "FOR !Deleted()" clause was
specified with the LIST command.

Example:
Esc will interrupt the LIST output:

USE employee
LIST Lastname, Firstname, Birthdate FOR INKEY() <> 27

Classification:
programming

Compatibility:
The ADDITIVE option is available in FlagShip only.

CMD 218

Translation:
__DBLIST (.off., {exp1 [,exp2...]}, .T., {for}, {while},;

next, <rec>, .rest., .toPrint., "file")

Related:
DISPLAY, SET CONSOLE, SET ALTERNATE, SET EXTRA, SET PRINTER,
DBEVAL()

CMD 219

LOCAL
Syntax:

LOCAL <memvar> [:= <exp>] [, ...]
Purpose:

Declares and optionally initializes LOCAL variables and arrays.

Arguments:
<memvar> is the name of a FlagShip variable or array, to be declared in the
(lexically scoped) LOCAL class. The name may be of any length, but only the first
10 character are significant (see more LNG.2.6). Variable names in the FlagShip
language are not case sensitive.

If the <memvar> is followed by square brackets [], an array is created. The number
of elements for each array dimension can be specified as [dim1,dim2, ..,dimN] or
[dim1][dim2][dimN]. The maximum number of dimensions and of the elements per
dimension in FlagShip is 65535.

Options, Initializing:
<exp> is any valid FlagShip expression including a literal (constant) array to
initialize the variable. If the initializer (:= <exp>) is not given, the variable (or all
array elements) will be set to NIL.

The LOCAL variable will be created and initialized on each entry into the program
module (procedure or function).

Scope, Visibility:
The scope, visibility and lifetime of LOCAL variables is always restricted to one
function or procedure only. The variables are created and initialized upon entering a
UDF or UDP (exactly when reaching the LOCAL statement) and are destroyed
when returning from that module. If a procedure or UDF is invoked recursively (calls
itself), each recursive activation creates a new set of local variables.

The local variables can be passed by value or by reference to other UDFs or UDPs
called at the same level. In code blocks, only LOCAL variables of the module where
the block is declared are visible; see LNG.2.3.3.

LOCAL variable declarations hide all inherited PRIVATE, PARAMETERS, PUBLIC
or FIELD variables having the same name. If the variable name is already declared
in the same module by using another declarator (STATIC, GLOBAL, MEMVAR,
FIELD), or by trying to re-declare such a variable from the file-wide scope, a
compiler error is generated.

For more information, refer to the section LNG.2.6.

Description:
LOCAL is a declaration statement that declares one or more variables or arrays
local to the current procedure or user-defined function. A parameter list, following

CMD 220

the FUNCTION or PROCEDURE declaration, enclosed in parentheses, is treated
as a LOCAL declaration.

In FlagShip, the LOCAL declarator may be placed anywhere in the function body;
the scope and visibility of the corresponding local for the compiler start from this
declaration.

Short notation: if the declarator is placed prior to the first FUNCTION or
PROCEDURE statement and the compiler switch -na is used, the declaration (and
initialization) is placed at the beginning of every module in the .prg file. The scope,
visibility and lifetime is equivalent to explicitly placed LOCAL declarations in each
one of these entities.

The variable names are known at compile-time only. Therefore, a LOCAL variable
can be evaluated by simple macros, but it cannot be used as a composed macro or
within the macro string; see also LNG.2.10. Local variables cannot be SAVEd and
RESTOREd from .mem files, nor released by CLEAR or RELEASE.

To determine the type of a LOCAL variable, only the standard function
VALTYPE(varname) can be used; since the TYPE("varname") tries to evaluate the
string using a macro and the variable is invisible during string evaluation.

Example:
Declaration and initializing of LOCAL variables:

LOCAL var1 := 1, var2 := "xyz", var3 := date()
LOCAL arr1 := {} // creates arr1[0]
LOCAL arr2 := {0,date(),"test",.T.} // creates arr2[4]
LOCAL arr3 := {{1,2},{3,4}} // creates arr3[2,2]
LOCAL arr4[3,2], arr5[0] // creates arr4[3,2]
LOCAL arr6 := {NIL, arr4, NIL} // non-symmetr. [3]

Example:
Parameter passing to UDF (invoke it e.g.: a.out xxx):

LOCAL a1, a2 := 0
PARAMETERS cmd1, cmd2
? a1, a2, cmd1, cmd2 && NIL 0 xxx NIL
start (cmd1, cmd2, a1, @a2)
? a1, a2, cmd1, cmd2 && NIL 5 xxx NIL
quit

FUNCTION start (p1, p2, p3, p4)
LOCAL xyz
? p1, p2, p3, p4 && NIL 0 xxx NIL
p4 = 5
xyz = p4 * 10
RETURN NIL

Classification:
programming

CMD 221

Compatibility:
The lexical scope is new in FS4, and is compatible to Clipper 5.x. Clipper has a
fixed order of the declaration and does not support the short notation (declaration
on start of .prg).

Related:
LOCAL..AS, STATIC, GLOBAL, PRIVATE, PUBLIC, FIELDS, DO, FUNCTION,
TYPE(), VALTYPE()

CMD 222

LOCAL ... AS
Syntax 1:

LOCAL <tvarList> [:= <exp>] AS <type>
Syntax 2:

LOCAL_<C-type> <tvarList> [:= <expN>]
Purpose:

Declares and initializes TYPED LOCAL variables.

Arguments:
<tvarList> is a comma separated list specifying the names of variables, to be
declared as TYPED LOCAL. The name may be of any length, but only the first 10
characters are significant (see more LNG.2.6). The variable names in the FlagShip
language are not case sensitive; when accessing them from the #Cinline
statements, use lowercase.

AS <type> is an alternate syntax for LOCAL_<type> where <type> is one of the
keywords (all of them may be abbreviated to four characters, except objects)

Local...AS <C-type>

C-like <type> Description
BYTE one byte char or unsigned num in the range 0..255
DOUBLE double floating point, in the range +/- 4.94*10^-324 ... 1.79*10^308 with at

least 15 significant digits.
DWORD unsigned long integer, in the range 0 ... 4 294 967 295.
FLOAT floating point in the range +/- 1.40*10^-45... 3.40*10^38 with at least 7

significant digits
INT signed integer, in the range +/- 2 147 483 647 in Unix and Windows32 (or +/-

32 767 in DOS)
LONG signed long integer, in the range +/- 2 147 483 647 .
REAL4 equivalent to FLOAT
REAL8 equivalent to DOUBLE
SHORT signed short integer, in the range +/- 32 767
WORD unsigned short integer, in the range 0 ... 65 535

The above C-like types do not create an overhead and are therefore much faster
than usual variables, see additional description below.

The valid syntax is e.g.
LOCAL rVar := 1.0, rVar2, rVar3 := 5.5 AS FLOAT
LOCAL_LONG iVar := 1, iVar2, iVar3 := 5

CMD 223

Local...AS <usual type>

Usual <type> The variable contains:
ARRAY single or multidimensional array
CHARACTER string (may include binary 0)
CODEBLOCK address of a code block
DATE date values in the range 1/1/1 to 12/31/9999
INTVAR long integer numbers in the LONG range.
LOGICAL logical true/false status
NUMERIC floating point numbers if the DOUBLE range.
OBJECT any object variable. It does not specify the object and does therefore not

force the compile-time address resolution.
PSZ same as CHARACTER
SCREEN screen contents from SAVESCREEN()
SPECIAL user defined, eg. pointer to a C structure
STRING same as CHARACTER
USUAL any usual variable type of this table

The above usual variable types allow to check assignments already at compile-time
(except for the USUAL type), instead of causing run-time error later.

The valid syntax is e.g.
LOCAL getList := {}, aVar := {1,2,{3,4}} AS ARRAY
LOCAL iVar1 := 1, iVar2, iVar3 := 5.2 AS NUMERIC

Local...AS <object type>

Object <type> Description, the variable contains
GET Object variable of the Get class
TBROWSE Object variable of the TBrowse class
TBCOLUMN Object variable of the TBcolumn class
ERROR Object variable of the Error class
DATASERVER Object variable of the DataServer class
DBSERVER Object variable of the DBserver or DbfIdx class
<UserClass> Object variable of the user defined class

The above object types (along with class declaration or prototyping) allow address
resolving already at compile-time, which speeds-up execution significantly.

The valid syntax is e.g.
LOCAL getElem AS GET
LOCAL oMyBrow AS TBROWSE
LOCAL oDbf1, oDbf2 AS DBFIDX

Options, Initializing:
<exp> is any valid expression returning a value of the same <type> (or a number
for C-like types) to initialize the variable at declaration time.

If the initializer (:= <exp>) is not given, the TYPED LOCAL C-like variables will be
initialized with zero, all others to NIL or the empty type, respectively.

CMD 224

The TYPED LOCAL variable will be created and initialized on every entry into the
program module (procedure or function), just like a lexical, untyped LOCAL
variable.

Scope, Visibility:
The scope, visibility and lifetime of TYPED LOCAL variables is identical to the
usual, untyped lexical LOCAL variables. The only difference is the fixed storage
type of C-like variables, which allows faster runtime access and their direct use in
#Cinline statements, see below.

The variables are created and initialized upon entering a UDF, UDP or method
(exactly when reaching the LOCAL..AS statement) and are destroyed when
returning from that module. If a procedure or UDF is invoked recursively (calls
itself), each recursive activation creates a new set of local variables.

TYPED LOCAL C-type variables can also be passed by value to other UDFs or
UDPs called at the same level; passing them by reference is not supported. They
may be used in code blocks with the same restriction as LOCAL vars.

Because TYPED variables have the same scope as lexical variables (LOCAL,
STATIC), they hide all inherited PRIVATE, PARAMETERS, PUBLIC or FIELD
variables with the same name.

For more information, refer to the section LNG.2.6.

Description:
LOCAL..AS is a declaration statement that declares TYPED lexical variables, very
similar to untyped LOCAL variables. The advantages are:

•The type and storage range is fixed during compile-time and cannot be changed
at runtime.

•The correct usage is already checked at compile time, which avoids possible run-
time errors later during the execution.

Additional advantages of typed Object variables:

•The use of typed OBJECT variables increases program execution speed
significantly, refer to chapter LNG.2.11.6 for additional information.

Notes about and restrictions of C-like types (BYTE, INT, LONG, DOUBLE etc):

•Since additional runtime type checking of C-like types may be omitted, their use
results in faster program execution (up to 5 times), compared to usual typed or
untyped variables. They are preferably used for large loops, calculations etc.

•The C-like typed variables can also be accessed directly in #Cinline statements,
by giving the name (up to 10 significant chars) in lowercase.

•The variables occupy only 1, 4 or 8 bytes, compared to approx. 28 bytes for
standard FlagShip variables.

CMD 225

•The programmer has to consider the maximum storage range of the variable's
<type>. Otherwise, the resulting value will be truncated to the (lowest) available
bytes.

•If the C-like typed variables are intermixed with usual untyped variables within an
operation or command, they will be internally, temporarily converted to usual
NUMERIC (or INTVAR) ones. Therefore, use only C-typed variables or constants
within the e.g. FOR... declaration to maintain the speed advantage.

•C-like typed variables will always be passed to a standard function, UDF and
UDP by value, regardless of the calling convention used (@ prefix or using the
DO...WITH procedure call). The argument is automatically converted to a usual
NUMERIC (or INTVAR) variable and received by the UDF as such. The same
conversion occurs when assigning them to an array element.

•These variables cannot be used for any macro evaluation, as CLASS instances,
and in code blocks. The function VALTYPE(varname) will return "N" (or "I"
depending on FS_SET("intvar")), the TYPE("varname") function cannot be used.

The visibility is local to the current procedure or user-defined function. In FlagShip,
the LOCAL..AS declarator may be placed anywhere within the function body; the
scope and visibility of the corresponding local for the compiler starts from this
declaration.

Short notation:
If the declarator is placed prior to the first FUNCTION or PROCEDURE statement
and the compiler switch -na is used, the declaration (and initialization) is placed at
the beginning of every module in the .prg file. The scope, visibility and lifetime is
equivalent to an explicitly placed LOCAL..AS declarations in each one of these
entities.

Example:
This example shows the usage and speed advantages of C-typed variables
(remaining compatible to Clipper 5):

*** file test.prg ***
PARAMETERS cmd1, cmd2
#ifndef FlagShip // Clipper redefinition

#define LOCAL_INT LOCAL // not needed, if the
#define LOCAL_DOUBLE LOCAL // clipper switch
#define SECONDSCPU SECONDS // Clipper test /uSTD.FH

#endif // is used
#define MAXLOOP 100000
start (cmd1, cmd2) // passes cmd-line param
QUIT

FUNCTION start (cmd1, cmd2)
LOCAL_INT li_loop
LOCAL timestart := SECONDSCPU(), loc_loop
LOCAL_DOUBLE ld_resulting
? "Input param.:", cmd1, cmd2

CMD 226

/* --- standard LOCAL variables --- */

FOR loc_loop = 1 to MAXLOOP // 100.000 times
ld_resulting = loc_loop / 3

NEXT
? "standard LOCAL: ", ;
SECONDSCPU() - timestart, ld_resulting // ca. 4.75 sec.

/* --- typed LOCAL variables ------ */
timestart = SECONDSCPU()
FOR li_loop = 1 to MAXLOOP

ld_resulting = li_loop / 3.0
NEXT
? "typed LOCAL: ", ;
SECONDSCPU() - timestart, ld_resulting // ca. 0.25sec.

/* --- The same using inline C code-- */

#ifdef FlagShip
timestart = SECONDSCPU()
#Cinline
#define MAXLOOP 100000 /* #define for C Code */
for (li_loop = 1; li_loop <= MAXLOOP; li_loop++)

ld_resulti = li_loop / 3.0; /* use 10 chars only! */
#endCinline
? "Inline C: ", ;
SECONDSCPU() - timestart, ld_resulting // ca. 0.18 sec.

#endif

RETURN NIL
*** eof test.prg ***

Example:
This example shows the usage of typed variables and objects. See also chapter
LNG.2.11.5 and LNG.2.11.6 for additional examples:

LOCAL oDbf AS DBSERVER
LOCAL Getsys := {} AS GET // local, nested GET
LOCAL iIntVar := 0, iCount AS IntVar
LOCAL cText := space(20) AS CHARACTER
LOCAL dMyDate := date() AS DATE
LOCAL lOk := .F., lResult := .T. AS LOGICAL

Classification:
programming

Compatibility:
The C-like types are available in FS only. CA/VO uses the same syntax (1). To
remain compatibility to Clipper 5, use syntax 2 and #defines like:

#ifndef FlagShip
#define LOCAL_BYTE LOCAL
#define LOCAL_LONG LOCAL
#define LOCAL_DOUBLE LOCAL

#endif

CMD 227

The usual types and object types are compatible to CA/VO (except IntVar), but not
available in Clipper. For Clipper 5, you may specify e.g.

#ifndef FlagShip
#command LOCAL <xx,...> AS <yy> => LOCAL <xx>

#endif

Related:
LOCAL, STATIC, GLOBAL, PRIVATE, PUBLIC, CLASS, FIELDS, PROTOTYPE,
DO, FUNCTION, TYPE(), VALTYPE(), FS_SET("intvar"), INT2NUM(), NUM2INT(),
#Cinline, #define, #ifdef

CMD 228

LOCATE ... FOR
Syntax:

LOCATE [<scope>] FOR <condition>
[WHILE <condition>]

Purpose:
Searches the working area for the first record meeting the specified condition.

Arguments:
FOR <condition> specifies the next record to LOCATE within the given scope.

Options:
<scope> is the portion of the current database file in which to perform the LOCATE.
The default scope is ALL. The <scope> has no effect on CONTINUE.

WHILE <condition> specifies the set of records to be searched. These are the
records meeting the condition. The WHILE condition is operational only until the first
match is found, it has no effect on CONTINUE.

Description:
LOCATE searches the current database file sequentially from the beginning of the
scope for the first record matching the condition. The search is terminated when a
match is found, or the end of LOCATE scope is reached. After a successful
LOCATE, FOUND() returns .T. and the matching record becomes the current
record. Otherwise, FOUND() returns .F. and the record pointer is set to EOF or the
first record outside the scope.

If you frequently search for a database key, SEEK on index will be the more
effective, much faster alternative. If an index for a part of the <condition> is
available, use SEEK and LOCATE...REST to skip unneeded records.

The LOCATE search can be initiated later by means of CONTINUE, which utilizes
the FOR condition only. For a subsequent searching scope or WHILE, use SKIP
and then LOCATE REST WHILE <condition> instead of CONTINUE.

Each working area can have its own LOCATE condition, which remains active until
you execute another LOCATE command in that working area or close the database.

Example:
USE employee
? RECCOUNT() && 98
LOCATE FOR Lastname = "Clifton"
? FOUND(), EOF(), RECNO() && .T. .F. 43
CONTINUE
? FOUND(), EOF(), RECNO() && .T. .F. 61
CONTINUE
? FOUND(), EOF(), RECNO() && .F. .T. 99
LOCATE FOR Lastname = "Batman"
? FOUND(), EOF(), RECNO() && .T. .F. 55
CONTINUE
? FOUND(), EOF(), RECNO() && .F. .T. 99

CMD 229

Example:
USE address INDEX name
SEEK UPPER("smith")
DO WHILE FOUND()

? name, address, zip, city
SKIP
LOCATE REST FOR zipcode >= 1234 ;

WHILE SUBSTR(UPPER(name),1,5) = "SMITH"
ENDDO

Classification:
database

Translation:
__DBLOCATE ({for}, {while}, next, rec, .rest.)

Related:
CONTINUE, FIND, SEEK, FOUND(), oRdd:LOcate(), oRdd:Locate(),
oRdd:GetLocate()

CMD 230

MEMVAR
Syntax:

MEMVAR <varList>
Purpose:

Declares a list of identifiers to be used as PRIVATE and PUBLIC memory variables
or arrays whenever encountered.

Arguments:
<varList> is a comma separated list of visible or declared PRIVATE and PUBLIC
memory variables or arrays.

Scope:
The scope of the MEMVAR declaration depends on the location of the declaration
statement:

•UDF wide scope: if the declaration is given within the procedure or function body,
the scope is the UDF or UDP only.

•File-wide scope: if the declaration is placed prior to the first FUNCTION or
PROCEDURE statement and the compiler switch -na is used, the scope is the
entire .prg file (all UDFs or UDPs within these file).

Description:
MEMVAR is a declaration statement that causes the compiler to resolve references
to variables specified without an explicit alias by implicitly assuming the memory
alias MEMVAR-> . Like all declaration statements, it has no effect on references
made within macro expressions or variables.

The MEMVAR statement neither creates the variables nor verifies their existence.
The variables may already exist (e.g. on a higher level) or will be created in the
program body as autoPRIVATE or using the declarators PRIVATE, PARAMETERS,
DECLARE or PUBLIC.

There is no fixed declaration order in FlagShip. The compiler starts the implicit
aliasing from this declaration on.

In conjunction with the compiler switch -w (and e.g. also the FIELD declarator),
unknown or ambiguous variable references will be printed (as warnings) at compile
time.

CMD 231

Example:
With the compiler switch -w, a warning for "name" and "first" will be printed (main
module and "first" in test2). Note the preference of dbf fields when accessing, or the
memory variables when assigning the ambiguous variable names.

PRIVATE name
SELECT 5
USE address
first := "Peter" // autoPRIVATE
? name, first // Smith John
DO test1
DO test2
RETURN

PROCEDURE test1
MEMVAR name, first
name := "Miller" // = assignment
? name, first // Miller Peter
? address->name, address->first // Smith John
RETURN

PROCEDURE test2
FIELD name
? name, first // Smith John
name := "NewMiller" // = REPLACE
? name, first // NewMiller John
? address->name, M->first // NewMiller Peter
RETURN

Classification:
programming

Compatibility:
The MEMVAR declarator is new in FS4. This statement is compatible to C5, which
has a fixed order of declaration statements (prior to the first executable statement).

Related:
FIELD, PRIVATE, DECLARE, PUBLIC, PARAMETERS, LOCAL, STATIC

CMD 232

MENU TO
Syntax:

MENU TO <memvar>
Purpose:

Executes a light bar menu on currently defined prompts.

Arguments:
<memvar> is a memory variable where the choice will be placed after exiting from
the menu. If the variable does not exist or is not visible, a new autoPRIVATE one is
created.

Description:
Before executing a MENU TO lightbar menu, the item texts, positions on the screen
and the order in which the lightbar will navigate through them need to be specified
using the @...PROMPT command. Messages associated with PROMPTs, and their
positions on the screen (SET MESSAGE) can also be defined.

Menu items and help texts are painted in the current "standard" color pair, the
highlighted menu item appears in the "enhanced" color (see SET COLOR).

If the <memvar> contains a numeric value, the light bar is set to the corresponding
item, or otherwise on the first one. MENU TO will then begin the selection process.
To navigate through the PROMPTs, use the arrow keys to move the light bar to the
next or previous menu item and display the associated (@...PROMPT...)
MESSAGE, if any.

With SET WRAP ON, the down-arrow key at the last prompt moves the lightbar to
the first menu choice. The same happens with the up-arrow key on the first choice.

By pressing the first menu character, the light bar is positioned on the first or next
item, which starts with the pressed character, if any. If SET CONFIRM is OFF (the
default) and the item is found, the choice is terminated and the current item position
is stored in <memvar>. With SET CONFIRM ON, the user has to confirm the choice
by pressing the enter key to leave the menu. You also may specify hot-
key(accelerator) by prefacing the selected character by "&", "\&" or "\<", see details
in @..PROMPT. This hotkey has then preference over the search by first character.

CMD 233

The following navigation keys can be used:

Key Description
Leftarrow <- (Cursor left) Up one PROMPT
Rightarrow -> (Cursor right) Down one PROMPT
Uparrow (Cursor up) Up one PROMPT
Downarrow (Cursor down) Down one PROMPT
Home First menu item
End Last menu item
Enter, Return Exit, return PROMPT position
PgUp, PgDn Exit, return PROMPT position
Esc Abort, return zero
Space Select or search (*) (**)
Hot-key Go to corresp. item (**)
First menu character First/next PROMPT beginning with the same letter (**)
Left-mouse double-click Select item in GUI (**)
Left-mouse click Select item in GUI (**)

(*) The space key usually handles same as Enter, i.e. it selects the current item.
You may change this behavior by assigning .F. to the global variable
_aGlobSetting[GSET_L_PROMPTSPACESEL], it default is .T. When space select
is enabled, the search for leading space in text is disabled.

(**) By this selection, the choice is terminated and the currently selected item
position is stored in <memvar> when SET CONFIRM is OFF (the default).
Otherwise, with SET CONFIRM ON, the user has to press the enter key to leave
the menu.

Redirection: When one of the navigation key is redirected via SET KEY or
ON KEY or SET FUNCTION, the redirection is executed instead of the default
behavior. The ESC key makes an exception: if ESC is re- directed, and you don't
want to terminate MENU TO, pass anything else to LastKey() buffer e.g.
KEYBOARD "x" ; Inkey() within the redirected UDF; otherwise MENU TO is
terminated after returning from the redirected UDF.

Nesting: The maximum number of PROMPTs per MENU TO is unlimited in
FlagShip. MENU TO may be nested to any level when LOCAL or PRIVATE
_oPrompt variable is declared to hold the nested PROMPTs, see details in the
@..PROMPT command description.

If you wish to clear all @..PROMPT items without invoking MENU TO, use the
CLEAR MENU command or _oPrompt:Clear()

The Prompt class is used internally for @..PROMPT items and MENU TO
processing, the object is hold in _oPrompt. See also menuclass.fh

CMD 234

Tuning: In GUI mode, you also may use Left/Middle/Right Mouse Button
for the selection and wheel for positioning. You may enable/disable this action by
assigning

_aGlobSetting[GSET_G_L_MENUTO_LMB] := .T. // LMB, default on
_aGlobSetting[GSET_G_L_MENUTO_MMB] := .T. // MMB, default on
_aGlobSetting[GSET_G_L_MENUTO_RMB] := .T. // RMB, default on
_aGlobSetting[GSET_G_L_MENUTO_DLMB] := .T. // dblLMB, default on
_aGlobSetting[GSET_G_L_MENUTO_DMMB] := .F. // dblMMB, default off
_aGlobSetting[GSET_G_L_MENUTO_DRMB] := .F. // dblRMB, default off
_aGlobSetting[GSET_G_L_MENUTO_WHEEL] := .T. // wheel, default on

where the defaults are set in <FlagShip_dir>/system/initio.prg API

Example:
LOCAL choice := 3 && light bar on "Append"
SET WRAP ON
@ 10,0 PROMPT "Help"
@ 11,0 PROMPT "Edit"
@ 12,0 PROMPT "Append"
@ 13,0 PROMPT "Delete"
@ 15,0 PROMPT "Quit"
MENU TO choice
SET WRAP OFF
IF choice = 0 && ESC pressed

RETURN
ENDIF

Example:
see more examples in @...PROMPT

Classification:
programming

Compatibility:
The SET CONFIRM choice and the positioning to the first/next item is available in
FlagShip only. Clipper supports only 32 PROMPTs per MENU TO.

Translation:
memvar := __MENUTO ({|par| if(PCOUNT() == 0, ;

memvar, memvar := par)}, "memvar")

Related:
@...PROMPT, CLEAR MENU, SET MESSAGE, SET WRAP, ACHOICE(),
DBEDIT()

CMD 235

METHOD
Syntax 1:

ACCESS [METHOD] <methName> [()]
CLASS <className> [AS <type>]

Syntax 2:
ASSIGN [METHOD] <methName> (<par>)

CLASS <className> [AS <type>]
Syntax 3:

[PROTECT] METHOD <methName> ([<paramList>])
CLASS <className> [AS <type>]

Syntax 4:
PROTOTYPE ACCESS [METHOD] <methName> [()]

CLASS <className> [AS <type>]
PROTOTYPE ASSIGN [METHOD] <methName> (<par>)

CLASS <className> [AS <type>]
PROTOTYPE [PROTECT] METHOD

<methName> [(<paramList>)]
CLASS <className> [AS <type>]

Purpose:
Declares an access, assign or usual method, associated to the specified class.

Arguments:
<methName> is the declared name of the access, assign or usual method. The
name may be of any length; only the first 10 characters are significant for access
and assign, but significant in the full length for the usual method. Upper or lower
case makes no difference. The names can contain any combination of characters
A..Z, numbers, or underscores. The METHOD name must be unique within the
class, but does not need to be unique within the application. The ACCESS or
ASSIGN names may hide (or make accessible) same named instances of the same
class, except EXPORTed ones.

<className> specifies the CLASS to which the access, assign or usual method
belongs. The class has to be declared or prototyped already.

<par> [AS <type>] (in syntax 2, ASSIGN) specifies the value which should be
assigned by the obj:methName := par syntax. It is passed to the ASSIGN method
as a local variable. Optionally, you may give the variable a usual or an object
<type> according to LOCAL..AS. The typed parameter, together with prototyping,
allows additional type checking at compile and run-time.

<paramList> specifies optional parameters passed to the METHOD by the
obj:methName(par1,par2...) syntax, same as parameters of a user defined

CMD 236

FUNCTION. Optionally, you may give any parameter a usual or an object <type>
according to LOCAL..AS by using the AS <type> syntax.

PROTECT METHOD is a usual METHOD, visible for the class entities (Access,
Assign and Methods) only, but hidden from the usual application. It is used mainly
as a class internal UDF, similar to a STATIC function. The important difference is,
that the class instances are visible also within the PROTECT METHOD body. You
would otherwise have to pass all the required instances via a parameter list to a
usual (or static) UDF. Additionally, the protect method is available also for methods
of the same class specified in other files.

PROTOTYPE (using syntax 4) informs the compiler about the CLASS entity,
specified elsewhere later in the application. Knowing the method name, the
FlagShip compiler is able to resolve the addresses during compile-time (early
binding). Otherwise, the method address will be resolved during the run-time phase
(late binding), see also chapter LNG.2.11.6. You will not need to prototype a
method declared formerly in the same source, but should prototype methods used,
but specified later. See also the PROTOTYPE statement in section CMD.

Description:
A METHOD is very similar to a usual user defined function (UDF). The only visible
difference is, that the name is associated to the specified class. Therefore, it may
only be invoked together with the object name and the send operator, e.g.
oMyObj:MyMethod() as opposed to invoking a usual UDF by the name (and
parentheses) only. An instance of any type and/or an access/assign method of the
same name may be specified in the same class. A PROTECT METHOD is the
same, but visible within the class entities only.

The ACCESS method is a special kind of method, which receives no parameters. It
acts as a "read-only virtual export instance". Therefore, the access method is
invoked from the application in the same way as an exported instance, e.g.
[resultVar :=] oMyObj:MyVar. A same named instance (of any type except
EXPORT) may, but need not be specified in the CLASS declaration. A same named
ASSIGN and usual METHOD may coexist.

The ASSIGN method is also a special kind of method, whereby the assigned value
is passed as a local parameter. The ASSIGN acts as a "write-only virtual export
instance with optional validation". Therefore, the assign method is invoked from the
application in the same way as an exported instance, e.g. oMyObj:MyVar :=
assignedValue. A same named instance (of any type except EXPORT) may, but
need not be specified in the CLASS declaration. A same named ACCESS and
usual METHOD may coexist.

Method programming:
The ACCESS, ASSIGN and METHOD are programmed in the same way, as usual
UDFs. The method starts with the declarator according to syntax 1, 2 or 3, which is
similar to the FUNCTION declarator of a UDF. The method body includes any
number of valid statements and ends with the next UDF, UDP or method declarator
or by end-of- file. The ACCESS method should always return the (virtual) object
instance value (or an empty value on error), while the ASSIGN and METHOD may

CMD 237

return any value. Usually, ASSIGN also returns the newly set (virtual) object
instance value.

Within the ACCESS, ASSIGN and METHOD program body, you have direct access
to all class instances. Their visibility for the method is similar to "private" variables,
they may therefore be hidden by same named LOCAL or STATIC variables. If so,
you may explicitly access the instance by using the SELF: keyword. If a same
named instance and PRIVATE or PUBLIC variable exists, the instance is preferred.
Generally, you may always use the SELF: keyword when referring to any instance
variable of the same class.

Within the method body, the ACCESS and ASSIGN method is invoked instead of
the instance, if such an assign or access method exists, and if it overloads a usual
INSTANCE variable. All other instance types (EXPORT, PROTECT, HIDDEN) are
accessed directly. Of course, in the ACCESS and ASSIGN body, the same named
instance variable is accessed directly, regardless of its type.

In the access, assign and method body, invoking METHODs of the same class is
always performed with the SELF: keyword. If the class is inherited from a
superclass, and a local (redefined) method exists, the SELF: keyword calls the
locally redefined method, while SUPER: invokes the original, inherited one.

Example 1:
See examples in the INSTANCE description, demonstrating the declaration of the
CLASS and its methods in the same, or in different source files. See also the
<FlagShip_dir>/system/smallrdd/smallrdd.prg file for a practical example of the
OOP programming.

Example 2:
Appends a new assign method to the standard GET class for a controlled
modification of the get:BUFFER. Note: the prototypes of the GET class are included
in the "getclass.fh" or the general "stdclass.fh" file, which may be #included in your
source (or automatically from the "std.fh" preprocessor file).

#include "getclass.fh"
ASSIGN FillBuff(cValue) CLASS get AS character
if valtype(cValue) == "C"

cValue := PADR(cValue, LEN(self:buffer))
self:buffer := cValue // the SELF: keyword is not

endif // required here, but makes
return self:buffer // the code better readable

CMD 238

Example 3:
Redefines some methods of the standard DBFIDX class. Note: the prototypes of the
DBSERVER class are included in the "dbfidx.fh" or the general "stdclass.fh" file.
The 'MyCrea' method is not visible for the rest of the application.

#include "dbfidx.fh"
CLASS DbfIdxExcl INHERIT DbfIdx // my DBserver RDD

PROTECT METHOD MyCrea(p1 AS char) CLASS DbfIdxExcl AS logic
if ALERT("Database "+p1+" does not exist. Create ?", ;

{"No", "Yes"}) == 2
if ! MyCreateUdf (p1, self:info(DBI_FULLPATH)) // UDF

return .F.
endif

endif
return .T.

METHOD Init(p1,p2,p3,p4,p5,p5) CLASS DbfIdxExcl
WHILE .T.
super:INIT (p1,.F.,p3,p4,p5,p6) // invoke dbfidx:init()
if self:used .or. file(self:info(DBI_FULLPATH))

exit
endif
if self:MyCrea(p1) // protected method

exit
endif

ENDDO
return self // returns object

ACCESS Shared CLASS DbfIdxExcl // local redefinition
return .F.

STATIC FUNCTION MyCreateUdf (cName, cFullName)
// create the dbf, e.g. by using dbcreate()
return .T.

FUNCTION myApplic () // main program entry
LOCAL oMyDbf := DbfIdxExcl {"myData"} AS DbfIdxExcl
if ! oMyDbf:Used
? "cannot open myData.dbf exclusive"
QUIT

Endif // process, e.g.
? EOF(), oMyDbf:EOF
? ALIAS(), oMyDbf:ALIAS

Classification:
programming

Compatibility:
Not available in Clipper, but compatible to CA/VO. The PROTOTYPE clause is
available in FlagShip only (managed by the repository in VO). PROTECTed
METHODs are available in FlagShip only.

Related:
INSTANCE, PROTOTYPE, LOCAL..AS, (OBJ)DBSERVER, (LNG)2.11

CMD 239

NOTE
Syntax:

NOTE [<text>]
or:

* [<text>]
Purpose:

Puts a comment at the beginning of a line.

Arguments:
<text> is a character string ending with a new line.

Description:
The NOTE command is equivalent to the asterisk "*" comment. NOTE and * at
beginning of the source line (leading spaces and TABs are not significant) marks
the whole line as a (full-line) comment.

For more program comments, see (CMD) * Comments.

Example:

* Comment *

a = b && Inline comment,
a = b + ; && usable also for

c + d && continued statement
NOTE That is an comment line,
NOTE same as these
* or these line.

Classification:
programming

Related:
* // && /*..*/

CMD 240

ON ANY KEY
ON KEY
Syntax 1:

ON KEY [DO <udfName>]
ON ANY KEY [DO <udfName>]

Syntax 2:
ON KEY CLEAR

Syntax 3:
ON KEY <expN1> [EVAL <expB2>]

Syntax 4:
ON KEY <expN1> [DO <udfName> [WITH param]]

Purpose:
ON KEY is very similar to SET KEY with some additional features.

Arguments:
<expN1> is numeric key value corresponding to Inkey()

<udfName> is name of any standard or user defined function

<expB2> is a code block to be evaluated

Description:
Syntax 1 set/clear action performed on any key press. It is a special case of syntax
4 and equivalent to ON KEY 0 [DO ...] or the invocation of OnKey(0, {|| udfName() })

Syntax 2 clear all previously set ON KEY actions and is same as OnKey(NIL, NIL)

Syntax 3 set/clear a codeblock, evaluated on key-press of a specific key, same as
SetKey(expN1, [expB2]) or to the invocation of OnKey(expN1, [expB2])

Syntax 4 is similar to syntax 3 and equivalent to SET KEY nKey [TO udf]. In fact,
the DO udfName WITH ... clause is translated by FlagShip preprocessor to
OnKey(expN1, {|| udfName(param1,param2,param3,...)})

Classification:
programming

Compatibility:
New in FS5, compatible to FoxPro

Related:
OnKey(), SET KEY, SetKey(), PUSH KEY, POP KEY

CMD 241

ON ERROR
Syntax:

ON ERROR [DO]
ON ERROR [DO <udfName> [WITH param]]

Purpose:
ON ERROR is provided mainly for FoxPro compatibility

Description:
Set/clear action executed on RTE, same as ErrorBlock(...). In fact, the command
"ON ERROR [DO]" is translated by the FlagShip preprocessor to

if type("_OnError") == "B"
ErrorBlock(_OnError)
_OnError := NIL
_OnErrObj := NIL

endif

and the command "ON ERROR [DO <udfName> [WITH param]]" creates a public
variable with assigned ErrorBlock() to it:

PUBLIC _OnErrObj // holds the error object
PUBLIC _OnError := ErrorBlock({|_err| _OnErrObj := _err, ;

udfName(par1,par2..) })

When compiled with the -fox switch, also FoxPro's functions Error() and Message()
are available, see foxpro_api.prg

Example: compile with -fox switch for FoxPro's functions
/* force RTE 501 on failure in USE... and SET INDEX...
* for FoxPro compatibility
*/
_aGlobSetting[GSET_L_DBUSEAREA_ERR] := .T. // default = .F.
_aGlobSetting[GSET_L_DBSETINDEX_ERR] := .T. // default = .F.

set font "courier"
on error do errhand // activate own error handler
do testUdf
on error // de-activate own error handler
?
wait "now standard error will be raised..."
x = yz // error, variable 'yz' n/a
wait

procedure testUdf
use unknown index unknown // RTE 501, see above settings
x = abc // error, variable 'abc' n/a
return

CMD 242

procedure errhand // own error handler
? "*** FoxPro error =", error()
? " FlagShip error=", if(type("_OnErrObj") == "O", ;

_OnErrObj:GenCode, 0)
? " message() =", message() // default
? " message() =", strtran(message(), ";", " ") // no NL
? " message(1)=", message(1)
? " message(2)=", message(2) // extended, n/a in Fox
? " sys(16) =", sys(16)
wait "(in " + procname() + ") press any key..."
/* If ON ERROR ... is active, and (in this example) other
* than FoxPro error 1 occurred, display error by standard
* FlagShip popup, then select this own error handler back
*/
if type("_OnError") == "B" .and. type("_OnErrObj") == "O"

if error() <> 1
local bSaveErr := ErrorBlock(_OnError) // save
_rt_error(_OnErrObj:GenCode, _OnErrObj:Description)
ErrorBlock(bSaveErr) // restore

endif
endif
return

Classification:
programming

Compatibility:
New in FS5, compatible to FoxPro

Related:
OnKey(), ErrorBlock()

CMD 243

ON ESCAPE
Syntax:

ON ESCAPE [DO <udfName> [WITH param]]
Purpose:

ON ESCAPE is provided mainly for FoxPro compatibility

Description:
Set/clear a UDF, evaluated on ESC key press. It is in fact a special case of "ON
KEY 27 [DO <udfName> [WITH param]]" or of "SET KEY 27 TO <udfName>" and is
hence evaluated same as

OnKey (27, {|a,b,c,d| udfName (par1, par2, ...) })

Classification:
programming

Compatibility:
New in FS5, compatible to FoxPro

Related:
ON KEY, OnKey(), SetKey(), PUSH KEY, POP KEY

CMD 244

PACK
Syntax:

PACK
Purpose:

Removes all records marked for deletion from the current database (and the
associated .dbt) file.

Description:
PACK physically removes all records marked for deletion, REINDEXes all open
indices in that working area, and restores the space previously occupied by
removed records and index keys.

PACK only acts on the selected database file and its associated memo-files, the
currently set RELATIONs and FILTERs are ignored.

PACK does not create any backup files (except during its execution); so if one is
required, COPY TO should be invoked prior to PACK. After the command is
finished (including REINDEXing of all open indices), the record pointer is reset to
the first logical record and the original FILTER and RELATION are restored.

Performance:
On large databases, PACK can be a time-consuming process, very uncomfortable
in a multiuser environment. In such a case, the PACK can be easily omitted using
the records already deleted for new ones; see example below.

Multiuser:
PACK requires an exclusively opened database using SET EXCLUSIVE ON or
USE...EXCLUSIVE. See also LNG.4.8.

Example:
USE employee
COUNT FOR Hair_len > 30 .AND. Sex = "M" TO Freaks
? RECCOUNT(), Freaks && 100 7
DELETE FOR Hair_len > 30 .AND. Sex = "M"
? RECCOUNT() && 100
PACK
? RECCOUNT() && 93

Example:
Omitting the PACK by re-using the deleted records. All deleted records are
contained in the index at the logical top. Then, use MYDELETE() instead of
DELETE + PACK and MYAPPEND() instead of APPEND BLANK.

USE address
WHILE NETERR()

INKEY (2) // if busy,
USE address // retry

END

CMD 245

SET INDEX TO name, zip
SET DELETED ON
GOTO TOP // first valid data
choice := my_menu()
IF choice == 1

MYDELETE() // deleting required
ELSEIF choice == 2

MYAPPEND() // appending required
REPLACE name with xName, zip with xZip
UNLOCK

ENDIF
:

FUNCTION MYDELETE() // repl. DELETE+PACK
WHILE !RLOCK(); END // wait for lock
DELETE
REPLACE name with " ", zip with 0 // reset index order
UNLOCK
RETURN

FUNCTION MYAPPEND() // repl. APPEND BLANK
SET DELETED OFF
GOTO TOP
if DELETED() // deleted available?

WHILE !RLOCK(); END // yes, remove the
RECALL // "delete" mark

else
APPEND BLANK // no, append new one
WHILE NETERR(); APPEND BLANK; END

end
** UNLOCK // record remains locked, simil.to APPE BLANK
SET DELETED ON
RETURN // RLOCK() is set

Classification:
database

Compatibility:
FlagShip also PACKs the associated memo-files (.dbt), whilst Clipper packs the .dbf
file only.

Translation:
__DBPACK()

Related:
DELETE, RECALL, REINDEX, SET EXCLUSIVE, SET DELETED, USE, ZAP,
DELETED(), FLOCK(), RLOCK, oRdd:PACK(), ISDBEXCL()

CMD 246

PARAMETERS
Syntax:

PARAMETERS <paramList>
Purpose:

Specifies PRIVATE memory variables as FUNCTION or PROCEDURE parameters
which will receive the arguments of the call (passed by value or by reference).

Arguments:
<paramList> is a comma separated list of receiving variables. The variables will be
created in the PRIVATE class. The number of receiving variables does not have to
match the number of arguments passed by the calling procedure UDP or user-
defined function UDF.

Description:
The values or references actually passed by a call of UDP or UDF are referred to as
arguments. The variables in the UDP or UDF, which receives them, are named
parameters. Receiving parameters can be created by using the PARAMETERS
command or alternatively as LOCAL variables (named formal parameters) if
specified as a part of the PROCEDURE or FUNCTION declaration statement (i.e.
included in parentheses).

When a PARAMETERS statement executes, all variables in the parameter list are
created as PRIVATE class variables and all previous public or private variables with
the same names are hidden until the current procedure or UDF terminates. The
scope, visibility and lifetime of such variables is equivalent to those of the PRIVATE
declaration.

In FlagShip, the number of arguments and parameters do not have to match. If
there are more arguments than parameters, the rest of the arguments are ignored.
Conversely, when there are more parameters than arguments actually passed, the
rest of the parameters remain undefined (contain NIL). To find out how many
arguments were passed, use PCOUNT(). If some arguments are omitted, the
corresponding parameters become NIL.

Arguments can be passed in one of two ways: by value or by reference. To pass a
parameter by value means that its value is copied to the receiving variable. When a
parameter is passed by reference, the argument is just given the parameter name
and the parameter contains this variable. In the former case, the value of the
argument cannot be altered in the procedure, while in the latter, all changes to the
parameter also happen to the corresponding argument.

When parameters are passed to procedures using DO.. ..WITH, memory variables
and arrays are passed by reference, while array elements, expressions, fields and
memory variables enclosed in round parenthesis () are passed by value. When
parameters are passed to user defined functions (UDFs), all parameters except for
arrays are passed by value. Memory variables however, can be passed by

CMD 247

reference if preceded by @. Parameters from the UNIX shell may also be passed to
the main program module (e.g.: a.out par1 par2).

For more information, see section LNG.2.3.2.

Example:
* call it e.g.: a.out -or- a.out xxx yyy zzz -etc-
PARAMETERS cmd1, cmd2, cmd3 && arguments from UNIX
FOR i = 1 to PCOUNT()

ii = LTRIM(STR(i))
? "Command-Line-Parameter " + ii + " = " + cmd&ii

NEXT
DECLARE arr [2]
arr[1] := 1 ; arr[2] := 1
v1=1 ; v2=1
DO chg WITH arr,arr[2],v1,(v2)
? arr[1], arr[2], v1, v2 && 2 3 4 1
RETURN

PROCEDURE chg
PARAMETERS p1,p2,p3,p4 && procedure params
p1[1] := 2 ; p1[2] := 5 // change array elem.
p2 := 3 // redeclares p1[2]
p3 := 4 // changes v1
p4 := 9 // v2 remains unchanged
RETURN

Classification:
programming

Related:
DO, FUNCTION, PRIVATE, PUBLIC, LOCAL, STATIC, SET PROCEDURE TO,
PCOUNT(), Param()

CMD 248

PRIVATE
Syntax 1:

PRIVATE <memvar> [:= <exp>] [, ...]
Syntax 2:

PRIVATE <array> [<dim>]
PRIVATE <array> [<dim1>,<dim2>,<dimN>]
PRIVATE <array> [<dim1>][<dim2>][<dimN>]
PRIVATE <array> := {<exp>,... }

Purpose:
Creates and initializes the specified memory variables or arrays in the PRIVATE
class.

Arguments:
<memvar> is the list of variables or arrays to be created as PRIVATEs. In this list,
arrays and other variables can be interchanged. The name may be of any length,
but only the first 10 characters are significant (see more LNG.2.6). Variable names
in the FlagShip language are not case sensitive.

<array> is the name of the array to be created. The naming convention is the same
as in <memvar>. The square brackets [] behind the <array> name do not in this
case specify an optional argument, but are a required part of the syntax. The
number of elements for each array dimension can be specified as [dim1,
dim2,..,dimN] or [dim1][dim2][dimN]. The maximum number of dimensions and of
elements per dimension in FlagShip is 65535.

The PRIVATE <array> statement is equivalent to DECLARE <array>. Array
elements can be handled like ordinary memory variables. Different elements of the
same array can be of different types. Each element may contain another sub-array
(non-symmetric structure), see LNG.2.6.4.

Options, Initializing:
<exp> is any valid FlagShip expression including a literal (constant) array to
initialize the variable. If the initializer (:= <exp>) is not given, the variable (or all
array elements) will be set to NIL. Initializing of a variable created by composed
macro (e.g. PRIVATE var¯o := value) is not supported but the sequence
PRIVATE var¯o ; var¯o := value is ok.

The array elements can be declared and initialized with a starting value using an
array (literal) constant (see LNG.2.7) including any valid expression and the assign
:= operator. Initialization is performed at the time of the variable creation, that is,
when executing the PRIVATE (or DECLARE, PARAMETERS) statement.

Scope, Visibility:
PRIVATE variables have dynamic scope. These variables are visible within the
current and all UDFs and UDPs called from within. When a private variable or array
is created, existing and visible PRIVATE and PUBLIC variables of the same name

CMD 249

are hidden until the current procedure or user-defined function terminates. Private
variables exist for the duration of the active procedure or until explicitly released
with CLEAR ALL, CLEAR MEMORY, or RELEASE. If a procedure or UDF is
invoked recursively (calls itself), each recursive activation creates a new set of
PRIVATE variables.

PRIVATE variables can be passed by value or by reference to other UDFs or UDPs
called at the same level. In code blocks, only PRIVATE variables of the module
where the block is executed are visible; see LNG.2.3.3.

For more information about variables, refer to the section LNG.2.6.

Description:
PRIVATE is an executable statement which creates and initializes a new variable or
array in the dynamic scoping class. If the same named variable does not exist, it is
equivalent to the creation of an autoPRIVATE variable using an assignment. The
PRIVATE statement is equivalent to DECLARE and similar to the PARAMETERS
command.

Short notation: if the PRIVATE declarator is placed prior to the first FUNCTION or
PROCEDURE statement and the compiler switch -na is used, the declaration (and
initialization) is placed at the start of every module in the .prg file. The scope,
visibility and lifetime is equivalent to explicitly placed PRIVATE declarations in each
of these entities.

Example:
PRIVATE var1, arr1[5], var2, arr2[2,3]
DECLARE arr3[4], arr5[2,2]
PRIVATE var6 := 24, arr7 := {0, 0, {0, 0}}
PRIVATE menu := {"Show", "Add", "Print", "Exit"}

Classification:
programming

Compatibility:
The initialization during the declaration is new in FS4. PRIVATE variables are
available in all xBASE languages. Only FlagShip supports an unlimited number of
variables, 64k * 64k array element size and short notation.

Related:
DECLARE, PARAMETERS, PUBLIC, LOCAL, STATIC, GLOBAL, FIELD,
MEMVAR

CMD 250

PROCEDURE
Syntax 1:

PROCEDURE <udpName> [AS USUAL]
[PARAMETERS <parList>]

<statements>...
RETURN

Syntax 2:
PROCEDURE <udfName> ([<parList>]) [AS USUAL]

<statements>...
RETURN

Syntax 3:
[STATIC|INIT|EXIT] PROCEDURE

<udfName> ([<parList>]) [AS USUAL]
<statements>...

RETURN
Purpose:

Identifies the beginning of a user-defined procedure (UDP) or a startup/exit
procedure.

Arguments:
<udpName> is the name of the procedure UDP. The name may be of any length,
only the first 10 characters are significant and is not case sensitive (for more details
refer to section LNG.2.3). Names starting with an underscore are reserved for
FlagShip.

<udfName> is the name of a function (UDF), see below.

RETURN terminates the execution of the UDP and passes control back to the
calling program. Any number of RETURNs are accepted within the UDP.

Options:
STATIC PROCEDURE declares an UDP, which is visible in the current .prg file
only. Several STATIC UDPs and UDFs (and only one public UDP/UDF) may be
defined with the same name in different .prg files.

Because the references to a STATIC function are resolved at compile-time, they will
hide public UDP or UDF with the same name. STATIC procedures are not visible
and therefore cannot be used during a macro evaluation or as UDF for ACHOICE(),
MEMOEDIT() etc.

When the keyword STATIC is omitted, the UDP becomes public and the name is
visible to the whole application.

PARAMETERS <parList> specifies one or more comma-separated PRIVATE
variables which receive the calling arguments. See more in the PARAMETERS
command.

CMD 251

(<parList>) is the alternative syntax to the PARAMETERS command, but the
variables in <paramList> have LOCAL type and may optionally be typed, see below.

AS USUAL (proto)types the procedure and specifies, that the compiler should
include its PROTOTYPE into the repository file.

Init/Exit:
INIT PROCEDURE declares an initialization procedure, which will be executed at
program startup. An arbitrary number of INIT PROCEDUREs may be declared.
They will be successively invoked prior to the first executable statement in the main
module, one after the other. The visibility of the INIT procedures is restricted to the
FlagShip system. Each procedure receives a copy of the UNIX command line
arguments given when invoking the executable, passed to the <parList>. See the
note on linking and calling below.

EXIT PROCEDURE declares an exit procedure, which will be executed at program
termination. Any number of EXIT PROCEDUREs may be declared for the whole
application. The EXIT procedures are successively invoked after the last executable
statement in the main module (or from the QUIT or CANCEL command) prior to
returning to the UNIX shell. The visibility of the EXIT procedure is restricted to the
FlagShip system. Each EXIT procedure receives a numeric parameter, representing
the sequence order of the EXIT procedure, starting with one. The execution of an
EXIT procedure cannot be guaranteed when the system encounters an
unrecoverable error. See also linking and calling note.

Linking and calling the INIT/EXIT procedures: If the .prg source file consists only
of INIT and/or EXIT procedures, the automatic compilation rule (see below) cannot
apply. Instead, the source .prg or the object .o file must be specified when invoking
FlagShip during the compile/link phase. Also, the ANNOUNCE/REQUEST
declarators (or EXTERNAL <prgname> if compiled without the -na switch) must be
used to specify the external. The INIT and/or EXIT procedures will be executed in
the same order as their corresponding files were specified in the FlagShip
command line during the linking phase.

Prototyping of parameters:
The local parameters specified in brackets (according to syntax 2) may optionally
be typed (with all usual <type>s according to LOCAL..AS), and/or prototyped as
optional. The syntax is equivalent to (<paramList>) of the PROTOTYPE declarator,
e.g.

PROCEDURE myUdp (p1 AS CHAR, [p2 as NUMER], p3, [p4])

If the <type> is not given (e.g. parameters p3 and p4 in this example), AS USUAL is
assumed. The parameter name enclosed in square brackets [] (visually) signals an
optional parameter, used also in (and passed to) UDP prototypes. It does not
change the behavior of parameter passing, nor the parameter order in any way.

Also the return procedure <type> may be prototyped by AS USUAL according to
syntax 2.

CMD 252

Purpose: Giving the parameters a <type> allows a compile-time check of the
parameters (arguments) passed to the procedure at places where it is invoked. This
compile-time check will help you to avoid unexpected RTEs (run-time errors) and
simplify parameter validation in the procedure body. See also "parameter passing"
below. Use the PROTOTYPE declarator (e.g. in an #include file), when the UDP is
invoked in other than the current file (prototyping); or when the UDP is specified in
the same file, but is invoked before its declaration (forward prototyping) to take
advantage of the compile-time checking.

Note: the PROTOTYPE statement is automatically created in the repository file (for
AS USUAL typed UDPs only) by using the -ru compiler switch, see FSC.1.3.

All standard FlagShip functions and procedures are prototyped in the stdfunct.fh
file.

Description:
Functions and procedures increase both readability and modularity, isolate changes
and standardize a block of frequently-used statements.

A user-defined procedure UDP is called with the command :

DO udpname
DO udpname WITH param1 [, param2 ...]

Procedures can also be called by using macros, e.g.:

udpname = "my_proced"
myparam = "xyz"; xyz := 5
DO &udpname WITH "test", &myparam
DO (udpname) WITH "test", &(myparam)
DO my_proced WITH "test", 5

Procedures may also be called in FlagShip using the UDF syntax. See FUNCTION
command.

The UDP may call itself recursively. The number of recursions is in FlagShip
limited only by the available RAM + swap disk space to store the local data of each
recursion.

Automatic procedures:
If the compiler switch -na is not given, FlagShip generates an automatic
PROCEDURE carrying the name of the file without extension, for compatibility
purposes. When starting the source file with a PROCEDURE of the same name as
the file, an (additional) automatic procedure is not generated.

Parameter passing:
The calling arguments when using the DO...WITH command are passed to a user-
defined procedure by reference, except constants, expressions and database fields,
which are always passed by value. To pass a variable by value, the argument has
to be enclosed in parentheses, e.g. DO myproc WITH (var1), (var2), var3.

The UDP copies the passed argument values or references into predefined PUBLIC
or LOCAL variables in the <parList>. The number of arguments passed and

CMD 253

parameters received need not be the same. Arguments can be skipped or left off
the end of the argument list. A parameter not receiving a value or reference is
initialized to NIL. Refer to LNG.2.3.2 and (CMD) PARAMETERS for a more detailed
discussion.

On typed parameters, only arguments of the specified parameter type are accepted.
If the prototype of the UDP is known at compile time (see prototyping), an incorrect
argument passing is reported by the FlagShip compiler. If the prototype or the
argument type is unknown at compile time, and an incorrect argument type is
passed, a run-time error occurs. On optional parameters (i.e. enclosed in square
brackets), only the specified type or NIL is accepted.

UDF vs. UDP
In FlagShip, the only difference between the call to a function (UDF) or procedure
(UDP) is the convention of default parameter passing. Both UDF and UDP can be
used interchangeably, so if an UDP is called using the function syntax, the
arguments/parameters are passed by value, instead of by reference.

Automatic compilation:
If the compiler switch -m is not given, every time it finds a DO statement and the
name of the procedure is unknown, the compiler searches the current directory for a
source file with the same name in order to compile it. Refer to the (CMD) DO
statement.

Example:
Notice the main procedure calling two sub-procedures, two of them in the same
program file, two in a separate file:

*** Main program file test.prg
DO Proc1
DO Proc2 with "Main"
DO Proc3 with 5
RETURN
PROCEDURE Proc1
? "The first procedure"
DO Proc2 with PROCNAME() && current procedure name
RETURN
PROCEDURE Proc2
PARAMETERS par1
? "The second procedure, called from " + par1
DO Proc4
RETURN
*** eof test.prg
*** file proc3.prg
** PROCEDURE Proc3 && omit this declaration
PARAMETERS p1
// any statements
RETURN

PROCEDURE proc4
// any statements
RETURN
*** eof proc3.prg
// Compile: $ FlagShip test.prg -otest

CMD 254

Example:
Usage of INIT/EXIT procedures, e.g. to measure the execution time:

*** Main program file test.prg
STATIC timecpu, timeall // .prg wide scope

PROCEDURE main (cmd1, cmd2) // main module
USE address
LIST name, address FOR inkey() != 27
RETURN // return to OS

INIT PROCEDURE startup (cmd1, cmd2) // init procedure
timeall := SECONDS()
timecpu := SECONDSCPU()
RETURN

EXIT PROCEDURE exitproc () // exit procedure
?
? "Time elapsed : ", SECONDS() - timeall, "seconds"
? "real CPU time : ", SECONDSCPU()- timecpu, "seconds"
RETURN

// Compile: $ FlagShip test.prg -Mmain -na -otest

Classification:
programming

Compatibility:
The STATIC clause, the usage of formal LOCAL parameters and the INIT/EXIT
procedures are compatible to C5. The <parN> in the EXIT PROCEDURE is
available in FS4 only. FlagShip accepts the interchangeable UDF/UDP calling
convention. Typed parameters and typed functions are supported by FS4 and VO.
The definition of optional parameters by using square brackets is available in
FlagShip only.

Related:
DO, SET PROCEDURE, FUNCTION, PROTOTYPE, LOCAL, PCOUNT(), Param()

CMD 255

PROTECT INSTANCE
Syntax 1:

[STATIC] CLASS <ClassName> [INHERIT <SuperClass>]
and optional:

INSTANCE <Name> [:= <exp>] [AS <type>]
EXPORT [INSTANCE] <Name> ...
HIDDEN [INSTANCE] <Name> ...
PROTECT [INSTANCE] <Name> ...

Syntax 2:
PROTOTYPE [STATIC] CLASS <ClassName>

[INHERIT <SuperClass>]
and optional:

INSTANCE <Name> [AS <type>]
EXPORT|HIDDEN|PROTECT [INSTANCE] <Name> [AS <type>]

See detailed description in the CLASS command.

CMD 256

PROTOTYPE
Syntax 1:

PROTOTYPE [STATIC] CLASS <ClassName>
[INHERIT <SuperClass>]

and optional:
EXPORT|HIDDEN|PROTECT [INSTANCE] <Name> [AS <type>]
INSTANCE <Name> [AS <type>]

Syntax 2:
PROTOTYPE ACCESS [METHOD] <methName> [()]

CLASS <className> [AS <type>]
PROTOTYPE ASSIGN [METHOD] <methName> (<par1>)

CLASS <className> [AS <type>]
PROTOTYPE [PROTECT] METHOD <methName>

[(<paramList>)]
CLASS <className> [AS <type>]

Syntax 3:
PROTOTYPE FUNCTION <udfName> [(<paramList>)]

[AS <type>]
Purpose:

Informs the compiler about the class entities or about the type of a user defined
function in order to optimize the class access and/or perform type checking during
the compilation phase.

Description:
PROTOTYPE (according to syntax 1 and 2) informs the compiler about the CLASS
structure, it's instances and methods. If PROTOTYPEs of the class are unknown at
compile-time, the slower run-time address resolving is generated, see LNG.2.11.6.
Refer also to the CLASS and METHOD description. For the FlagShip standard
classes, the prototypes are specified in the <xxx>class.fh, or the summarized
"stdclass.fh" file, which may automatically be included from within "std.fh".

PROTOTYPE (according to syntax 3) informs the compiler about the UDF type (and
parameters), to perform compile-time and/or run-time invocation and parameter
checking. For the FlagShip standard functions, the prototypes are specified in the
"stdfunct.fh" file, and can also be automatically included from "std.fh".

Since the PROTOTYPE is non-executable compiler information only, it may be
placed anywhere in the source. The prototype becomes active for all subsequent
lines in the .prg source file. You may preferably place prototypes in a separate,
project specific .fh file, which will be #include'd in the required .prg sources. The
most convenient method is to #include "myproto.fh" at the end of the local copy of
the std.fh file.

CMD 257

Automatic prototype generation: the FlagShip compiler is able to automatically
extract all prototypes from your source into a file named "reposit.fh", when the
compiler switch -rc and/or -ru is specified (see section FSC.1.3).

Hint: In a large application, you may pre-compile all *.prg sources of the application
(e.g. by using -c -rc -ru -r=myprot.fh switches), then check the produced file
myprot.fh and #include it into the local copy of the std.fh file... and your application
may be finally compiled. The compiler will now know all declared (typed) functions,
classes etc. and may therefore issue warnings when using the -w3 and/or -w4
option. Additionally, all occurrences of known classes are early bound, which will
speed up the execution significantly, see also chapter LNG.2.11.6 .

Syntax 1:

CLASS prototyping is used if the class declaration is specified in another source file
(or a library module).

Note, that the instance <Name> in the class PROTOTYPE has to match the
<Name> of the instance declaration (in the CLASS statement, without case
sensitivity, but at least in the first 10 significant characters). The order in which the
instances are given does not matter. For additional info and arguments used, refer
to the CLASS description.

Syntax 2: The CLASS METHOD prototyping is used

a. together with syntax 1, if the class declaration and theirs entities are specified in
another source file (or a library module). In this case, all instances and access,
assign, methods must also be declared with the same name as in the class
declaration. Their order does not matter, but the class prototypes according to
syntax 1 must be declared first. You may also #include the, by the FlagShip
compiler automatically created, 'reposit.fh' file according to sect. FSC.1.4.2.

b. during method creation, when the method refers to a yet undeclared access,
assign or usual method (forward prototyping). It is not necessary to prototype a
method, which was formerly declared in the same source file, since the FlagShip
compiler internally holds tables of the known classes (and its entities)
encountered in the currently compiled source file. Otherwise, when an (yet)
unknown method is invoked, the code for a run-time access is generated (late
binding), which results in slower performance.

For additional info and arguments used, refer to the METHOD description.

Syntax 3: UDF prototyping is used for compile-time and run-time checking of the
arguments being passed and of the returned values.

If the UDF return type is prototyped (e.g. PROTOTYPE MyUdf() AS LOGICAL), the
compiler reports an error, if the result is assigned to a typed variable of an
incompatible type, or if an invalid RETURN value was used within the UDF body.
On the other hand, assigning an untyped UDF to a typed variable may result in a
run- time error "attempt to assign <UDF-return-type> to fixed <vartype>". The
assignment to an untyped, or to a typed AS USUAL variable is always accepted.

CMD 258

When also the UDF parameters are prototyped, the compatibility of the passed
arguments are checked both at compile-time (on known types, e.g. LOCAL.. ..AS)
and at run-time. It allows an early detection of passing wrong arguments or a wrong
argument count, which mostly avoids a run-time error. The run-time check simplifies
parameter validation, since only the specified <vartype> is accepted, otherwise a
run-time error occurs.

Arguments:
AS <type> (proto)types the return value or the parameter to be fix and of the
specified <type> only. If the AS <type> is omitted, the implicit USUAL type is
assumed. The compatible types (see also LOCAL..AS) for return values and
parameter prototyping are:

Prototype Accepted variable or constant
C-like types not allowed for UDF prototyping
ARRAY ARRAY
CHARACTER CHARACTER, PSZ, STRING
CODEBLOCK CODEBLOCK
DATE DATE
INTVAR INTVAR, NUMERIC, all C-like types
LOGICAL LOGICAL and INTVAR, NUMERIC, C-like types whereby 0 (zero) is

converted to .F., all other values to .T.
NUMERIC NUMERIC, INTVAR, all C-like types
OBJECT OBJECT, <userClass>, <stdClass>
PSZ CHARACTER, STRING, PSZ
SCREEN SCREEN
STRING CHARACTER, PSZ, STRING
USUAL any type
<stdClass> <stdClass>, OBJECT
<userClass> <userClass>, OBJECT

Arguments:
<paramList> specifies one or more comma separated LOCALy scoped
parameters, corresponding to the parameter list of the procedure, function, or
method declaration.

Knowing the prototype of the UDF (or method), the FlagShip compiler will check the
correspondence of the type and number of passed arguments in all subsequent
occurrences of this UDF within the .prg file.

Note, that only the order, number (and type if given) of parameters have to match in
the UDF declaration and the PROTOTYPE statement, the name of the parameter
variables may differ.

Each parameter <parName> in the <paramList> of the FUNCTION, PROCEDURE
or METHOD declarator and in the PROTOTYPE statement can be specified as

•<parName> : Untyped parameter, similar to a local variable. Only the parameter
name is given, arguments of any type are accepted.

CMD 259

•<parName AS type> : Typed parameter, similar to a LOCAL ... AS variable. Only
arguments of the specified <type> are accepted.

•[<parName>] or [<parName AS type>] : the square brackets [] specify optional
parameters, which will accept arguments of the specified <type>, as well as NIL
values. All arguments of optional parameters rightmost in the <paramList> may
be omitted.

•[...] : Any number of optional, untyped parameters (accepted in the PROTOTYPE
statement only). Useful e.g. for prototyping of functions with many arguments,
e.g. written in Extend C API.

•<@parName> or <@parName AS type> or [<@parName>] : Automatic (implicit)
parameter/ argument passing-by-reference, instead of the default passing-by-
value. This may speed-up the execution significantly, especially on large strings.
The compiler will not generate a temporary copy of the argument for parameters
prefaced by the at-sign @. The UFD is called as if the argument is explicitly
prefaced by the at-sign @ (see also LNG.2.3.2). Warning: all modifications of
such implicit referenced parameters in the function body will also modify the
incoming argument, including database fields and array elements (except
constants).

For your convenience, the same parameter syntax may also be used in the
FUNCTION, PROCEDURE or METHOD declarator. The FlagShip compiler will then
produce the corresponding prototypes fully automatically when the compiler switch -
ru is set.

Example:
Valid prototypes are:

PROTO udf1 () AS usual // no args accepted
PROTO udf2 ([...]) AS usual // any no of args
PROTO udf3 (p1, p2 AS numer) AS logic // 2 args required
PROTO udf4 (p1 AS char, ; // 1 to 3 args,

[p2 as logic], [p3]) AS nume // at least one
PROTO udf5 (p1 AS char, ; // at least 1st

[p2 as logic], p3) AS numer // and 3rd req.
PROTO udf6 ([@p1 AS char], ; // any number, but

[...]) AS usual // the 1st is char
PROTO udf7 (@p1, @p2 AS char) AS char // 2 args, passed

// by reference
PROTO CLASS myClass

EXPO var1 AS intvar
EXPO name2 AS char
HIDD invi3 AS usual

PROTO METH meth1 () CLASS myClass AS array
PROTO METH meth2 (p1, [@p2 AS char]) CLASS myClass AS object
PROTO ACCE name1 () CLASS myClass AS char
PROTO ASSI name2 (p2 AS usual) CLASS myClass AS char

FUNCT udf8(p1, @p2 AS char) AS usual // passed to reposit.
FUNCT udf9(p1, @p2 AS char) // not passed to repos

CMD 260

Example:
Refer to the CLASS and METHOD description, section LNG.2.11.5 and the
<FlagShip_dir>/system/smallrdd/smallrdd.prg file for examples of the CLASS
prototyping.

Example:
Refer also to the "stdfunct.fh" file for prototypes of the standard FlagShip functions.

Classification:
programming, compiler/linker

Compatibility:
Prototyping is available in FlagShip only. VO manages it through the 'repository'.
For compatibility to Clipper, you may specify

#ifndef FlagShip #command PROTOTYPE <x> => #endif

Related:
INSTANCE, METHOD, LOCAL..AS, FUNCTION, PROCEDURE, LNG.2.11

CMD 261

PUBLIC
Syntax:

PUBLIC <memvar> [:= <exp>] [, ...]
or:

PUBLIC <array> [<dim>]
PUBLIC <array> [<dim1>,<dim2>,<dimN>]
PUBLIC <array> [<dim1>][<dim2>][<dimN>]
PUBLIC <array> := {<exp>,... }

Purpose:
Creates and initializes the specified memory variables or arrays in the PUBLIC
class, i.e. to be visible for the whole application.

Arguments:
<memvar> is the list of variables or arrays to be created as PUBLICs. In this list,
arrays and other variables can be interchanged. The name may be of any length,
but only the first 10 characters are significant (see more LNG.2.6). Variable names
in the FlagShip language are not case sensitive.

<array> is the name of the array to be created. The naming convention is the same
as with <memvar>. The square brackets [] behind the <array> name do not in this
case specify an optional argument, but are a required part of the syntax. The
number of elements for each array dimension can be specified as [dim1,
dim2,..,dimN] or [dim1][dim2][dimN]. The maximum number of dimensions and of
the elements per dimension in FlagShip is 65535. Array elements can be handled
like ordinary memory variables. Different elements of the same array can be of
different types. Each element may contain another sub-array (non-symmetric
structure), cf. LNG.2.6.4.

Options, Initializing:
<exp> is any valid FlagShip expression including a literal (constant) array to
initialize the variable. If the initializer (:= <exp>) is not given, the variable is set to
FALSE (.F.) (or all array elements) will be set to NIL. Initializing of a variable
created by composed macro (e.g. PUBLIC var¯o := value) is not supported,
but the sequence PUBLIC var¯o ; var¯o := value is ok.

The array elements can be declared and initialized with a starting value using an
array (literal) constant (see LNG.2.7) including any valid expression and the assign
:= operator. The initialization will be done at variable creation time, i.e. when
executing the PUBLIC statement.

Scope, Visibility:
PUBLIC variables have dynamic scope. These variables are visible for both
hierarchically higher and lower modules starting at the time of the PUBLIC
declaration. The PUBLIC variable can be later temporarily hidden using a
PRIVATE, PARAMETERS, LOCAL, STATIC or GLOBAL declaration. The PUBLIC

CMD 262

variable can be explicitly destroyed using CLEAR ALL, CLEAR MEMORY, or
RELEASE.

For more information about variables, refer to the section LNG.2.6.

Description:
PUBLIC is an executable statement which creates and initializes a new variable or
array in the dynamic scoping class. The PUBLIC statement is equivalent to the
PRIVATE declaration on the highest program level (main).

An attempt to create a PUBLIC variable with the same name as an existing and
visible PRIVATE variable is simply ignored. If the creation of a public array is
requested, the previous PUBLIC or PRIVATE array with the same name is
destroyed and replaced by the new one; if a dynamically scoped variable having the
same name already exists, the new array declaration is ignored. Attempting to
specify a PUBLIC variable that conflicts with a previous FIELD, LOCAL, STATIC or
TYPED declaration of the same name results in a compiler error.

PUBLIC variables can be passed by value or by reference to other UDFs or UDPs
called from within. In code blocks, only active PUBLIC (and PRIVATE) variables of
the module where the block is executed are visible; see LNG.2.3.3.

Reserved Variables:
The following, reserved variables will be set up by the compiler and cannot be
deleted via CLEAR MEMORY, but their contents can be redefined using an
assignment.

PUBLIC FLAGSHIP : when the FlagShip compiler encounters such a declaration, it
initializes it with the logical value TRUE (.T.) instead of FALSE. On the other hand,
when compiling with Clipper, the variable remains FALSE. This allows a program to
check which platform it is running and take different actions accordingly. Another
possibility is to compile different blocks of code using the preprocessor directives
#ifdef FlagShip ... #else ... #endif.

PUBLIC GETLIST [0] : an automatically created array to carry the GET objects for
the command @...GET. As with all other PUBLIC arrays, this default array can be
hidden via a PRIVATE, LOCAL or STATIC declaration (e.g. LOCAL GetList := {}) to
create nested GET/READs to any level.

CMD 263

Example:
See also section LNG.9 for the compatibility notes.

PUBLIC FlagShip, Clipper
PUBLIC var1, subdir, arr1[5], arr2[10,10]
subdir = "D:\data\public\"
#ifdef FlagShip
ifdef FS_WIN32

? "invoking CMD/DIR in FS/Windows"
RUN ("CMD /C DIR *.*")

else
subdir := "/home/data/public/"
? "invoking ls -l in Linux/Unix"
RUN ("ls -l *")

endif
#else

? "running under DOS with Clipper"
RUN ("DIR *.*")

#endif
USE &subdir.adress

Classification:
programming

Compatibility:
Initialization during the declaration is new in FS4. PUBLIC variables are available in
all xBASE languages. Only FlagShip supports an unlimited number of variables,
and up to 64k * 64k array element size.

Related:
DECLARE, PARAMETERS, PRIVATE, MEMVAR, FIELD, LOCAL, STATIC,
GLOBAL

CMD 264

PROTECT PUBLIC
Syntax:

PROTECT PUBLIC <memvar> [:= <exp>] [, ...]
Purpose:

Creates and optionally initializes protected public variable(s), which cannot be
deleted but may be overwritten by any other value, as opposite to CONSTANT
which cannot be overwritten later.

The scope and visibility is equivalent to PUBLIC variables.

Classification:
programming

Compatibility:
New in FS5

Related:
PUBLIC, CONSTANT, PRIVATE, DECLARE, STATIC

CMD 265

PUSH KEY
POP KEY
Syntax 1:

PUSH KEY [CLEAR]
Syntax 2:

POP KEY [ALL]
Purpose:

PUSH KEY and POP KEY is provided mainly for FoxPro compatibility

Description:
Syntax 1: PUSH KEY saves all ON KEY, ON KEY LABEL and SET KEY definitions
on internal stack for later restoring by POP KEY. The optional clause "CLEAR"
deletes all key assignments of ON KEY, ON KEY LABEL and SET KEY.

Syntax 2: POP KEY restores the last ON KEY, ON KEY LABEL and SET KEY
structure previously saved by PUSH KEY.

Classification:
programming

Compatibility:
New in FS5, compatible to FoxPro

Related:
ON KEY, OnKey(), SetKey(), SET KEY

CMD 266

QUIT
Syntax:

QUIT [<exitCode>]
or:

CANCEL
Purpose:

Terminates program execution, closes all opened files, and returns control to UNIX.

Options:
<exitCode> is optional numeric value returned by the application on exit. The
default setting is 0. You alternatively may set the exit code by ErrorLevel(num) at
any time before QUIT. The RETURN(num) in main module is equivalent to QUIT
<num>.

Description:
CANCEL or QUIT are available from anywhere in a program to terminate execution
and to return to the operating system. The same result is achieved if the RETURN
command is used on the top level or the user aborts via the break key (^K or
another defined with FS_SET("break")).

When the program terminates, all open files are closed and flushed to the disk.
Active record/file locks are released.

When a new console window was created in X11 or Windows environment (e.g. for
application running in terminal or basic mode without own console), a delay of 10
seconds occurs before the console window is closed. You may redefine this delay
by setting

_aGlobSetting[GSET_N_WAITCLOSEWIND] := 10 // this is default
See more details in ConsoleOpen(). This delay is disabled, when the application
was compiled by using -io=b switch.

The return code is normally set to 0 or to 1..9 if the process ends with a fatal or run-
time error. A user return code can be set with ERRORLEVEL() or the <exitCode>
parameter of QUIT. The InitIoQuit() function (or your re-defined UDF) also sets exit
code on user abort, see details in <FlagShip_dir>/system/initiomenu.prg and
ErrorLevel()

Classification:
programming (and database)

Translation:
__QUIT([exitCode])

Compatibility:
QUIT <num> is available in VFS7 only.

Related:
RETURN, ^K abort, FS_SET(), SETCANCEL(), ERRORLEVEL()

CMD 267

READ
Syntax:

READ [SAVE]
[ALIGN|NOALIGN]
[SELECT <varC|posN>]
[SKIPOVER|NOSKIPOVER]
[EXITCHECK]
[CLEAR|DESTROY]
[CYCLE]

Purpose:
Activates the full-screen editing mode using a list of pending GETs (objects).

Options:
The SAVE clause retains the list of current GETs to enable editing the same GETs
by issuing another READ. Without it, the current GETs are cleared when READ
ends except when ReadSave(.T.) is called during the READ.

The ALIGN or NOALIGN clause temporarily overrides the current SET GUIALIGN
setting. It specifies if the columns of @..SAY..GET should be aligned to the same
virtual column position via the GuiAlign() function. The align apply mainly for GUI
mode with proportional fonts. See also SET GUIALIGN and GuiAlign(), available in
source in <FlagShip_dir>/system/getsys.prg.

SELECT <varC> or SELECT <posN> causes READ to start with GET item
specified by variable name <varC>, or with item number <posN> within the GetList
array. If the GET item is disabled, next enabled item is used. If SELECT is not
given, READ starts at the first enabled item within current @..GET list. See also
ReadSelect() function.

SKIPOVER clause allows to skip over validated fields, NOSKIPOVER forces to stay
in the field which does not meet the VALID criteria. Skipping over a field can mostly
apply in GUI by mouse click on different field or widget in the GetList.

If EXITCHECK is specified, READ will check all VALID conditions at exit and stay
on the unsatisfied field even if SKIPOVER was set.

The CLEAR or DESTROY clause clears GUI Get widgets on exit. If not specified,
the widget remain visible same as in Terminal i/o.

With the CYCLE clause, the READ will not be terminated when moving forward
over the last GET item, or backward over the first GET. It instead cycles from the
last to first, and from first to last item. The READ CYCLE will be terminated by ESC,
Ctrl-W or CLEAR GETS.

Description:
The READ command enables full-screen editing using the pending list of GET fields
stored in the GETLIST [] array since the most recent CLEAR, CLEAR GETS,
CLEAR ALL or READ was executed.

CMD 268

Each GET field definition consists of an object, where the screen coordinates,
formatting, color, and pre- and post validation conditions are stored. These values
are specified by the @...GET command or assigned to the object. The user can
edit, re-enter or confirm the field data. Using the navigation keys, the user can move
between fields. The content of the field-editing buffer is stored in an associated
memory or FIELD variable.

The execution starts with the first pending GET field in the current GETLIST array
and is finished when all available fields are processed or a termination key is
pressed. If there is a format procedure active (see SET FORMAT), READ executes
that procedure prior to entering the full-screen editing mode.

When the current GET field is finished (by filling the rightmost column and SET
CONFIRM is OFF) or by pressing the GET or READ termination key, control is
passed to the optional plausibility checking specified by the RANGE and/or VALID
clause. If FALSE is returned from the VALID condition or the value is out of the
RANGE boundary, the cursor remains within the current field, allowing the user to
correct his entry. The ESC key leaves READ without storing the current field and
without plausibility checking, if SET ESCAPE is ON.

To modify active GET field during the READ execution, use WHEN or VALID clause
of @..GET, or SET KEY function. See "Validity" chapter below and examples in
<FlagShip_dir>/examples/getvalid*.prg

READ is finished when the appropriate termination key is encountered, or the last
pending GET field is terminated, or CLEAR GETS executed during the READ
process. Thereafter, the GET fields remains yet visible, except READ CLEAR was
used. To overwrite yet visible but inactive GET fields by @..SAY, ?, ?? or other
display commands, clear the screen area first by @ row,col CLEAR TO row,col or
the whole screen by CLS, CLEAR SCREEN or CLEAR.

Full-screen Navigation Keys for GETs and READ:

Key Action
Cursor <- ctrl-S moves cursor one position left
Cursor -> ctrl-D moves cursor one posit. right
Cursor Up ctrl-E previous GET field
shift-TAB previous GET field
Cursor Down ctrl-X next GET field
Enter ctrl-M next GET field
TAB ctrl-I next GET field
Home ctrl-A first character in field *
End ctrl-F last character in field *
ctrl-Cursor <- ctrl-Z previous word in field
ctrl-Cursor -> ctrl-B next word in field
ctrl-Home ctrl-] first GET field of READ
ctrl-End ctrl-W last GET field of READ or exit * *
Left-Mouse-Button on other field: select field ** *
Mouse-Wheel previous/next GET field ** *

CMD 269

* Quick keys: the first instance of the [Home] or [End] key pressed moves the
cursor to the first or last valid character; a repeated key moves the cursor to the
start or end of the field.

** ctrl-W and ctrl-End behavior depends on settings: it exits READ with CYCLE
clause or _aGlobSetting[GSET_L_GET_CTRLW_EXIT] = .T. otherwise it skips
to last GET field of READ. See Tuning below.

*** GUI mode only.

Edit Keys for the GET field:

Key Action
Insert ctrl-V Insert mode on/off *
Delete ctrl-G Delete character at cursor
Backspace <= ctrl-H Delete previous character

ctrl-T Delete word right
ctrl-Y Delete rest of the field
ctrl-U Undo, restore original field

Left-Mouse-Butt-Down Mark text for copy-and-paste **
Mid-Mouse-Button Alt-C Copy marked text to clipboard **
Shift+Mid-Mouse-But Alt-V Paste clipboard to curr.field **

* the insert mode continues to remain active for the next GET or READ.

** GUI mode only. See description in "cut-and-paste" below.

GET and READ Termination Keys initiate a post validation and store the GET field
contents into an associated memory or FIELD variable:

Key Action (S = save,
V = post-valid,
T = terminate READ)

Cursor up ctrl-E being in first field SV T *
otherwise: prev. field SV

Cursor down ctrl-X being in last field SV T *
otherwise: next field SV

Enter, Return ctrl-M being in last field SV T
otherwise: next field SV

ctrl-Home ctrl-] go to first field SV
ctrl-End ctrl-W terminates READ or last GET SV T **
PgUp ctrl-R terminates READ SV T
PgDn ctrl-C terminates READ SV T
Escape (Esc) terminates READ T *

* termination keys: READ termination depends on the current setting of
READEXIT() and SET ESCAPE.

** ctrl-W and ctrl-End behavior depends on settings: it exits READ with CYCLE

CMD 270

clause or _aGlobSetting[GSET_L_GET_CTRLW_EXIT] = .T. otherwise it skips
to last GET field of READ. See Tuning below.

Terminating READ is also possible by executing the BREAK, CLEAR, CLEAR
GETS, or CLEAR ALL command from a SET KEY procedure or from a user defined
function initiated by the VALID clause.

Validity, Plausibility:
Each GET field can include a pre-valid and/or plausibility (post- valid) condition
checking by using the @...GET clauses WHEN, VALID or RANGE.

Before the user can enter a GET field (object), control passes to the associated
WHEN <condition> if one is given. If the condition returns TRUE, editing is enabled;
otherwise, the field is skipped. When the user presses a GET exit key, control
passes to the associated RANGE or VALID post-condition if one has been
specified. If either of the conditions return FALSE, or the numeric value is out of the
RANGE boundary, control remains within the current GET field until a valid value is
entered or the user presses the Esc key. If both clauses are specified, RANGE is
performed first.

See WHEN and VALID examples below, in @..GET and in <FlagShip_dir>/
examples/getvalid*.prg

Update-Status:
When any GET field is changed by the user (but not in a VALID or SET KEY
function), the UPDATED() function will return TRUE.

Nested Reads:
By executing a VALID function or SET KEY procedure (background routine) when
in READ, another set of GET..READ may be temporary initiated, if a LOCAL,
STATIC or PRIVATE array GETLIST[0] is created there. All subsequent @...GETs
and READ will refer to this local set of GET fields, until the procedure or function
returns control back to the active READ.

Redirection: When one of the navigation key is redirected via SET KEY or
ON KEY or SET FUNCTION, the redirection is executed instead of the default
behavior.

User-modifiable READs and Objects:
During READ execution, the current GET object may be determined by using
GETACTIVE(); the associated export variables (including the editing buffer) can be
revoked or changed within a background routine. The type of the current GET
variable may not be changed without executing GETACTIVE():SETFOCUS().

For more programming control over the READ command, you may modify
<FlagShip_dir>/system/getsys.prg. Other user-defined READs may also be
performed if the procedure name is assigned to the get:GETREADER export
variable.

CMD 271

Multiuser:
If one or more GETs refer to database fields, RLOCK() or FLOCK() in the
associated working area must be executed before the READ statement. The
database should be UNLOCKed after READ. See also LNG.4.8 and Timer
paragraph below.

Multi-byte support:
To display multi-byte characters (used for east Asian languages) during the READ
input, enable it by SET MULTIBYTE ON either global or latest before the READ
statement.

Multi-byte characters are used e.g. in east Asian languages and are displayed with
corresponding environment setting. It usually concatenates two ascii characters >
128 to one multibyte sign. Hence to be able to display 10 multibyte signs, input field
of 20 characters is required.

Cut and Paste:
Depending on the currently used i/o mode (GUI, Terminal), you may insert/overwrite
characters in the GET field by cut and paste.

In GUI mode, FlagShip supports the global X11 or Windows clipboard for
exchanging/transfer keyboard data. You may copy and paste text via clipboard
from/to other windows or applications on the screen, or from/to other/current GET
field(s).

To copy part of the GET field into clipboard, issue:

•mark the text by depressed left mouse button, then
•press the Alt-C or middle mouse button (both user modifiable)

To copy text from another application on screen to clipboard, use the
corresponding key sequence of this application (like Ctrl-C, right or middle-mouse-
button menu etc).

To paste clipboard at current GET field position, issue:

•press Alt-V or Shift + middle mouse button (both user modifiable)

When INSERT state is on, the pasted text from clipboard is inserted, otherwise the
GET content is partially overwritten by the text from clipboard (same as you would
type it).

Tuning:
The READ is fully tunable, since available in source code in the
<FlagShip_dir>/system/getsys.prg file. You may copy it to your working directory,
and compile according to the header in source file, then link with your application.

You additionally may tune the standard READ behavior by following switches:

The copy and paste buttons or keys are user modifiable by assigning corresponding
INKEY() value (see inkey.fh for K_* manifests) to:

CMD 272

_aGlobSetting[GSET_G_N_GET_COPY1] := K_MBUTTONDOWN // copy
_aGlobSetting[GSET_G_N_GET_COPY2] := K_ALT_C // copy
_aGlobSetting[GSET_G_N_GET_PASTE1] := K_SH_MBUTTONDN // paste
_aGlobSetting[GSET_G_N_GET_PASTE2] := K_ALT_V // paste

where the default settings (set in initio.prg) are shown here. Note that the common
Ctrl-C and Ctrl-V keys are already assigned otherwise (PgDn and Insert), therefore
Alt-C and Alt-V are pre- defined instead. You may need to assign other keys when
these conflicts with TopBar menu or with your SET KEY redirection. In MS-
Windows, you may probably prefer K_RBUTTONDOWN for paste; it is not set by
default to avoid unintentional copying from the clipboard. Of course, you also may
modify the behavior directly in <FlagShip_dir>/system/getsys.prg source, see
above.

In Terminal i/o mode, similar functionality is provided (in Unix) via the "gpm" cut-
and-paste console utility/daemon and FlagShip keyboard buffer by using it pre-
defined keys and/or mouse buttons. To copy large strings, you probably may need
to extend the buffer size by SET TYPEAHEAD.

In both GUI and Terminal i/o, you may specify the behavior of Home and End key,
whether this keypress should skip to first/last valid character in field, or to the field
begin/end

_aGlobSetting[GSET_L_GET_HOME2CHAR] := .T. // default = 1st
_aGlobSetting[GSET_L_GET_END2CHAR] := .T. // default = last

however a double press on the Home/End key will skip cursor to begin or end of the
READ field, and vice-versa.

In GUI, you may modify the behavior of mouse click on READ field: Should mouse
click in current field execute oGet:Home() ?

_aGlobSetting[GSET_G_L_GET_MOUSEHOME]:= .F. // default = no
Should mouse click in another field activate this field and perform there
oGet:Home() ?

_aGlobSetting[GSET_G_L_GET_MOUSENEW] := .T. // default = yes
Should mouse click allow position behind the last valid char ?

_aGlobSetting[GSET_G_L_GET_MOUSEOUT] := .F. // default = no
The Ctrl-W and Ctrl-End keys terminates READ by default (same as in VFS6 and
Clipper 5.x without setting #define CTRL_END_SPECIAL). To re-define them to
skip to last GET item of READ (i.e. to behave same as Clipper'87 or FS4 or VFS5),
assign

_aGlobSetting[GSET_L_GET_CTRLW_EXIT] := .F. // default = .T.
which however may be overloaded by the CYCLE clause, which always causes exit
from READ.

The SET KEY redirection forces to re-display the visible GET field. You may avoid it
by assigning

_aGlobSetting[GSET_L_READ_INKEY_PLAIN] := .F. // default = .T.
which then uses InkeyTrap() instead of Inkey()

Additional tuning is described in the @..GET command.

CMD 273

Timer:
You may abort the READ after specified time period by issuing e.g.
KeySec(K_ESC, 900) before READ and KeySec(.F.) thereafter. This simulates
press of ESC key after 15 minutes (of inactivity), e.g. to unlock the record for editing
by others. You also may use KeyTime(...) for similar purposes. These Key*()
functions are available in FS2 Toolbox, see section FS2:Date/Time/Triggers for
details.

Example:
Access to database fields in multiuser mode:

FIELD name, city
@ 1,0 say "Name " GET name
@ 2,0 say "City " GET city
DO WHILE !RLOCK() ; ENDDO // lock .dbf fields
READ
UNLOCK // unlock in multiuser

Example:
Nested GET/READs to several levels:

#include "inkey.fh"
SET KEY K_F2 to f2_proc
SET KEY K_F3 to f3_proc
var1 := var2 := space(40)
@ 1, 0 GET var1
@ 2, 0 GET var2 VALID f3_proc(PROCNAME(), PROCLINE(), ;

READVAR())
READ

PROCEDURE f2_proc (procName, procLine, actVarName)
LOCAL myvarname := READVAR()
LOCAL getlist := {} // required for nesting
LOCAL var3 := 0, var4 := 0
output (procName, actVarName) // or myvarname
@ 5, 0 GET var3
@ 6, 0 GET var4
READ
RETURN

FUNCTION f3_proc (procName, procLine, actVarName)
LOCAL getlist[0] // required for nesting, same as getlist := {}
LOCAL var5 := 0
output (procName, actVarName)
@ 9, 0 GET var5
READ
RETURN var5 > 0

STATIC FUNCTION output (procName, actVarName)
@ 23,0 SAY "Trapped procedure F2 from " + procName
@ 24,0 SAY "Nested READ variable: " + actVarName
RETURN NIL

CMD 274

Example:
For more examples see the section (CMD) @..SAY..GET.

Classification:
programming

Class:
uses GET class, prototyped in <FlagShip_dir>/include/getclass.fh

Compatibility:
The use of objects is compatible to C5. In Clipper, the GET class cannot be
inherited to user defined class.

The ALIGN, NOALIGN, SKIPOVER, NOSKIPOVER, EXITCHECK, CLEAR,
DESTROY clauses are new in FS5, MULTIBYTE and cut-and-paste support is new
in FS6

Source:
<FlagShip_dir>/system/getsys.prg

Translation:
READ => READMODAL(GetList) ; GetList := {}
READ SAVE => READMODAL(GetList)

Related:
@...GET, CLEAR GETS, SET FORMAT, SET KEY, SET MULTIBYTE, UNLOCK,
LASTKEY(), FLOCK(), RLOCK(),

CMD 275

RECALL
Syntax:

RECALL [<scope>]
[FOR <condition>]
[WHILE <condition>]

Purpose:
Reinstates DELETEd records in the current working area. If the record was not
deleted, no action is performed.

Options:
<scope> is the part of the current database file to be undeleted. The default scope
is the current record if a condition is not specified, or ALL if a condition is specified.

<condition>: The FOR clause specifies that the set of records meeting the
condition within the given scope are to be recalled. The WHILE clause stops
recalling when the first record not fulfilling the condition is reached.

Description:
The deleted records are invisible when SET DELETED is ON and the database
pointer was moved. To reach deleted records, use GOTO or SET DELETED OFF.

Multiuser:
RLOCK() is required when recalling one record, while FLOCK() when <scope> or
<condition> is used. Otherwise, AUTOxLOCK() is used, when SET AUTOLOCK is
enabled (the default).

Example:
USE employee
DELETE ; ? DELETED() && .T.
RECALL ; ? DELETED() && .F.
SKIP
? DELETED() && .F.
RECALL ; ? DELETED() && .F.

Classification:
database

Compatibility:
The automatic lock is not available in Clipper. FlagShip's autolock is similar to
FoxPro and VO.

Translation:
RECALL => DBRECALL()
RECALL [..] => DBEVAL ({|| DBRECALL()}, [{for}],[{while}],;

[next], [rec], [.rest.])

Related:
DELETE, PACK, SET DELETED, SET AULTOLOCK, ZAP, DELETED(),
oRdd:RECALL()

CMD 276

REFRESH
Syntax:

REFRESH
Purpose:

Refreshes the screen contents from the last valid output buffer.

Description:
In the UNIX multiuser/multitasking environment, a screen output from different
programs can be re-routed to one physical screen, which may garbage the output
and deviate from the logical screen image buffers of the FlagShip application.

Note: To avoid long transfer time (e.g. on serial connected terminals), the curses
library optimizes the output, displaying the changed characters only. The required
parts of the curses library are linked into the FlagShip compiled executable; see
section SYS.

By-passing the curses in any way (e.g. using #Cinline printf() output, activating
other virtual shell windows or sessions, rerouting the output to /dev/tty.., printing
from a child program etc.) may cause unpredictable results of subsequent screen
output.

In such a case, use the REFRESH command or REFRESH() function to re-display
the current FlagShip output and reset the correct cursor coordinates. Executing the
sequence SAVE SCREEN ... "odd output" ... RESTORE SCREEN will not cause
the same effect as REFRESH in all cases, but in RUN only.

Example:
SETPOS (10,5)
?? "Now, the directory is listed:"
y1 := ROW(); x1 := COL() // 10, 34
RUN MESSAGE "press any key" ls -l *
INKEY (0)
y2 := ROW(); x2 := COL()
REFRESH
? "old:", y1, x1 // 10 34
? "new:", y2, x2 // 10, 34

Classification:
screen oriented output

Compatibility:
The command is available in FlagShip only.

Translation:
REFRESH()

Related:
REFRESH(), SAVE/RESTORE SCREEN, RUN

CMD 277

REINDEX
Syntax:

REINDEX [EVAL <expL1> [EVERY <expN2>]]
Purpose:

Rebuilds all open indices in the current working area.

Options:
EVAL <expL1> specifies a condition (similar to the WHILE <condition>, see the
general command description), that may be executed at a specific record interval
given by the EVERY <expN2> clause. The <expL1> must return TRUE to continue
reindexing. The EVAL clause may be used, for example, to monitor the progress of
indexing, with a UDF. If <expN2> is not specified, the default value is one (each
record).

Description:
REINDEX performs the same action as INDEX ON..., but uses the index criteria
already stored in the index header. Therefore, if the index file is corrupted, or the
database structure was changed, the INDEX ON command should by used.

The REINDEX command is generally used to update indices which were not
assigned to the database during its modification or appending. See also FlagShip's
integrity checking in INDEX ON and INDEXCHECK().

REINDEX obeys the UNIQUE and ASCEND/DESCEND status as well as to the
FOR <condition> as first created with INDEX ON. The current SET UNIQUE
program status in not considered, but the stored status in the index header is used
instead (see INDEX ON).

When REINDEX is finished, all current indices remain open, the ORDER is set to 1,
and the database pointer is positioned to the first logical record.

Multiuser:
Exclusive access to the required database must be acquired by USE...EXCLUSIVE.
In a multiuser environment, the time-consuming REINDEX can be omitted entirely,
if all relevant index files are always assigned to the open databases. To select the
required index file, use the SET ORDER command.

Example:
USE employee INDEX name
REPLACE ALL salary WITH salary + 100
SET INDEX TO id, birthdate, salary, name
REINDEX

CMD 278

Example:
Report the percentage of the reindex process:

LOCAL count, perc := 0
USE address NEW EXCLUSIVE
count := LASTREC()
SET INDEX TO adrname
REINDEX EVAL mydisplay(perc++) EVERY INT(count/100)

FUNCTION mydisplay (out)
@ 20,10 say "Reindexing, " + STR(out,3) + "% ready"
RETURN .T.

Classification:
database

Compatibility:
The index structure depends on the used RDD. The default driver DBFIDX uses
special index files named .idx, which are not compatible to Clipper's .NTX or dBASE
.NDX files. The internal structures of the index files and the locking mechanism are
not compatible in these different dialects.

The EVAL and EVERY clause is new in FS4. Integrity checking is available with the
FlagShip default driver only.

Translation:
REINDEX => DBREINDEX()
REINDEX [EVAL...] => ORDCONDSET (,,,, {||eval}, every)

ORDLISTREB ()

Related:
INDEX, PACK, SET INDEX, SET EXCLUSIVE, SET UNIQUE, SET ORDER, USE,
INDEXCHECK(), INDEXNAMES(), INDEXDBF(), ISDBEXCL(), oRdd:REINDEX()

CMD 279

RELEASE
Syntax 1:

RELEASE <memvarList>
Syntax 2:

RELEASE ALL [LIKE | EXCEPT <skeleton>]
Purpose:

Deletes specified PRIVATE and PUBLIC memory variables.

Arguments:
<memvarList> is the list of variables to be deleted.

ALL deletes all visible variables in the dynamic scope.

<skeleton> is a wildcard mask (* and ? are supported) which specifies a group of
variables to delete (ALL LIKE) or not to delete (ALL EXCEPT).

Description:
The RELEASE command performs different actions, depending on how it is
specified:
•On syntax 1, the most recently declared variables and arrays are deleted whether

PUBLIC or PRIVATE.
•On syntax 2, the scope of deleting becomes the current procedure level, and it

can be narrowed if a wildcard is specified. Only PRIVATE and autoPRIVATE
variables created in the current procedure are affected; a NIL value is assigned to
the specified variables.

It is not necessary to RELEASE private (declared or automatic) variables before
leaving a PROCEDURE or a FUNCTION. They will be released automatically.
LOCAL, STATIC and TYPED variables are not affected by the RELEASE
command. Local variables are released automatically when the procedure or UDF
where the variables were declared terminates. Static variables cannot be released
since they exist for the duration of the program.

Example:
PUBLIC v1,v2,v3,name
STORE "John" TO v1,v2,v3,name
RELEASE ALL LIKE v*
? TYPE("v1") && U
? TYPE("name") && C

Compatibility:
The behavior of the syntax 2 in FS and C5 differs slightly from and C87. In Flag-
Ship, any number of variables is supported, so the RELEASE is not needed at all.

Related:
CLEAR ALL, CLEAR MEMORY, PRIVATE, PUBLIC, RESTORE, SAVE, LOCAL,
STATIC, GLOBAL

CMD 280

RENAME ... TO
Syntax:

RENAME <file1> TO <file2>
Purpose:

Gives a file a new name.

Arguments:
<file1> is the name of the file to be renamed. Standard UNIX wildcards are
supported (see "man mv").

<file2> is the new name for the file. If only the path (except the dot . alone) is
specified, the file(s) from <file1> are moved to the path given in <file2>.

Both <file1> and <file2> can be given as parenthesed (<expC>). Both file names
have to include the extension and can optionally be preceded by a path designator.

Description:
RENAME is a file command that changes the name of a specified file to a new
name, very similar to the UNIX command "mv". This command does not use SET
DEFAULT and SET PATH settings.

If the <file2> exists, it is overwritten without any warning. The success or error may
be checked using DOSERROR() or FILE().

Both <file1> and <file2> (if they exist) must be closed before renaming or moving.
Attempting to rename an open file will produce unpredictable results.

When a database file is RENAMEd it is also necessary to RENAME the associated
memo file.

Example:
? FILE("prices.dbf") && .T.
? FILE("old.dbf") && .F.
RENAME prices.dbf TO old.dbf
? FILE("old.dbf") && .T.
RENAME "[a-c]*.db*" TO /usr/myname && move them

The same action may be also done with:

RUN mv prices.dbf old.dbf RUN ("mv [a-c]*.db* /usr/myname 2>/dev/nul")

Classification:
system, file access

Compatibility:
The RENAME command is equivalent to the UNIX command "mv" or the similar
DOS command "REN". The usage of wildcards and the DOSERROR() checking is
available in FlagShip only.

RENAME will be affected by the settings for the automatic path, pathname
conversion using e.g. FS_SET("pathlower") and FS_SET("lower"), the extension

CMD 281

replacement using FS_SET("translext") and the drive substitution using the
environment variable x_FSDRIVE.

Related:
COPY FILE, ERASE, RUN, DOSERROR(), FILE(), FS_SET(), UNIX: mv

CMD 282

REPLACE ... WITH
Syntax:

REPLACE [<scope>]
[<alias> ->]<field1> WITH <exp1>
[, <field2> WITH <exp2>,...]
[FOR <condition>] [WHILE <condition>]

Purpose:
Puts the results of evaluating the given expressions into the specified database
fields.

Arguments:
<field> is the name of the field to change. The field can be of any type.

<exp> is the expression to REPLACE with.

Options:
<alias> has to be specified if a field belongs to a working area other than the
current one.

<scope> is the portion of the current database file to REPLACE. The default is the
current record. Specifying a <condition> changes the default to ALL.

FOR <condition> specifies the conditional set of records to REPLACE within the
given scope.

WHILE <condition> specifies the set of records from the current record until the
condition fails.

Description:
REPLACE is a database command that assigns new values to the contents of one
or more field variables in the current record in the specified working areas. The
target field can be character, date, logical, memo, or numeric. REPLACE
automatically updates all indices assigned to the specified working area.

REPLACE performs the same function as the assignment operator (:= or =) on
aliased or as FIELD declared variables.

Note: replacing a field which is a part of the current index key expression may
change the relative position of the record within the index file. Therefore, replacing a
key field within a <scope> (like REPLACE ALL or NEXT n or REST etc.) or with
FOR/WHILE clause may be hazardous on such active index, because this will often
not replace all expected records in the <scope>. The reason is the SKIP to next
record in <scope> according to the (permanently changed) index sequence order.
The solution is the sequence n = INDEXORD() ; SET ORDER TO 0 ; REPLACE
<scope> ... ; SET ORDER TO (n), or the similar but much less effective CLOSE
INDEX, REPLACE <scope>... and then SET INDEX TO... plus REINDEX.

CMD 283

Sizes and Special characters:
In "C" (character) fields, any string containing ASCII character values 0..255 is
accepted, also embedded zero (0x00) bytes. The size of character field is fix, the
max size is 64 Kbytes. If <exp1> is longer than field size, the rest is silently
truncated.

In "M" (memo) fields, any string containing ASCII character values 1..255 is
accepted, except the CHR(0) = 0x00 and CHR(26) = 0x1A characters, which
terminates the memo field. If these characters are used in the saved data, use
MemoEncode() to store such strings in the memo field and MemoDecode() to read
it from. The memo field is of variable size (in 512 bytes segments) and is per xBase
specs limited to 64 Kbytes (65536 bytes). If <exp1> is longer, RTE 301 occurs. Hint:
if you need to store strings larger than 64kb, use two or more memo fields and split
the <exp1> string via substr() to segments shorter than 64kb; on access simply
concatenate them, see example below. An alternative is also to use the extended
.dbv FlagShip memo field.

"VC*" are variable length fields, storing any text or binary data in a file of the same
name as the database, with .dbv extension. The data may be stored compressed
(by LZH or RLL algorithm) if the 3rd digit type is Z ("VCZ") or with setting
SET(_SET_COMPRESS,.T.) Hard-CR chr(13,10) and soft-CR chr(141,10) are
removed from the string, except you set
_aGlobSetting[GSET_L_REMCR_VCFIELD] := .F. // default is .T.

In compressed storage, binary 0 and 0x1A are handled specially. If you wish to
avoid this, set
_aGlobSetting[GSET_L_BINARY0_VFIELD] := .F. // default is .T.

"VB*" are variable length fields, storing binary and BLOB data in a file of the same
name as the database, with .dbv extension. The data may be stored compressed
(by LZH or RLL algorithm) if the 3rd digit type is Z ("VBZ") or with setting
SET(_SET_COMPRESS,.T.)

Multiuser:
RLOCK() is required for replacing a single record, while FLOCK() or an
EXCLUSIVE database when <scope> or <condition> is used. If a field of another
working area is replaced by specifying its alias, the corresponding record must also
be locked with an alias->RLOCK(). If the database or record is not locked by the
programmer, FlagShip invokes AUTORLOCK(), when SET AUTOLOCK is enabled
(the default).

When performing operations on the SAME physical database (used concurrently in
different working areas), see chapter LNG.4.8.7.

Example:
USE employee NEW ALIAS empl
USE expenses NEW ALIAS exp INDEX exp_id
SEEK empl->Id
SELECT empl
REPLACE name WITH exp->name
REPLACE Spent WITH Exp->Bus_fare + Exp->Dinner, ;

Text WITH Exp->Text

CMD 284

// or: FIELD->spent := Exp->Bus_fare + Exp->Dinner
// empl->Text := Exp->Text

Example:
Using long memo fields: String variables in FlagShip can contain up to 2 Gbytes,
whilst the database Memo field is limited by the xBase specification to 64 Kbytes.
To store larger data, use e.g.

DBCREATE("test", {{"IdNum","N",5,0}, {"Memo1","M",10,0}, ;
{"Memo2","M",10,0},{"Memo3","M",10,0} })

USE test
cLongStr := replicate("x", 163840) // 160 kb
APPEND BLANK
REPLACE FIELD->Memo1 with LEFT (cLongStr, 65500) , ;

FIELD->Memo2 with SUBSTR(cLongStr, 65501, 65500) , ;
FIELD->Memo3 with SUBSTR(cLongStr, 131001,65500)

...
cLongStr := FIELD->Memo1 + FIELD->Memo2 + FIELD->Memo3
? LEN(cLongStr) // 163840

Example:
Typical example for multiuser/multitasking:

SET EXCLUSIVE OFF && set multiuser on
SELECT 5
USE address && see more: USE ...
SET INDEX TO name

SEEK "Brown" && or user entry
IF FOUND() && change data

xname = name
xmid = midname
xcity = city

ELSE && new entry
xname = SPACE(25)
xmid = SPACE(30)
xcity = SPACE(LEN(city))

ENDIF

@ 5, 0 SAY "Name " GET xname
@ 5,40 SAY "Middle " GET xmid
@ 6, 0 SAY "City " GET xcity
READ && lock not required

if lastkey() <> 27 && Esc key pressed ?
if EOF()

APPEND BLANK
WHILE NETERR(); APPEND BLANK; END

else
WHILE !RLOCK () ; END

endif
REPLACE name WITH xname, midname WITH xmid, ;

city WITH xcity
UNLOCK

endif

CMD 285

Classification:
database

Compatibility:
The automatic locking is not available in Clipper. FlagShip's autolock is similar to
FoxPro and VO.

Translation:
REPLACE exp1 WITH exp2 => _FIELD->exp1 := exp2
REPLACE exp1 WITH exp2 [FOR, WHILE...] =>

DBEVAL({||_FIELD->exp1 := exp2 [_FIELD->exp...]}, ;
[{for}], [{while}], [next], [rec], [.rest.])

Related:
APPEND, APPEND BLANK, JOIN, UPDATE, SET EXCLUSIVE, FIELD, MEMVAR,
FLOCK(), RLOCK(), UNLOCK, COMMIT, oRdd:REplace(), oRdd:FIeldPut()

CMD 286

REPORT EDIT
Syntax:

REPORT EDIT <file>|(<expC>)
Purpose:

Interactively creates or modifies reports for use with the REPORT FORM command.

Arguments:
<file> is the file which holds the definition of the report. If the file does not exist, a
new report is created, otherwise the stored one is modified. The default extension is
.frm.

Description:
If the <file> does not exist, a new .frm file is created, otherwise the available one is
modified. When executing the REPORT EDIT command, a full design screen for a
label appears:

myreport.frm F2:pg F3:column F4:group F5:fields F7:displ F10:save ESC:quit
┌F2───┐┌F3: column 1/25────────┐
│ Page header line 1 : Extract from the ││ Expr: ADDRESS->IDENTN│
│ line 2 : for active cus ││ Head: Address │
│ line 3 : ││ #2: Number │
│ line 4 : ││ #3: │
│ Page wide/high : 365 chars 65 lines ││ #4: │
│ Margin left/right : 0 chars 0 chars ││ Wide: 8 │
│ Double spacing/plain : F F ││ Deci: 0 Delete/Insert│
│ Eject begin/end : F T ││ Total F Add/Replace R│
└───┘└───────────────────────┘
╔F4═══╗┌F5:ADDRESS.dbf─────────┐
║ Group key (express.) : article ║│ IDENTNUN N 6 0 │
║ header text #1 : article: &article ║│ COMPANY C 25 0 │
║ #2 : ║│ CUST_NO C 10 0 │
║ #3 : ║│ CUST_TYPE C 1 0 │
║ #4 : ║│ ADDRESS C 25 0 │
║ Summary/Eject : F / T ║│ STREET C 25 0 │
║ Subgroup key (expr.) : ║│ CITY C 25 0 │
║ header text #1 : ║│ ZIPCODE C 6 0 │
║ #2 : ║│ TURNOV N 12 2 │
╚═══╝└────────────F6:next dbf┘
┌F7──┐
│,....1....,....2....,....3....,....4....,....5....,....6....,..│
│PgHd: Extract from the customer's database │
│PgHd: for active custommers only │
│GrHd:article: &article │
│ │
│Colm:[--1--] [-----------2-----------] [---3----] [4-] [-----------5----│
│TxtD:Address Company Custommer type Address │
│TxtD:Number name Number │
│Data: nnnnnn xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxx x xxxxxxxxxxxxxxxxx│
│ │
└──┘
(F4) enter group and sub-group data. CursUp/CursDn: move ENTER: confirm

CMD 287

The name of the report file is displayed at the top. If not available, you are prompted
to "Retry", "Create", "AutoCreate" or "Quit", which lets you re-enter the correct
name, create a new report or do that automatically, using the data out of the
currently selected database.

You may choose to edit the desired REPORT part by pressing the corresponding
function key. With F5/F6 you may select a database from the current or another
working area into the database window, or switch to the next database. From this
window you may overtake the field name and database alias over to the EXPR. field
of the column window, when pressing RETURN.

With F7, you may view the current form of the REPORT with the whole data
summarized inside.

You may also choose to prepare the initial report automatically during creation. This
will overtake the first 25 fields of the currently selected database and automatically
assign adequate column headers. The time to create a report may be reduced by
using this option

Example:
Creates and prints a report

USE test2
USE sales INDEX article NEW
IF !FILE(salerep.frm")

REPORT EDIT salerep // create report
ENDIF
SEEK 1000
IF FOUND()

REPORT FORM salerep TO PRINT ;
FOR datesold >= DATE() -30 ;
WHILE article <= 2000 NOCONS

ENDIF

Classification:
programming

Compatibility:
The command is available in FlagShip only. To create/modify reports in dBASE III+,
use CREATE REPORT; in Clipper the program RL.EXE can be used.

Source:
available in <FlagShip_dir>/system/repoedit.prg

Translation:
__REPOEDIT ("file")

Related:
REPORT FORM, LABEL EDIT

CMD 288

REPORT FORM
Syntax:

REPORT FORM <file1>|(<expC1>) [<scope>]
[FOR <condition>] [WHILE <condition>]
[TO PRINTER] [NOCONSOLE]
[TO FILE <file2>|(<expC2>) [ADDITIVE]]
[NOEJECT] [SUMMARY] [PLAIN]
[HEADING <expC3>] [MESSAGES <expA4>]

Purpose:
Displays a formatted report defined in a .frm file.

Arguments:
<file1> is the file which holds the definition of the report. The default extension is
.frm.

Options:
<scope> is the part of the current database file to report. The default scope is ALL.
Either keywords or an expression can be specified.

<condition> specifies additional FOR or/and WHILE filtering; see the general
command description.

TO PRINTER: echoes output to a printer file. To disable the screen output, use SET
CONSOLE OFF.

TO FILE <file2>: echoes output (ADDITIVE) to the specified file; see also the
general command description. Note that formfeed characters are not echoed to the
file. To include form feed characters to the file, execute SET PRINTER TO <file2>
and use the clause TO PRINTER instead of TO FILE.

NOCONSOLE suppresses all REPORT FORM output to the console. If not
specified, output automatically displays to the console unless SET CONSOLE is
OFF.

NOEJECT: Suppresses initial page eject when the TO PRINTER clause is used.

SUMMARY: In this case, REPORT FORM displays only total lines of groups,
subgroups, and the grand total line. Detail lines are suppressed.

PLAIN: Suppresses the display of page headers. Moreover, the report title and
column headings are displayed only at the beginning of the report. If both PLAIN
and HEADING are specified, PLAIN takes precedence.

HEADING <expC3>: Heading is displayed at the top of each page. Note that
<expC3> is evaluated only once at the beginning of the report before the record
pointer is moved. Up to three lines can be given, the semicolon ";" acts as the line
separator.

CMD 289

MESSAGES <expA4>: User-defined messages printed during the REPORT FORM
execution. The messages are stored in an array[5], with the defaults:

array[1] := "Page Nr."
array[2] := "* Subsubtotal *"
array[3] := "** Subtotal **"
array[4] := "*** Total ***"
array[5] := "defined page has too few lines"

All messages have to be given to be accepted.

Description:
The REPORT FORM executes a report the definition of which is stored in a .frm file.
If a path is not specified, the file is searched in the current directory and then in the
SET PATH directories. If not found, a run-time error occurs.

The current .frm is created using REPORT EDIT or RL.EXE of Clipper or CREATE
REPORT of dBASEIII+.

REPORT FORM sequentially accesses records in the current working area
displaying a tabular and optionally grouped report with page and column headings.

Multiuser:
In a multiuser environment, no locking action is required. To ensure that the printed
data is not changed while REPORTing it, FLOCK() can be used.

Example:
User break using the ESC key is possible.

LOCAL text := {"Page", "*", "", "TOTAL", ;
"article.frm definition error"}

USE article INDEX name
REPORT FORM articles TO PRINT ;

WHILE INKEY() # 27 ;
FOR YEAR(Publ_date) >= YEAR(DATE()) ;
HEADING "Interesting Articles ;;" + ;

"I Read This Year ("+ STR(YEAR(DATE())) +".)" ;
MESSAGES text NOCONSOLE

Classification:
programming

Compatibility:
Report files .frm from Clipper or dBASEIII (binary transferred from DOS to UNIX)
are supported. The clause NOCONSOLE is new in FS4, the clauses MESSAGES
and ADDITIVE are available in FlagShip only.

Translation:
__REPORTFORM ("file1", .print., "file2", .noconsole., ;

{for}, {while}, next, rec, .rest., .plain., ;
"expC3", .noeject., .summary., expA4)

Related:
REPORT EDIT, DISPLAY, LABEL FORM

CMD 290

REQUEST
Syntax:

REQUEST <moduleList>
Purpose:

Declare a module request list for the linker.

Arguments:
<moduleList> is a list of external modules to be linked into the executable.

Description:
In contrast to the similar EXTERNAL statement, which specifies a link request to an
external procedure name, the REQUEST declarator specifies a request for a
module name, such as a .prg or a module declared by the ANNOUNCE statement.

As with EXTERNAL, the request command is used if some modules are not called
directly by their names (like DO...NAME or NAME()), but from within macros or
INDEX key only. Also, if a .prg file contains only INIT/ EXIT PROCEDUREs, a
REQUEST command elsewhere may be required to avoid a run-time error
"unresolved external".

Example:
*** file test.prg *** compiled by: FlagShip test*.prg -na
REQUEST test5
// or: EXTERNAL test2
var := "test2"
DO &var
QUIT

*** file test1.prg ***
ANNOUNCE test5 // new module name
PROCEDURE test2
? "being now in test2"
RETURN
EXIT PROCEDURE endproc // called by FlagShip only
? "bye, bye"
RETURN

Classification:
compiler/linker

Compatibility:
Available in FS4 and C5 only.

Related:
ANNOUNCE, EXTERNAL

CMD 291

RESTORE FROM
Syntax:

RESTORE FROM <file>|(<expC>) [ADDITIVE]
Purpose:

Retrieves PRIVATE and PUBLIC memory variables from a memory (.mem) file.

Arguments:
<file> is a memory file to be read. If an extension is not specified, .mem is
assumed.

Options:
ADDITIVE: When specified, adds memory variables loaded from the memory file to
the existing pool of memory variables. Unless hidden via PRIVATE, memory
variables with the same name are overwritten.

Description:
The RESTORE command recreates the names and values of PUBLIC and
PRIVATE variables previously saved to the <file> using the SAVE..TO command.
Because the class and scope of the variables is not saved, the class of the restored
variables depends on the ADDITIVE clause:

•If ADDITIVE is not given, all PUBLIC and PRIVATE variables are released
(equivalent to the CLEAR MEMORY command) before the restored variables are
created in the PRIVATE class.

•When the clause ADDITIVE is specified and the PUBLIC or PRIVATE variable of
the same name is visible, the former value will be overwritten, but the class
remains unchanged. Other, or the currently invisible variables will be created as
PRIVATEs.

FlagShip also stores and restores PRIVATE and PUBLIC arrays and screen
variables, except when FS_SET ("memcompat", .T.) is specified.

LOCAL, STATIC and TYPED variables are unaffected by SAVE and RESTORE.
Since the visibility of these variables has precedence, the restored variables of the
same name are invisible within the UDF or the STATIC scope, unless they are
preceded by the MEMVAR-> or M-> alias.

Example:
Usage of variables, created in previous session:

PUBLIC test, colors
IF FILE("restvar.mem")

RESTORE FROM restvar ADDITIVE
ELSE

test := 25
colors := {"W+/B", "R/N"}

ENDIF

CMD 292

IF FILE("screens.mem")
RESTORE FROM screens ADDITIVE
RESTORE SCREEN FROM scr1

ENDIF
SETCOLOR (colors[1])
//
SAVE SCREEN TO scr1
SAVE ALL LIKE scr* TO screens
SAVE ALL EXCEPT scr* TO restvar
QUIT

Classification:
programming

Compatibility:
Clipper's screen contents, stored in variables of type "C" cannot be directly used in
FlagShip, which stores it in "S" variable types. Use the transfer functions
SCRDOS2UNIX() for such purposes. Note that a screen from one terminal can be
correctly re-displayed on the same terminal type only.

The content of the screen variables in Terminal i/o and GUI is not compatible to
each other. Screen variables in GUI mode cannot be converted via ScrDos2Unix()
or ScrUnix2Dos().

Unlike Clipper, FlagShip also STOREs and RESTOREs the contents of arrays and
screen variables. Normally, the saved arrays and screens can also be read by the
DOS dialects, since they simply ignore them. To avoid saving and restoring arrays
and screens variables, set the compatibility switch FS_SET ("memcompat", .T.).

To transfer .mem files from/to DOS, a binary protocol must be used, see section
SYS.

Translation:
__MRESTORE ("file", .add.)

Related:
SAVE, PRIVATE, PUBLIC, LOCAL, STATIC, GLOBAL, CLEAR MEMORY, SAVE
SCREEN, FS_SET()

CMD 293

RESTORE SCREEN
Syntax:

RESTORE SCREEN [FROM <memvar>]
Purpose:

Displays a screen that has been saved to a memory variable.

Options:
<memvar> is a screen variable to which the screen display was saved using the
SAVE SCREEN command. This variable is of the type "S" and cannot be used for
string or arithmetic operations. It may however, be translated to a character type
and back, using SCREEN2CHR(), CHR2SCREEN() respectively. For manipulating
the screen variable, see (EXT) _retscw().

If <memvar> is not specified, the screen display is saved and restored to/from an
internal variable which is overwritten each time a new screen is saved.

Description:
RESTORE SCREEN is used for redrawing the whole screen that was saved with
SAVE SCREEN. Normally, it is used to change a screen temporarily and return to it
later. Otherwise, the screen would have to be repainted. To STORE and RESTORE
a part of the screen, the functions SAVESCREEN() and RESTSCREEN() should be
used instead. Saving/restoring only the required part of screen will speed up the
application visibly.

Example:
USE authors
SAVE SCREEN TO myscreen
REPORT FORM authors
RESTORE SCREEN FROM myscreen

Classification:
programming

Compatibility:
To save the contents of a screen, FlagShip uses a variable of type "S" in contrast to
the Clipper's type "C", which is not binary compatible. Use the transfer functions
SCRDOS2UNIX() or SCRUNIX2DOS() when you need to save/restore the DOS
stored screen contents. See _retscw() in chapter EXT if you need to manipulate the
contents of the screen variable. See also compatibility notes in RESTORE FROM
command.

Translation:
__XRESTSCREEN()

Related:
SAVE SCREEN, SAVESCREEN(), RESTSCREEN(), SCREEN2CHR()
CHR2SCREEN(), SCRUNIX2DOS(), SCRDOS2UNIX()

CMD 294

RETURN
Syntax:

RETURN [<exp>]
Purpose:

Terminates a procedure (UDP), function (UDF) or the entire program returning
control to either the calling procedure or the UNIX operating system.

Arguments:
<exp> is an expression of any type that evaluates to the return value for a user-
defined function. If not specified, the UDF returns NIL.

Description:
In a procedure (UDP) or function (UDF), FlagShip releases all PRIVATE,
autoPRIVATE and LOCAL variables created there and returns to the calling
procedure. When RETURN is executed at the highest level, control is passed to
UNIX.

There can be more than one RETURN in a UDP or UDF. RETURN (NIL) is also
assumed when reaching another PROCEDURE or FUNCTION command, or the
end-of-file.

The RETURN statement passes control only one level up, to the calling procedure.
However, using the BREAK command it is possible to jump more than one level at
a time, into the next BEGIN SEQUENCE...END structure. This is similar to
RETURN TO MASTER of dBASE, but more flexible.

Example:
FUNCTION myudf (par1, name, par3)
? name
RETURN par1 + par2

PROCEDURE myudp
PARAMETERS par1, name, par3, retpar
? name
retpar = par1 + par2 // passes back by param
RETURN

Classification:
programming

Compatibility:
In an UDF, FlagShip accepts a RETURN without an <exp>, returning NIL. Clipper
requires a given return value.

Related:
CANCEL, QUIT, BEGIN SEQUENCE, FUNCTION, PROCEDURE

CMD 295

RUN
Syntax:

RUN [WAIT|NOWAIT] [MESSAGE <expC1>]
<UNIX command|Windows command>|(<expC2>)

or:
! [WAIT|NOWAIT] [MESSAGE <expC1>]

<UNIX command|Windows command>|(<expC2>)
Purpose:

Executes UNIX or Windows command, program or script within the current
application. This allows the use of the power of UNIX and Windows commands and
shell. In MS-Windows, RUN executes internal CMD commands and .exe, .com or
.bat files.

Arguments:
<UNIX|Windows command> may be any executable program or script within the
path. Any character expression has to be enclosed in parentheses. Macro
expressions can also be used and will be expanded before submitting the command
to the shell. In Windows, you may execute internal CMD commands (like VOL, DIR,
COPY etc.) via RUN "CMD /C command.." but FlagShip will precede the command
string by "CMD /C " automatically (for internal shell commands only), if not disabled,
see section "Tuning" below. You should use parenthesed expression (expC2)
instead of command constant, when the command/expression contain backslashes
or spaces.

Options:
WAIT or NOWAIT: optional modifier. With WAIT (default), the application will wait
until the command will finish. NOWAIT will trigger the command to background and
continue execution of the application. NOWAIT is similar to Unix command
"shell_call &". Do not use WAIT/NOWAIT clause together with the "&" postfix.

MESSAGE <expC1> is an optional, user defined message to be printed on the
screen, when the executed UNIX command is finished. Note, no FlagShip output
mapping is active when the MESSAGE is printed; it works as does the "echo
<expC1>" from the UNIX shell would. Before <expC1> is printed, a NEW LINE is
executed (similar to the WAIT command).

Note that both options, if any given, needs to precede the command.

Return code:
The return code may be checked via DosError() function. Note: this return code is
system dependant and correspond to the return value of system function system()
or of errno if system() returns -1. On some oper. systems, you will get the true exit
code by calculating nRet := int(DosError() / 256)

CMD 296

Description:
At RUN command, FlagShip invokes a new shell and passes it the UNIX or
Windows command to be executed. The required command must be available in
the current path or else given with an absolute path.

When the <Unix/Windows command> ends (or when the background process is
started by "&" postfix or by NOWAIT clause), the control returns back to the
application, executing the next FlagShip statement.

In MS-Windows, the RUN accepts Windows-Commands and EXE files by the same
way as in Unix, using the CMD shell. When the path or file name contain spaces,
you need to enclose the corresponding parameters in quotas, see example below.
You need to specify fully qualified name including drive and path, when the path of
the given executable is not included in the current Windows PATH environment
variable.

To allow the output from the program called to be inspected, print a prompt (using
e.g. the MESSAGE clause or the equivalent "; echo..." statement) and stop further
execution with INKEY(0) after the RUN command; see example.

Shell access: You may run a shell by specifying the argument "sh" (or "csh", "ksh"
respectively) to the RUN command. To exit the shell, type "exit". In MS-Windows,
invoke CMD or COMMAND for that reason.

Background processing: the executable or script called may run in background, if
the RUN command specification ends with an ampersand (&) character or by using
the NOWAIT clause. The current application will not wait for the called executable
to finish, but will carry on with its own execution immediately. The program called
becomes a child of the calling executable and will terminate latest when the current
application terminates. Applicable in Unix/Linux only. Note that any input to, or
output from the background program may cause the called application to hang.

User break: when the program called is a FlagShip application, both programs will
receive the break and debug signals (^K and ^O).

Environment variables: cannot be set from a RUN command, since they are local
to the executing subprocess and do not affect the calling application. Use
FS_SET("setenv") instead. The current PATH environment variable is used to
search for the executable, when the command does not include path.

Screen output: in Terminal i/o mode, the output goes to the screen and is handled
by the curses library, as described in section SYS. This library optimizes the current
output stream. If the by RUN called programs produce any screen output, it will be
thereafter "invisible" for the curses buffer from the calling FlagShip application. Also,
the new cursor position is not conveyed to the calling application; the screen output
becomes undefined (for the curses library). To synchronize the physical screen with
the current application, execute any of the REFRESH, [@..]CLEAR..,
RESTSCREEN() or SCROLL() functions after RUN.

In Basic i/o mode, the output from the by RUN called programs goes to stdout or
stderr.

CMD 297

In GUI mode, the output from the called program goes to stdout or stderr, which is
usually assigned to the console (or console window) and hence does not affect the
current screen.

Compatibility note: since the Unix and MS-Windows commands usually differs
from each other, you may use
#ifdef FS_WIN32

RUN Windows-Command...
#else

RUN Unix-Command...
#endif

Tuning:
If an error occurs, it is displayed as run-time-error. You may disable this by
assigning
_aGlobSetting[GSET_L_RUNRTERROR] := .F. // default = .T.

You may display the full RUN command & time on console by assigning
_aGlobSetting[GSET_L_RUNDISPLAY] := .T. // default = .F.

To disable the detection of internal CMD commands (in FlagShip for MS-Windows)
and avoid it automatic prefacing by "CMD /C ", set
_aGlobSetting[GSET_L_WINCMDDETECT] := .F. // default = .T.

Example:
Execute a simple UNIX or DOS/Windows program:

SAVE SCREEN
#ifdef FS_WIN32

RUN ("CMD /C dir *.prg | more") // MS-Windows
WAIT

#else
RUN MESSAGE "press any key..." ls -l *.prg | pg // Unix
// or: RUN ("ls -l *.prg | pg ; echo press any key...")
INKEY (0)

#endif
RESTORE SCREEN

Example:
To pass the output into file and omit restoring the screen, you may alternatively use
e.g.:

#ifdef FS_WIN32
RUN ("dir *.prg >temp.txt 2>&1")

#else
RUN ("ls -l *.prg >temp.txt 2>&1")

#endif
TYPE temp.txt

CMD 298

Example:
Execute another FlagShip program "prg2.out" in the background, which creates a
file prg2.txt containing return values on exit:

IF FILE("prg2.txt")
ERASE FILE prg2.txt

ENDIF
RUN ("prg2.out par1 par2 &") // execute prg2 with param

WHILE .not. FILE("prg2.txt")
INKEY(3)
? "waiting for prg2 to be finished"

ENDDO
values = MEMOREAD ("prg2.txt") // get results

Example:
Invoke MS-Word with available document in the Windows version of FlagShip. Note
that the command and/or parameters must be enclosed in quotas when the path or
file name include spaces (which would be otherwise interpreted by
CMD/COMMAND as parameter delimiter). Hint: handle RUN in the same way as
when you invoke an executable at command line level.

#ifndef FS_WIN32
? "use OpenOffice, StarOffice or Koffice instead of MS-Winword"

#else
RUN "C:\Program Files\Microsoft Office\Office\WinWord.EXE " ;
"D:\Documents and Settings\Default User\My Documents\Letter.doc"
? "Word executed with return code", ltrim(doserror())

#endif
wait

// or alternatively:

cFile := "My Letter.doc"
// cExe:= "Notepad" // CMD.EXE searches for .EXE|.COM|.BAT via PATH
cExe := '"C:\Program Files\Microsoft Office\Office\WinWord.EXE"'
cParam := '"D:\Documents and Settings\Default User\' + ;

'My Documents\' + cFile + '"'
cCmd := cExe + " " + cParam

? "Executing CMD/COMMAND:"
? "X:>", cCmd

RUN (cCmd)

wait "... with success/err " + ltrim(doserror()) + ", any key..."

CMD 299

Example:
Start MS-Word (Winword) in Windows as sub-process, continue processing of the
application. Note the notification of path and/or file name including spaces: the
executable (with path) and/or the file name needs to be passed to Windows
enclosed in double quotas. When the command uses variables, enclose it in
parentheses.

? "Invoking MS-Word as separate process..."
RUN NOWAIT ;

'"C:\Program Files\Microsoft Office\Office\Winword.exe" /w'
if doserror() != 0

? "could not invoke Word, CMD return code =", ltrim(doserror())
? " =", doserror2str()

else
? "Word is active, exit it separately (before exit application)"

endif

// or alternatively:
cCommand := '"C:\Program Files\Microsoft Office\' + ;

'Office\Winword.exe"'
cDocFile := '"D:\Documens and Settings\Default User\' + ;

'My Documents\letter.doc"'
RUN NOWAIT (cCommand + " " + cDocFile)

Example:
Execute a time consuming UNIX command in background, omit error output, obtain
its data later:

LOCAL ii := 0, text
FERASE("find.ready")

// trigger Unix find command in background
RUN "(find / -name '[k-m]*.prg' -print > find.data " + ;

" 2>/dev/null ; touch find.ready)&"

// now, continue the program execution,
// e.g. allow an user input
// or display the system is working:
@ 5, 0 SAY "Searching"
DO WHILE .NOT. FILE("find.ready") .and. INKEY() != 27

@ 5, 10 SAY substr("\|/-", (ii++ % 4) +1, 1)
ENDDO
// display data from the background job:

IF LASTKEY() != 27
* @ 5, 10 SAY "READY"
* TYPE find.data
// --- or use the more comfortable: ---

@ 5, 0 SAY "Scroll by PgDn,PgUp. Continue with ESC"
text := MEMOREAD("find.data")
IF LEN(text) < 10

text := "***** No data for [k-m]*.prg found *****"
ENDIF
MEMOEDIT (text, 7,0, MAXROW() -1, MAXCOL(), .F.)

ENDIF
FERASE("find.ready")

CMD 300

Example:
For true inter-process communication, see also the example in the section EXT.

Classification:
system call

Compatibility:
As opposed to the equivalent DOS execution, there are practically no limits to using
RUN on UNIX and in MS-Windows/32. If the available RAM space is insufficient,
the additional swap disk area will be used automatically.

Keep in mind the differences in system command names on DOS and UNIX (ls
instead of DIR etc.) and the different DOS vs. UNIX screen handling. For portability,
#ifdef FlagShip.. ..#else...#endif or the PUBLIC FLAGSHIP variable can be used.

The MESSAGE clause is new in FS4, WAIT/NOWAIT in FS6 and both are not
available in Clipper.

Translation:
__RUN ("expC2" [, "expC1"])

Related:
REFRESH, REFRESH(), CLEAR SCREEN, SAVE/RESTORE SCREEN

CMD 301

SAVE TO
Syntax:

SAVE TO <file>|(<expC>)
[ALL [LIKE | EXCEPT <skeleton>]]

Purpose:
Saves PRIVATE and PUBLIC memory variables to a memory (.mem) file.

Arguments:
<file> is the name of the file where the specified memory variables are saved. If no
extension is specified, the file is created with a .mem extension.

Options:
ALL saves all visible dynamic (PRIVATE and PUBLIC) variables. This is the default
setting, if no other clause is specified.

ALL LIKE <skeleton> defines a set of visible PRIVATE and/or PUBLIC variables to
be saved.

ALL EXCEPT <skeleton> defines a set of visible PRIVATE and/or PUBLIC
variables not matching the <skeleton> to be saved.

<skeleton> is a wildcard mask (* and ? are supported) which specifies a group of
variables for the ALL LIKE or EXCEPT clause. The wildcard character "*" matches
any group of adjacent characters. The wildcard character "?" matches any single
character and can be specified anywhere within the <skeleton>.

Description:
The specified memory variables are copied to the memory file without regard to
their scope (PUBLIC or PRIVATE).

FlagShip also stores and restores PRIVATE and PUBLIC arrays and screen
variables, unless the FS_SET("memcompat", .T.) was specified.

LOCAL, STATIC and TYPED variables are unaffected by SAVE and RESTORE.

Example:
PRIVATE var1 := 1, var2 := "two"
PUBLIC var3 := .T., var4 := date()
LOCAL var5 := "test"
abc := "autoprivate"

DO myPROC WITH var5

PROCEDURE myPROC
PARAMETERS var_par
LOCAL var1, var4 // does not affect SAVE TO
SAVE TO testsav1 ALL LIKE var* // var1..5, var_par
SAVE TO testsav2 // abc, var1..5, var_par
RETURN

CMD 302

Classification:
programming

Compatibility:
FlagShip stores the screen contents in "S" variable types, which is not compatible to
Clipper's variables of type "C". Use the transfer functions SCRDOS2UNIX() or
SCRUNIX2DOS() for such purposes. Note that the screen from one terminal can
only be correctly re-displayed on a terminal of the same type having the same value
in the TERM environment variable.

The content of the screen variables in Terminal i/o and GUI is not compatible to
each other. Screen variables in GUI mode cannot be converted via ScrDos2Unix()
or ScrUnix2Dos().

Unlike Clipper, FlagShip also STOREs and RESTOREs the contents of arrays and
screen variables. Normally, the saved arrays and screens can also be read by the
DOS dialects, since they simply ignore them. To omit saving and restoring array
and screen variables, set the compatibility switch FS_SET ("memcompat", .T.).

To transfer .mem files from/to DOS, a binary protocol must be used, see section
SYS.

Translation:
__MSAVE ("file", "skeleton", .like.)

Related:
RESTORE FROM, PRIVATE, PUBLIC, LOCAL, STATIC, GLOBAL, FS_SET(),
CHR2SCREEN(), SCREEN2CHR(), SCRDOS2UNIX(), SCRUNIX2DOS()

CMD 303

SAVE SCREEN
Syntax:

SAVE SCREEN [TO <memvar>]
Purpose:

Saves the current screen contents to a screen variable.

Options:
TO <memvar> specifies a variable to which the display screen was saved, and
from which it will be RESTOREd. This variable is of the type "S" and cannot be
used for string or arithmetic operations. The variable can be of any storage class
including LOCAL, STATIC, or an array element. To store it to a character or memo
FIELD and back, use the translation SCREEN2CHR() or CHR2SCREEN()
respectively. On how to manipulate the screen variable, see (EXT) _retscw().

If this clause is not specified, the screen display is saved to an internal variable
which is overwritten each time a new screen is saved.

The content of the screen variables in Terminal i/o and GUI is not compatible to
each other. Screen variables in GUI mode cannot be converted via Screen2chr()
nor Chr2screen() but will be stored to memory variable by the same way as in
Terminal i/o mode. See additional description about screen variables in the
SaveScreen() function.

Description:
SAVE SCREEN is used in conjunction with RESTORE SCREEN to avoid repainting
an original screen that has been temporarily replaced. The command is a synonym
for the SAVESCREEN(0, 0, MAXROW(), MAXCOL()) function.

To STORE and RESTORE a part of the screen, the functions SAVESCREEN() and
RESTSCREEN() should be used instead.

All the current visible characters, colors, attributes and the cursor position is saved
and will be faithfully redisplayed. For "odd output" from RUN programs or other
sessions etc., see the (CMD) REFRESH command.

In GUI mode, you may compress the resulting image size by setting SET
SCRCOMPRESS ON. However, the compressed image may loose some precision
at RESTORE, similarly to compressing of jpeg files.

Example:
USE authors
SAVE SCREEN TO Scr1
CLEAR
REPORT FORM authors
WAIT
RESTORE SCREEN FROM Scr1
USE

CMD 304

Classification:
programming

Compatibility:
For saving a screen contents, FlagShip uses the variable of type "S" as opposed to
the Clipper's type "C", which is not binary- compatible. Use the transfer functions
SCRDOS2UNIX() or SCRUNIX2DOS() for such purposes. See also compatibility
notes in the RESTORE FROM command.

Translation:
__XSAVESCREEN()

Related:
RESTORE SCREEN, CHR2SCREEN(), RESTSCREEN(), SAVESCREEN(),
SCREEN2CHR(), SCRDOS2UNIX(), SCRUNIX2DOS()

CMD 305

SEEK
Syntax:

SEEK <exp> [SOFTSEEK]
Purpose:

Seeks through an index file until the first key matching the given expression is
found.

Options:
SOFTSEEK overrides the current SET SOFTSEEK state, and executes the SEEK
as if SOFTSEEK were ON.

Arguments:
<exp> is an expression to be matched with the index key of the currently active
index file (controlling index). The scope is ALL (the search starts with the first logical
record).

If SET ANSI is set ON, or SET DBREAD is set to ANSI, the <exp> is translated
automatically by Ansi2oem(). See also examples/setansi.prg with additional hints.

Description:
Searching of the controlling index starts from the first key. If a match is found, the
record pointer is positioned to the record number found in the index and FOUND()
returns TRUE, EOF() returns FALSE.

When the searched value is not found, the current state of SET SOFTSEEK affects
the returned from FOUND(), EOF() and the position of the record pointer:

•If SOFTSEEK is OFF (the default), FOUND() returns FALSE, EOF() returns
TRUE, and the database is positioned at eof = LASTREC() +1.

•If SOFTSEEK is ON, and there are keys with a value greater than the searched
argument, the database pointer is positioned to the first record with a greater key
value, FOUND() returns FALSE and EOF() returns FALSE.

•If SOFTSEEK is ON, and there is no key with a value greater than the searched
argument, the database is positioned at eof = LASTREC() +1, FOUND() returns
FALSE and EOF() returns TRUE.

The SET DELETED and SET FILTER switch/condition is considered. The current
state of SET EXACT does not affect the search; the comparison is the same as with
SET EXACT OFF.

SEEK is identical to FIND, but has a slightly different syntax: FIND &<var> is
identical to SEEK <var> or FIND (<var>) is identical to SEEK <var>.

For a more complex SEEK search, the SEEK EVAL command may be used.

CMD 306

Example:
To list all employees whose last name is "Clifton"

USE employee INDEX name, zip
SEEK "Clifton"
IF FOUND()

LIST REST Firstname, Lastname, Birthdate;
WHILE Lastname = "Clifton" .and. ;

INKEY() != 27
ENDIF

SET SOFTSEEK ON
SET ORDER TO 2 // index: zip
SEEK 12345 // 12345 and above
SET SOFTSEEK OFF
IF FOUND()

? "zip code 12345:", city
ELSEIF .NOT. EOF()

? "next zip code to 12345 =", zip, ":", city
ELSE

? "address for zip code 12345 and up not available"
ENDIF

Classification:
database

Translation:
DBSEEK (exp)

Related:
FIND, SEEK EVAL, INDEX, LOCATE, REINDEX, SET DELETED, SET EXACT,
SET INDEX, SET SOFTSEEK, USE, EOF(), FOUND(), RECNO(), oRdd:Seek()

CMD 307

SEEK EVAL
Syntax:

SEEK EVAL <expB>
Purpose:

Seeks through an index file until the evaluated code block returns TRUE.

Arguments:
EVAL <expB> is a code block, which performs some comparisons with the index
key of the controlling index. The scope is REST (the search starts with the current
record).

Description:
By using SEEK EVAL, a complex search (like substring etc.) in the index file can be
performed. It is similar to the LOCATE command, but significantly faster, since the
database record is read during the search process on request only (e.g. when a
field name is specified in the code block body). Of course, the database pointer is
positioned correctly latest at the end of the search.

The search of the controlling index starts with the current record and continues until
the <expB> code block returns TRUE or until end-of-file.

The code block receives the current index key, and the corresponding record
number as parameters in that order, and must return logical FALSE to continue the
search or TRUE to stop.

If a match is found, the record pointer is positioned to the record number found in
the index and FOUND() returns TRUE, EOF() returns FALSE.

When the searched value is not found, FOUND() returns FALSE, EOF() returns
TRUE, and the database is positioned at eof = LASTREC() +1.

The current SET SOFTSEEK state does not affect the SEEK EVAL command. The
SET DELETED and SET FILTER switch/condition is considered. The current SET
EXACT state affects string comparisons within the code block.

Note, the scope is REST (i.e. starting from the current record). For the first
complete search, the record pointer has to be positioned to the first logical record
using GOTO TOP. To continue the search, use SKIP prior to issuing the SEEK
EVAL command.

The sequence GOTO TOP; SEEK EVAL {|key| key=exp} is equivalent to SEEK exp
, but the latter is executed faster.

The database record pointer (LASTREC()), if used in the code block, delivers the
record number before SEEK EVAL was started. Use the second code block
parameter to determine the correct record number.

CMD 308

Example:
To find a name entered in any order

LOCAL seekname := "Smith", maxrec := lastrec()
LOCAL seekblock := {|key, recno| ;

UPPER(seekname) $ key .AND. ;
!deleted() .AND. recno < maxrec}

USE address NEW
INDEX ON UPPER(name) TO adrname
LIST name FOR UPPER(seekname) $ UPPER(name) // slow
* 5 John Smith
* 9 Peter Smith
* 12 Peter & Paul Smith Corp.
* 36 Smith and Partner Ltd.

GOTO TOP
SEEK EVAL seekblock // 5 John Smith
WHILE ! EOF()

? RECNO(), name
SKIP
SEEK EVAL seekblock // 9 Peter Smith (etc.)

ENDDO

Classification:
database

Compatibility:
Available in FlagShip (with the default DBFIDX driver) only

Translation:
_SEEKEVAL (expB)

Related:
SEEK, FIND, INDEX, LOCATE, CONTINUE, SKIP, oRdd:SEEKEVAL()

CMD 309

SELECT
Syntax:

SELECT <workArea>|(<expN>)
or:

SELECT <alias>|(<expC>)
Purpose:

Changes the current working area.

Arguments:
<workArea> is a number between zero and 65534. If zero is specified, the lowest
available working area without an open database is selected. The argument can be
specified as a numeric expression (<expN>) enclosed in parentheses (not to be
confused with the equivalent SELECT() function syntax).

<alias> is the ALIAS name of the working area containing the opened database file
with the same name or alias. The alias can be specified as a character expression
(<expC>) enclosed in parentheses.

Description:
In FlagShip, 65534 working areas are available for simultaneously open databases.
The ALIAS of a working area is automatically assigned when a database file is
opened by the USE command.

A zero argument selects the first unused working area, similar to the USE...NEW
clause.

FlagShip supports the direct usage of the <alias>-> selector in assignments,
expressions and function calls, which is equivalent to SELECTing the required
working area, see also section LNG.2.9 and LNG.2.3.2:

USE address ALIAS addr NEW ; act := SELECT()
SELECT 15
USE other

* ---- aliased ------- * ---- is equivalent to ---------
addr->name := xyz SELECT addr

FIELD->name := xyz
SELECT other

? adress->(EOF()) SELECT addr; ? EOF() ; SELE
other
("ad"+"dr")->(MyUdf(1)) SELECT addr; MyUdf(1); SELE other
15->(MyUdf(2)) SELECT 15 ; MyUdf(2); SELE other

CMD 310

Each working area has the following attributes:

Attribute/Action Retrieving Command/Function
Open/close work area USE, CLOSE DATA
Indices USE..INDEX, SET INDEX
Relations SET/CLOSE RELATION
Filtering SET FILTER, SET DELETED
Searching SEEK, LOCATE, FIND
Moving GOTO, SKIP

Alias name ALIAS()
Database file DBF(), INDEXDBF()
Working area no. SELECT()
Index file ext, names INDEXEXT(), INDEXNAMES()
Index key, contrl.no. INDEXKEY(), INDEXORD()
Index integrity INDEXCHECK()
Record number RECNO()
Record count LASTREC(), RECCOUNT()
Field count FCOUNT()
Field name FIELD()
Field description AFIELDS()
Beginning-of-file flag BOF()
End-of-file flag EOF()
Filter condition DBFILTER(), DELETED()
Locate/Seek result FOUND()
Relation DBRELATION(), DBRSELECT()
Header size HEADER()
Network cmd result NETERR()
Locking RLOCK(), FLOCK(), UNLOCK, AUTOxLOCK(), SET AUTOLOCK

Multiuser:
When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7. When SET AUTOCOMMIT is
ON (default is OFF), every SELECT will also commit (flush) the current work area
physically to hard disk, same as COMMIT.

Example:
old_area = SELECT()
SELECT 0
USE magazine ALIAS mag && or: USE...NEW
// other statements
mag_select = SELECT()
SELECT (old_area)
// other statements
SELECT (mag_select) && or: SELECT mag

Classification:
database

CMD 311

Compatibility:
FlagShip supports 65534 working areas simultaneously, Clipper and VO up to 250,
dBASE up to 10 or 40.

Translation:
DBSELECTAREA (expN | expC)

Related:
USE, SET INDEX, ALIAS(), SELECT()

CMD 312

SET ALTERNATE
Syntax 1:

SET ALTERNATE TO [<file>|(<expC>) [ADDITIVE]]
Syntax 2:

SET ALTERNATE on|OFF|(<expL>)
Purpose:

Echoes console output (e.g. of the ?/?? commands) to an ASCII text file.

Arguments:
TO <file> is the name of an ASCII text file to which the output will be redirected and
can include a path and an extension. If the file extension is not specified, .txt is
assumed. When the TO... clause is not given, the currently open alternate file (if
any) will be closed.

Option:
ADDITIVE causes the specified alternate file to be appended to instead of
overwritten. If not specified, the specified <file> is truncated.

Arguments:
ON/OFF activates or deactivates the output to the current open alternate file. The
toggle will not be switched to ON if the alternate file is not opened. Alternatively, the
parenthesized <expL> may be used, whereby logical TRUE is the same as ON.

Description:
FlagShip allows to redirect console command output (such as ?, LIST, REPORT
FORM, LABEL FORM) to four different devices/files at a time: the SCREEN device,
and the ALTERNATE, PRINTER and EXTRA files or devices.

In commands, which support the TO FILE <file> clause (like LIST, REPORT FORM
etc.), these clauses perform a similar function as SET ALTERNATE. In other
commands (like ?, ??, QOUT() etc.), an additional redirection to a text file (or
device) using the SET EXTRA command is possible.

Full-screen commands such as @...SAY cannot be echoed to by the SET
ALTERNATE or EXTRA command; use SET DEVICE instead.

By setting the output OFF, the alternate file remains open. Closing the alternate file
using SET ALTERNATE TO or CLOSE ALTERNATE will reset the toggle to OFF.
Only one alternate file may be opened at the same time.

Tuning:
You may set the new-line character by 8th element in FS_SET("prset") e.g.

#ifdef FS_WIN32 /* here: should apply for Windows only */
FS_SET("prset", {NIL,NIL,NIL,NIL,NIL,NIL,NIL,chr(13,10) })

#endif
before printing to ALTERNATE file via ? or QOUT(). The default setting is line-feed
= chr(10).

CMD 313

Example:
SET ALTERNATE TO protocol.doc && or: TO /dev/lp1
SET ALTERNATE ON
USE publish
DO WHILE .NOT. EOF() .AND. INKEY() # 27

? Name, Address, Zip, Town
SKIP

ENDDO
SET ALTERNATE TO

Classification:
programming

Compatibility:
The ADDITIVE clause is new in FS4.

Translation:
SET (_SET_ALTERNATE, .on.)
SET (_SET_ALTFILE, "file", .additive.)

Related:
?, ??, DISPLAY, LIST, LABEL FORM, REPORT FORM, TEXT, TYPE, QOUT(),
QQOUT(), SET EXTRA, SET PRINTER, SET()

CMD 314

SET ANSI
Syntax:

SET ANSI on|OFF|(<expL>)
Purpose:

Change the behavior how to read from and store data into database.

Arguments:
ON/OFF activates or deactivates the automatic translation of ANSI <-> PC8
character set. The logical value .T. correspond to ON, .F. is the same as OFF.
Default value is OFF.

Description:
With SET ANSI ON or SetAnsi(.T.), a database access of character or memo
translates the PC8/ASCII/OEM charset via Oem2Ansi() into ANSI/ISO charset
(used for display in GUI mode or in X11 terminal without a corresponding mapping).
On replacing a char or memo fields in the database, the reverse Ansi2oem()
translation is taken.

This means, special characters like a-umlaut, stored in the database as chr(132) in
PC8/ASCII/OEM charset are translated during a read access to chr(228) in
ANSI/ISO charset, to be displayed on the screen as a-umlaut in GUI environment or
on X terminal. Reverse, with SET ANSI ON or SetAnsi(.T.), the a-umlaut chr(228)
available in a variable or given in input, is stored in the dbf as chr(132) during the
replace stage.

Note: both the FS4 and Clipper always use PC8/ASCII charset in the database, i.e.
chr(132) for a-umlaut.

Example:
See examples/setansi.prg for a complete example with description

Classification:
programming, database

Compatibility:
New in FS5

Related:
SET SOURCE, SetAnsi(), SET DBREAD, SET DBWRITE, Ansi2oem(),
Oem2Ansi(), SET KEYTRANSL|CHARSET,

CMD 315

SET AUTOCOMMIT
Syntax:

SET AUTOCOMMIT on|OFF|(<expL>)
Purpose:

Sets or disables an automatic COMMIT on UNLOCK and SELECT commands and
corresponding DbUnlock() and DbSelect() functions.

Arguments:
When specified ON, an automatic COMMIT will be enabled, which then flushes the
database (and indices) changes physically to hard disk at every UNLOCK and
SELECT command or at DbUnlock() and DbSelect() function.

OFF (the default) disables the automatic commit.

<expL> is optional parenthesized logical value or expression, where .T. is
equivalent to ON, and .F. to OFF

Description:
In multi-user mode, the changes in the database and indices are usually hold in
operating system buffer and written physically to the hard disk by the COMMIT
command or DbCommit() function.

FlagShip can perform this action automatically when SET AUTOCOMMIT is ON.
But since this may slow-down the performance significantly, the default setting is
OFF.

Classification:
database

Compatibility:
Available in FlagShip only.

Translation:
SET (_SET_AUTOCOMMIT, <expL>)

Related:
SET(), COMMIT, SELECT, UNLOCK

CMD 316

SET AUTOLOCK
Syntax 1:

SET AUTOLOCK [TO] <expN>
Syntax 2:

SET AUTOLOCK ON|off|(<expL>)
Purpose:

Sets or disables the placement of an automatic record or file lock during a database
write access in shared mode.

Arguments:
<expN> sets the period (in seconds), for which to attempt to successfully execute
the automatic Rlock or Flock. Attempts are done in one second intervals. The
default <expN> period is 10 (seconds). Possible values for <expN> are:

0 auto locking is enabled, the AUTOxLOCK() function tries to lock the database
forever, until it succeeds.

>= 1 auto locking is enabled, the AUTOxLOCK() function tries to lock the database
successfully for <expN> seconds. If not successful within this period, the user
may choose the action to follow in a communication window, i.e. to try again,
break, ignore (mostly resulting in a subsequent run-time error), or to exit.

- 1 is equivalent to 0, for FoxPro compatibility.

- 2 is equivalent to 0, for FoxPro compatibility.

- 3 and all values < -3: the auto locking is disabled.

ON/OFF is a shortcut of the syntax 1, while ON is equivalent to ...TO 10 (or the last
positive value previously set), while OFF is equivalent to ...TO -3. The default is ON.
When using the alternative parenthesized <expL>, TRUE is the same as ON.

Description:
When a database is open in SHARED (multiuser) mode, any writing access
requires a record or file lock. Usually, the programmer controls these locks himself,
by using the RLOCK() and FLOCK() functions and the UNLOCK command.

For your convenience, FlagShip RDD drivers can manage these locks themselves,
if the lock was not already issued by the programmer and SET AUTOLOCK switch
is active (the default).

In this case, the database driver calls the function AUTORLOCK() or
AUTOFLOCK() respectively before the database write access, and
AUTOUNLOCK() thereafter to release this lock and COMMIT the database. You
may modify these functions, available in source code in the <FlagShip_dir>/
system/autolock.prg file, e.g. to display waiting messages, manage the default
BREAK, protocol the "unexpected" locks etc. If a modification is required, copy this

CMD 317

file to your local directory; then compile and link it according to the instructions
given in the source - or simply set a global switch in your application, see Tuning
below.

Note, that SET AUTOLOCK is a global switch, valid for all databases, as opposed
to the local oRdd:CONCURRENCYCONTROL instance of the DataServer class.

Performance hints, transactions:
Of course, this autolock mechanism is not so effective, as when the programmer
controls the flow by RLOCK()...UNLOCK, FLOCK() ... UNLOCK or by explicitly
invoking the AUTOxLOCK() ... AUTOUNLOCK() functions. This is because the
programmer usually invokes only one lock attempt for multiple field replacements
on the same record. On the other hand, the AutoLock functions have to perform
(the same) lock and unlock (including Commit) for every field replacement.
Therefore, your application may be faster when your program controls the locks
itself, the Auto*Lock feature can be viewed as the "emergency break" to avoid run-
time errors. Also, transactions can only be controlled by the programmer
him/herself, through locking all required databases before the updates start.

Of course, if the AUTOLOCK is active, you may manually invoke the AUTO-
RLOCK() instead of RLOCK() and AUTOFLOCK() instead of FLOCK(), to control
the program flow in the same way, while taking advantage of the wait-until-success
feature.

Tuning:
You may log AutoRlock(), AutoFlock(), AutoAppend() and AutoUnlock() and their
failure by assigning any valid file name (optionally with path) to

_aGlobSetting[GSET_C_AUTOLOCK_PROT] := fileName // def = ""
When this protocol file already exist, messages will be appended.

If the lock fails, the process sleeps for a small time period and then retry the lock
anew. The sleep period is defined by

_aGlobSetting[GSET_N_AUTOLOCK_SLEEP] := milliSec // def = 150
When these retries exceeds info-time-out period, a pop-up window informs user
about waiting for lock. This info period is set by

_aGlobSetting[GSET_N_AUTOLOCK_INFO] := seconds // def = 5
The pop-up info message (e.g. "Waiting for Lock") is displayed for

_aGlobSetting[GSET_N_AUTOLOCK_INFOWT] := seconds // def = 2
and then disappears, continuing with retry. When the total time-out of SET
AUTOLOCK TO (e.g. 10 seconds) expires too, user can decide to continue with
retry, ignore this lock, jump per BREAK to recover of next BEGIN SEQUENCE or
exit the application.

For background or Web/CGI applications, where user info and actions are not
desired, set long (or forever) AUTOLOCK period, e.g. SET AUTOLOCK TO 3600
(or SET AUTOLOCK TO 0) and disable pop-up info by _aGlobSetting[GSET_N_
AUTOLOCK_INFO] := 0

CMD 318

Example:
BEGIN SEQUENCE

USE mydata SHARED // open mutiuser
SET AUTOLOCK -99 // disable AUTOLOCK
replace name with "Miller" // run-time error !
SET AUTOLOCK 0 // enable AUTOLOCK
replace name with "Miller" // o.k. or --> RECOVER
return

RECOVER using cText
? "sorry, could not ", cText, " the database " + DBF()

END SEQUENCE

Example:
SET EXCLUSIVE OFF // enable multiuser
* SET AUTOLOCK TO 10 // the default setting
USE article INDEX article
SEEK 12345
if !found() ; return ; endif

DELETE // one AUTORLOCK
REPLACE amount with 0, price with 0 // two AUTORLOCKs

while !RLOCK() ; enddo // one LOCK only
* or: AUTORLOCK() // "smart" RLOCK()
DELETE
REPLACE amount with 0, price with 0
COMMIT ; UNLOCK
* or: AUTOUNLOCK() // "smart" UNLOCK

Classification:
database

Compatibility:
SET AUTOLOCK is a superset and combination of FoxPro's SET LOCK and SET
REPROCESS. This feature is not available in C5 and only partially available in VO.

Source code:
The functions are available in <FlagShip_dir>/system/autolock.prg

Translation:
SET (_SET_AUTOLOCK, <expN>|<expL>)

Related:
AUTOxLOCK(), SET(), SET MULTILOCKS, RLOCK(), FLOCK(),
oRdd:ConcurrencyControl

CMD 319

SET BELL
Syntax:

SET BELL on|OFF|(<expL>)
Purpose:

Toggles the sounding of the bell in READ.

Description:
When ON, the bell sounds if a character is being entered into a GET field which
does not conform to the PICTURE clause or if the entry is out of the RANGE limit. It
also sounds when a character is entered at the last position of a GET. When using
the alternative parenthesized <expL>, TRUE is the same as ON.

To sound the bell explicitly, you can use either CHR(7) or the TONE() function. This
bell does not depend on the state of SET BELL.

Example:
SET BELL ON // enable bell
SET FORMAT TO articles
READ
SET FORMAT TO
SET BELL OFF // disable bell

IF LASTKEY() = K_ESC
?? CHR(7) // sound a bell
@ MAXROW(),0 SAY "Abort - are you sure (y/n) ?"
IF UPPER(CHR(INKEY(0))) == "Y"

QUIT
ENDIF

ENDIF

Classification:
programming

Compatibility:
The ability to sound a bell depends on the terminfo definition and/or the terminal
emulation software, if used. Some terminals use an "optical bell" which flashes the
screen output instead of sounding an acoustic bell.

Translation:
SET (_SET_BELL, .on.)

Related:
SET CONFIRM, CHR(), TONE()

CMD 320

SET CENTURY
Syntax:

SET CENTURY on|OFF|(<expL>)
Purpose:

Toggles the display and input of century digits for date values.

Arguments:
ON/OFF activates or suppresses the output of century digits. Alternatively, the
parenthesized <expL> may be used, whereby logical TRUE is the same as ON.

Description:
The stored date values always contain the complete year information, including the
century. The information is stored as a LONG value (or 8 bytes ASCII in .dbf fields)
representing the number of days since January 1, 0001. The supported date range
in FlagShip is therefore from 01/01/0001 up to 12/31/9999.

When CENTURY is OFF, only the two last digits of the year are displayed or can be
entered. Setting CENTURY to ON changes the date format displayed to contain
four digits for the year.

Example:
? DATE() && 07/22/93
SET CENTURY ON
? DATE() && 07/22/1993
SET DATE GERMAN
SET CENTURY (.F.)
? DATE() && 22.07.93

Classification:
programming

Compatibility:
Clipper supports date values from 01/01/0100 to 12/31/2999.

Translation:
__SETCENTURY (.on.)

Related:
SET DATE, SET EPOCH, CTOD(), DATE(), DTOC(), DTOS(), DAY(), MONTH(),
YEAR(), SET()

CMD 321

SET CHARSET
Syntax:

SET CHARSET|KEYTRANSL [TO] ISO|ANSI
SET CHARSET|KEYTRANSL [TO] PC8|ASCII|OEM

see details in SET KEYTRANSL below

CMD 322

SET COLOR TO
Syntax:

SET COLOR|COLOUR TO
[<standard>
[,<enhanced>
[,<border>
[,<background>
[,<unselected>
[,<extra>
[,<disabled>
[,<unselWindow>]]]]]]]] | (<expC>)

Purpose:
Changes the screen color setting.

Arguments:
Each argument of the list specifies a list of color settings for the five types of screen
painting activity. Each argument contains a color pair containing the foreground and
background color, separated by a slash (/).

Output Pos Color pair Usage i.e.
standard 1 foreground/background SAY, ?
, enhanced 2 foreground/background GET, MENU, ACHOICE
, border 3 foreground/background boxes etc.
, background 4 foreground/background hot-key, accelerator
, unselected 5 foreground/background READ
, extra 6 foreground/background reserved
, disabled 7 foreground/background disabled GET, PROMPT
, unselWidow 8 foreground/background GETs in unsel.window

If no argument is given, the default color setting is reset to "W/N,N/W,,,N/W".
Skipping a foreground or background color within a setting sets the color to black.

Options:
<standard> is the color pair (foreground/background) used to paint with all console
and full-screen commands' and functions' output, such as ?, ??, @..SAY, @..BOX,
@..PROMPT, @..CLEAR, CLEAR SCREEN, ACHOICE(), DBEDIT(), MEMOEDIT()
etc. It can be set explicitly using the SETSTANDARD command.

<enhanced> specifies a color pair, which is used for painting highlighted displays,
like the active GET field in READ, the light bar in MENU TO, DBEDIT(), and
ACHOICE(). It can be set explicitly using the SETENHANCED command.

<border> is not supported in FlagShip (nor in Clipper). It specify the color to paint
the area around screen or the background color for some other xBASE dialects.
This color pair is used in FlagShip for other purposes, like the border in Popup's or
in ACHOICE().

CMD 323

<background> is originally used by some other xBASE dialects for CGA cards and
not supported as such in FlagShip nor Clipper. In FlagShip, it is used for other
purposes, like the hot-key color in Terminal i/o mode.

<unselected> is a color pair used to display currently inactive GET fields and un-
selectable array members in ACHOICE(). Can be set explicitly using the
SETUNSELECTED command.

<extra> is a color pair reserved for future use.

<disabled> is a color pair used to display disabled GET fields. Apply in GUI mode
only, ignored otherwise. Used also for un-selectable PROMPT items, even in
Terminal i/o mode.

<unselWindow> is a color pair used to display GET fields when the focus is taken
away from the application window. If not specified, the GET color remain
unchanged. Apply in GUI mode only, ignored otherwise.

(<expC>) is a character string enclosed in parentheses containing the color
settings. This allows the color settings to be specified as an expression in place of a
literal string or a macro variable. Instead of character string, you may alternatively
use an array of RGB triplets, or a Color or ColorPair object variable.

Description:
SET COLOR is a synonym for the SETCOLOR() function that defines colors for
subsequent screen painting activities. Each argument can specify foreground (the
displayed text) and background (the color underlying the text). Spaces are
displayed as background only.

Note: In the case of color settings, a list containing commas in a macro variable can
be used.

Attributes: The foreground color setting also supports blinking (*) and high intensity
(+) attributes. In Terminal i/o mode, these attributes affect only the foreground color,
even if mentioned with the background color of the pair. In GUI mode, the high
intensity attribute can also be used for background color, the blinking attrib is
ignored. High intensity enhances brightness of painted text on a monochrome
display or changes the hue of the specified color on color monitors. The blinking
attribute causes the foreground text to flash on and off at a set hardware interval.

Colors in FlagShip may be specified by a string containing letters, numbers or RGB
string, or optionally by an RGB array.

•The letters and numbers are fix and specify 16 different colors, available on any
VGA screen. Compatible to other xBase dialects.

•A RGB string triplet is similar to the common HTML notation. The color is defined
as a string "#RRGGBB" starting with "#" followed by 6 hexadecimal characters
(each 0..9,A..F). The first two hex chars ("00" to "FF") specify the amount of red
portion in the resulting color, the second two characters the portion of green, the
last two hex characters the portion of blue color.

•Instead of a string, optionally an array of RGB triplets can be used, e.g. when

CMD 324

calculating colors. This array is either: - one-dimensional array with three numeric
elements (ea 0..255), specifying the red, green and blue color portion of
foreground color, e.g. aColor := {128,128,0} ; @..SAY.. COLOR (aColor) - or a 2-
dimensional array containing two color pair triplets for foreground and background
of the standard color, e.g. aColor := {{0,0,0},{0,0,128}} ; SET COLOR TO (aColor)
- or 3-dimensional array specifying each corresponding color pair, e.g. a2 :=
{{0,0,0},{0,0,128}}; a5 := {{RGBCOLOR_WHITE},{0,0,128}} aColor := {NIL, a2,
NIL, NIL, a5} ; @..GET.. COLOR (aColor) which set the enhanced and
unselected color pairs only. - For some standard color triplets (the sub-array of 3
elements), there are pre-defined constants RGBCOLOR_* in #include "color.fh".

You may use letters, numbers and RGB strings interchangeably in a single
specification, e.g. "B/N, 1/R, #00FF00/W, 12/#C0C0C0" etc.

The RGB notation allows a combination of 16 million colors and is fully supported in
GUI mode, provided your GUI environment is set to 16 mio (or more) colors. If your
environment support 256 colors only, you should preferably use hex values
00,33,66,99,CC,FF in a triplets combination, or the standard RGB triplets as given
in the table below. In Terminal i/o mode, the Symbol/Letter notation is commonly
used. If given in RGB notation, the closest color letter is calculated from the RGB
triplet. Conversion failure is displayed when the developer's mode is set by
FS_SET("devel",.T.)

The standard colors are:

Color * Symbol/Letter Num.Code RGB String RGB Array
Black N 0 #000000 { 0, 0, 0}
Blue B 1 #000080 { 0, 0,128}
Green G 2 #008000 { 0,128, 0}
Cyan BG or GB 3 #008080 { 0,128,128}
Red R 4 #800000 {128, 0, 0}
Magenta RB or BR 5 #800080 {128, 0,128}
Brown (dark yellow) GR or RG 6 #808000 {128,128, 0}
White (light gray) W or RGB 7 #DCDCDC {220,220,220}
Gray (dark) N+ 8 #808080 {128,128,128}
Bright blue B+ 9 #0000FF { 0, 0,255}
Bright green G+ 10 #00FF00 {255,255, 0}
Bright cyan BG+ 11 #00FFFF { 0,255,255}
Bright red R+ 12 #FF0000 {255, 0, 0}
Bright magenta RB+ or BR+ 13 #FF00FF {255, 0,255}
Bright yellow GR+ or RG+ 14 #FFFF00 {255,255, 0}
Bright white W+ or RGB+ 15 #FFFFFF {255,255,255}
Mid gray W- #C0C0C0 {192,192,192}
Blank X
Underline (mono) U
Reverse Video I
Standard background ? RGBSTRING_BG {RGBCOLOR_BG}

CMD 325

*Note: in Terminal i/o mode for Unix/Linux, the proper output depends on the
correct setting of the terminfo variables setf (set foreground), setb (set background
color), bold (set high intensity), blink (set blinking), invis (invisible), rev (reverse),
smul (underline) and sgr0 (disable setting) for the current terminal TERM. See also
section SYS.

The "?" symbol is replaced by standard background color, taken from
m->oApplic:ColorBackground property. It corresponds to main window color in GUI
mode, or "N" (= #000000) in other i/o modes, but may be re-defined by any valid
value upon request.

The current color setting is always active for Terminal i/o mode. In GUI mode, it is
considered only if SET GUICOLOR is ON or when the GUI color is explicitly
specified, e.g. in @..GET..GUICOLOR... This is because GUI design rules
recommend not to use colors at all, except when explicitly required.

Example:
STATIC colors [3]
IF ISCOLOR()

colors[1] := "W+/B,R+/GR,,,B/W" // standard
colors[2] := "W/B,N/W,,,N/BG" // other color
colors[3] := "GR+/B,R+/B" // messages

ELSE
colors[1] := "W+,/W,,N" // standard
colors[2] := "W/N,N/W,,,N/W" // other color
colors[3] := "U,W*" // messages

ENDIF
SET COLOR TO (colors[1])
CLEAR SCREEN
@ 1,1 SAY "name " GET FIELD->name
@ 2,1 SAY "address " GET ADR->address VALID check()
READ
IF LASTKEY() = K_ESC

SET COLOR TO (colors[3])
@ MAXROW(),0 SAY "Are you sure to quit (y/n) ? "
IF (UPPER(CHR(INKEY(0))) == "Y"

QUIT
ENDIF
SET COLOR TO (colors[1])

ENDIF

FUNCTION check
LOCAL actcolor := SETCOLOR()
IF EMPTY(ADR->address)

SET COLOR TO (colors[3])
SETENHANCED // enhanced color
?? CHR(7) // bell
@ MAXROW(),0 SAY "Address must be given!"
SETSTANDARD
SET COLOR TO &actcolor // or TO (actcolor)
INKEY(5) // wait 5 seconds
@ MAXROW(),0 // clear msg
RETURN .F.

ENDIF
RETURN .T.

CMD 326

Example:
#include "color.fh"
@ 5,2 SAY "hello light blue on std. GUI background" ;
COLOR "B+/N" ; // Terminal mode
GUICOLOR {{0,0,255},{RGBCOLOR_BG}} // GUI mode

? "hello dark red on std. GUI background" ;
GUICOLOR ("R/" + RGBSTRING_BG) COLOR ("R/N")

Example:
See also example in SETCOLOR() which allows user to choose the preferred color
setting.

Example:
Display all standard and some RGB colors as background

#include "color.fh"
aStd1 := {"N","N+","W-","N-","W","W+","R","R+","G","G+", ;

"B","B+","BG","BG+","RB","RB+","GR","GR+"}
aStd2 := {"#000000","#808080","#C0C0C0","#A0A0A0","#DCDCDC", ;

"#FFFFFF","#800000","#FF0000","#008000","#00FF00", ;
"#000080","#0000FF","#008080","#00FFFF","#800080", ;
"#FF00FF","#808000","#FFFF00" }

aCol3 := {"00", "10", "20", "33", "40", "50", "66", "70", "80", ;
"90", "99", "B0", "C0", "CC", "E0", "F0", "FF"}

SET FONT "courier",10
for ii := 1 to len(aStd1) // using std.symbols

fg := "N/"
@ ii,1 SAY " " + fg + aStd1[ii] + " " ;

COLOR (fg+aStd1[ii]) GUICOLOR (fg+aStd1[ii])
fg := "W/"
@ ii,10 SAY " " + fg + aStd1[ii] + " " ;

COLOR (fg+aStd1[ii]) GUICOLOR (fg+aStd1[ii])
next
for ii := 1 to len(aStd2) // using std.symbols + RGB string

fg := if(ii < 3 .or. ii == 11 .or. ii == 12, "W", "N")
bg := "/" + aStd2[ii]
@ ii,20 SAY " " + fg + bg + " " COLOR (fg+bg) GUICOLOR (fg+bg)

next

SET GUICOLOR ON
for ii := 1 to len(aCol3) // using user defined RGB string

fg := "W/"
bg := "#0000" + aCol3[ii]
@ ii,40 SAY " " + fg + bg + space(10) COLOR (fg+bg)

next

iRow := 1
for ii := 0 to 256 step 16 // using array of calcul. RGB colors

aColor := {{RGBCOLOR_YELLOW},{ 0,0,min(ii,255) }}
@ iRow++,62 SAY " GR+/Rgb(0,0," + ltrim(aColor[2,3]) + ")" + ;

space(10) COLOR (aColor)
next
SET GUICOLOR OFF
setpos(20,0)
wait

CMD 327

Classification:
programming

Compatibility:
In Terminal i/o mode, colors are available only if both parameters "colors" and
"pairs" are set in the terminfo (or FStinfo.src); refer to section SYS. You may
determine the color capability using the function ISCOLOR(). The UNIX curses
does not support the black on black setting ("N/N" or "N+/N") since this is used as
the default terminal color. To hide the output, use e.g. "N/X", "W/N" etc. or the "X"
color setting.

In GUI mode, colors are considered only if SET GUICOLOR is ON, or when the
special GUICOLOR clause (available in many commands) was specified. See also
text.

The ability to display all colors specified or the additional attributes depends also on
the hardware capabilities of the current terminal, the OS dependent curses library
and/or the software setting of the used terminal emulation.

Color pairs 6..8 (extra, disabled and unselWindow) as well as the use of RGB
triplets are available in FS5 only.

Translation:
SETCOLOR (expC)

Related:
SETCOLOR(), COLORSELECT(), SETSTANDARD, SETENHANCED,
SETUNSELECTED, ISCOLOR()

CMD 328

SET COORD
Syntax 1:

SET COORD [UNIT] TO ROWCOL | PIXEL | MM | CM | INCH
Syntax 2:

SET COORD [UNIT] TO
Purpose:

Set required coordinate units for screen and printer output row and column
coordinates (for printer only with SET GUIPRINTER ON). Apply in GUI mode only,
ignored otherwise. The default is ROWCOL, which is also set by syntax 2.

Arguments:
TO ROWCOL all subsequently given output coordinates are calculated as rows and
columns according to the used font. Default setting.

TO PIXEL all subsequently given output coordinates are calculated in pixels or re-
calculated for printer resolution.

TO MM all subsequently given output coordinates are re-calculated from mm (1 mm
= 0.0397") to current screen or printer resolution.

TO CM all subsequently given output coordinates are re-calculated from cm (1 cm =
0.397 inch) to current screen or printer resolution.

TO INCH all subsequently given output coordinates are re-calculated from inch (1"
= 2.54 cm) to current screen or printer resolution.

TO reset defaults to ROWCOL

Description:
SET COORD controls the behavior of given coordinate units. Apply in GUI mode
only, ignored otherwise. These units are considered in all subsequent commands
and functions with coordinate input, like @..SAY, @..GET, @..PROMPT,
SETPOS(), DEVPOS(), MemoEdit() etc. and for returned values from COL() and
ROW() functions. With the most commands you may override the current SET
COORD setting by the PIXEL clause, or by the similar parameter of corresponding
function.

Using TO ROWCOL (the default) is convenient in the most cases. With proportional
fonts (see SET FONT and LNG.5.3.1-2) the character size may vary. To control the
output exactly, you may use SET COORD TO PIXEL or SET PIXEL ON or
corresponding PIXEL clause, whereby the coordinates are pixel oriented (pixel is a
"dot on the screen", i.e. smallest single component of a digital image). Alternatively,
you may force the output in mm, cm or inch by corresponding SET COORD TO...

The re-calculation from mm, cm or inch to pixel on screen (or dpi for printer)
depends on the system API, which may be imprecise in some cases. For the screen
output, FlagShip determines the desktop size in mm by oApplic:DesktopXmm and
oApplic:DesktopYmm at program start (in initio.prg) and stores it in global array

CMD 329

elements _aGlobSetting [GSET_G_N_DESKTOP_X_MM] and _aGlobSetting
[GSET_G_N_DESKTOP_Y_MM]. When you detect significant differences, you may
set these array elements manually before using SET COORD TO MM|CM|INCH
and displaying data. The physical size of printer sheet is determined at print-time
from the printer API; these data are available after the user selects corresponding
printer driver by oPrinter:Setup().

Example:
* _aGlobSetting[GSET_G_N_DESKTOP_X_MM] := 520 // optional
* _aGlobSetting[GSET_G_N_DESKTOP_Y_MM] := 324 // optional

@ 10,3 say "text1" // output at line 10, column 3
SET COORD TO MM
@ row(), col() + 55 SAY "text2" // output at same line +5.5cm right
@ 25.4, 76.2 SAY "text3" // output 1" from top, 3" from left
SET COORD TO
@ 10,15 say "text4" // output at line 10, column 15
setpos(20,0)
wait

Classification:
programming, screen and printer output

Compatibility:
Available in VFS7 and newer only.

Translation:
SET (_SET_COORD_UNIT, _SET_COORD_ROWCOL or _SET_COORD_DEF or 0)
SET (_SET_COORD_UNIT, _SET_COORD_PIXEL or 1)
SET (_SET_COORD_UNIT, _SET_COORD_MM or 2)
SET (_SET_COORD_UNIT, _SET_COORD_CM or 3)
SET (_SET_COORD_UNIT, _SET_COORD_INCH or 4)

Related:
@...SAY, @..GET, SET PIXEL, SET GUIPRINTER, OBJ.Applic, OBJ.Printer

CMD 330

SET CONFIRM
Syntax:

SET CONFIRM on|OFF|(<expL>)
Purpose:

Determines if moving to the next field in GET/READ when the field is filled, or
selecting an item in MENU TO by the first letter should be confirmed or done
automatically.

Arguments:
ON/OFF activates or deactivates the requirement to press the ENTER <┘key to
leave a GET entry or the item selected in MENU TO. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON.

Description:
SET CONFIRM controls the behavior of leaving the current GET and MENU TO
choice:

•When SET CONFIRM is OFF (the default), the user can type past the end of a
GET and the cursor will move to the next GET if there is one; otherwise the
current READ terminates. In MENU TO, pressing the first menu character selects
the item found and terminates the choice.

•When ON is set, an exit key (e.g. ENTER, PgDn, PgUp etc.) must be pressed to
leave the current GET. In MENU TO, pressing the first menu character selects
the item found and positions the light bar on it. The user must press an ENTER
<┘key to confirm the choice.

Example:
LOCAL answer := "N"
SET CONFIRM ON
@ 10,10 SAY "Erase the temp*.txt files?" GET answer
READ
SET CONFIRM OFF
IF LASTKEY() = 13 .AND. upper(answer) $ "YJO"

CLOSE ALL
RUN rm temp*.txt

ENDIF

Classification:
programming

Compatibility:
The support of MENU TO is available in FlagShip only.

Translation:
SET (_SET_CONFIRM, .T.|.F.)

Related:
@...GET, READ, MENU TO, SET BELL

CMD 331

SET CONSOLE
Syntax:

SET CONSOLE ON|off|(<expL>)
Purpose:

Activates or deactivates console display to the screen.

Arguments:
ON/OFF activates or suppresses the output of console commands and functions to
the screen. Alternatively, the parenthesized <expL> may be used, whereby TRUE is
the same as ON.

Description:
SET CONSOLE affects the screen display of all console commands (see
LNG.5.1.1). Setting it to OFF and using the SET ALTERNATE, SET EXTRA, or
SET PRINTER commands or TO.. clause suppresses the screen output and sends
it to the printer or file only. Some console commands have a NOCONSOLE option,
which has the same effect as temporarily setting SET CONSOLE OFF.

For console commands that accept input (like ACCEPT, INPUT, and WAIT), SET
CONSOLE affects the display of the prompts as well as the input echo.

The full screen commands (like @..SAY, @..BOX, @..TO etc., see LNG.5.1.2) are
not affected by SET CONSOLE but may be re-routed to printer or file using the SET
DEVICE command.

Example:
SET CONSOLE OFF
USE stock
LIST item, volume FOR volume > 100 TO PRINT
USE
SET CONSOLE ON

Classification:
programming

Translation:
SET (_SET_CONSOLE, .T.|.F.)

Related:
SET DEVICE, SET ALTERNATE, SET EXTRA, SET PRINTER

CMD 332

SET COORDINATE UNIT
Syntax:

SET COORDINATE [UNIT] [TO]
SET COORDINATE [UNIT] [TO] PIXEL | MM | CM | INCH |

(<expN>)
Purpose:

Sets the unit for subsequently given screen (and printer with active PrintGui()
output) coordinates. Applicable in GUI mode only.

Arguments:
ROWCOL : all subsequent coordinates are in common rows and
or none: columns.
PIXEL : all subsequent coordinates are in pixels
MM : all subsequent coordinates are millimeter
CM : all subsequent coordinates are centimeter (ea 10 mm)
INCH : all subsequent coordinates are in inch (ea 25.4 mm)
<expN> : parenthesized numeric value, e.g. UNIT_ROWCOL, UNIT_MM,

UNIT_CM, UNIT_INCH, UNIT_PIXEL, UNIT_DOTS (specified
in the set.fh include file)

Description:
SET COORDINATE is equivalent to SET UNIT command, see description there.
SET COORD TO PIXEL is equivalent to SET PIXEL ON, SET COORD TO
ROWCOL is equivalent to SET PIXEL OFF

Compatibility:
Available in VFS7 and later only.

Translation:
SET (_SET_COORD_UNIT, expN)

Related:
SET PIXEL, SET()

CMD 333

SET CURSOR
Syntax:

SET CURSOR ON|off|(<expL>)
Purpose:

Sets cursor to be visible or invisible.

Arguments:
ON/OFF activates or deactivates cursor visibility. Alternatively, the parenthesized
<expL> may be used, whereby TRUE is the same as ON.

Description:
SET CURSOR OFF hides the cursor, although it still exists, which means that
editing can be done with the cursor being invisible.

SET CURSOR can be used to suppress displaying the cursor, except when editing
text. Some commands and functions (like MENU TO, ACHOICE(), DBEDIT() etc.)
will disable the cursor automatically by default.

Because in practice controlling cursor visibility depends on the terminal hardware
and the terminfo description, FlagShip will set the invisible cursor to MAXROW(),
MAXCOL(). The current COL() and ROW() values are not affected by the cursor
ON/OFF state.

SET CURSOR ON/OFF is considered in Terminal i/o mode. For GUI mode, use
SET GUICURSOR instead, where you can also set the text cursor at specific
position or shape by SetGuiCursor(), or set the mouse cursor shape by
MsetCursor().

Example:
SET CURSOR OFF
CLS
@ 1,1 TO 20,60 DOUBLE
SET CURSOR ON
Name = SPACE(15)
@ 10,10 SAY "Enter name: " GET Name
READ
SET CURSOR OFF

Classification:
programming

Compatibility:
Most UNIX terminals (curses libraries) cannot disable the cursor, so the cursor
stays visible at the bottom rightmost position of the screen. For GUI mode, use SET
GUICURSOR instead.

Translation:
SETCURSOR (1 | 0)

Related:
SET CONSOLE, SETCURSOR(), SETPOS(), SET GUICURSOR, SetGuiCursor()

CMD 334

SET DATE
Syntax 1:

SET DATE [TO] AMERICAN | ansi | british | french |
german | italian | japan | usa

Syntax 2:
SET DATE FORMAT [TO] <expC>

Purpose:
Sets the format for displaying and inputting date values.

Arguments:
SET DATE TO AMERICAN, ANSI, GERMAN etc. specifies the format of input and
output date values:

SET DATE Output SET CENTURY ON
AMERICAN mm/dd/yy mm/dd/yyyy
ANSI yy.mm.dd yyyy.mm.dd
BRITISH dd/mm/yy dd/mm/yyyy
FRENCH dd/mm/yy dd/mm/yyyy
GERMAN dd.mm.yy dd.mm.yyyy
ITALIAN dd-mm-yy dd-mm-yyyy
JAPAN yy/mm/dd yyyy/mm/dd
USA mm-dd-yy mm-dd-yyyy

Arguments:
SET DATE FORMAT TO <expC> defines a character expression that directly
specifies the date format. <expC> must be a string of 12 or fewer characters.
Upper/lower letters D, M and Y specify the position of day, month, and year digits
displayed. Other characters in the string are copied into date values displayed and
are used as delimiters.

The FlagShip run-time system analyzes for proper formats and reports errors in
developer mode.

Description:
Using SET DATE allows the control of date formatting in programs ported in
different countries.

CMD 335

Example:
? DATE() && 07/26/93
SET DATE ANSI
? DATE() && 93.07.26
SET DATE BRITISH
? DATE() && 26/07/93
SET DATE FRENCH
? DATE() && 26/07/93
SET DATE ITALIAN
? DATE() && 26-07-93
SET DATE GERMAN
? DATE() && 26.07.93
SET CENTURY ON
? DATE() && 26.07.1993

Example:
Get the date format from a shell environment variable:

LOCAL lang := UPPER(GETENV("LANG"))
DO CASE
CASE SUBSTR(lang,1,4) = "BRIT"

SET DATE BRITISH
CASE SUBSTR(lang,1,4) = "GERM"

SET DATE GERMAN
OTHERWISE

SET DATE USA
ENDCASE

Classification:
programming

Compatibility:
The JAPAN and USA clauses and syntax 2 are new in FS4. FlagShip supports date
values from 01/01/0001 to 12/31/ 9999.

Translation:
SET DATE TO AMERICAN => _DFSET("mm/dd/yyyy", "mm/dd/yy")
SET DATE TO GERMAN => _DFSET("dd.mm.yyyy", "dd.mm.yy")
SET DATE TO USA => _DFSET("mm-dd-yyyy", "mm-dd-yy")
SET DATE FORMAT TO (expC) => SET(_SET_DATEFORMAT, expC)

Related:
SET CENTURY, SET EPOCH, CTOD(), DATE(), DTOC(), DTOS(),
@...SAY..PICTURE, @...GET, READ, TRANSFORM()

CMD 336

SET DBREAD
SET DBWRITE
Syntax 1:

SET DBREAD ANSI|ISO
SET DBREAD PC8|ASCII|OEM

Syntax 2:
SET DBWRITE ANSI|ISO
SET DBWRITE PC8|ASCII|OEM

Purpose:
Change the behavior how to read from or store data into database. This is a special
case of SET ANSI ON/OFF.

Arguments:
ANSI|ISO activates the automatic translation for reading or writing data from/to
database.

PC8|ASCII|OEM deactivates the automatic translation for reading or writing data
from/to database. This is the default setting.

Description:
SET DBREAD and SET DBWRITE is a splitted behavior of SET ANSI to perform
either read or write translation if both are not desired.

SET DBREAD ANSI + SET DBWRITE ANSI is equivalent to SET ANSI ON, SET
DBREAD PC8 + SET DBWRITE OEM is equivalent to SET ANSI OFF which is the
default.

With SET DBREAD ANSI, a database access of character or memo translates the
PC8/ASCII/OEM charset via Oem2Ansi() into ANSI/ISO charset (used for display in
GUI mode or in X11 terminal without a corresponding mapping).

With SET DBWRITE ANSI, the replaced a char or memo field in the database will
be first translated by Ansi2oem() from ANSI to PC8.

This means, special characters like a-umlaut, stored in the database as chr(132) in
PC8/ASCII/OEM charset are translated during a read access to chr(228) in
ANSI/ISO charset, to be displayed on the screen as a-umlaut in GUI environment or
on X terminal. Reverse, with SET ANSI ON or SetAnsi(.T.), the a-umlaut chr(228)
available in a variable or given in input, is stored in the dbf as chr(132) during the
replace stage.

Note: both the FS4 and Clipper always use PC8/ASCII charset in the database, i.e.
chr(132) for a-umlaut.

CMD 337

Example:
See examples/setansi.prg for a complete example with description

Classification:
programming, database

Compatibility:
New in FS5

Related:
SetAnsi(), SET ANSI, Ansi2oem(), Oem2Ansi(), SET SOURCE, SET
KEYTRANSL|CHARSET,

CMD 338

SET DECIMALS TO
Syntax:

SET DECIMALS TO [<expN>]
Purpose:

Sets the number of decimal places for displaying the results of numeric
expressions.

Options:
<expN> is the number of decimal places to display. The default value on start-up is
two. If <expN> is not given, SET DECIMALS is set to 0.

Description:
SET DECIMALS and the number of displayed decimals depend on the state of SET
FIXED:

When FIXED is OFF (the default),

•SET DECIMALS affects the minimum number of decimal digits displayed by the
EXP(), LOG(), SQRT() functions, the division operations (/, %, /= or %=) and
exponentiation (**, ^ or **=).

•On assignment (:= or =), the number of decimal digits of the variable or constant
is stored in the receiving variable structure.

•On addition and subtraction (+, -, ++, --, += or -=), the number of decimal places
of the operand with a greater number of decimal places is stored.

•On multiplication (* or *=), the sum of decimal places of both operands is stored.

By setting FIXED ON, the results of all numeric expressions are displayed
according to SET DECIMALS.

SET DECIMALS and SET FIXED only affect the way numbers are displayed (or
strings created by STR*(), PAD*(), TRANSFORM() etc.) and have no effect on the
precision of numeric calculations.

Example:
LOCAL a := 2, b := 3.456
? SQRT(2), a, b && 1.41 2 3.456
SET DECIMALS TO 6
? 10/3, a, b && 3.333333 2 3.456
SET FIXED ON
? a, b && 2.000000 3.456000

Classification:
programming

Translation:
SET (_SET_DECIMALS, expN)

Related:
SET FIXED, @..SAY..PICTURE, @..GET..PICTURE, TRANSFORM()

CMD 339

SET DEFAULT TO
Syntax:

SET DEFAULT TO <path>|(<expC>)
Purpose:

Sets the directory where files are saved and created.

Arguments:
<path> specifies the directory. The "\" signs are automatically translated to "/". For
lower/upper path translation, use FS_SET("pathlower"|"pathupper"); for the
substitution of a DOS drive letter, the environment variable x_FSDRIVE can be
used.

If the <path> argument is not given, the current UNIX directory becomes the default.

Description:
The default directory, at the beginning of a FlagShip program is the current UNIX
directory. This default directory can be changed with SET DEFAULT.

When accessing files, the DEFAULT directory is searched first. To specify
additional directories to search, the SET PATH command may be used. The RUN
command is not affected by SET DEFAULT nor by SET PATH

SET DEFAULT is meant primarily to specify the location where files are created and
saved. SET DEFAULT does not change the current UNIX directory.

Example:
PUBLIC FlagShip
? FILE("article.dbf") && .F.
SET DEFAULT TO (IF (FlagShip, "/usr/users/smith/am", ;

"D:\smith\am"))
? FILE("article.dbf"), FILE("Article.Dbf") && .T. .F.
FS_SET ("lower", .T.)
FS_SET ("pathlower", .T.)
? FILE("Article.Dbf") && .T.

Classification:
programming

Compatibility
FlagShip supports the automatic conversion of the otherwise case sensitive UNIX
path names and the substitution of DOS drive letters, see FS_SET() and LNG.9.5.

Translation:
SET (_SET_DEFAULT, expC)

Related:
SET PATH, CURDIR(), FS_SET(), PUBLIC FlagShip. #ifdef FlagShip

CMD 340

SET DELETED
Syntax:

SET DELETED on|OFF|(<expL>)
Purpose:

Toggles the filtering of deleted records.

Arguments:
ON/OFF ignores or processes deleted records. Alternatively, the parenthesized
<expL> may be used, whereby TRUE is the same as ON.

Description:
SET DELETED ON causes most commands to ignore the deleted records; the
database seems to include only undeleted records. The SET DELETED ON
command is equivalent to SET FILTER TO .NOT. DELETED().

SET DELETED ON has no effect on indexing operations using INDEX ON or
REINDEX. The RECALL ALL command recalls all records which have been
DELETED().

If a record is referenced by its record number (e.g. the GOTO command or the
RECORD in <scope> clause), the record is available even when SET DELETED is
set ON.

Example:
SET DELETED ON
USE article
DELETE RECORD 34
COUNT TO undel
? undel, LASTREC() && 99 100
SET DELETED (.F.) && or: DELETED OFF
COUNT TO all
? all, RECCOUNT() && 100 100

Classification:
programming, database

Translation:
SET (_SET_DELETED, .T.|.F.)

Related:
DELETE, INDEX, RECALL, SET FILTER, SET INDEX, USE, DELETED(), SET(),
oRdd:Deleted

CMD 341

SET DELIMITERS
Syntax 1:

SET DELIMITERS on|OFF|(<expL>)
Syntax 2:

SET DELIMITERS TO [<expC>|DEFAULT]
Purpose:

Sets/enables delimiter characters for the display of GET entries in terminal i/o
mode.

Arguments:
ON/OFF displays delimiters or suppresses the display. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON.

Options:
TO <expC> is a character expression containing one or two characters. If there is
only one character, it is used as both the beginning and the ending delimiter. If
there are two, the first one becomes the beginning, and the other the ending
delimiter. If there are more than two characters in the string, the first two are
considered and the rest is ignored.

TO DEFAULT: Resets the delimiters to the default colons (::) value. SET
DELIMITERS TO without parameters has the same effect.

Description:
The @...GET command can display delimiters that surround the GET edit field
display. If DELIMITERS is ON, the delimiters add two characters to the length of the
GET object display.

To suppress the visibility of the left, right, or both delimiters, spaces can be used as
part of the character expression.

Normally, DELIMITERS are not necessary because FlagShip programs use the
optically more attractive reverse video or enhanced color setting if INTENSITY is
ON.

In GUI mode, the delimiters are not displayed (but the GET column is corrected, i.e.
shifted one column right), since the GET itself use own GUI widgets (controls).

CMD 342

Example:
SET DELIMITERS ON
SET DELIMITERS TO "||" && chr(128), pipe
Name = "John "
@ 10,10 SAY "Name" GET Name && Result: Name |John |
READ

SET DELIMITERS TO "><"
Name = "John "
@ 10,10 SAY "Name" GET Name && Result: Name >John <
READ

Classification:
programming

Translation:
Set (_SET_DELIMCHARS, expC)
Set (_SET_DELIMITERS, .T.|.F.)

Related:
@...GET, READ, SET()

CMD 343

SET DEVICE TO
Syntax:

SET DEVICE TO SCREEN | printer [NEW]
Purpose:

Redirects the output of full-screen commands, like @..SAY to the screen or printer.

Arguments:
TO SCREEN: The screen is the default device. If SCREEN is specified as the
device, all output from @...SAY goes to the screen.

TO PRINTER: redirects all @...SAY output to the device or file specified with SET
PRINTER TO, and is not echoed to the screen. The SET MARGIN is obeyed.
@...GETs are ignored.

TO PRINTER NEW causes the current printer file contents to be deleted , instead of
appended to.

Description:
When @...SAY is sent to the printer, a formfeed character (the EJECT command) is
sent each time when the printing row becomes less than in the previous command.
EJECT resets the printing row and column (PCOL() and PROW() values) to zero
also causing a formfeed. SETPRC() can be used to set the printing row and column
to the desired value.

You may tune the printer device driver by FS_SET("prset") which may be
advantageous when using proportional character set etc.

To redirect the @...SAY output to a text file, SET PRINTER TO <file> and SET
DEVICE TO PRINTER may be used.

Example:
IF ISPRINTER() && UNIX: always .T.

SET DEVICE TO PRINTER
@ 1,5 SAY "Time to go home!"
EJECT

ENDIF

Classification:
programming, file access

Compatibility:
Note the default spooled printer output of FlagShip; for more information refer to
SET PRINTER and LNG.5.1.6. The NEW clause is available in FS4 only.

Translation:
SET (_SET_DEVICE, "SCREEN"|"PRINTER")

Related:
@...SAY, EJECT, SET PRINTER TO, ISPRINTER(), PROW(), PCOL(), SETPRC(),
SET(), FS_SET("prset")

CMD 344

SET DIRECTORY TO
Syntax:

SET DIRECTORY [TO] [<expC>]
Purpose:

Changes the current working directory.

Option:
<expC> specifies the path (and optional DOS drive) of the new current working
directory.

When <expC> is not specified or is an empty string, the previous directory is
selected.

Description:
On UNIX, you cannot use RUN cd <expC> since the directory change applies to the
current shell only and has therefore no influence on the application when the RUN
command terminates. Use the SET DIRECTORY instead, which has the same
effect as #Cinline / chdir (<expC>); / #endCinline.

Automatic path conversion to lowercase or uppercase with
FS_SET("pathlow"|"pathupp") and drive substitution from x_FSDRIVE environment
variables is supported.

Issuing SET DIRECTORY without arguments changes to the last directory before
the previous SET DIRECTORY was executed.

Example:
? CURDIR() && /usr/peter/temp
SET DIRECTORY TO ../data
CURDIR() && /usr/peter/data
SET DIRECTORY TO
? CURDIR() && /usr/peter/temp

SET DIRECTORY TO /tmp
? CURDIR() && /tmp
SET DIRECTORY TO /usr/john
? CURDIR() && /usr/john
SET DIRECTORY TO
? CURDIR() && /tmp

Example: checks if given directory is available
cDir1 := "..\a\b"
ok := IsDirAvail(cDir1)
? "Directory", cDir1, "available:", ok
cDir2 := "c:\tmp"
ok := IsDirAvail(cDir2)
? "Directory", cDir2, "available:", ok
? "current dir =", curdir()
wait

CMD 345

// --
// checks if directory <cDirName> is available,
// returns .T. or .F., does not change current dir
FUNCTION IsDirAvail(cDirName)

local ok, cCurDir
cCurDir := curdir()
ok := _setdir(cDirName) // SET DIRECTORY ...
if ok

_setdir(cCurDir) // back to current
endif

return ok

Classification:
programming

Compatibility:
Compatible to DB4, not available in C5.

Translation:
_SETDIR (expc)

Related:
CURDIR(), SET DEFAULT, SET PATH

CMD 346

SET EJECT
Syntax:

SET EJECT on|OFF|(<expL>)

Purpose:
Performs automatic EJECT on full printer page in GUI mode

Arguments:
ON/OFF enables/disables the automatic EJECT. Alternatively, the parenthesized
<expL> may be used, whereby TRUE is the same as ON. The default setting is
OFF.

Description:
With PrintGUI() or SET PRINTER GUI turned on, this SET EJECT performs
automatic FormFeed (new page) when the line number exceeds printer's page limit.
You may alternatively perform FormFeed manually by the EJECT command.

Example:
SET FONT “courier”, 8
SET CONSOLE OFF // disable screen output
SET PRINTER ON // activate printer output
PrintGui(.T.) // creates spooler file for GDI printer
SET MARGIN TO 5 // margin left = 5 chars

SET EJECT ON // autom. EJECT on full page

USE address
LIST Name, Address, Age // print to spooler
PrintGui() // select & start print to GDI printer
SET CONSOLE ON // enable screen output
SET FONT “courier”, 10

Classification:
GUI printer output

Translation:
SET (_SET_EJECT, expL)

Compatibility:
New in FS7

Related:
EJECT, SET PRINTER, SET GUIPRINTER, PRINTGUI()

CMD 347

SET EOFAPPEND
Syntax:

SET EOFAPPEND on|OFF|(<expL>)
Purpose:

Enables/disables automatic APPEND BLANK before replacing record at EOF().

Arguments:
ON/OFF enables/disables the automatic APPEND BLANK. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON. The
default setting is OFF.

Description:
In some xBase dialects, REPLACEing a record in empty database, or when the
record pointer is behind the last record (i.e. when EOF() reports .T.) will
automatically invoke APPEND BLANK before REPLACE to avoid RTE (run-time-
error) message.

You also may use this feature in your application by setting SET EOFAPPEND ON
or the equivalent function SET(_SET_EOFAPPEND, .T.).

Example:
USE mydata
GO TOP // go to last record
SKIP // skip one behind
? EOF(), RecNo(), RecCount() // .T. 121 120
? SET(_SET_EOFAPPEND) // .F.

* REPLACE name with "My Name" // this will cause RTE 334

SET EOFAPPEND ON // anywhere before REPLACE
? SET(_SET_EOFAPPEND) // .T.
REPLACE name with "My Name" // this invokes APPEND BLANK
? EOF(), RecNo(), RecCount() // .F. 121 121

Classification:
programming

Compatibility:
New in FS6

Related:
APPEND BLANK, Eof(), Set()

CMD 348

SET EPOCH
Syntax:

SET EPOCH TO <expN>
Purpose:

Controls the interpretation of dates which have no century digits.

Arguments:
<expN> specifies the base year of a 100-year period in which all dates containing
only two year-digits are assumed to fall.

Description:
SET EPOCH allows the correct interpretation of date strings containing only two
year digits, even for dates outside of the 1900..1999 range. When such a string is
converted to a date value, its year digits are compared with the year digits of
<expN>. If the year digits in the date are greater than or equal to the year of
<expN>, the date is assumed to fall within the same century as given in <expN>;
otherwise, the date is assumed to fall in the following century.

The default value for SET EPOCH is 1900, causing dates with no century digits to
be interpreted as falling within the 20th century.

Staring with the release 4.42.448, the default EPOCH value is set to 1951
to meet all the "Year 2000 Conformity Requirements", see below. This means,
when you need compatibility to Clipper or older FlagShip releases, you should set

SET EPOCH TO 1900
at program start.

Year 2000: The BSI committee has specified rules for Y2K conformance (see
details and the full text on http://www.fship.com/y2k.html). In short: FlagShip
fully meets all the requirements. But, since the inference rule (3.2.b) says here:
"two-digit years with value > 50 imply 19xx, those with a value <= 50 imply 20xx",
the default EPOCH value is now set to 1951. This means, the date entered as e.g.
52 imply the year 1952, whilst the entry 49 imply the year 2049. If you want to
enable this rule at the begin of year 2000, use

IF YEAR(DATE()) >= 2000
SET EPOCH TO 1951

ENDIF
instead. This is valid also for FlagShip which imply an immediate availability
of the Y2000 Conformance.

CMD 349

Example:
? VERSION(), SET(_SET_EPOCH) && ...4.42.0448... 1951
SET CENTURY OFF
? DATE(), CTOD("12/31/55") && 05/20/98 12/31/55
SET CENTURY ON
? DATE(), CTOD("12/31/55") && 05/20/1998 12/31/1955
? DATE()+730, CTOD("12/31/45") && 05/19/2000 12/31/2045 !

SET EPOCH TO 2000
? DATE(), CTOD("12/31/55") && 05/20/1998 12/31/2055
SET EPOCH TO 1990
? DATE(), CTOD("12/31/55") && 05/20/1998 12/31/2055
SET EPOCH TO 1900
? DATE(), CTOD("12/31/55") && 05/20/1998 12/31/1955

SET EPOCH TO 1951
? CTOD("01/01/00"), CTOD("02/29/00") && 01/01/2000 02/29/2000
? CTOD("01/01/50"), CTOD("01/01/51") && 01/01/2050 01/01/1951
? CTOD("01/01/1950"), CTOD("01/01/2051") && 01/01/1950 01/01/2051

Classification:
programming

Compatibility:
This command is available in FS4 and C5. FlagShip supports date values from
01/01/0001 to 12/31/9999. Warning: starting with FS4.42.448, the default EPOCH
value changed to 1951 and is not equivalent to Clipper's default of 1900. To meet
the backward compatibility, use SET EPOCH TO 1900 at program begin.

Translation:
SET (_SET_EPOCH, expN)

Related:
SET CENTURY, SET DATE, CTOD(), DATE(), DTOC(), SET(), VERSION()

CMD 350

SET ESCAPE
Syntax:

SET ESCAPE ON|off|(<expL>)
Purpose:

Toggles the possibility of terminating a READ with the Esc key.

Arguments:
ON/OFF enables/disables the ESC as a READ exit key. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON.

Description:
SET ESCAPE OFF causes READ to ignore the Esc key.

By default SET ESCAPE is ON, allowing Esc to abort READ commands discarding
the changes and by-passing the validation of RANGE and VALID.

The redirection of the Esc key using SET KEY TO is not affected by SET ESCAPE.

Example:
SET ESCAPE OFF
SET FORMAT TO authors
USE author
SET KEY 27 TO Esc_react && procedure for ESC key
READ
SET KEY 27 TO
SET ESCAPE ON
PROCEDURE Esc_react (p1,p2,p3)
LOCAL getlist := {}, answer := "N"
@ 24,0 && clear line 24
@ 24,0 SAY "Do you really want to terminate input (y/n)?" ;

GET answer PICTURE "!"
READ
if answer = "Y"

KEYBOARD chr(3) && simulate PgDn key
endif
@ 24,0 && clear line 24
RETURN

Classification:
programming

Translation:
SET (_SET_ESCAPE, .T.|.F.)

Related:
READ, SET KEY, SETCANCEL(), SET()

CMD 351

SET EVENTMASK
Syntax:

SET EVENTMASK [TO] <expN>
Purpose:

Set event mask for Inkey().

Arguments:
<expN> is a INKEY_* constant specified in the inkey.fh file. Default at start-up is
INKEY_ALL_BUT_MOVE

Description:
The SET EVENTMASK command specifies which events should be considered and
stored in the ahead buffer to be returned by the INKEY() function. All events not
matching the event mask are silently ignored. Using this mask you can have
INKEY() return only the events in which you are interested.

Also the Inkey() function has it own, optional event mask. The SET EVENTMASK
decides which keys or events are generally considered and stored, whilst the
Inkey()s event mask is an additional filter to receive specific, already stored events.

Classification:
programming

Compatibility:
New in FS5

Related:
Inkey(), InkeyTrap()

CMD 352

SET EXACT
Syntax:

SET EXACT on|OFF|(<expL>)
Purpose:

Toggles the way character strings are compared.

Arguments:
ON/OFF enables/disables exact string comparison regarding the length.
Alternatively, the parenthesized <expL> may be used, whereby TRUE sis the same
as ON.

Description:
SET EXACT specifies how two strings are to be compared by the relational
operators (=, >, <, >=, <=, <>, #, !=). When EXACT OFF is set (the default), the
following rules for the comparison of <expC1> ? <expC2> apply:

•When <expC2> is a null string "", the result is always TRUE on =, >=, <=
comparison and FALSE otherwise.

•When <expC1> is a null string "", the result is always TRUE on <, <=, <>, #, !=
comparison and FALSE otherwise.

•If LEN(<expC2>) is greater then LEN(<expC1>), the result is FALSE.

•Otherwise, all characters in <expC2> will be compared to <expC1>. It returns
TRUE if all characters are equal or only trailing blanks remain in <expC1>;
otherwise FALSE.

Note: when SET EXACT is OFF, the comparison results (intentionally) depends on
the operands sequence, empty strings and the trailing blanks in the second
operand, which is the xBase standard.

When EXACT is ON, the two strings must match exactly, except for the trailing
blanks in <expC1> or <expC2>.

A comparison using the double equal == operator is not affected by SET EXACT
and returns TRUE only, if all characters and both lengths are exactly the same.

For a true string equality comparison, use a == b or !(a == b) respectively, since
both are independent of the SET EXACT status. Note that the !(a == b) syntax is
not the same as a != b and therefore the results may differ. The !=, # and <>
operators are fully equivalent.

CMD 353

Example:
// SET EXACT OFF SET EXACT ON
? "123" = "12345" // .F. .F.
? "12345" = "123" // .T. .F.
? "123" = "" // .T. .F.
? "" = "123" // .F. .F.
? "123" = "123" // .T. .T.
? "123" = "123 " // .F. .T.
? "123 " = "123" // .T. .T.

? "123" == "123 " // .F. .F.
? "123 " == "123" // .F. .F.

Example:
Search exact matching, including string length:

USE custom INDEX name
IF SeekExact("Smith ")

? custno, name
ELSE

? "Customer 'Smith ' is not available"
ENDIF
RETURN

FUNCTION SeekExact (expC)
SEEK PADR (expC, LEN(&(INDEXKEY(0))))
RETURN (FOUND())

Classification:
programming

Compatibility:
In FlagShip (and Clipper 5.x), SET EXACT has no effect on operations other than
relational operators. This includes the SEEK and FIND commands. If exact SEEK is
required in other dialects, use the example above.

Translation:
SET (_SET_EXACT, .T.|.F.)

Related:
DISPLAY, FIND, LIST, LOCATE, SEEK, SET()

CMD 354

SET EXCLUSIVE
Syntax:

SET EXCLUSIVE ON|off|(<expL>)
Purpose:

Switches the access status for all subsequently opened databases (.dbf) and their
associated memo files (.dbt) and indices (.idx) to EXCLUSIVE (only one user at a
time) or SHARABLE (multiuser).

Arguments:
ON/OFF disables/enables the multiuser mode. Alternatively, the parenthesized
<expL> may be used, whereby TRUE is the same as ON.

Description:
If SET EXCLUSIVE is ON, the newly opened databases (with memo files and
indices) will be accessible only from this user or program, until the database is
closed again. This switch is identical to the option USE <dbfname> EXCLUSIVE.
SET EXCLUSIVE, however, is a general switch, USE...EXCLUSIVE is associated
with the specified dbf only. On the other side, USE...SHARED will open the
database in multiuser mode, regardless of the SET EXCLUSIVE status.

If SET EXCLUSIVE is OFF, the newly opened databases (including memo files and
indices) will share the access with other users or programs. Using the command
USE...EXCLUSIVE will override the SET EXCLUSIVE state and open the database
in non-shareable mode.

Multiuser:
The multiuser/multitasking mode is active after SET EXCLUSIVE OFF or the
consequent use of USE...SHARED. The AutoLock feature is effective only in this
mode.

Before each write access in multiuser mode, the record or the whole file must be
locked using RLOCK() or FLOCK(). The commands REINDEX, PACK and ZAP
require an EXCLUSIVEly opened database. The command INDEX ON requires
FLOCK() or EXCLUSIVE usage. If the lock is not set by the programmer and SET
AUTOLOCK is ON, FlagShip locks the record or file automatically by using the
AUTOxLOCK() function.

Check the open success using the function NETERR() or USED(). Opening a
database EXCLUSIVEly will succeed only if it is not already in use by some other
user.

When performing operations on the SAME physical database (used concurrently in
different working areas), see chapter LNG.4.8.7.

CMD 355

Example:
SET EXCLUSIVE OFF && set multiuser mode
USE address ALIAS adr && open: shareable
DO WHILE NETERR()

USE address ALIAS adr && see also USE examples
ENDDO
SET INDEX TO name, idno

Classification:
programming

Compatibility:
In FlagShip, the EXCLUSIVE or SHARED mode applies also for the same database
concurrently, opened in different working areas, see the USE command. The
internal locking mechanism of FlagShip conforms to the UNIX standard. The locking
mechanism of nearly all other xBASE derivates is mutually incompatible. The
AutoLock feature is available in FlagShip only.

Translation:
SET (_SET_EXCLUSIVE, .T.|.F.)

Related:
USE, COMMIT, FLOCK(), RLOCK(), NETERR(), SET(), SET AUTOLOCK

CMD 356

SET EXTRA
Syntax 1:

SET EXTRA TO [<file>|(<expC>) [ADDITIVE]]
Syntax 2:

SET EXTRA on|OFF|(<expL>) [NEW]
Purpose:

Echoes the console output (e.g. of the ?, ?? commands) to an ASCII text file.

Arguments:
TO <file> is the name of an ASCII text file to which the output will be redirected and
can include a path and an extension. If the file extension is not specified, .txt is
assumed. When the TO... clause is not given, the opened extra file (if any) will be
closed.

Option:
ADDITIVE causes the specified extra file to be appended to instead of overwritten.
If not specified, the specified <file> is truncated.

Arguments:
ON/OFF activates or deactivates the output to the current open extra file. The
toggle will not be switched to ON if the extra file is not opened. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON.

NEW causes the current file contents to be deleted, instead of appended to.

Description:
FlagShip allows the redirection of console commands (such as ?, LIST, REPORT
FORM, LABEL FORM) to four different devices/files at a time: the SCREEN device,
and the ALTERNATE, PRINTER and EXTRA files or devices.

In commands, which support the TO FILE <file> clause (like LIST, REPORT FORM
etc.), this clause is a synonym for SET EXTRA TO <file> ADDITIVE and SET
EXTRA ON. When such a command is finished, the previous EXTRA status is
restored.

In other commands (like ?, ??, QOUT() etc.), an additional redirection to a text file
(or device) using the SET EXTRA command is possible. Full-screen commands'
output such as @...SAY cannot be echoed by the SET EXTRA command; use SET
DEVICE instead.

When setting the output OFF, the extra file remains open. Closing the extra file with
SET EXTRA TO will reset the toggle to OFF. Only one extra file may be opened at
a time (in addition to the alternate and printer file).

CMD 357

Tuning:
You may set the new-line character by 9th element in FS_SET("prset") e.g.

#ifdef FS_WIN32 /* here: should apply for Windows only */
FS_SET("prset", {NIL,NIL,NIL,NIL,NIL,NIL,NIL,NIL,chr(13,10) })

#endif
before printing to EXTRA file via ? or QOUT(). The default setting is line-feed =
chr(10).

Example:
SET PRINTER TO all.doc && or: TO /dev/lp0
SET ALTERNATE TO old.doc && or: TO /dev/tty15
SET EXTRA TO new.doc && or: TO /dev/tty24
SET PRINTER ON
USE address
? "All customers:"
DO WHILE .NOT. EOF() .AND. INKEY() # 27

IF lastdate < DATE() - 60
SET ALTERNATE ON

ENDIF
IF lastdate >= DATE() - 60

SET EXTRA ON
ENDIF
? Name, Address, Zip, Town, lastdate
SET ALTERNATE OFF
SET EXTRA OFF
SKIP

ENDDO
SET PRINTER OFF
? "Old customers (last access older than 2 months):"
TYPE old.doc
WAIT
? "New customers (last access within 2 months):"
TYPE new.doc
WAIT

Classification:
programming

Compatibility:
The command is available in FlagShip only, but is compatible with the Clipper 5
behavior.

Translation:
SET (_SET_EXTRA, .on.)
SET (_SET_EXTRA, "file", .additive.)

Related:
?, ??, DISPLAY, LIST, LABEL FORM, REPORT FORM, TEXT, TYPE, QOUT(),
QQOUT(), SET ALTERNATE, SET PRINTER, SET()

CMD 358

SET FILTER TO
Syntax:

SET FILTER TO [<condition>]
Purpose:

Makes a database appear as if it only contains the records meeting the specified
condition.

Arguments:
<condition> is a logical expression identifying a specific set of records. SET
FILTER TO without an argument deactivates the filter.

Description:
Each working area can have an active filter. When set, a filter becomes active on
the first movement of the record pointer in the corresponding working area, e.g.
using the GOTO TOP command. The current filtering condition can be returned as
a character string using the DBFILTER() function.

Most commands and functions that move the record pointer honor the current filter
setting. Filters have no effect on indexing. A filtered record can always be accessed
with GOTO, or any command specifying the RECORD scope.

Although SET FILTER makes the current working area appear as if it contains a
subset of records, it in fact processes all records in the database sequentially.
Therefore, setting FILTER and GOTO TOP needs the same time as the LOCATE
command. For a large database, the usage of index, SEEK and subsequent DO
WHILE <condition> is the much faster alternative.

Example:
USE salesmen
SET FILTER TO parts_sold >= 10 .and. parts_sold < 1000
GO TOP // locate first match
? "sales for: " + DBFILTER()
DO WHILE !EOF()

? name, parts_sold
SKIP

ENDDO

CMD 359

Example:
Same example as above (now in multiuser mode), but much faster on a large dbf

IF !FILE("partsold" + INDEXEXT()) // if no index
USE salesmen EXCLUSIVE NEW // exists,
WHILE NETERR() // create it

USE salesmen EXCLUSIVE
END
INDEX ON parts_sold TO partsold
USE

ENDIF
USE salesmen SHARED NEW // open database in
WHILE NETERR() // multiuser mode

USE salesmen SHARED
ENDDO
SET INDEX TO partsold // and assign index

// SEEK and "filter" applied records

SET SOFTSEEK ON
SEEK 10 // first match +
DO WHILE !EOF() .and. parts_sold < 1000 // filter condition

? name, parts_sold
SKIP

ENDDO
SET SOFTSEEK OFF

Classification:
database

Translation:
DBCLEARFILTER ()
DBSETFILTER ({||condition}, "condition")

Related:
SET DELETED, DBFILTER(), LOCATE, SEEK, DBSETFILTER(), oRdd:Filter

CMD 360

SET FIXED
Syntax:

SET FIXED on|OFF|(<expL>)
Purpose:

Defines whether the SET DECIMALS will control the display of numeric values, or
not.

Arguments:
ON/OFF enables/disables the fixed decimal places display specified by SET
DECIMALS. Alternatively, the parenthesized <expL> may be used, whereby TRUE
is the same as ON.

Description:
After a SET FIXED ON, all numeric values are displayed according to the last SET
DECIMALS setting (the default is two decimal digits).

When SET FIXED is OFF, the standard display of numeric values depends on the
mathematical operation:

•On assignment (:= or =), the number of decimal digits of the variable or constant
is stored in the receiving variable structure.

•On addition and subtraction (+, -, ++, --, += or -=), the number of decimal places
of the operand with the greater number of decimal places is stored.

•On multiplication (* or *=), the sum of decimal places of both operands is stored.
•On division (/, %, /= or %=) and exponentiation (**, ^ or **=) operations, SET

DECIMALS value determines the number of decimal places to display. The same
also applies for the functions EXP(), LOG() and SQRT().

SET DECIMALS and SET FIXED only affect the way numbers are displayed (or
strings created by STR*(), PAD*(), TRANSFORM() etc.) and have no effect on the
precision of numeric calculations.

To display the numbers in another format, use the PICTURE clause of @..SAY or
@..GET; the STR() or TRANSFORM() function can be used respectively.

Example:
LOCAL num
SET FIXED OFF
SET DECIMALS TO 1
? 1.23456 + 1 && 2.23456
? 2.2 * 2.2 && 4.84
? EXP(1) && 2.7
? num := 10/3 && 3.3
SET DECIMALS TO 0
SET FIXED ON
? num && 3
? STR(num, 5, 3) && 3.333
? TRANSFORM (num, "9.99999") && 3.33333

CMD 361

Classification:
programming

Translation:
SET (_SET_FIXED, .T.|.F.)

Related:
SET DECIMALS, EXP(), LOG(), SQRT(), @..SAY..PICTURE, TRANSFORM(),
STR(), SET()

CMD 362

SET FONT
Syntax:

SET FONT [TO] [FACE] <family> [, <sizePt>]
[SIZE[<sizePt>]]

[BOLD] [UNDERLINE]
[UPRIGHT|ITALIC] [NORMAL]

Purpose:
Sets new default font name and/or size and/or attribute, used for all consecutive
console output like QOut(), QQOUT(), @..SAY, @..GET etc. Apply also for printer
output with SET GUIPRINT ON. Applicable for GUI mode, ignored otherwise.

Default is oAppWindow:Font, if not set

Arguments:
<family> is the used font family. The available family depends on the installed
fonts. Usually, at least "Helvetica", "Times" and "Courier" fonts are available.

<sizePt> is the font size in points. The common size is 10 (points), larger size is 10,
smaller is 8 points.

UNDERLINE is a underlined face

BOLD is thicker boldface than NORMAL

ITALIC is a cursive face.

UPRIGHT is the usual character face and disables ITALIC

NORMAL disables BOLD, ITALIC and UNDERLINE settings

Description:
In GUI, the default font is set at application begin corresponding to the screen
manager setting. You may change the font at any time later.

The fixed font is e.g. "Courier" where all characters have the same width and hence
the application behaves very similarly to terminal based i/o. The "Helvetica", "Arial"
or "Times" are proportional fonts, where each character has different width. It
mostly looks more pretty, but the handling is slightly aggravated. FlagShip provides
several functions to alleviate the handling with proportional fonts, e.g. StrLen2Col(),
StrLen2pix(), SET GUIALIGN etc.

In GUI mode, SET FONT access/assign the m->oApplic:Font object. You therefore
may retrieve or set additional font properties by using the Font class, documented in
section OBJ.

The low-level font selection is not performed directly by FlagShip, but is handled by
the underlying Qt and X11 or MS-Windows font manager. If the requested font and
it characteristics is not found exactly "as is", a heuristic (and sometimes costly)
search is used:

CMD 363

•a table of comparable typefaces is searched for similar font family,

•if even the replacement family is not found, "helvetica" or "arial" is searched for,

•if that too is not found, as a last resort a specific font to match to, ignoring the
attribute settings, is searched through a built-in list of very common fonts

•if nothing apply, an error message displays.

The following attributes are then matched, in order of priority: character set,
fixed/variable pitch, point size, weight, italic. If, for example, a font with the correct
character set is found, but with all other attributes in the list unmatched, it will be
chosen before a font with the wrong character set but with all other attributes
correct. The point size is defined to match if it is within 20% of the requested point
size. Of course, when several fonts match and only point size differs the closest
point size to the one requested will be chosen.

For additional information about font handling, see also chapters LNG.5.3.1 (fonts),
LNG.5.3 (difference between terminal and GUI i/o), LNG.5.4 (national characters),
OBJ.FONT (the font class), SET PIXEL, Col(), Row(), Col2pixel(), Row2pixel(), SET
GUITRANSL (using semi-graphic PC8 character set), SET GUIALIGN, SET
ROWALIGN, SET ROWADAPT, StrLen2Col(), StrLen2pix()

Hint: when changing the font, you may need to adapt the application window size to
fit max. required rows and columns by invoking

oAplic:Resize(rows, columns, , .T.)
to avoid automatic horizontal and/or vertical scroll bars, see also Resize()
description in section OBJ.Application class

Example:
? "Hello world, printed by"
?? Set(_SET_FONTNAME) // Helvetica
?? Set(_SET_FONTSIZE) // 10

SET FONT TO SIZE 14 ITALIC BOLD
? "Hello larger world"
if AppIoMode() == "G" // font change apply for GUI mode
? "Font attributes: requested name=", m->oApplic:Font:FontName, ;
"assigned/real name=", m->oApplic:Font:FontFamily, ;
"size=", ltrim(m->oApplic:Font:Size) + "pt", ;
"=", ltrim(m->oApplic:Font:SizePixel()) + "px", ;
if(m->oApplic:Font:Normal, "NormalWeight ", "") + ;
if(m->oApplic:Font:Pitch, "FixedPitch ", "") + ;
if(m->oApplic:Font:Bold, "Bold ", "") + ;
if(m->oApplic:Font:Italic, "Italic ", "") + ;
if(m->oApplic:Font:Underline, "Underline ", "") + ;
if(m->oApplic:Font:StrikeThru, "StrikeThru", "")

endif

CMD 364

SET FONT "Courier", 12
m->oApplic:Resize(25, 80,, .T.) // resize to 80x25 accord.to font
? "Hello with fix sized font" // output by courier 12 italic bold
wait

Classification:
programming

Compatibility:
New in FS5

Translation:
_SetDefFont(family, sizePt, lUpright, lItalic, lNormal, ;

lBold, NIL, lUnderline)

Related:
Set(_SET_FONTNAME), Set(_SET_FONTSIZE), Set(_SET_FONTITALIC),
Set(_SET_FONTBOLD), Font class, SET FONT BASELINE

CMD 365

SET FONT ALIGN
SET FONT BASELINE
Syntax:

SET FONT [ALIGN] BASELINE on|OFF|(<expL>)
Purpose:

Enable/disable font alignment to base line. Apply for GUI mode, and for creating
printer template via SET PRINTER GUI ON with subsequent printing by PrintGui(),
ignored otherwise.

Arguments:
ON/OFF enables/disables the automatic font alignment. Alternatively, the
parenthesized <expL> expression may be used, whereby TRUE is the same as ON.
The default setting is OFF.

Description:
The default x/y alignment in GUI mode is on the top left character frame (marked
with + in the picture below), to allow start the output at 0,0 coordinates. The
characters "O-umlaut","h","p" are displayed as

--+---------------------------- ----- <- top character frame
| * * | | | ^
| ### | # | | |
| # # | # | | | oFont:Ascent
| # # | ### | #### | |
| # # | # # | # # | |
| ### -| # # -| #### -| ---X- <- base line
| | | # | |
| | | # | | oFont:Descent
| | | # | |
----------------------------- ---V- <- bottom character frame

------------------------------- ----- <- line spacing

where the size of (bottom - top) is returned by oFont:Height() - or in pixel by
oFont:SizePixel() which corresponds to oFont:Ascend plus oFont:Descend. The line
spacing is user definable by global variable _aGlobSetting[GSET_G_N_ROW_
SPACING].

When you change the FONT size, the start position remain unchanged, i.e. larger
font has it base line located below the former font (or at higher Y position in view of
top/down coordinates):

BBBB 11 BBBBB 2222
B B * 1 1 B B 2 2
BBBBB i ggg 1 B B * ggggg 2
B B i g g 1 BBBBB i g g 2

_ BBBB i ggg 111 _ B B i g g 2 __ base line 1
g B B i g g 2

gg BBBBB i ggggg 222222 __ base line 2
g
g

ggg

CMD 366

Sometimes you may wish to align characters on it base line, eg. when using the
FONT clause to display different fonts in the same output line (similarly to word
processor output), e.g.

SET FONT "Arial",12 // set standard font
? "Big1" // output by standard font
SET FONT BASELINE ON
oFont2 := Font{"Arial",20} ; oFont2:Bold := .T.
?? "Big2" FONT oFont2 // output by temporary font

where the SET FONT BASELINE ON statement causes the second output to be
shifted up so that it base line matches the base line of standard font:

BBBBB 2222
B B * 2 2

BBBB 11 B B ggggg 2
B B * 1 1 BBBBB i g g 2
BBBBB i ggg 1 B B i g g 2
B B i g g 1 B B i g g 2

_ BBBB i ggg 111 _ BBBBB i ggggg 222222 __ base line
g g

gg g
ggg

The same apply also for printing with enabled SET PRINTER GUI ON. Note that
SET FONT BASELINE takes effect only on the temporary font, assigned by the
FONT clause of ?, ??, Qout(), QQout() and @...SAY; the output by default font
(assigned by SET FONT) remain unchanged.

The SET FONT BASELINE does not change ROW() or COL() output, nor the
default line spacing. Because of the output shift, this behaves with larger font
correctly only if you have enough space above, i.e. when the current ROW() is > 0.

Classification:
programming

Compatibility:
New in FS7

Example:
See <FlagShip_dir>/examples/printergui.prg

Translation:
Set(_SET_FONT_BASELINE, [.T.|.F.])

Related:
SET FONT TO, ?, ??, @..SAY, Qout(), Qqout(), Font class, SET PRINTER,
PrintGui()

CMD 367

SET FORMAT TO
Syntax:

SET FORMAT TO <procname>
Purpose:

Specifies a format procedure to be executed before every READ command.

Arguments:
<procname> can be a user-defined procedure (UDP) or a file with the .fmt or .prg
extension. If <procname> is not specified, the current FORMAT is deactivated.

Description:
The only difference between format procedures and other procedures is the way
they are invoked. The format procedures are executed when a READ is
encountered after a SET FORMAT.

SET FORMAT is a global setting, which means that there can only be one active
format at a time. An other SET FORMAT statement in the format procedure will
become active when the current format procedure terminates and will be executed
by subsequent READs.

In the FORMAT procedure, all FlagShip commands and functions in addition to
@...SAY and @...GET, can be used.

Unlike the interpreted xBASE dialects, format files are not opened at runtime but
compiled and linked into the application. When the FlagShip compiler encounters a
SET FORMAT command and the name of the procedure is unknown, it searches
the current directory for a source file with the same name (and the .frm or .prg
extension) in order to compile it. If not found, the object file has to be specified at
link time; otherwise an error "unresolved external _bb_<procname>" occurs.

Therefore, the name of the format procedure must be unique in the whole
application. It must differ from all the function, procedure and other format names,
as well as from all the file names comprising the application when their extension is
discarded. This means that, for example "test.fmt" and "test.prg" may not be parts
of the same application.

Note that SET FORMAT TO is an obsolete command and is supported for
compatibility purposes only.

CMD 368

Example:
SET FORMAT TO get_name
USE authors
DO WHILE .NOT. EOF()

READ
SKIP

ENDDO
USE
SET FORMAT TO test // compiles test.frm
READ
RETURN

PROCEDURE get_name
@ 10,0 CLEAR TO 10,79
@ 10,10 SAY "First name: " GET first_name
@ 10,50 SAY "Last name: " GET last_name
RETURN

Classification:
programming, compiler

Compatibility:
Unlike the interpreted xBASE dialects, the screen is not cleared before executing
the format procedure. Multiple-page formats are not supported. Note also the
compiler notes above.

Translation:
PROCREQ ("procname") ; __SETFORMAT ({|| procname() })

Related:
@...SAY, @...GET, READ, PROCEDURE, DO...WITH

CMD 369

SET FUNCTION ... TO
Syntax:

SET FUNCTION <expN1> TO <expC2>
Purpose:

Defines a string that will be pushed into the keyboard buffer when the specified
function key is pressed.

Arguments:
<expN1> is the function key number (1..48), e.g. 8 for the F8 key.

<expC2> is the character string to assign to the function key. If <expC2> is not
specified, the current string assignment to a FN key is disabled.

Description:
When the specified function key is pressed, the keyboard buffer is stuffed with the
character string which may contain any characters including control characters. The
following keys can be assigned with SET FUNCTION (see also section SYS and
the FStinfo.src file):

expN1 Function Key terminfo
1 - 10 F1 - F10 kf1...kf10
11 - 20 shift F1 - F10 kf13...kf22
21 - 30 ctrl F1 - F10 kf25...kf34
31 - 40 alt F1 - F10 * kf37...kf46
41 - 42 F11 - F12 ** kf11...kf12
43 - 44 shift F11 - F12 ** kf23...kf24
45 - 46 ctrl F11 - F12 ** kf35...kf36
47 - 48 alt F11 - F12 * ** kf47...kf48

* The "Alt-FN" keys are seldom available on the UNIX terminals and systems, but
are often supported by Ctrl+Shift+FN, see terminfo (e.g. FStinfo.src).

** The F11 and F12 key combinations are not supported by all of the DOS
derivates. On UNIX, the usage is dependent on the terminal capability (see
FStinfo.src).

A key redirection to a UDF using SET KEY has precedence over SET FUNCTION.
Initially when a program is started, the F1 key is redirected to the HELP procedure,
if any. To SET FUNCTION for any key that has been redirected with SET KEY, first
the SET KEY redirection must be disabled prior to the SET FUNCTION setting.

To determine the current FUNCTION setting of the specified FN key, the function
expC := __GETFUNCTION (<expN1>) can be used; see also getsys.prg.

CMD 370

Example:
// Each time F9 is pressed, the cursor jumps 4 GETs ahead

four_gets = REPLICATE(CHR(13),4)
SET FUNCTION 9 TO four_gets
SET FORMAT TO Articles
USE Article
READ
SET KEY F9 TO
SET FORMAT TO
USE
RETURN

Classification:
programming

Compatibility
Unlike C5, SET KEY does not disable the current SET FUNCTION setting, but
hides it only, similar to C87.

The ability of function keys depends on the current setting of the environment
variable TERM, the respective terminfo description and the hardware capability.
Refer to sections SYS and REF for available function keys according to your
terminal.

Translation:
__SETFUNCTION (expN1, "expC2")

Related:
SET KEY, KEYBOARD, <FlagShip_dir>/system/getsys.prg

CMD 371

SET GOTOP
Syntax:

SET GOTOP on|OFF|(<expL>)
Purpose:

Enable/disable automatic movement to database top

Arguments:
ON/OFF enables/disables automatic database movement to the first logical record
after USE... or USE..INDEX.. or SET INDEX.. command. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON. The
default is OFF which enables programmable index integrity check and it silent
recovery by using INDEXCHECK() function.

Description:
FlagShip automatically checks the database and index integrity, see chapter
LNG.4.5. However, this index integrity checking disables the automatic movement
to the database top, so when you are using SET FILTER or SET DELETED ON,
you may need to issue GO TOP or DbGoTop() after open the database or assigning
new indices. You may force the GO TOP movement automatically by SET GOTOP
ON or Set(_SET_GOTOP,.T.) which will then handle same as Clipper, but disables
the possibility of index check and it silent recovery.

Note: the SET GOTOP is considered only with the USE.. and SET INDEX
commands. Hence if you are using the DbUseArea() or OrdListAdd() functions
instead of the commands, you will need to invoke DbGoTop() function (or GO TOP
command) thereafter to move to the first logical database record.

Classification:
programming

Compatibility:
New in FS5

Related:
USE, SET INDEX, INDEXCHECK(), SET(_SET_GOTOP), GO TOP, DbGoTop()

CMD 372

SET GUIALIGN
Syntax:

SET GUIALIGN ON|off|(<expL>)
Purpose:

Align all @..GET columns in a GetList{} array according to the length of ..SAY.. text
during a READ or via GetAlign([GetList]) call. Apply only in GUI when @..SAY..GET
is specified.

Arguments:
ON/OFF enables/disables the aligning. Alternatively, the parenthesized <expL>
may be used, whereby TRUE is the same as ON. The default setting is ON.

Description:
In terminal based i/o or in GUI with fixed fonts, these lines

@ 10,1 say "first line " GET var1
@ 12,1 say "other text " GET var2
@ 13,1 say "anything else" GET var3
READ

produces get/read fields all aligned at column 15. In GUI with proportional fonts, the
column of these GET fields will vary, since every of this commands says "display
the @..SAY text in the specified row/column and start the GET input fields one
character behind the text end" which is done correctly. But it does not look as you
wanted, since the width of these texts is different, where you want to get all the
fields among one another. To do so, you may advise the READ (which has the
information about the final layout from the objects in GetList array) by SET GUI
ALIGN ON to reformat/align these fields at the same column.

You also may invoke the GetAlign() function manually, outside of READ, without
considering of the current SET GUIALIGN setting.

Classification:
programming

Compatibility:
New in FS5

Source:
The GetAlign() function is available in .../system/getsys.prg

Related:
GetAlign(), Set(_SET_GUIALIGN), READ, @..SAY..GET

CMD 373

SET GUICOLORS
Syntax:

SET GUICOLORS on|OFF|(<expL>)
Purpose:

Enable colors also in GUI application

Arguments:
ON/OFF enables/disables color support in GUI mode. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON. The
default setting is OFF.

Description:
Colors and lines drawing are disabled per default in GUI mode to get proper GUI
look & feel. You may enable the color support in GUI mode via SET GUICOLOR
ON or Set(_SET_GUICOLORS,.T.).

The SET GUICOLORS influences the ?, ??, qout(), qqout(), @..SAY, @..GET,
@..DRAW etc. console output.

Classification:
programming

Compatibility:
New in FS5

Related:
SET COLOR, Set(_SET_GUICOLORS)

CMD 374

SET GUICURSOR
Syntax 1:

SET GUICURSOR on|OFF|(<expL>)
Syntax 2:

SET GUICURSOR TO <expN>
Syntax 3:

SET GUICURSOR TO
Purpose:

Enable/disable text cursor in GUI mode or specify the GUI cursor shape.

Arguments:
ON/OFF enables/disables the display of text cursor in GUI mode. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON. The
default setting is OFF. The corresponding function is SET(_SET_GUICURSOR,
[<expL>]).

TO <expN> according to syntax 2 re-defines the default shape
CURSOR_UNDERSCORE, same as invoking SET(_SET_GUICURSORTYPE, val).
The new shape is then displayed on subsequent screen output when SET
GUICURSOR is ON. Valid shape values are:

mouse.fh constant value Description
CURSOR_ARROW -1 standard arrow cursor
CURSOR_UPARROW -12 upwards arrow
CURSOR_CROSS -8 crosshair
CURSOR_WAIT -9 hourglass/watch
CURSOR_IBEAM -11 i-beam (I)
CURSOR_SIZE_VER -2 vertical resize
CURSOR_SIZE_HOR -3 horizontal resize
CURSOR_SIZE_RDIAG -5 diagonal resize (/)
CURSOR_SIZE_LDIAG -4 diagonal resize (\)
CURSOR_SIZE_ALL -13 all directions resize
CURSOR_INVISIBLE -17 blank/invisible cursor
CURSOR_SPLITVER -14 vertical splitting
CURSOR_SPLITHOR -3 horizontal splitting
CURSOR_HAND -6 a pointing hand
CURSOR_FORBIDDEN -16 forbidden action cursor
CURSOR_UNDERSCORE -21 underscore
CURSOR_BOX -22 box in size of one character
CURSOR_DEFAULT_TEXT -21 default = CURSOR_UNDERSCORE

TO according to syntax 3 sets the text cursor shape to it default state, i.e. to
CURSOR_UNDERSCORE or the value assigned to the global variable
_aGlobSetting[GSET_G_N_TEXTSHAPE].

CMD 375

Description:
The behavior of an application in GUI mode with SET GUICURSOR ON is very
similar to running it in textual mode. If set, the default (or user set) cursor shape is
displayed behind the current screen output, i.e. at the Row(), Col() position,
independent on the mouse cursor.

The SET GUICURSOR is considered in ?, ??, qout(), qqout(), @..SAY, SetPos()
etc. console output. The text cursor is not displayed in special add-on widgets
(controls) like READ, MemoEdit(), Tbrowse(), InfoBox() etc.

If you want to set text cursor shape anywhere on the user screen, independent on
the current output, use SetGuiCursor() and best to disable SET GUICURSOR using
the OFF clause.

Note: The WAIT command use own shape to signal user's entry. If the SET
GUICURSOR display is enabled, your cursor shape will be restored automatically at
the return from WAIT.

To set the shape of mouse cursor, use MsetCursor().

The SET GUICURSOR command is accepted also for other than GUI i/o modes,
but no action is taken there.

Example:
complete example is available in .../examples/guicursor.prg

Classification:
screen oriented output in GUI mode

Translation:
SET(_SET_GUICURSOR [, <expL>])
SET(_SET_GUICURSORTYPE [, <expN>])

Compatibility:
New in FS5

Related:
SET CURSOR, SetGuiCursor(), SetPos(), MsetCursor(), WAIT

CMD 376

SET GUIPRINTER
Syntax:

SET GUIPRINTER on|OFF|(<expL>)
Purpose:

Enable or disable GUI alike printing via selected system driver. Applicable only in
GUI mode, ignored otherwise.

Arguments:
ON/OFF activates or deactivates the rendering for printer output.

Description:
With enabled SET GUIPRINTER, the output is (additionally) rendered for selected
printer, and subsequently printed by PrintGui() or by _oPrinter:ExecGui().

SET GUIPRINTER ON is equivalent to PrintGui(.T.), SET GUIPRINTER OFF is
equivalent to PrintGui(.F.)

For further details, see function PrintGui()

Classification:
programming

Compatibility:
New in FS7

Translation:
SET (_SET_GUIPRINTER, .T.|.F.)

Related:
PrintGui(), SET PRINTER, SET CONSOLE, SET DEVICE, SET GUI*

CMD 377

SET GUITRANSL
Syntax:

SET GUITRANSL ASCII on|OFF|(<expL>)
SET GUITRANSL TEXTDRAW on|OFF|(<expL>)
SET GUITRANSL BOX on|OFF|(<expL>)
SET GUITRANSL LINES on|OFF|(<expL>)

Purpose:
Enable support of semi-graphic characters also in GUI application and/or
automatically translate ANSI to ISO code

Arguments:
ON/OFF enables/disables support of semi-graphic characters in GUI mode.
Alternatively, the parenthesized <expL> may be used, whereby TRUE is the same
as ON. The default setting is OFF.

Description:
In GUI mode, colors, boxes and semi-graphic characters are handled upon
programmer's request only, since if would (in the most cases) break the look-and-
feel of GUI, and the source cross-compatibility to terminal i/o mode.

Character set conversion, national and semi-graphic characters
In GUI mode, the screen-output, and the output to GDI printer (via SET GUIPRINT
ON) is in ISO/ANSI mode (internally in Unicode). This ISO/ANSI character set have
no semi-graphics, and the byte representation of national characters (i.e.
CHR(128..255)) differs to PC8/ASCII/OEM charset, refer to LNG.5.4 for differences
and to the ASCII-ISO comparison table in <FlagShip_dir>/manual/charset.pdf file.

The consequence is, that strings with national characters coded in editor supporting
ASCII/OEM/PC8 charset differs from strings coded in ISO/ANSI alike editor. For
example, the output of ? "München" may or may not be displayed properly, since
your code contains different byte-representation of the u-umlaut. Or, the CHR(196)
is horiz.line in ASCII/OEM, but A-umlaut in ISO/ANSI mode.

FlagShip however provides automatic conversion between these codes by using
SET SOURCE ASCII (default) or SET SOURCE ISO, see details there. For GUI
mode, you may additionally/differently control this translation by SET GUITRANSL
ASCII ON or OFF.

For text coded in PC8/ASCII/OEM character set (assumed by default), an automatic
ASCII -> ISO conversion is available via SET SOURCE ASCII and/or SET
GUITRANSL ASCII ON. This setting converts automatically ASCII strings passed to
i/o commands and functions to ISO character set, same as doing it manually via
Oem2Ansi(string). If you wish to draw semi-graphic characters passed in ASCII
mode, use additionally SET GUITRANSL TEXTDRAW ON.

For text passed in ISO/ANSI mode, SET GUITRANSL ASCII OFF should be used.
In this mode, you cannot display semi-graphic characters (by SET GUITRANSL

CMD 378

TEXT ON) simultaneously with umlauts (or other special characters), since e.g. the
CHR(196) = horiz.line in ASCII is equivalent to A-umlaut in ISO/ANSI mode (see
the comparison table). You however may draw semi-graphics by CHR(..) as well,
see example below.

The SET GUITRANSL ASCII ON is equivalent to SET CHARSET ASCII, and SET
GUITRANSL ASCII OFF is equivalent to SET CHARSET ISO.

The SET GUITRANSL ASCII ON is similar to SET SOURCE ASCII, but the
seconds translates also output for terminal i/o and std. printer, whilst SET
GUITRANSL affects screen (and SET GUIPRINT) translation only. Equivalently,
SET GUITRANSL ASCII OFF is similar to SET SOURCE ISO, but w/o terminal and
std.printer influence.

To draw semi-graphic ASCII characters 179..218 in GUI mode, use SET
GUITRANSL TEXT ON or Set(_SET_GUIDRAWTEXT,.T.) for an automatic
translation of text strings to graphic ASCII characters. If both GUITRANSL
TEXTDRAW and GUITRANSL ASCII are ON, semi-graphic chars are not translated
to the ISO equivalence, but drawn as graphic in the ?, ??, @..SAY commands and
Qout(), Qqout() functions.

SET GUITRANSL
ASCII ON

translates ASCII source to ISO, this is set also by SET
SOURCE ASCII or by SET CHARSET ASCII

SET GUITRANSL
ASCII OFF

(default) the source is in ISO charset, this is set also by SET
SOURCE ISO or by SET CHARSET ISO

SET GUITRANSL
TEXTDRAW ON

draws semi-graphic passed in ASCII code, when SET
GUITRANSL ASCII is ON

SET GUITRANSL
TEXTDRAW OFF

(default) disables semi-graphic drawing to be able print
national characters chr(128..255) passed in ISO mode and
to ensure GUI look & feel

Boxes, lines
Boxes and lines drawing are disabled per default in GUI mode, since standard
widgets/controls usually have own frames. To enable drawing lines and boxes via
@..TO.. and @..BOX in GUI mode too, use SET GUITRANSL LINES ON and/or
SET GUITRANSL BOX ON, or the corresponding Set(_SET_GUIDRAWLINE, .T.)
and Set(_SET_GUIDRAWBOX, .T.) function. You may draw lines also directly by
the @..DRAW.. command.

Colors
Colors are disabled per default in GUI mode to get proper GUI look & feel. You may
enable the color support in GUI mode via SET GUICOLOR ON or
Set(_SET_GUICOLORS, .T.). This will use the global SET COLOR setting, or the
explicit COLOR clause of many commands. Alternatively, you may use the
GUICOLOR command clause for specific color setting, also without SET
GUICOLOR ON.

CMD 379

All these commands and functions may remain global in the source code for a
hybrid executables, they will be ignored when the application run in Terminal or
Basic mode.

Classification:
programming

Example 1:
* Display semi-graphics using ANSI/ISO program editor
SET GUITRANSL ASCII OFF // input is ISO
? "Text with embedded umlauts, e.g. München"
saveStatus := set(_SET_GUIASCII)
SET GUITRANSL ASCII ON // use ASCII charset
? chr(218) + repli(chr(196),10) + chr(191)
? chr(179) + space(10) + chr(179)
? chr(192) + repli(chr(196),10) + chr(217)
set(_SET_GUIASCII, saveStatus) // restore status
? "continuing output in national charset"

Example 2:
* Text is created with PC8/ASCII/OEM/DOS program editor
* See full source in <FlagShip_dir>/examples/setsource.prg

SET GUITRANSL ASCII ON // or: SET SOURCE ASCII
str1 := "This is text with embedded umlauts, e.g. München"
str2 := "Continuing output with umlauts and accents, e.g. ÄäÖöÜü"

? str1 // display: This is text with embedded umlauts ...
?
? "Drawing semi-graphic characters"
rr := row()
SET GUITRANSL TEXT ON // To draw semi-graphic characters
saveFont := set(_SET_FONTNAME, "courier") // fixed font for spacing
? space(3) + chr(218) + repli(chr(196),10) + chr(191)
? space(3) + chr(179) + space(10) + chr(179)
? space(3) + chr(192) + repli(chr(196),10) + chr(217)
set(_SET_FONTNAME, saveFont) // restore font

@ rr, 36 say "Drawing box"
SET GUITRANSL BOX ON // for GUI mode
@ rr+1, 35, rr+3, 48 box color "B+" guicolor "B+"
@ rr, 60 say "Drawing lines"
SET GUITRANSL LINES ON // for GUI mode
@ rr+1, 60 to rr+1, 70
@ rr+2, 60 to rr+2, 70 double
@ rr+3, 60 to rr+3, 70 double color "R+" guicolor "R+"
setpos(rr+4,0)
? str2 // display: Continuing output ...
wait "done ..."

Example 3:
* Text is created with ISO/ANSI program editor
* See full source in <FlagShip_dir>/examples/setsource.prg

CMD 380

SET SOURCE ISO // implies SET GUITRANSL ASCII OFF
str1 := "This is text with embedded umlauts, e.g. München"
str2 := "Continuing output with umlauts, e.g. ÄäÜüÖö"
? str1 // display: This is text with embedded umlauts ...

/* To draw semi-graphic characters (=ASCII) with ISO char settings,
* use SET GUITRANSL ASCII ON and SET GUITRANSL TEXT ON, or:
*/
saveStatus := set(_SET_GUIASCII, .T.) // SET GUITRANSL ASCII ON
saveAscii := set(_SET_SOURCEASCII, .T.) // SET SOURCE ASCII
saveText := set(_SET_GUIDRAWTEXT, .T.) // SET GUITRANSL TEXT ON
?
? "Drawing semi-graphic characters"
rr := row()
saveFont := set(_SET_FONTNAME, "courier") // fixed font for spacing
? space(3) + chr(218) + repli(chr(196),10) + chr(191)
? space(3) + chr(179) + space(10) + chr(179)
? space(3) + chr(192) + repli(chr(196),10) + chr(217)
set(_SET_FONTNAME, saveFont) // restore font

@ rr, 36 say "Drawing box"
SET GUITRANSL BOX ON // for GUI mode
@ rr+1, 35, rr+3, 48 box color "B+" guicolor "B+"
@ rr, 60 say "Drawing lines"
SET GUITRANSL LINES ON // for GUI mode
@ rr+1, 60 to rr+1, 70
@ rr+2, 60 to rr+2, 70 double
@ rr+3, 60 to rr+3, 70 double color "R+" guicolor "R+"

/* Note: to display national characters (umlauts etc.) coded in
* ISO charset, the SET GUITRANSL TEXT ON must be disabled
*/
set(_SET_GUIASCII, saveStatus) // restore prev.status
set(_SET_SOURCEASCII, saveAscii)
set(_SET_GUIDRAWTEXT, saveText)
setpos(rr+4,0)
? str2 // display: Continuing output ...
wait "done ..."

Example 4:
see <FlagShip_dir>/examples/umlauts.prg and pc8lines.prg for complete examples

Translation:
SET GUITRANSL ASCII Set(_SET_GUIASCII [, <expL>])
SET GUITRANSL BOX Set(_SET_GUIDRAWBOX [, <expL>])
SET GUITRANSL LINES Set(_SET_GUIDRAWLINE [, <expL>])
SET GUITRANSL TEXTDRAW Set(_SET_GUIDRAWTEXT [, <expL>])

Compatibility:
New in FS5

Related:
SET CHARSET TO..., Set(_SET_GUIDRAWTEXT), Set(_SET_GUIDRAWBOX),
Set(_SET_GUIDRAWLINE), Set(_SET_GUITRANSASC), SET SOURCE

CMD 381

SET HTMLTEXT
Syntax:

SET HTMLTEXT on|OFF|(<expL>)
Purpose:

Enables or disables embedded HTML tags within the output text.

Arguments:
ON/OFF enables/disables the support of embedded HTML tags within the console
input. Alternatively, the parenthesized <expL> may be used, whereby TRUE is the
same as ON. The default setting is OFF.

Description:
In GUI mode, FlagShip supports RichText (using a subset of HTML and XML tags)
in the standard output via ?, ??, Qout(), Qqout() and @..SAY.

You have two options to interpret HTML tags:

•As long as SET HTMLTEXT is ON, any console text is interpreted in RichText
format, considering HTML tags.

•Even when SET HTMLTEXT is OFF, you may preface the text string by
"<HTML>" which will force this specific output to be interpreted as
HTML/RichText.

Supported HTML tags are:

HTML string Description
... = print text part "xxx" in bold

<I>...</I> = print text part "..." in italic

<U>...</U> = print text part "..." underlined

<TT>...</TT> = print text part "..." in fixed font

<CENTER>...</CENTER> = print text part "..." centered

<PRE>...</PRE> = preserve white spaces in the "..." text

...

= print text part "..." in color, where rr=red, gg=green,
bb=blue RGB fraction given in hex notation (00, 80,
FF), e.g.:
hello

prints black "hello" text

hello

CMD 382

prints white "hello" text

hello
prints gray "hello" text

hello
prints red "hello" text

hello
prints blue "hello" text

and so on. You also may use HTML color names like
"yellow", "aqua" etc.

...

= print text part "..." in another font size, nn is the
logical size (1 to 7) of the font. The value may either be
absolute, for example size=3, or relative like size=-2 or
size=+1.

...

= print text part "..." in another font family of the font,
for example face=times.

<HR> = draw horizontal line

 = new line

<P> or <P>...</P> = new paragraph

 = draw image file

<TABLE>
<TR><TD>colText</TD>
<TD>colText</TD>
</TR> ...etc...
</TABLE>

= tables are also supported. You may use following
<table > tags: bgcolor, width, border, cellspacing,
cellpadding. The <TR> tags are: bgcolor. The <TD>
tags are: bgcolor, width, colspan, rowspan, align.

Same as in HTML documents, the tags are case insensitive, i.e. "" and ""
are equivalent. You also may combine the tags, e.g.
@ 2,0 say '<U>underlined</U>’ + ;

'redbold'
If you wish to display the "<" character, you need to use "<" instead. To display
the ">" character, use the ">" tag instead. Note that the passed string is
scanned for RichText tags. You therefore may also split the output into two or more
parts, e.g.

? "displaying <" ; ?? "b> as is, uninterpreted"
to reach the same effect. In some cases, you will need to add the "<html>" at the
begin of your string to force the interpretation and/or use

<tt>"<pre> text </pre>"</tt>
to preserve spaces.

CMD 383

The Col() is adapted automatically to a larger/smaller font size but the Row() only
when SET ROWADAPT is ON (default is OFF). You also may force the adaption
manually by invoking RowAdapt(). Both will also consider
 and <P> line break
tags.

In addition to the RichText console output controlled by SET HTMLTEXT, the
RichText is also supported by the MessageBox class and it subclassed functions
InfoBox(), TextBox{}, Alert() etc.

Note that the RichText is interpreted in GUI mode only. Regardless the SET
HTMLTEXT setting, the HTML tags are printed "as is" in the Terminal and Basic i/o
mode or in the output sent to printer/file.

Example:
? "<html>This text is displayed in bold and <i>italic</i>"
? "This is text w/o HTML attributes, is a part of the text"

SET HTMLTEXT ON
if AppIoMode() != "G"

? "Note: HTML formatting is supported for GUI mode only"
endif
? "This text is displayed in bold and <i>bold italic</i>"
? "but the angle brackets < > requires corresponding tags,"
SET HTMLTEXT OFF
? "as opposite to the standard output which display < > fine."

Classification:
programming, console oriented output

Translation:
Set(_SET_HTMLTEXT [, <expL>])

Compatibility:
New in FS5

Related:
?, ??, @..SAY, Qout(), Qqout(), InfoBox(), OBJ.MessageBox{}

CMD 384

SET INDEX TO
Syntax:

SET INDEX TO [<fileList> [EXCLUSIVE]]
Purpose:

Opens the specified index files in the current working area in the given order.

Arguments:
<fileList> is a comma separated list of up to 15 index file names (.idx) to be opened
in the current working area. Each index file can be specified as a literal filename or
as a character expression enclosed in parentheses. A file name resulting in either
spaces ("") or NIL is ignored. If an extension is not specified, .idx is assumed.

SET INDEX TO without an argument closes all indexes open in the current working
area; so behaving as CLOSE INDEXES.

Options:
EXCLUSIVE clause opens all indices specified in the <filelist> exclusively for the
current application, regardless of the SHARED status of the database. This is very
similar to the status of the index file after performing the INDEX ON command. An
attempt to SET INDEX for the same index file from another user, will be denied and
NETERR() set to TRUE. To reset the EXCLUSIVE status to SHARED mode,
reopen the index file(s) using SET INDEX TO <filelist>.

Description:
When more than one index is opened, the first specified index becomes the
controlling index and the database is positioned to the first logical record in that
index. SET ORDER changes the order of the controlling index. When assigning an
empty index (created by INDEX.. ..FOR), both BOF() and EOF() return TRUE and
the record pointer is set beyond the end-of-file.

All open indices are properly updated according to the changes made to the
database. To stop the database pointer being repositioned while updating multiple
records, issue SET ORDER TO 0.

Index file names may be specified by means of macro variables or parenthesized
expressions. Each file name, however, must be in a separate variable.

When the open fails, NetErr() will report .T. When SET OPENERROR is ON (the
default), an open failure will raise run-time error. For a full backward compatibility to
FS 4.4, or to avoid RTE, use SET OPENERROR OFF and check the NetErr() status
thereafter. Multiple assignment of the same index file into the same work area is not
allowed and will be ignored, this will also raise developer warning when
FS_SET("devel",.T.) is set.

During index assignments, the integrity of the index file compared to the database is
checked. If the check fails, the first database movement results in a warning if in
FS_SET("developer") mode. For more details, see INDEX ON, INDEXCHECK() and
LNG.4.5.

CMD 385

Multiuser:
Instead of USE..INDEX.. it is better practice to open the database, check success
by USED(), then assign index/indices by SET INDEX TO.. and check success by
NETERR() which should be .F.

Tuning:
As noted above, FlagShip do not raise run-time error on failure, so check by
NETERR() reports failure or success. You however may force RTE 501 on failure
by assigning

_aGlobSetting[GSET_L_DBSETINDEX_ERR] := .T. // default = .F.
which then behaves FoxPro conform.

Example:
SET EXCLUSIVE OFF && multiuser mode
idx1 = "id_numb"
idx2 = "name"
idx3 = "salary"
IF !FILE(idx3 + INDEXEXT()) && indices available?

USE personal EXCLUSIVE && no, create them
DO WHILE NETERR()

? "waiting to become exclusive"
INKEY (3)
USE personal EXCLUSIVE

ENDDO
INDEX ON idnumber TO (idx1)
INDEX ON UPPER(name) TO &idx2
INDEX ON salary TO salary
USE

ENDIF

// open database and assign indices

USE personal
DO WHILE NETERR() && multiuser: success ?

USE personal && - no, try again
ENDDO
SET INDEX TO &idx1, (idx2), &idx3

SEEK 1234 && seek ID number
? "ID 1234", FOUND(), name
SET ORDER TO 2 && index: name
SEEK UPPER("Smith")
DO WHILE !EOF() .and. TRIM(UPPER(name)) == "SMITH"

? "Smith:", FOUND(), idnumber
SKIP

ENDDO

Classification:
database

Compatibility:
The index files of FlagShip (.idx) are not compatible to their counterparts in xBASE
DOS dialects (.NTX nor .NDX nor Foxbase .IDX), when the default DBFIDX driver is
used. For compatible code, use INDEXEXT() or FS_SET ("translext", "ntx", "idx").

CMD 386

Keep in mind the case sensitive file names on UNIX or use FS_SET ("lower", .T.).
For more details, see compatibility notes in section LNG.9.5.

After porting a DOS application and transferring the required databases (using a
binary protocol), execute INDEX ON... to create the index files on the target UNIX
system. The .idx files are compatible on the same UNIX hardware only.

Indices in VFS5, VFS6 and VFS7 are cross-compatible, but not compatible to FS4,
you need to re-index these.

The EXCLUSIVE clause and the integrity check is available in FlagShip only.

Translation:
DBCLEARINDEX () ; [DBSETINDEX("index1") ...]

Related:
CLOSE, INDEX, REINDEX, SET ORDER, USE, INDEXEXT(), NETERR(),
FS_SET()

CMD 387

SET INPUT
Syntax:

SET INPUT ON|off|(<expL>)
Purpose:

Enables or disables the console input.

Arguments:
ON/OFF enables/disables the console input. Alternatively, the parenthesized
<expL> may be used, whereby TRUE is the same as ON. The default setting is ON.

Description:
In special cases, the console input may be disabled. This setting is considered by
Inkey(), InkeyTrap(), INPUT, ACCEPT but not in FReadStd(), InStdChar(),
InStdString().

When the input is disabled, the input function does not check the event queue or
buffer, but returns substitute character (usually ESC = 27), re-definable by
Set(_SET_NOINPUTCHAR).

Classification:
programming

Compatibility:
New in FS5

Related:
Inkey(), Set()

CMD 388

SET INTENSITY
Syntax:

SET INTENSITY ON|off|(<expL>)
Purpose:

Defines whether the GETs and prompts in MENU TO will be displayed in the
"standard" or the "enhanced" color.

Arguments:
ON/OFF enables/disables the enhanced color setting. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON.

Description:
When INTENSITY is ON (the default), the active GET field in READ appears in the
enhanced, all other GET fields in the "unselected" color, as specified or default. The
light bar in MENU TO marking the current PROMPT selection also appears in the
"enhanced" color and the cursor is hidden.

By setting INTENSITY OFF, GETs and the current PROMPT appear in the standard
color. The cursor remains visible.

SET INTENSITY has no effect on ACHOICE() and DBEDIT().

Example:
IF FS_SET("term") == "dummy" && which TERM used?

SET INTENSITY OFF
ENDIF
SET FORMAT TO authors
USE authors
READ
SET FORMAT TO
USE
SET INTENSITY ON

Classification:
programming

Translation:
SET (_SET_INTENSITY, .T.|.F.)

Related:
@..GET, READ, @..PROMPT, MENU TO, SET COLOR, SETCOLOR(), SET
CURSOR, SETSTANDARD, SETENHANCED, SET()

CMD 389

SET KEY ... TO
Syntax:

SET KEY <expN> TO [<procname>]
Purpose:

Defines a procedure to be executed whenever the specified key is pressed in a wait
state.

Arguments:
<expN> is the ASCII value of the key, including negative numbers for function keys,
see INKEY() values.

Options:
<procname> is the name of the procedure to be executed when the key is pressed.
If <procname> is not specified, the current redirection of the <expN> key is
canceled.

Description:
When the defined procedure is executed from a wait state, FlagShip invokes the
UDP similarly as in the usual procedure call

DO <procname> WITH PROCNAME(), PROCLINE(), READVAR() [,lastKey]

but will use an internal code block instead. Using these parameters, context
sensitive reactions or help from within the procedure can be implemented. Note that
code-block and the some of the procedure names in the call-stack may be filtered
out, so the first and second passed parameter may differ from ProcName() and
ProcLine(), see details in FUN.HELP().

expN Associated Key Notes Unix terminfo
28 F1 kf1
-1 ... -9 F2 - F10 kf2...kf10
-10 ... -19 shift F1 - F10 kf13...kf22
-20 ... -29 ctrl F1 - F10 kf25...kf34
-30 ... -39 alt F1 - F10 * kf37...kf46
-40 ... -41 F11 - F12 ** kf11...kf12
-42 ... -43 shift F11 - F12 ** kf23...kf24
-44 ... -45 ctrl F11 - F12 ** kf35...kf36
-46 ... -47 alt F11 - F12 * ** kf47...kf48

18, 3 PgUp, PgDn *** kpp, kpn
1, 2, 3.. ^A, ^B, ^C, ... -
65, 66, 67.. A, B, C, ... -

* The "Alt-FN" keys are sometimes not available on UNIX terminals, but are then
often supported by Ctrl+Shift+FN, see terminfo (e.g. FStinfo.src). In X11 and
Windows, several Alt-FN combinations are hard-wired to window manager

CMD 390

** The F11 and F12 key combinations are not supported by all of the DOS
derivatives. On UNIX, their usage depends on the terminal capability (see
FStinfo.src).

*** See INKEY() or the "inkey.fh" file for other numeric codes and their DEFINE
equivalents.

The SET KEY redirection is active in ACHOICE(), DBEDIT(), MEMOEDIT(),
ACCEPT, INPUT, READ and WAIT but not in INKEY(). For its usage or simulation
in INKEY(), see getsys.prg.

A maximum of 32 keys may be defined/redirected at one time. The F1 key is initially
redirected to a procedure named HELP, if such exists.

SET KEY has precedence over SET FUNCTION, SET ESCAPE and
SETCANCEL(). A maximum of 32 keys can be set at the same time. The SET KEY
redirection is a global setting and therefore also remains active during an invocation
of other UDFs or UDPs or on returning to a higher program level.

When designing a "background" procedure, it is good programming technique to
preserve the current status of the application (i.e., screen appearance, current
working area, etc.) and to restore it before exiting. CLEAR should not be used to
clear the screen within a "background" procedure since it also clears GETs and
therefore terminates READ. Use CLS, CLEAR SCREEN or @...CLEAR instead. To
terminate the current READ from a "background" procedure, issue:

Command Action
CLEAR GETS Terminate READ, do not save current GET
BREAK Terminate READ, do not save current GET
KEYBOARD chr(23) Terminate READ, save the current GET
KEYBOARD chr(27) Terminate READ, do not save current GET

When using the redirection to a STATIC PROCEDURE (or STATIC FUNCTION),
the same rules as in code blocks apply: the SET KEY command must be specified
in the same .prg file, where the STATIC procedure is defined; otherwise the
<procname> will be invisible/undefined. When using redirection to a global
procedure or UDF, the SET KEY can be defined anywhere.

You also may automatically invoke / trigger procedure, function or code block in
specific time intervals by using TriggerUdf() from FS2 Toolbox.

The HELP procedure or function (see FUN.HELP) is a special case of "background"
procedure. It is already pre-defined and assigned to F1-key at program begin.

CMD 391

Example:
Using the SET KEY redefinition to display the available article groups, when the
[F3] key is pressed while being located in the entry field "group". In this example, it
is assumed that there are just a few records in the artgroup.dbf database
(otherwise, use DBEDIT() or TBROWSE instead of ACHOICE()).

#include "inkey.fh"
STATIC showarr := NIL

PROCEDURE main
LOCAL menu
USE article INDEX article NEW
menu := menu_choice()
IF menu == 1 // new entry

IF new_modif (.T.)
APPEND BLANK
REPLACE ...

ENDIF
ELSEIF menu == 2 // modify

IF new_modif (.F.)
REPLACE ...

ENDIF
ENDIF

FUNCTION new_modif (newentry)
PRIVATE Xarticle, Xgroup, Xprice

IF newentry
Xarticle := 0
Xgroup := space(20)
Xprice := 0

ELSE
Xarticle := article->article
Xgroup := article->group
Xprice := article->price

ENDIF
SET KEY K_F3 TO show_group
@ 5, 10 GET Xarticle PICTURE "999999"
@ 6, 10 GET Xgroup PICTURE "!!!!!"
@ 7, 10 GET Xprice PICTURE "99,999.99"
READ
RETURN LASTKEY() # K_ESC

PROCEDURE show_group (procName, procLine, varName)
LOCAL savescr := SAVESCREEN (10,50,MAXROW(),79)
LOCAL choice
IF .not. (varName == "XARTICLE" .or. varName == "XGROUP")

RETURN
END
@ 10,50 CLEAR TO MAXROW(),79
@ 10,50 TO MAXROW(),79 DOUBLE
IF VALTYPE(showarr) != "A" // initialized ?

initArray() // no, do it now
ENDIF

CMD 392

choice = ACHOICE (11,51, MAXROW() -1, 78, showarr)
IF choice > 0

Xgroup := SUBSTR(showarr[choice], 1, 5)
END
RESTSCREEN (10,50,MAXROW(),79, savescr)
RETURN

FUNCTION initArray
LOCAL act_select := SELECT()
IF VALTYPE(showarr) != "A" // initialized ?

showarr := {} // not yet
USE artgroup INDEX artgroup NEW
WHILE !eof()

AADD (showarr, group + " " + textgroup)
SKIP

END
SELECT (act_select)

END
RETURN NIL

// Compile: $ FlagShip test.prg -Mmain -na

Classification:
programming

Compatibility:
Most other xBASE dialects do not support F11 and F12 keys and their
combinations. In Terminal i/o mode, refer to sections SYS, REF and the current
terminfo file (e.g. <FlagShip_dir>/terminfo/ FStinfo.src) for FN keys available
according to the currently assigned terminal (by TERM, FSTERM, TERMINFO and
FSTERMINFO envir. variables, see section FSC.3.3). The SET KEY command of
dBASE IV has another functionality, but its ON KEY..DO.. is very similar to
FlagShip's (and Clipper's) SET KEY.

Include:
The INKEY() key numbers <expN> are defined in the #include "inkey.fh" file.

Translation:
SETKEY (expN, {|p1, p2, p3, p4| procName(p1, p2, p3, p4)})

Related:
HELP(), SET FUNCTION, KEYBOARD, LASTKEY(), PROCLINE(), PROCNAME(),
READVAR(), SETKEY(), FS2:TriggerUdf()

CMD 393

SET KEYTRANSL
Syntax:

SET CHARSET|KEYTRANSL [TO] ISO|ANSI
SET CHARSET|KEYTRANSL [TO] PC8|ASCII|OEM

Purpose:
Translates the keyboard values > 127 to Inkey() value and the screen output
accordingly. Applicable/considered in GUI mode only.

Arguments:
ANSI|ISO use default keyboard scan codes corresponding to your keyboard setting
(which are ISO/ANSI values in GUI mode). The inkey codes are taken from the
table in Fsguikey.def, user definable via FS_SET("guikey",file_name)

PC8|ASCII|OEM activates an automatic translation of the inkey value from
ISO/ANSI to PC8/ASCII/OEM character set. This will produce same Inkey value as

key := Ansi2oem(Inkey(0))
with SET KEYTRANSL set to ANSI

Description:
In GUI i/o mode, both the screen input and output are handled in ISO/ANSI mode
per default.

SET KEYTRANSL is mainly used to map/translate an user input to the same
character set/mode used also for output.

- If you are using ISO/ANSI/Windows character set for your source code (i.e. the
editor is for GUI mode or MS-Windows character set), you don't need change the
default setting SET GUITRANSL ASCII OFF and SET KEYTRANSL ISO. In this
mode, the u-umlaut is represented in ISO-8859-1 charset by chr(252) - as opposite
to chr(129) in PC8/ASCII mode.

- If you prefer to use PC8/ASCII character set coding (same as in DOS/Clipper or in
the most of terminal applications), you may set

SET SOURCE ASCII // translate output and input
which is also set in

#include "fspreset.fh" // see LNG.9.5

The generalized command SET SOURCE ASCII is a shortcut for
SET GUITRANSL ASCII ON // translate output
SET KEYTRANSL ASCII // translate input
Set(_SET_PRINTASCII, .F.) // don't translate printer ISO->ASCII
Set(_SET_SOURCEASCII, .T.) // source is in ISO character set

It will then display chr(129) as u-umlaut, and Inkey() will return 129 when pressing
the u-umlaut key. With separate SET GUITRANSL and SET KEYTRANSL you
however may precise control a different behavior.

CMD 394

Example:
see example in SET SOURCE

Classification:
programming

Translation:
SET KEYTRANSL ISO = SET(_SET_CHARSET, _SET_CHARSET_ISO)
SET KEYTRANSL ANSI = SET(_SET_CHARSET, _SET_CHARSET_ISO)
SET KEYTRANSL ASCII = SET(_SET_CHARSET, _SET_CHARSET_PC8)
SET KEYTRANSL PC8 = SET(_SET_CHARSET, _SET_CHARSET_PC8)
SET KEYTRANSL OEM = SET(_SET_CHARSET, _SET_CHARSET_PC8)

Compatibility:
New in FS5

Related:
Ansi2oem(), Oem2Ansi(), FS_SET("ansi2oem"), SET ASCII, SET ANSI, SET
GUITRANSL ASCII, SET SOURCE

CMD 395

SET LARGEFILE
Syntax:

SET LARGEFILE on|OFF|(<expL>)
Purpose:

Sets or disables the capability of large file support.

Arguments:
ON/OFF enables/disables the capability of large file support for databases over 2
Gigabytes. With LARGEFILE ON, the system limit is increased up to 2 Terabytes
(system dependant). The default setting is OFF to ensure backward compatibility to
available databases. Alternatively, the parenthesized <expL> may be used,
whereby .T. is the same as ON.

Description:
Enable LARGEFILE to create or manage databases exceeding the 2GB limit.
Available only on operating systems supporting large files (most of, e.g. AIX, Linux,
Windows). You may check the status by Set(_SET_LARGEFILE) after executing
SET LARGEFILE; it returns .T. when large files are supported.

If required, enable large files support latest before open the database.

Example:
SET LARGEFILE ON
if !set(_SET_LARGEFILE)

? "Large file support not available; this operating system"
? "does yet not support it"
wait
quit

endif
USE myData SHARED
...

Classification:
programming, databases, file input/output

Compatibility:
SET LARGEFILE is available in FS6 (and up) only.

Translation:
SET (_SET_LARGEFILE, <expL>)

Related:
USE

CMD 396

SET MARGIN TO
Syntax:

SET MARGIN TO <expN>
Purpose:

Sets the left margin for all printed output.

Arguments:
<expN> is the column number or the margin size in current coordinates to which
the left margin is to be set. The default margin value is zero.

Description:
SET MARGIN affects the printer output in two different ways:

1. when SET GUIPRINTER (or SET PRINTER GUI) is OFF (the default) and SET
PRINTER is ON, or the ...TO PRINTER clause is used, the <expN> number of
spaces is printed in the front of a new line. With SET DEVICE TO PRINTER, the
<expN> value is added to column during the @..SAY output. The PCOL() value
reflects the current print column position, including the margin. You may tune the
printer output by FS_SET("prset") which may be advantageous when using
proportional character set etc.

2. when SET GUIPRINTER (or SET PRINTER GUI) is ON and SET PRINTER is
ON or PrintGui(.T.) is active, the <expN> value is considered for the printer
output. This GUI output mode does not consider the FS_SET("prset") tuning,
and the PCOL() return value is not affected by <expN>.

SET MARGIN has no effect on SCREEN and FILE or EXTRA output.

Example: print to device or spooler file
// SET PRINTER TO LPT3
// SET PRINTER TO /dev/lp2
// SET PRINTER TO ("myprint.txt")
SET MARGIN TO 10 // add 10 spaces at left margin
SET CONSOLE OFF // disable screen output

USE address
LIST Name, Area, Subarea TO PRINTER // print to device or file

SET CONSOLE ON // enable screen output
// SET MARGIN TO // reset margin to 0
wait "printed to " + fs_set("printfile") + " - any key..."
// SET PRINTER TO // close spooler file if any

CMD 397

Example: create spooler file and print to GDI printer with preview
SET COORD UNIT TO CM // or ...TO ROWCOL, MM, INCH, PIXEL
SET MARGIN TO 1.5 // left printout margin will be 1,5 cm
// SET PRINTER TO ("myprint.txt")
SET PRINTER ON // activate printer output
SET PRINTER GUI ON // creates spooler file for GDI printer

// SET CONSOLE OFF // optional, don't print to screen
// SET EJECT ON // default: autom. EJECT on full page

USE address
LIST Name, Area, Subarea // print to spooler file

SET PRINTER OFF // printout is ready
SET CONSOLE ON // enable screen output
SET COORD UNIT TO // reset coordinates to default row/col
wait "printed to " + fs_set("printfile") + " - any key..."
// SET MARGIN TO // reset margin to 0

if AppIoMode() == "G" // only if running in GUI mode:
ok := PrintGui() // print

endif
// SET PRINTER TO // close spooler file if set

Classification:
programming

Translation:
SET (_SET_MARGIN, expN)

Related:
@...SAY, SET DEVICE, SET PRINTER, SET GUIPRINTER, FS_SET("prset"),
PCOL(), PrintGui(), OBJ:Printer class

CMD 398

SET MESSAGE TO
Syntax:

SET MESSAGE TO [<expN> [CENTER|CENTRE]]
Purpose:

Defines the row and centering for the display of @...PROMPT messages when
executing MENU TO.

Arguments:
<expN> is the row where the messages will be displayed. If there is no argument,
or if <expN> is zero, messages will not be displayed.

Options:
CENTER: When specified, the message texts are centered. Otherwise, each
message starts at column zero.

Description:
When the clause MESSAGE is specified by the @... PROMPT command, MENU
TO displays this message text on the row, given by SET MESSAGE when the
PROMPT item is selected. This can be used for a short context specific help.

Example:
SET MESSAGE TO 22 CENTER // msg on line 22
@ 21,0 TO 21,79 DOUBLE // draw line
@ 5,30 PROMPT "Append" MESSAGE "Add and edit a new record"
@ 6,30 PROMPT "Change" MESSAGE "Edit current selectd. data"
@ 8,30 PROMPT "Quit" MESSAGE "Exit to main menu"
MENU TO choice

Classification:
programming (and screen oriented output in MENU)

Translation:
SET (_SET_MESSAGE, expN) [; SET (_SET_MCENTER, .T.|.F.)]

Related:
@...PROMPT, MENU TO

CMD 399

SET MULTIBYTE
Syntax:

SET MULTIBYTE on|OFF|(<expL>)
Purpose:

Sets or disables the capability of multi-byte character support.

Arguments:
ON/OFF enables/disables the capability of READ and other input processes to
handle multi-byte character set (like Chinese etc). The default setting is OFF to
avoid flickering. Alternatively, the parenthesized <expL> may be used, whereby .T.
is the same as ON.

Description:
Enabled MULTIBYTE support will handle Asian 2-byte characters (glyphs) in
GET/READ and MemoEdit(). Multi-byte characters contains two bytes chr(128..255)
plus chr(1..255). Lower ASCII characters chr(1..127) are handled as single-byte and
can be intermixed with multi-byte glyphs in the same entry or line.

When enabled and upper ASCII character chr(128..255) is entered, READ and
MemoEdit() waits for second character of the glyph.

On Linux in Terminal i/o mode, you will need to use proper window Terminal (e.g.
mlterm or xiterm instead of Gnome/KDE console) for a correct support of multi-byte
characters, see example below.

Since SET MULTIBYTE ON interprets chr(128..255) as begin of glyph (if not
changed, see Tuning), you cannot enter international single- byte characters like
Umlauts etc. in this mode. With MULTIBYTE ON, you may detect slight flickering on
slower computers. Helpful links:

http://www.xuexizhongwen.de/chinese_t7.htm
http://www.xuexizhongwen.de/index.htm?computing_t20.htm&1
http://www.schaepermeier.de/linux/l_japanisch_d.htm
http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/pdf/
Chinese-HOWTO.pdf http://www.suse.de/~mfabian/suse-cjk.pdf

Tuning:
The glyph range is freely configurable by assigning the range from ...to as sub-array
(or nested sub-array) inkey-values to

_aGlobSetting[GSET_A_MEMO_GET_GLYPH1]:= {128,255}
_aGlobSetting[GSET_A_MEMO_GET_GLYPH2]:= {{1,31},{33,255}}

where these defaults says: the 1st glyph byte is in range chr(128) to chr(255) and
the 2nd glyph byte is in range chr(1..31) and/or chr(33..255). The Inkey() time-out
period is set per default to 10 seconds and can be changed by assigning

_aGlobSetting[GSET_N_MEMO_GET_MULTIW] := 10.0 // default
where the numeric value is equivalent to Inkey() argument, i.e. 0.0 will wait endless
until the user enters second glyph key. When the time-out expires without key
press, the first key is then interpreted as is - which however may cause incorrect

CMD 400

display of subsequent glyphs. When the above setting is greater 1 (or is 0), one
beep sounds after 1 second to remember you to enter second part of the glyph, and
two beeps sounds when the time-out expires. You may set the number of beeps by

_aGlobSetting[GSET_N_MEMO_GET_BEEP1] := 1 // default 1 beep
_aGlobSetting[GSET_N_MEMO_GET_BEEP2] := 2 // default 2 beeps

or disable it/them by assigning 0.

Example:
SET MULTIBYTE ON
myData := space(20)
@ 1,1 SAY "enter Chinese chars" GET myData
READ

Example of start-up script on Linux:
#!/bin/sh
shell requirement for Linux in Terminal i/o mode:
export LC_CTYPE=zh_TW.Big5
export LANG=zh_TW.Big5
export LC_ALL=zh_TW.Big5
xcin &
scim &
skim &
XMODIFIERS="@im=skim"; export XMODIFIERS
echo "---chinese"
echo "LANG=$LANG"
echo ".. opening xiterm"
xiterm &
echo ".. opening mlterm"
mlterm &
mlterm --bg=black --fg=white --term=mlterm &

Classification:
programming, screen input/output

Compatibility:
SET MULTIBYTE is available in FS6 (and up) only.

Translation:
SET (_SET_MULTIBYTE, <expL>)

Related:
READ

CMD 401

SET MULTILOCKS
Syntax:

SET MULTILOCKS on|OFF|(<expL>)
Purpose:

Sets or disables the capability of multiple record locking.

Arguments:
ON/OFF enables/disables the capability to RLOCK() multiple records. The default
setting is OFF. Alternatively, the parenthesized <expL> may be used, whereby
TRUE is the same as ON.

Description:
When a database is open in SHARED (multiuser) mode, any write access requires
a record or file lock. Usually, the RLOCK() locks the current record only, and
FLOCK() is used for multiple record replacements. For a large application with
many users, locking a specified region of the database for a transaction may be
more efficient, allowing the remaining records to be replaced also by others.

When MULTILOCKS is OFF (the default), any attempt to RLOCK(),
AUTORLOCK(), FLOCK() or APPEND BLANK will release all previous locks.

When MULTILOCKS is set ON, any consecutive attempt to RLOCK() or
AUTORLOCK() (but not APPEND BLANK or DBAPPEND()) will add the record
number to an internal list of locked records. FLOCK() releases all previous record
locks first.

The UNLOCK (or UNLOCK ALL) command will release all locked records,
regardless of the SET MULTILOCKS state. You may release a specific RLOCK by
using DBRUNLOCK().

Note, the oRDD:RLOCK() does not consider the SET MULTILOCKS state, but
determines it from the parameter passed.

Example:
USE mydbf SHARED
goto 5
RLOCK() // locked: recno 5 only
RLOCK(10) // locked: recno 10 only
? RECNO() // 5 (remains unchanged)
SET MULTILOCKS ON
goto 3
RLOCK() // locked: recno 3 and 10
RLOCK(7,8) // locked: recno 3, 7, 8 and 10

oRdd := DBOBJECT()
? "List of locked records:"
aeval (oRdd:RlockList, {|x| qout("RecNo", x)})
UNLOCK // release all locks

CMD 402

Classification:
database

Compatibility:
SET MULTILOCKS is not available in C5 and VO, but compatible to FoxPro.

Note for FoxPro users: SET MULTILOCKS will not perform an automatic UNLOCK
ALL. If such behavior is required, you may add the statement

SET MULTILOCKS <x:ON,OFF,&> => ;
DBUnlockAll() ; SET(_SET_MULTILOCKS, <x>)

in your source file, or at the end of the std.fh file.

Translation:
SET (_SET_MULTILOCKS, <expL>)

Related:
RLOCK(), UNLOCK, DBRUNLOCK(), SET(), oRdd:RLOCK(), oRdd:RLOCKLIST

CMD 403

SET NFS
Syntax:

SET NFS on|OFF|(<expL>)
SET NFS_FORCE on|OFF|(<expL>)
SET NFSLOCK on|OFF

Purpose:
Enable additional security handling and buffer flushing for databases and indices
mounted via NFS or SAMBA

Arguments:
ON/OFF enables/disables special handling of index files on NFS file system.
Alternatively, the parenthesized <expL> may be used, whereby TRUE is the same
as ON. The default setting is OFF.

Description:
In some NFS versions (e.g. Linux 2.4.x NFS server), and in SAMBA, the buffer
caching is over-optimized, so the standard FlagShip locking and file flushing does
not force the server to update all buffers to the hard disk, especially on heavy
loaded server. In some cases, the insufficient system cache flushing may corrupt
the database or index(es) located on the server.

As long as SET NFS is ON, FlagShip's DbfIdx RDD issues additional actions like
internal locks and forced data flushing to fix the above described NFS or SAMBA
server problem. Since this may slow-down the performance for pure server or local
based access, best to enable SET NFS ON only in applications that access
remotely mounted databases and indices via NFS or SAMBA.

For your convenience, the USE command has optional NFS clause too; this will
invoke SET NFS ON, so the special NFS handling remains active also for all
subsequent database actions, until SET NFS is set OFF.

Note: To mount the remote filesystem via NFS, you will need to use at least
nfsvers=3,rw,lock,sync mount options. But you will get better performance, when
the executable run on the server (because of local HD access) with SET NFS OFF
(default) by "shuffle" only the user i/o through the network. You may execute the
application via ssh, telnet, emulators, X11 redirection or X11 emulator for MS-Win,
CGI, mirroring etc. see also http://www.fship.com/emulators.html for details.

Note: to mount the remote filesystem via SAMBA (e.g. for concurrent Unix/Linux
and MS-Windows access), you need to specify/enable at least "path =
/your_share_path", "read only = no", "create mask = 0664", "directory mask = 0775"
in the [your_share_drive] section of /mnt/server/etc/samba/smb.conf and
"workgroup = your_windows_group", "unix extensions = Yes", "security = user",
"encrypt passwords = Yes", "client code page = 850", "character set = ISO8859-15"
in the [global] section of the same Samba config file. You will then access the
<your_share_path> via usual mount as nfs (or as smbfs) type and from MS-
Windows as usual network drive.

CMD 404

For concurrently use of Unix/Linux and MS-Windows based FlagShip applications
(usually on SAMBA system), you often need to use SET NFS ON to avoid flushing
problems.

Classification:
programming, database

Compatibility:
New in FS5

Translation:
SET (_SET_NFS_FORCE, <expL>)

Related:
USE, DbUseArea(), SET INDEX TO, IndexCheck()

CMD 405

SET OPENERROR
Syntax:

SET OPENERROR ON|off|(<expL>)
Purpose:

Display database and/or index open failure.

Arguments:
ON/OFF enables/disables raising run-time-error message when the database
and/or index file could not be opened, e.g. because the file is not available or there
is not sufficient permission. The default is ON, which means the open i/o RTE are
displayed. If set OFF, you need to check the USE or SET INDEX TO success
manually via Used() and NetErr(). Alternatively, the parenthesized <expL> may be
used, whereby TRUE is the same as ON.

Description:
The SET OPENERROR command allows you to control and to react on database
and index open failure manually checking the Used() and NetErr() status.

Classification:
programming

Compatibility:
New in FS5

Translation:
Set(_SET_OPEN_ERROR, <expL>)

Related:
USE, Used(), DbUseArea(), SET INDEX, DbSetIndex(), NetErr()

CMD 406

SET ORDER TO
Syntax:

SET ORDER TO [<expN>]
Purpose:

Identifies the specified index number as the (master) controlling index.

Arguments:
<expN> specifies which index number, according to the position in the list of open
indices, will become the controlling index. The valid range is 0 to 15. If <expN> is
not specified, ORDER is set to zero.

Description:
When assigning the associated indices to the working area using SET INDEX TO or
USE...INDEX, all these indices are automatically updated while changing the
database fields.

By using SET ORDER, the required index is declared as the controlling one.
Changing the index order does not change the database record position.

SET ORDER TO 0 deselects the controlling index, switches to the natural order of
records in the database, but leaves all the indices open. This is useful for replacing
an area of indexed records without having the index interfering with the position in
the database.

Tuning:
To avoid resetting FOUND() value to .F. when changing index order, set the global
switch to
_aGlobSetting[GSET_L_FOUND_SETORDER] := .T. // .F. default

which then behaves similarly to Clipper.

Example:
USE employees
SET INDEX TO persid, name, born, salary
? RECNO(), Idno, Lastname, Salary && 1, Jones, 25000
SET ORDER TO 2
? RECNO(), Idno, Lastname, Salary && 1, Jones, 25000
GO TOP
? RECNO(), Idno, Lastname, Salary && 52, Aaron, 23500
SET ORDER TO 0
REPLACE ALL lastname WITH "Mueller" ;

FOR TRIM(lastname) == "M• ller"
SET ORDER TO 2
SEEK "Müller" && not found
SEEK "Mueller" && found

CMD 407

Classification:
database

Translation:
DBSETORDER (expN)

Related:
INDEX, REINDEX, SET INDEX, USE, INDEXORD(), INDEXEXT(), INDEXKEY(),
INDEXCHECK(), DBSETORDER(), FOUND(), oRdd:SetOrder()

CMD 408

SET OUTMODE
Syntax:

SET OUTMODE [TO] [<expN>]
Purpose:

Designates how to print zero-bytes and unprintable characters < 32 on the screen.

Arguments:
<expN> is the desired output mode:

0: print all "as is", chr(0) may terminate the string
1: replace chr(0) by character specified in SET(_SET_ZEROBYTEOUT) which is

per default "?", print all other characters "as is"
2: print characters < 32 as "^x", i.e. chr(0) -> ^@, chr(3) -> ^C
3: same as 2, except chr(7), chr(10), chr(13)
4: print characters < 32 as backslash-escaped octal value -> \nnn
5: same as 4, but enclosed in curly brackets -> {\nnn}
6: print characters < 32 as hexadecimal value -> 0xNN
7: same as 6, but enclosed in curly brackets -> {0xNN}
8: print characters < 32 as CHR(nn)
9: same as 8, but enclosed in curly brackets -> {CHR(nn)}

The default setting is 1. This is also set when <expN> is not given.

Description:
The standard screen output via OutStd(), OutErr() or the ?, ?? commands and
QOUT(), QQOUT() functions cannot print all characters below CHR(32) to the
screen. With SET OUTMODE or SET(_SET_OUTMODE) you may decide how to
handle them. When the output is redirected to another device than console/screen,
SET OUTMODE is ignored.

Example:
str := "ab" + chr(0) + "cd" + chr(3) + "ef" + chr(7) + "gh"
? Set(_SET_OUTMODE) // 1
? Set(_SET_ZEROBYTEOUT) // "?"
? str // "ab?cdefgh"
SET OUTMODE 0 ; ? str // "ab" or "abcdefgh"
SET OUTMODE 1 ; ? str // "ab?cdefgh"
SET OUTMODE 2 ; ? str // "ab^@cd^Cef^Ggh"
SET OUTMODE 3 ; ? str // "ab^@cd^Cefgh"
SET OUTMODE 4 ; ? str // "ab\000cd\003ef\007gh"
SET OUTMODE 5 ; ? str // "ab{\000}cd{\003}ef{\007}gh"
SET OUTMODE 6 ; ? str // "ab0x00cd0x03ef0x07gh"
SET OUTMODE 7 ; ? str // "ab{0x00}cd{0x03}ef{0x07}gh"
SET OUTMODE 8 ; ? str // "abCHR(0)cdCHR(3)efCHR(7)gh"
SET OUTMODE 9 ; ? str // "ab{CHR(0)}cd{CHR(3)}ef{CHR(7)}gh"
SET OUTMODE TO
wait

CMD 409

Classification:
programming

Compatibility:
New in FS5

Translation:
Set(_SET_OUTMODE, <expN>)

Related:
?, ??, QOUT(), QQOUT(), OUTSTD(), OUTERR(), SET CONSOLE, SET DEVICE

CMD 410

SET PATH TO
Syntax:

SET PATH TO [<pathList>|(<expC>)]
Purpose:

Sets the path that FlagShip will search when attempting to open files.

Arguments:
<pathList> is a list of paths that FlagShip is to search if a specified file is not
located in the current directory. The list of paths is separated by commas or
semicolons. Other separators, like the usual UNIX colon (:) or space separator, can
be specified using FS_SET("pathdelim"). Each path gives the absolute or relative
directory name separated by slashes or backslashes. "\" will be automatically
translated to the UNIX syntax "/". The line continuation of a SET PATH command
with a semicolon (;) is not supported. For long path names, use a character
expression enclosed in parentheses.

SET PATH TO with no argument releases the path list.

Description:
When a file is to be accessed, and the path is not given as a part of the file name,
FlagShip searches for existing files

•in the current UNIX directory,
•in the path given by SET DEFAULT,
•in all path names specified by SET PATH.

Note that low-level file functions and the SAVE TO, RESTORE FROM or RUN
commands do not respect either the DEFAULT or PATH settings. The RUN
command considers the PATH= variable of the UNIX shell.

To create a new file outside the current directory, either an absolute path or a SET
DEFAULT must be specified.

The path (and file) names are case-sensitive in UNIX. FlagShip offers different
levels of automatic conversion of DOS names, executed during a file or directory
access:

•FS_SET("pathlower"|"pathupper",.T.) converts any given path to lower or upper
case,

•FS_SET("lower"|"upper",.T.) converts any given file name and extension to lower
or upper case,

•FS_SET("translext","ntx","idx") translates the specified extension to another,
•FS_SET("pathdelims",",;: ") to specify the path delimiters for the SET PATH

command,
•x_FSDRIVE environment variable substitutes the used DOS drive selector "x"

(like C:, D: etc.) in the program path with a UNIX directory.

CMD 411

Example:
LOCAL path1 := "C:\data1" // DOS Syntax
LOCAL path2 := "/usr/data2" // UNIX Syntax
LOCAL path3 := "../../data3" // relative path
FS_SET ("PathDelim", ",;: ") // set path delimiters
FS_SET ("PathLower", .T.) // path translation
FS_SET ("Lower", .T.) // data translation

IF EMPTY(GETE("C_FSDRIVE")) // check C: substitut.
? "set C_FSDRIVE path first"
QUIT

ENDIF

SET PATH TO .\data;/usr/data
IF .not. FILE("address1" + INDEXEXT())

SET PATH TO (path1 + ";" + path2 + ":" + path3)
ENDIF
IF .not. FILE("address.dbf")

SET PATH TO (GETENV("PATH")) // UNIX environment
END
USE address INDEX address1

Classification:
programming, file access

Translation:
SET (_SET_PATH, "path")

Related:
SET DEFAULT, CURDIR(), FS_SET(), (FSC)environment

CMD 412

SET PIXEL
Syntax:

SET PIXEL on|OFF|(<expL>)
Purpose:

Set default pixel or row/col coordinates

Arguments:
ON/OFF enables/disables the specification of coordinates in pixels or in col/row
values in GUI mode. Alternatively, the parenthesized <expL> may be used,
whereby TRUE is the same as ON. The default setting is OFF.

Description:
In GUI mode, all widgets (or controls in MS-Windows terminology) are pixel based.
To enable the common Xbase (FlagShip, Clipper, FoxPro etc) compatibility,
FlagShip internally recalculates the col/row coordinates to pixels according to the
used font.

The calculation of one row is the line height (font specific) + line inter-spacing. One
column is assumed the largest width of the characters "358AMX". You may change
this calculation by setting the global variable
_aGlobSetting[GSET_G_C_COL_MAXCHAR] := "358AMX"
_aGlobSetting[GSET_G_N_ROW_SPACING] := 2

correspondingly, see also system/initio.prg and include/set.fh

The most commands or functions using coordinates accept optional clause
PIXEL|NOPIXEL or an logical/NIL argument which temporarily overrides the global
SET PIXEL declaration.

One pixel is a "dot on the screen", i.e. smallest single component of a digital image.
The character size in pixel depends on the used font (see SET FONT and
LNG.5.3.1 & 5.3.2) and can be determined by Row2pixel(), Col2pixel() and
StrLen2pix(). For example, with SET FONT "Arial",12 the width of letter "X" is 11
pixel, but "i" occupy only 4 pixel; the row height is here 21 pixels, and column
stepping is 13 pixels = width of "M" (data depends on the screen resolution, here for
WUXGA desktop monitor with resolution 1920x1200 pixel).

The SET PIXEL apply for GUI mode only and is ignored in Terminal and Basic i/o,
which both assumes 1 pixel == 1 column or row.

Another alternative to specify coordinate units in mm, cm and inch is by SET UNIT
or SET COORD command.

Compatibility:
New in FS5

Related:
Set(_SET_PIXEL), SET FONT, Col2pixel(), Row2pixel(), Pixel2col(), Pixel2row(),
StrLen2col(), StrLen2pix(), SET UNIT

CMD 413

SET PRINTER
Syntax 1:

SET PRINTER TO [<file>|<device>|(<expC1>)
[ADDITIVE]]
[PIPE <expC2>]

Syntax 2:
SET PRINTER on|OFF|(<expL>) [NEW]

Syntax 3:
SET PRINTER GUI on|OFF|(<expL>)

Purpose:
Echoes console output (e.g. of the ?, ?? commands) to a printer file or device.

Arguments:
TO <file> is the name of an ASCII file, path and an extension included, to which the
output will be redirected. If the file extension is not specified, .prn is assumed.

ADDITIVE causes the specified printer file to be appended to, instead of being
overwritten. When omitted, the specified <file> is truncated. The <file> is created in
the SET DEFAULT directory when given, or in the current one otherwise.

TO <device> is any valid UNIX character device, like /dev/tty05, /dev/lp0 etc. If the
<device> name starts with "/dev/", no default .prn extension is added. In MS-
Windows, you may specify LPT1, LPT2, LPT3...LPT9, PRN, COM1...COM9 as
direct printing device, which of course must be available on your system. In Linux,
device names /dev/lp0 and /dev/lp1 etc. corresponds to LPT1 and LPT2 etc in DOS;
/dev/ttyS0 and /dev/ttyS1 etc. corresponds to COM1 and COM2 in DOS.

TO PIPE <expC2> streams the PRINTER output to be an input of the UNIX
executable given in <expC2>, similar to the shell invocation e.g. a.out | b.out. The
<expC2> expression may also contain more complex piping, like "tee out1.txt |
b.out". Note: the executable given in <expC2> remains active as a child process
until SET PRINTER TO with no arguments is executed. Thereafter, the child
process has "zombie" status, which means the process slot remains occupied until
the current executable is finished. Supported in Linux/Unix only.

When SET PRINTER TO is specified without an argument, the default spooler file is
selected ADDITIVE.

ON/OFF activates or deactivates the output to the specified file, device, or the
default printer file. Alternatively, the parenthesized <expL> may be used, whereby
logical TRUE is the same as ON.

NEW causes the current printer file contents to be deleted, instead of appended to.

GUI ON/OFF activates or deactivates GUI alike output. SET PRINT GUI is
equivalent to SET GUIPRINTER command and PrintGui(.T./.F.) function, see more
details there.

CMD 414

Description:
Because of the usual multiuser printer sharing on UNIX, FlagShip redirects by
default the printer output to a "spooler" file, see LNG.3.4 and LNG.5.1.6. When
starting a program, the default printer file is opened in the current (or by the
environment variable FSOUTPUT assigned) directory; the SET DEFAULT path
does not affect the default spooler file.

The name of the default spooler file is <main_procedure>.<process_id> and can be
retrieved by the FS_SET ("printfile") function. The data from a printer file can be
printed either from the application, or any time offline using the default UNIX
spooler. To spool the printer data directly from the application,

•issue SET PRINTER OFF or SET PRINTER TO
•retrieve the file name <printfile> := FS_SET("print")
•activate the output using e.g. RUN "lp -d... <printfile>" or RUN "cp <printfile>

/dev/..." etc.,
•a. delete the file using ERASE <printfile>, if the subsequent printer output is not

required,
• issue SET PRINTER ON for the subsequent output.
•b. issue SET PRINTER ON NEW for the subsequent output, which deletes the

previous output.

In special cases, if a spooled output is not required, even direct device (such as
printer, other terminal etc.) output is supported by FlagShip using SET PRINTER
TO <device>.

The SET PRINTER ON command is equivalent to the ...TO PRINTER clause of
console commands like LIST, REPORT etc. To suppress the console output, SET
CONSOLE OFF may be used. To redirect the @..SAY command to the printer file
or device, issue a SET DEVICE TO PRINTER.

Printer output from GUI based application can be done w/o any programming ac-
tivities nearly automatically via the "File->Print ..." menu item, see additional de-
scription in LNG.5.1.6 and example in the <FlagShip_dir>/examples/printer.prg file

Tuning:
You may tune the printer driver by FS_SET("prset") which may be advantageous
when using proportional character set etc. Note that some printers requires CR +
LF (= carriage return + line feed) for line break instead of LF (line feed) sent by
default. In such a case add the statement

FS_SET("prset", { chr(13)+chr(10) })
before your printer output statements.

CMD 415

Example 1:
SET PRINTER ON
SET CONSOLE OFF
? "This is a printer output only"
SET CONSOLE ON
? "This goes to both the printer and the screen"
SET PRINTER OFF

USE stock
REPORT FORM invent TO PRINT NOCONSOLE
RUN ("lp -dlaser -m -s " + FS_SET("print"))

Example 2:
Create printout spool file, then send it to printer

SET PRINTER ON
SET CONSOLE OFF
SET DEVICE TO PRINT

? "Hallo world"
for ii := 3 to 20

@ ii,10 say "Line " + ltrim(ii)
next
eject

SET DEVICE TO SCREEN
SET CONSOLE ON
SET PRINTER OFF

prFile := fs_set("printfile")
? "Printing Spool-File", prFile
// _aGlobSetting[GSET_L_RUNDISPLAY] := .T. // optional
#ifdef FS_WIN32
RUN("COPY " + prFile + " PRN") // Windows default printer

#else
RUN ("cp " + prFile + " /dev/lp0") // Linux def printer

#endif
wait

Example 3:
Print directly to specified device

#ifdef FS_WIN32
SET PRINTER TO LPT1 // or COM1 or PRN etc.

#else
SET PRINTER TO /dev/lp0 // or /dev/lp1 etc.

#endif
SET PRINTER ON
SET CONSOLE OFF
SET DEVICE TO PRINT
... Printer control codes and output via ?, ??, @...
SET DEVICE TO SCREEN
SET CONSOLE ON
SET PRINTER OFF
SET PRINTER TO

CMD 416

Example 4:
Send the printer output simultaneously to the file "xyz.prg" and the device "tty5c":

SET PRINTER TO PIPE "tee xyz.txt > /dev/tty5c"
SET PRINTER ON
? "output to text file and other device"
SET PRINTER (.F.)
? "output to the screen only"
SET PRINTER ON
? "output continued to text file and other device"
SET PRINTER TO

Example 5:
In GUI mode, you may choose the printer driver in a common dialog and have
different formatting methods. See/run the complete example in <FlagShip_dir>/
examples/printer.prg

Example 6:
Printer output via Ethernet: when you want to redirect the local printout (at the Unix
server) to a remote printer which has an Ethernet printserver module installed, you
simply set lp (or lpr) to the printer IP address. Printer output via Terminal emulator:
you may also print remotely via terminal emulator (eg. from MS-Windows 9x/NT)
when the emulator support transparent printer redirection eg via VT escape
sequences. Here an example, tested with the CRT 2.3 terminal emulator (http://
www.vandyke.com) and PuTTY (http://www.chiark.greenend.org.uk/~sgtatham/
putty/) from local MS-Windows NT4/2000/2008/XP/Vista and a FlagShip application
running on remote Unix, Linux or Windows server.

Compile: FlagShip testprint.prg -io=t -o testprint
Execute via terminal emulator: ./testprint or newfsterm ./testprint

** file testprint.prg
local i, cSpoolDef, cSpoolTmp, nRow

/* 1. create some printer output into default spool file, you
* of course may use any ?, ??, @..SAY etc output instead
*/
printTestData() // print some test data to spooler
cSpoolDef := FS_SET("print") // get default spool file name

/* 2. print the plain spool file to remote printer thru
* terminal emulator, using VT100 escape sequences
* Note: this may fail with some Terminal Emulators
*/
? "printing file", cSpoolDef, "to remote printer ..."
Send2print(cSpoolDef)
// DELETE FILE (cSpoolDef)

/* 3. switch back to console output
*/
wait

CMD 417

nRow := ROW() +1
for i := nRow to nRow +5

? "displaying line #", LTRIM(i), "on terminal"
next
wait "done, press any key..."

/* 4. alternative print to remote printer via shell.
* The output file already contains the re-rooting sequences.
* Note: this usually work with any terminal emulator which
* supports printer redirection via DEC VT escape sequences
*/
?
cSpoolTmp := TempFileName(,"my_") + ".prn"
? "creating another printer output file", cSpoolTmp
printTestData(.T., cSpoolTmp) // create with prefix and postfix

? "copying printer output to remote printer ..."
#ifdef FS_WIN32
RUN ("type " + cSpoolTmp) // print in VFS for MS-Windows

#else
RUN ("cat " + cSpoolTmp) // print in VFS for Unix/Linux

#endif
// DELETE FILE (cSpoolTmp)

wait "done, press any key..."
quit

// defines used below
#define REROUTE_ON chr(27) + "[5i" /* VT100 sequence */
#define REROUTE_OFF chr(27) + "[4i" /* VT100 sequence */
#define CRLF chr(13) + chr(10)
#define MY_STDOUT 2

**
* print some test data into spool file
* lAddReroute: if .T., add re-rooting prefix and postfix
* cFile: if not empty, use this out file instd.standard
*
FUNCTION PrintTestData(lAddReroute, cFile)
local ii
if valtype(lAddReroute) != "L"

lAddReroute := .F.
endif

if !empty(cFile) // specified spooler file
set printer to (cFile) // otherwise default spool file

endif
set device to print // set output to printer
set printer on
set console off

if lAddReroute // add esc sequence to
?? REROUTE_ON // Start re-routing to remote printer

endif

CMD 418

// send some data to printer
@ 2,0 say "line 2, col 1"
@ 5,5 say "line 5, col 5"
@ 7,25 say "line 7, col 25"
for ii := 1 to 5

? ; ?? "printing line#", ltrim(prow())
next
?
if lAddReroute // add esc sequence to

?? REROUTE_OFF // end re-routing to remote printer
endif

if !empty(cFile) // close spooler file
set printer to

endif
set console on // set output back to console
set printer off
set device to screen
return NIL

**
* Sends the given file to remote printer
* adding redirection prefix/postfix esc-sequences
*
FUNCTION Send2print(cFile)
local fh, str, iErr := 0, lAbort := .F.

fh := fopen(cFile,0)
if fh <= MY_STDOUT .or. ferror() != 0

wait "cannot open printer file '" + cFile + "' ..."
else

fwrite(MY_STDOUT, REROUTE_ON) // start redirection
while iErr == 0

str := freadtxt(fh)
iErr := ferror()
fwrite(MY_STDOUT, str + CRLF)
if inkey() == K_ESC

lAbort := .T.
exit

endif
enddo
fclose(fh)
fwrite(MY_STDOUT, CRLF)
fwrite(MY_STDOUT, REROUTE_OFF) // end redirection
if lAbort

? "Aborted by user..."
endif

endif
return NIL

Classification:
programming (sequential printer/file output and system file access is used due
printing, i.e. executing the output command/function)

CMD 419

Compatibility:
This command is compatible to the xBASE dialects on DOS, but only FlagShip
supports the printer spooling by default. If a DOS device name (like LPT2, PRN,
COM3) is used in 1:1 ported programs, make a link to the UNIX device before
invoking the executable, e.g.:

$ ln LPT2.prn /dev/lp1

The clauses PIPE, NEW and ADDITIVE are available in FS only.

Translation:
SET (_SET_PRINTER, .T.|.F.)
SET (_SET_PRINTFILE, "file", .add.)

Related:
EJECT, SET CONSOLE, SET DEVICE, SET ALTERNATE, SET EXTRA,
PrintGui(), FS_SET(), (FSC) environment, UNIX: man lp, ls -l /dev

CMD 420

SET PROCEDURE TO
Syntax:

SET PROCEDURE TO [<file>]
Purpose:

Informs the compiler that all UDFs and procedures in the specified <file> are to be
compiled together with the current source file.

Arguments:
<file> is the name of the source file. If no extension is specified, the default is .prg.
The <file> can optionally include a path designator. SET PROCEDURE TO without
an argument has no practical meaning in FlagShip and is simply ignored.

Description:
The SET PROCEDURE statement directs the FlagShip compiler to compile an
additional source <file> into C and object file. A file can contain any number of
procedures and UDFs. The same occurs, if a procedure call DO... is encountered
during the compiling, the name is yet unknown and the same source file exists. If
the -m compiler switch is specified, the SET PROCEDURE statement is ignored.

In FlagShip, SET PROCEDURE can be omitted giving the name of the procedure
<file> in the command compiler line; see section FSC.

Example:
*** file test.prg
SET PROCEDURE TO adr_proc && needed for adr_mask
DO adr_init
DO adr_mask
QUIT
*** eof test.prg

*** file adr_init.prg && called directly.
*** PROCEDURE adr_init && PROC name = file name
RETURN
*** eof adr_init.prg

*** file adr_proc.prg && not called directly,
PROCEDURE adr_mask && therefore SET PROCEDURE
RETURN && or: FlagShip test.prg\
*** eof adr_proc.prg && adr_proc.prg

Classification:
compiler/linker

Translation:
PROCREQ ("file")

Related:
DO, FUNCTION, PROCEDURE, SET FORMAT, #include

CMD 421

SET RELATION
Syntax:

SET RELATION [ADDITIVE] [MULTIPLE]
TO [<parentKey1>|<recno> INTO <childAlias1>]

[, [TO] <parentKeyN>|<recno>
INTO <childAliasN>]

Purpose:
Relates two or more working areas using a key expression or record number.

Arguments:
<parentKey> is an expression used to perform a SEEK in the child area each time
the record pointer moves in the parent working area. This is usually a field of the
parent area. The child area must have an index in use, with key expression
corresponding to <parentKey> value.

<recno> is a record number or an numeric expression (typically the RECNO() func-
tion) used to perform a GOTO to the record number in the child working area
matching the record number of the parent area. For this type of relation, the child
area need not have an index in use or the indices are disabled by SET ORDER TO
0

<childAlias> identifies the child working area (or file name). The child database
may also be opened by different RDD driver, than the current (parent) database.

SET RELATION TO without arguments removes all relations from the current
working area.

Options:
ADDITIVE adds the specified child relations to existing relations already set in the
current working area. If this clause is not specified, existing relations in the current
working area are released before the new child relations are set. You may
determine the number of relations for each parent by DbRelCount().

MULTIPLE specifies that the child database is processed as 1:n relation, otherwise
it is 1:1 relation. Only the first relation in each parent is considered as 1:n by SKIP.
You may set or clear the 1:n relation also later by DbRelMultiple().

Description:
SET RELATION links the active database (parent) with other opened databases
(children) identified by INTO <alias>, see LNG.4.7. Each parent working area can
be linked to unlimited number of child working areas.

A relation causes the record pointer in the child area to move in accordance with
the movement of the record pointer in the parent area. If a match is not found, the
child area record pointer is positioned to the end-of-file (LASTREC() +1), EOF()
returns .T. and FOUND() returns .F.

CMD 422

The typical sequence is SELECT <parent>; SET RELATION TO <parentKey> INTO
<childAlias>, where the <childAlias> is indexed on a key matching the <parentKey>,
e.g.

USE mydb NEW ALIAS master // has field IdKey
* INDEX ON anything TO master // optional
USE subdb NEW ALIAS child // has field IdChild
INDEX ON IdMaster TO subdb // and field IdMaster
* USE subsub NEW ALIAS childOfChild // has field IdChild
* INDEX ON IdChild TO subsubdb
...
SELECT master
SET RELATION TO IdKey INTO child // opt: MULTIPLE
* SELECT child
* SET RELATION TO IdChild INTO childOfChild // opt: MULTIPLE
SELECT master
// LIST IdKey, child->IdChild, child->IdMaster, child->Data, ;
// childOfChild->IdChild, childOfChild->data
// other processing ...
SELECT master
SET RELATION TO // clear relation
* SELECT child
* SET RELATION TO // clear relation

If the MULTIPLE clause is specified, SKIP process the child in 1:n manner instead
of 1:1. This means, if the child contains more than one corresponding key for this
relation, the child is skipped instead of parent. For 1:n:n:..:n relations, the last child
is skipped first (as long as in the relation), then the last-1 child with all it childs in
relation, and so forth. See also LNG.4.7 and example below.

Although SET RELATION obeys SET FILTER and SET DELETED in the child
working areas, it does not obey SET SOFTSEEK, thus always behaving as if SET
SOFTSEEK were off. In most cases, conditional index (INDEX ON..FOR..) is also
faster then SET FILTER.

Although the SET RELATION is a comfortable database link, it may slow the
execution significantly; especially if the movement in the child area(s) is not needed
for each movement (SEEK, SKIP, GOTO, REPLACE...FOR etc.) in the parent area.
In such a case, use a "soft link", SEEKing the child record explicitly when required
only. For 1:N:N relations, you will need (in worst case) to skip (records-in-parent *
records-in-child1 * records-in-child2) -times to reach eof().

RELATing a database directly or indirectly to itself will usually result with
unpredictable results, possibly endless loops!

FlagShip tries to keep the relation integrity by repositioning the dependent
database, e.g. on movements, SELECT, by reaching break in the GUI debugger.
You may force the integrity by issuing SKIP 0 on the parent database. A manual
SEEK is hence suggested when you will manipulate the record pointer of the
related database.

CMD 423

Example:
SELECT 2 // child relat.
USE employee
INDEX ON emplidno TO empl_id
SELECT 1 // parent relat.
USE families
? FIELD(3) // ID_NUMB
SET RELATION TO families->id_numb INTO employee
LIST Name, Employee->Name, Employee->Lastname

// The same output using a manual "soft" 1:1 relation:

USE employee NEW INDEX empl_id // child
USE families NEW // parent
DO WHILE !EOF()

employee->(DBSEEK (families->id_numb)) // SEEK in child
? Name, Employee->Name, Employee->Lastname
SKIP

ENDDO

Example: the complete code is available in .../examples/relat_one2n.prg
select company
// index on ID to company_id // not required
select departm
index on IDcomp to depart_id // required
select names
index on IDdepart to names_id // required
/*
* set 1:n:n relations
*/
select company
set relation to ID into departm MULTI // company -> departm 1:n
select departm
set relation to IDdepart into names MULTI // departm -> names 1:n
select company
set filter to company->zip >= 2000 .and. company->zip < 3000
// better: INDEX ON zip FOR zip >= 2000 .and. zip < 3000 TO zip2
go top
while !eof()

? "id="+str(id,4),"|"+company+"|"+departm->deptm+"|"+ ;
names->name+"|"+names->first+"|"+str(names->IDpers,5)

SKIP
enddo
select departm
set relation to // clear relation(s) from departm to child(s)
select company
set relation to // clear relation(s) from company to child(s)
set filter to // clear filter
wait

// the same 1:n:n output without relations:

// use ... index ... from above
select company
set filter to company->zip >= 2000 .and. company->zip < 3000

CMD 424

go top
while !eof() // on company

SELECT departm
SEEK company->ID
if eof()

? "id=" + str(company->id,4)+ "|" + company->company + ;
"|no departments"

endif
while !eof() .and. IDcomp == company->ID // on departm

SELECT names
SEEK departm->IDdepart
if eof()

? "id=" + str(company->id,4)+ "|" + company->company + ;
"|" + departm->deptm + "|no names"

endif
while !eof() .and. IDdepart == departm->IDdepart // on names

? "id=" + str(company->id,4)+ "|" + company->company + ;
"|" + departm->deptm + "|" + names->name + "|" + ;
names->first + "|pers.id=" + str(names->IDpers,5)

SKIP // next name for the same IDdepart
enddo // while... on names
SELECT departm
SKIP // next departm for the same IDcomp

enddo // while... on departm
SELECT company
SKIP // next company

enddo // while.. on company
wait

Classification:
database

Compatibility:
The ADDITIVE clause is new in FS4. For FS4 and before, the number of child areas
was restricted to 8, VFS5 and later supports any number of relations. 1:N relations
are available in VFS7 and later.

Translation:
IF (! .add.) ; DbClearRel() ; ENDIF
DbSetRelation ("alias1", {key1}, "key1" [, .multi.])
[DbSetRelation("alias2", {key2}, "key2" [, .multi.]) ...]

Related:
INDEX, SET INDEX, SET ORDER, UPDATE, USE, SEEK, SKIP, GOTO,
REPLACE, Recno(), DbSetRelation(), DbRelation(), DbClearRel(), DbRselect(),
DbRelCount(), DbRelMultiple(), oRdd:SetRelation(), oRdd:ClearRelation(),
oRdd:Info()

CMD 425

SET ROWADAPT
Syntax:

SET ROWADAPT on|OFF|(<expL>)
Purpose:

Enables or disables the automatic ROW() adaption when the screen output includes
HTML tags or different FONTs.

Arguments:
ON/OFF enables/disables the automatic ROW() adaption. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON. The
default setting is OFF.

Description:
When performing screen output in GUI mode using HTML tags or with different
FONTs, the COL() position is calculated automatically, but the ROW() setting
considers the
 and <P> HTML tags or the larger/smaller font only when SET
ROWADAPT is ON. Otherwise the ROW() remain unchanged, or is increased by
one line height (using the default font size) when the ? command or QOUT() was
invoked.

When SET ROWADAPT is OFF, you may force the ROW() adaption manually by
invoking RowAdapt() just after the output.

The final cursor position may be affected also by the current status of SET
ROWALIGN, see examples there.

The SET ROWADAPT and RowAdapt() adaption takes effect only for sequential
screen output (i.e. for ?, ??, @...SAY commands and Qout(), Qqout(), DevOut(),
DevOutPict() functions) in GUI mode.

Classification:
programming, screen output in GUI mode

Compatibility:
New in FS5

Translation:
Set(_SET_ROWADAPT [, <expL>])

Related:
?, ??, @..SAY, SET ROWALIGN, SET HTMLTEXT, SET FONT, Qout(), Qqout(),
RowAdapt()

CMD 426

SET ROWALIGN
Syntax:

SET ROWALIGN [TO] BASELINE|DEFAULT
SET ROWALIGN TO
SET ROWALIGN (<expL>)

Purpose:
Enables or disables the automatic ROW() alignment on baseline of the standard
font.

Arguments:
BASELINE enables the automatic ROW() alignment.

DEFAULT disables the automatic ROW() alignment.

<expL> is an alternative syntax, whereby (.T.) is same as SET ROWALIGN TO
BASELINE and (.F.) is same as SET ROWALIGN TO DEFAULT.

SET ROWALIGN TO is equivalent to SET ROWALIGN TO DEFAULT

Description:
The default x/y alignment in GUI mode is on the top left character frame (marked
with + in the picture below), to allow start the output at 0,0 coordinates. The
characters "O-umlaut","h","p" are displayed as

--+------------------------------ <- top character frame
* *		
###	#	
# #	#	
# #	###	####
# #	# #	# #
### -	# # -	#### -
		#
		#
----------------------------- <- bottom character frame

--------------------------------- <- line spacing

where the size of (bottom - top) is returned by oFont:Height() or in pixel by
oFont:SizePixel(); the line spacing is user definable by global variable
_aGlobSetting[GSET_G_N_ROW_SPACING].

When you change the FONT size, the start position remain unchanged, i.e. larger
font has it base line located at higher Y position (in view of top/down coordinates).
Sometimes you may wish to align characters on it base line, e.g. when using the
FONT option to display different fonts (from the standard) in the same output line
similarly to word processor output, e.g.

CMD 427

oFont2 := Font{"Arial",50} ; oFont2:Bold := .T.
// SetPos(4,10)
?? "Start "
?? "Big" FONT oFont2 GUICOLOR "R+"
?? " Continue" GUICOLOR "B+"

Depending on SET ROWALIGN and SET ROWADAPT setting, you will get:

with SET ROWALIGN TO DEFAULT | with SET ROWALIGN TO BASELINE
and SET ROWADAPT OFF | and SET ROWADAPT OFF

|
Start BBBB Continue | BBBB

B B * | B B *
BBBBB i ggg | BBBBB i ggg
B B i g g | B B i g g
BBBB i ggg | Start BBBB i ggg Continue

g | g
gg | gg

with SET ROWALIGN TO DEFAULT | with SET ROWALIGN TO BASELINE
and SET ROWADAPT ON | and SET ROWADAPT ON

|
Start BBBB | BBBB

B B * | B B *
BBBBB i ggg | BBBBB i ggg
B B i g g | B B i g g
BBBB i ggg | Start BBBB i ggg

g | g
gg | gg

Continue | Continue

Note that the base line alignment for larger font size than current default will display
desired results only when the current Row() is > 0, since you cannot print on
negative coordinates :-)

Instead of using SET ROWALIGN TO BASELINE, you of course may control the
alignment and coordinates manually by SetPos(), e.g.

oFont2 := Font{"Helvetica",60} ; oFont2:Bold := .T.
?? "Start "
ySave := Row(.T.)
yNew := max(0, ySave - oFont2:SizePixel() + ;

m->oApplic:Font:SizePixel())
SetPos(yNew, Col(.T.), .T.) ; ?? "Big" FONT oFont2
SetPos(ySave, Col(.T.), .T.) ; ?? " Continue"

The SET ROWALIGN alignment takes effect only for sequential screen output (i.e.
for ?, ??, @...SAY commands and Qout(), Qqout(), DevOut(), DevOutPict()
functions) in GUI mode.

CMD 428

Classification:
programming, screen output in GUI mode

Compatibility:
New in FS5

Translation:
Set(_SET_ROWALIGN_BASE [, <expL>])

Related:
?, ??, @..SAY, SET ROWADAPT, SET HTMLTEXT, SET FONT, Qout(), Qqout(),
RowAdapt()

CMD 429

SET SCRCOMPRESS
Syntax:

SET SCRCOMPRESS on|OFF|(<expL>)
Purpose:

Enable/disable compressing screen image for SaveScreen() and RestScreen() in
GUI mode.

Arguments:
ON/OFF enables/disables the compressing of screen images in GUI mode.
Alternatively, the parenthesized <expL> may be used, whereby TRUE is the same
as ON. The default setting is OFF.

Description:
In GUI, the structure of the screen variable <retS> is incompatible to <retS> from
Terminal i/o mode. In GUI, it is compressed or un- compressed bitmap object as
opposite to Curses "window" structure in Terminal i/o.

In GUI, you may decide if the bitmap is stored "as is" (default) or in compressed
format which requires significantly less memory. On the other hand, a compressed
format may cause some side-effects depending on the used graphic card and the
selected color depth. If you have many Save/RestScreen() in the application, try to
set SET SCRCOMPRESS ON (default is OFF) and watch if not side effects (like
slight color shifting) occurs after RestScreen(), otherwise let the compression
disabled by SET SCRCOMPRESS OFF.

The SET SCRCOMPRESS setting apply for GUI mode only and is ignored in
Terminal and Basic i/o.

Classification:
programming

Compatibility:
New in FS5

Related:
Set(_SET_SCRCOMPRESS), SaveScreen(), RestScreen()

CMD 430

SET SCOREBOARD
Syntax:

SET SCOREBOARD ON|off|(<expL>)
Purpose:

Defines whether the messages issued by READ and MEMOEDIT() are displayed or
not.

Arguments:
ON/OFF enables/disables the display of messages on line zero. Alternatively, the
parenthesized <expL> may be used, whereby TRUE is the same as ON.

Description:
When SCOREBOARD is ON, the messages are displayed at the uppermost line of
the display. The messages are: the indication of the INSERT mode, the RANGE
error message, and an abort query message in MEMOEDIT().

In FlagShip, the message text can be user-specified, for example for foreign
languages, using FS_SET ("loadlang") and FS_SET("setlang"). The query
messages for MEMOEDIT() are re-definable in the file <FlagShip_dir>/system/
scor_mem.prg.

Example:
SET SCOREBOARD OFF
SET FORMAT TO authors
USE authors
READ
SET FORMAT TO
USE
SET SCOREBOARD ON

Classification:
programming

Compatibility:
The user definable messages are available in FlagShip only.

Translation:
SET (_SET_SCOREBOARD, .T.|.F.)

Related:
@...GET, READ, MEMOEDIT(), FS_SET(), SET()

CMD 431

SET SOFTSEEK
Syntax:

SET SOFTSEEK on|OFF|(<expL>)
Purpose:

Defines whether SEEK and FIND will have softer criteria in searching or whether
they will be strict.

Arguments:
ON/OFF enables/disables soft searching. Alternatively, the parenthesized <expL>
may be used, whereby TRUE is the same as ON.

Description:
When SOFTSEEK is ON, and a matching index key is not found while SEEKing, the
first higher value key is reported as found and the record pointer is located on it. If
SOFTSEEK is OFF, only the exact match will be found.

SEEK with SOFTSEEK ON FOUND() EOF()
Index key found .T. .F.
Next index key found .F. .F.
Next index key not available .F. .T.

SEEK with SOFTSEEK OFF FOUND() EOF()
Index key found .T. .F.
Index key not found .F. .T.

The current state of SET FILTER and SET DELETED is obeyed in SEEK,
regardless of the SOFTSEEK setting.

Note: SEEKing the child record of a SET RELATION specified database ignores the
current SET SOFTSEEK switch.

Example:
LOCAL searchname
SET SOFTSEEK ON
USE address INDEX adrname
DO WHILE .T.

ACCEPT "enter name to search (or <┘) " TO searchname
IF EMPTY(searchname)

EXIT
ENDIF
SEEK searchname
DO CASE
CASE FOUND()

? "Found: ", name, first
CASE .not. EOF()

? "Next name found: ", name, first
OTHERWISE

? "The same or next name not available"
ENDCASE

ENDDO

CMD 432

Classification:
database

Translation:
SET (_SET_SOFTSEEK, .T.|.F.)

Related:
SEEK, FIND, SET INDEX, SET ORDER, SET RELATION, EOF(), FOUND(), SET(),
oRdd:Seek()

CMD 433

SET SOURCE
Syntax:

SET SOURCE ASCII | PC8 | OEM
SET SOURCE ISO | ANSI

Purpose:
Enable support of national character sets, i.e. source strings containing special
characters coded in either in PC8/ASCII or in ISO/Ansi. For a full
internationalization discussion refer to section LNG.5.4

Description:
To support national character sets coded in ASCII (e.g. by using DOS source
editor) in GUI i/o mode (which is usually ISO oriented) and for printer output, an
automatic ASCII -> ISO conversion during the output is available via SET SOURCE
ASCII. This is very similar to converting the string output via Oem2Ansi() like
Qout(Oem2Ansi("M"+chr(129)+"nchen")) // u-umlaut in PC-8

Note: SET SOURCE ASCII is issued in #include "fspreset.fh" to enable an easy port
of DOS applications.

To support national character sets coded in ISO/Ansi in GUI mode, you may inform
the system that no automatic ASCII -> ISO conversion during the output is required
using SET SOURCE ISO. This is very similar to the string output Qout("M"+
chr(252)+"nchen") // u-umlaut in ISO-8859-1

In Terminal i/o mode, the input and output is assumed to be in ASCII, i.e. u-umlaut
as chr(129), same as in DOS and Clipper. If you are using an ISO or Windows
source-code editor (which will code chr(252) for u-umlaut), you may preferably use
the -iso compiler switch, which will translate ISO strings to ASCII.

The #include "fspreset.fh" statement (see LNG.9.5) sets SET SOURCE ASCII and
SET GUITRANSL TEXT ON to enable backward compatibility to DOS and terminal
i/o oriented source.

SET SOURCE ISO is not equivalent to set(_SET_SOURCEASCII). The SET
SOURCE command sets also additional flags for your convenience, whilst
Set(_SET_SOURCEASCII) only reports if SET SOURCE was invoked. See also the
#command SET SOURCE in std.fh for details.

SET SOURCE ASCII (or PC8 or OEM) will set
Set(_SET_SOURCEASCII, .T.) // source is in ASCII charset
Set(_SET_GUIASCII, .T.) // translate screen output
Set(_SET_ANSI, .F.) // read/write database 1:1
Set(_SET_CHARSET, _SET_CHARSET_PC8) // translate Inkey()
Set(_SET_PRINTASCII, .F.) // printer output 1:1

SET SOURCE ANSI (or ISO) will set
Set(_SET_SOURCEASCII, .F.) // source is in ISO charset
Set(_SET_GUIASCII, .F.) // GUI screen output 1:1
Set(_SET_ANSI, .T.) // translate read/write database
Set(_SET_CHARSET, _SET_CHARSET_ISO) // Inkey() is 1:1
Set(_SET_PRINTASCII, .T.) // translate printer output

CMD 434

Note: The automatic support of IBM-PC8 semi-graphic characters in GUI mode is
enabled when SET GUITRANSL TEXT ON is set. Without changing the translation
tables heavily - see fs_set("ansi2oem"), the semi-graphic output work properly only
with SET SOURCE ASCII, since chr(176..223) equivalence is not available in the
ISO/Ansi character set. In Terminal i/o mode, the IBM-PC8 semi-graphic characters
support is enabled per default.

Note other GUI defaults, modified by SET GUITRANSL command:
Set(_SET_GUIDRAWTEXT) = .F. // don't draw PC-8 charset
Set(_SET_GUIDRAWBOX) = .F. // don't draw PC-8 boxes
Set(_SET_GUIDRAWLINES) = .F. // don't draw PC-8 lines

Classification:
programming, screen and printer output

Example:
see <FlagShip_dir>/examples/setsource.prg and <FlagShip_dir>/examples/
printer.prg

Example:
? "--------- Defaults"
? "SET GUITRANSL ASCII=" + if(set(_SET_GUIASCII),"ON","OFF"), ;
", SET KEYTRANSL=" + if(set(_SET_CHARSET) == _SET_CHARSET_PC8, ;
"ASCII", "ISO"), ", Printer ASCII translation=" + ;
if(set(_SET_SOURCEASCII), "ON", "OFF")

?
? "This paragraph is coded in GUI/Windows editor, where u-umlaut"
? "is chr(252), e.g. in München or M" + chr(252) + "nchen"
? "press u-umlaut key :"
key := inkey(0)
?? " key =", ltrim(key),"=", chr(key) // key = 252 in ISO-8859-1

?
SET SOURCE ASCII
? "--------- SET SOURCE ASCII"
? "SET GUITRANSL ASCII=" + if(set(_SET_GUIASCII),"ON","OFF"), ;
", SET KEYTRANSL=" + if(set(_SET_CHARSET) == _SET_CHARSET_PC8, ;
"ASCII", "ISO"), ", Printer ASCII translation=" + ;

if(set(_SET_SOURCEASCII), "ON", "OFF")
?
? "This paragraph is coded in DOS/ASCII editor, where u-umlaut"
? "is chr(129), e.g. in M• nchen or M" + chr(129) + "nchen"
? "press u-umlaut key :"
key := inkey(0)
?? " key =", ltrim(key),"=", chr(key) // key = 129
?

SET SOURCE ISO
? "--------- SET SOURCE ISO"
? "SET GUITRANSL ASCII=" + if(set(_SET_GUIASCII),"ON","OFF"), ;
", SET KEYTRANSL=" + if(set(_SET_CHARSET) == _SET_CHARSET_PC8, ;
"ASCII", "ISO"), ", Printer ASCII translation=" + ;
if(set(_SET_SOURCEASCII), "ON", "OFF")

CMD 435

? "press u-umlaut key :"
key := inkey(0)
?? " key =", ltrim(key),"=", chr(key) // key = 252
wait "done ..."

Translation:
SET SOURCE ASCII or PC8 or OEM

== Set(_SET_SOURCEASCII, .T.) + Set(_SET_GUIASCII, .T.) +
Set(_SET_CHARSET, _SET_CHARSET_PC8)

SET SOURCE ISO or ANSI
== Set(_SET_SOURCEASCII, .F.) + Set(_SET_GUIASCII, .F.) +

Set(_SET_CHARSET, _SET_CHARSET_ISO)

Compatibility:
New in FS5

Related:
SET GUITRANSL, SET ANSI, Set(_SET_GUIDRAWTEXT), Set(_SET_GUIDRAW-
BOX), Set(_SET_GUIDRAWLINE), Set(_SET_GUITASCII)

CMD 436

SET TYPEAHEAD TO
Syntax:

SET TYPEAHEAD TO <expN>
Purpose:

Sets the size of the keyboard buffer.

Arguments:
<expN> is the number of characters that the keyboard buffer can hold. It is an
integer in the range from zero up to 2 GB. If not specified, or if a negative value is
specified, the buffer is set to default of 10000 bytes.

Description:
FlagShip stores user key stokes in an internal type-ahead buffer, which enables to
pre-enter input; see more in chapter LNG.5.2.

If the keyboard buffer's length is set to zero, keyboard polling is suspended and
NEXTKEY() will always return zero. The LASTKEY() values are not affected by SET
TYPEAHEAD.

The SET TYPEAHEAD buffer size does not affect the number of characters that
can be pushed in by a program using the KEYBOARD command.

If you wish to copy-and-paste large text (e.g. to MemoEdit), you may need to
increase the TYPEAHEAD buffer accordingly. The default size is sufficient for ca. 2
pages of fully printed paper sheets.

Example:
? "working, please do not disturb..."
SET TYPEAHEAD TO 0
USE accounts
COUNT FOR turnover = 0 TO zero
SET TYPEAHEAD TO
? zero, "customers with no turnover"

Classification:
programming

Compatibility:
On function keys F2 to F48, 2 bytes for each keystroke are needed. In DOS
dialects, the buffer length is limited to 4KB.

Translation:
SET (_SET_TYPEAHEAD, expN)

Related:
ACCEPT, INPUT, KEYBOARD, READ, SET KEY, INKEY(), LASTKEY(),
NEXTKEY(), SET()

CMD 437

SET UNIT
Syntax:

SET UNIT [TO]
SET UNIT [TO] ROWCOL | PIXEL | MM | CM | INCH |

(<expN>)
Syntax:

SET COORDINATE [UNIT] [TO]
SET COORDINATE [UNIT] [TO] PIXEL | MM | CM | INCH |

(<expN>)
Purpose:

Sets the unit for subsequently given screen (and printer with active PrintGui()
output) coordinates. Applicable in GUI mode only.

Arguments:
none same as ROWCOL
ROWCOL all subsequent coordinates are in common rows and columns.
PIXEL all subsequent coordinates are in pixels
MM all subsequent coordinates are millimeter
CM all subsequent coordinates are centimeter (ea 10 mm)
INCH all subsequent coordinates are in inch (ea 25.4 mm)
<expN> parenthesized numeric value, e.g. UNIT_ROWCOL, UNIT_MM,

UNIT_CM, UNIT_INCH, UNIT_PIXEL, UNIT_DOTS (specified
in the set.fh include file)

Description:
In GUI mode, all widgets (or controls in MS-Windows terminology) are pixel based.
To enable the common Xbase (FlagShip, Clipper, FoxPro etc) compatibility,
FlagShip internally recalculates the col/row coordinates to pixels according to the
used font. The mm, cm, and inch coordinates are re-calculated according to the
screen resolution and size, returned (or set) by oApplic:DesktopHeight() and
oApplic:DesktopWidth().

SET UNIT TO PIXEL is equivalent to SET PIXEL ON, SET UNIT TO ROWCOL is
equivalent to SET PIXEL OFF.

Classification:
programming, screen and printer coordinates

Compatibility:
Available in VFS7 and later only.

Translation:
SET (_SET_COORD_UNIT, expN)

Related:
SET PIXEL, SET()

CMD 438

SET UNIQUE
Syntax:

SET UNIQUE on|OFF|(<expL>)
Purpose:

Defines whether only unique keys will be included while indexing or not.

Arguments:
ON/OFF enables/disables the UNIQUE indexing. Alternatively, the parenthesized
<expL> may be used, whereby TRUE is the same as ON.

Description:
When UNIQUE is ON, and a new index is created with INDEX ON...TO, only unique
keys are included in the index file, ignoring all subsequent keys of the same values.
This is the same as creating an index with the INDEX...UNIQUE command.

Since the UNIQUE setting is stored in the index header, the index retains
uniqueness regardless of the UNIQUE settings at later REPLACE, REINDEX,
PACK or other database operations.

If a unique key is changed to a value of a key already in the index, the changed
record is lost from the index. If there is more than one instance of a key value in a
database file, changing the visible key value does not bring forward another record
with the same key until the index is rebuilt with REINDEX, PACK, or
INDEX...UNIQUE.

Example:
List all magazine names from a large article database:

SET UNIQUE ON
USE article
INDEX ON Magazine TO magname && UNIQUE
LIST magazine

SET UNIQUE OFF
REINDEX && remains UNIQUE
INDEX ON Magazine TO magnames && not UNIQUE

Classification:
database

Translation:
SET (_SET_UNIQUE, .T.|.F.)

Related:
FIND, INDEX, REINDEX, SEEK, SET INDEX, USE, SET(), oRdd:OrderIsUnique(),
oRdd:CreateIndex(), oRdd:CreateOrder()

CMD 439

SET WRAP
Syntax:

SET WRAP on|OFF|(<expL>)
Purpose:

Toggles wrapping of the light bar in MENU TO.

Arguments:
ON/OFF enables/disables the wrapping. Alternatively, the parenthesized <expL>
may be used, whereby TRUE is the same as ON.

Description:
Wrapping means that when the light bar is at the last option in MENU and the
down-arrow or right-arrow key is pressed, the lightbar moves to the first choice; if
the light-bar is at the first choice and up-arrow or left-arrow key is pressed, the light-
bar moves to the last choice of the MENU.

When WRAP is OFF, pressing up-arrow or left-arrow at the first menu item or down-
arrow or right-arrow at the last menu item does nothing.

Example:
@ 10,20 PROMPT "First item"
@ 11,20 PROMPT "Second item"
SET WRAP ON
MENU TO choice
SET WRAP OFF

Classification:
programming

Translation:
SET (_SET_WRAP, .T.|.F.)

Related:
@...PROMPT, MENU TO

CMD 440

SETSTANDARD
SETENHANCED
SETUNSELECTED
Syntax:

SETSTANDARD
Syntax:

SETENHANCED
Syntax:

SETUNSELECTED
Purpose:

Selects the required color attribute for screen output.

Description:
The color set with SET COLOR or SETCOLOR() can include three different color
pairs: the "standard", used in all screen output statements, the "enhanced" used in
@..GET, READ, MENU, ACHOICE and "unselected", used in the READ command.

In screen output commands (such as @...SAY, @...BOX, ?, QOUT() etc.), only the
"standard" color pair will be used. The SETENHANCED and SETUNSELECTED
commands switch the corresponding color pair to become the "standard" one,
SETSTANDARD resets the original state.

Example:
Simulates the READ output:

SET COLOR TO "W+/B,R+/BG,,,GR+/BG"
@ 1, 2 say "Name, First"
SETENHANCED
@ 1,20 say "Smith "
SETUNSELECTED
@ 1,40 say "Peter "
SETSTANDARD

Classification:
programming

Translation:
_SETSTANDARD() | _SETENHANCED() | _SETUNSELECTED()

Related:
SET COLOR, SETCOLOR(), READ, @..SAY, ?, ??

CMD 441

SET ZEROBYTEOUT
Syntax:

SET ZEROBYTEOUT [TO] <expC>
Purpose:

Set the output char for \0 byte in [q]qout() if fs_set("zero") is active.

Arguments:
<expC> is the character displayed instead of \0 (binary zero) by ? and ??
commands or Qout() and Qqout() functions. The default setting is chr(63) = "?"

Description:
The embedded zero byte in strings cannot be displayed at all. To be able to see this
character in the output, the \0 byte is replaced by this substitute during the console
output when FS_SET("zerobyte") is set .T.

SET ZEROBYTEOUT is considered also by SET OUTMODE which specify how to
display other unprintable characters < 32

Classification:
programming

Compatibility:
New in FS5

Related:
Set(_SET_ZEROBYTEOUT), FS_SET("zero"), ?, ??, Qout(), Qqout(), SET
CONSOLE

CMD 442

SKIP
Syntax:

SKIP <expN1> [ALIAS <alias>|(<expN2>)]
Purpose:

Moves the record pointer in the specified working area relative to the current pointer
position.

Arguments:
<expN1> specifies the number of records to move the record pointer from the
current position. A positive value moves the pointer forwards, while a negative value
moves the pointer backwards. SKIP 0 flushes the current working area buffers,
equivalent to DBCOMMIT() or similar to COMMIT.

SKIP without an argument moves the record pointer to the next record in the current
working area, having the same effect as SKIP 1.

Options:
ALIAS causes movement of the record pointer in the designated working area
specified by the <alias> name or by the numeric expression <expN2>.

Description:
SKIP moves the record pointer to a new position relative to the record position in
the current or specified working area. If an index file is in use, SKIP moves the
specified number of positions according to the index keys.

SKIP also obeys SET FILTER and SET DELETED when calculating the movement
of the record pointer.

Skipping beyond the end-of-file positions the record pointer at RECCOUNT() +1,
and EOF() returns .T. Skipping backwards beyond the beginning-of-file moves the
record pointer to the first record, and BOF() returns .T.

Skipping on an empty index (created by INDEX...FOR), both BOF() and EOF()
return TRUE and the record pointer is set beyond the end-of-file.

Multiuser:
Any record movement command, including SKIP, will make changes in the current
working area visible to other applications, if the current file is shared and changes
were made.

To force an update to become visible without changing the current record position,
or to update the current FIELD variables, use SKIP 0 or COMMIT (or DBCOMMIT(),
DBCOMMITALL() respectively). For further details, see chapter LNG.4.8.

CMD 443

Example:
USE employee
? RECNO(), name && 1 Miller
SKIP
? RECNO(), name && 2 Johnson
SKIP 1 + MAX(3,2)
? RECNO(), name && 5 Smith
SKIP -10
? RECNO(), BOF(), name && 1 .T. Miller
SELECT 2
SKIP 5 ALIAS employee
? employee->(RECNO()), employee->name && 5 Smith

Classification:
database

Translation:
DBSKIP (expN1) -or- alias->(DBSKIP (expN1))

Related:
BOF(), EOF(), RECNO(), COMMIT, GOTO, SEEK, FIND, LOCATE, CONTINUE,
DBCOMMIT(), DBCOMMITALL(), DBSKIP(), oRdd:Skip()

CMD 444

SORT ...ON...TO
Syntax:

SORT ON <field1> [/[A|D][C]]
[,<field2> [/[A|D][C]] ...]

TO <file>|(<expC>)
[<scope>]
[FOR <condition>] [WHILE <condition>]

Purpose:
Sorts records from the database in use to a new database file according to the
specified key fields.

Arguments:
ON <field1...fieldn> are the fields to be used as sorting criteria.

TO <file> is the name of the target database file. Unless otherwise specified, the
new file is assigned a .dbf extension. The given path or the SET DEFAULT is
obeyed.

Options:
/A/D/C or /AC or /DC specifies the order of the <field> sorting:

/A sorts records in ascending order from smallest to greatest value. This is the
default setting.

/D sorts records in descending order from greatest to smallest value.

/C in case of a character field, ignores the character case.

<scope> is the part of the current database file to sort. The default scope is ALL.

<condition> specified by the FOR and/or WHILE clause restricts the range of the
source database to be sorted and copied to the target file.

Description:
The SORT command is similar to INDEXing and COPYing one database to
another. Therefore, the result of the sorting also depends on the current UNIQUE,
FILTER and DELETED setting.

Character fields are sorted by the ASCII value of each character (obeying the
sorting order set by FS_SET("loadlang")), date fields chronologically, numeric fields
are sorted in numeric order, and logical fields with the FALSE value first. Memo
fields cannot be sorted, but are copied to the target.

After replacing the sort key or adding a new record, the database is usually not
sorted properly any more. Therefore it is more usual to use INDEX instead of
SORT, because indices are always updated automatically when assigned to the
database.

CMD 445

Multiuser:
In a multiuser environment, the source database file must be opened in
EXCLUSIVE mode.

Performance:
For large databases, there is often much faster to use indices instead of SORT,
since the SORT copies the whole database (or at least all records matching
FOR/WHILE/REST criteria). See example below.

Example:
Outputs a list of magazine articles, grouped by the theme, from the latest to the
oldest

USE article
SORT ON theme/AC, publ_date/D TO art_sort
USE art_sort
LIST theme, publ_date, author

Example:
The same example, using an index:

USE article
INDEX ON UPPER(theme) + DESCEND(DTOS(publ_date)) TO artsort
LIST theme, publ_date, author

Classification:
database

Compatibility:
The new database carries the same access rights as the source database does,
see LNG.3.3.4.

Translation:
__DBSORT ("file", {"fields"}, ;

{for}, {while}, next, rec, .rest.)

Related:
INDEX, ASORT(), SET EXCLUSIVE, USE..EXCLUSIVE, oRdd:Sort()

CMD 446

STATIC
Syntax:

STATIC <memvar> [:= <exp>] [, ...]
Purpose:

Declares and optionally initializes STATIC variables and arrays.

Arguments:
<memvar> is the name of a FlagShip variable or array, to be declared in the
(lexically scoped) STATIC class. The name may be of any length, but only the first
10 character are significant (see more LNG.2.6). Variable names in the FlagShip
language are not case sensitive.

If the <memvar> is followed by square brackets [], an array is created. The number
of elements for each array dimension can be specified as [dim1,dim2, ..,dimn] or
[dim1][dim2][dimn]. The maximum number of dimensions and of the elements per
dimension in FlagShip is 65535.

Options, Initializing:
<exp> is any valid FlagShip expression including a literal (constant) array to
initialize the variable. If the initializer (:= <exp>) is not given, the variable (or all
array elements) will be set to NIL.

The STATIC variable will be created on program start with a NIL value. The time of
initialization with the <exp> value depends on the variable scope, see below.

Scope, Visibility:
The lifetime of STATIC variables is the entire program execution time. The scope
and visibility is restricted to the containing procedure or .prg file, depending on
where the declaration statement is placed:

•UDF wide scope: if the STATIC declaration is given within a procedure or
function body, the variables are visible there only. The variable is initialized by the
<exp> value when first entering the module.

•File-wide scope: if the declaration is placed before the first FUNCTION or
PROCEDURE statement and the compiler switch -na is used, the variable is
visible for all UDFs or UDPs within the .prg file. The initialization with the <exp>
value is done when first entering any of the modules in the file.

The last value of a STATIC variable is available on subsequent entries into the
module (or .prg file). If a procedure or UDF is invoked recursively (calls itself), each
recursive activation may change the static variables.

The static variables can be passed by value or by reference to other UDFs or UDPs
called at the same level. In code blocks, only STATIC variables of the module
where the block is declared are visible; see LNG.2.3.3.

CMD 447

STATIC variable declarations hide all inherited PRIVATE, PARAMETERS, PUBLIC
or FIELD variables with the same name. If the variable name is already declared in
the same module by using another declarator (LOCAL, GLOBAL, MEMVAR,
FIELD), a compiler error is generated. For more information, refer to section
LNG.2.6.

Description:
STATIC is a declaration statement that declares one or more variables or arrays
static to the current procedure or user- defined function or the whole .prg file.

In FlagShip, the STATIC declarator may be placed anywhere in the function body;
the scope and visibility for the compiler starts from this declaration on.

The variable names are known at compile-time only. Therefore, a STATIC variable
can be evaluated by simple macros, but it cannot be used as composed macros or
within the macro string; see also LNG.2.10. Static variables cannot be SAVEd and
RESTOREd from .mem files, nor released by CLEAR or RELEASE.

To determine the type of a STATIC variable, only the standard function
VALTYPE(varname) can be used; since the TYPE("varname") tries to evaluate the
string using a macro and the variable is invisible during string evaluation.

Example:
*** File test1.prg ***
STATIC array1[20,10], array2[20][10] // file-wide scope
STATIC array3 := { 1, 2, 3 } // file-wide scope

PROCEDURE test1 // not automatic.
LOCAL var1 := "test"
STATIC var2 := "test1" // UDP wide scope
STATIC array4 := {DATE(), TIME()} // UDP wide scope
? array3[1], array4[2]
? test2 (var2), var2
RETURN

FUNCTION test2 (par)
STATIC var2 := VAL(TIME()) // UDF wide scope
? var2++, par
RETURN var2

Compile: $ FlagShip -na test1.prg [-m -c ...]

Classification:
programming

Compatibility:
The lexical scope is new in FS4, and is compatible to Clipper 5x. Clipper has a fixed
order of the declaration and cannot use expressions to initialize the STATIC
variable, but can use only a constant. Also the time of the initialization and the
maximal array size is different in FlagShip and C5.

Related:
STATIC..AS, LOCAL, GLOBAL, PRIVATE, PUBLIC, FIELDS, DO, FUNCTION,
TYPE(), VALTYPE(), CONSTANT

CMD 448

STATIC ... AS
Syntax 1:

STATIC <tvarList> [:= <expN>] AS <C-type>
Syntax 2:

STATIC_<C-type> <tvarList> [:= <expN>]
Purpose:

Declares and initializes C-TYPED STATIC variables.

Arguments:
<tvarList> is a comma separated list specifying the names of variables, to be
declared as TYPED STATIC. The name may be of any length, but only the first 10
character are significant (see more LNG.2.6). The variable names in the FlagShip
language are not case sensitive; when accessing them from #Cinline statements,
use lowercase.

AS <C-type> is the alternate syntax to STATIC_<type> where <type> is one of the
C-like type keywords listed in LOCAL...AS.

Example of valid syntax:
STATIC iVar := 4, ipos := 0, iCount AS INT
STATIC_LONG iOther := 5, myCount

Options, Initializing:
<expN> is any valid expression returning a numeric value within the <type> range
to initialize the variable at the declaration time. If the initializer (:= <expN>) is not
given, the TYPED STATIC variables is initialized with zero.

The TYPED STATIC variable are created and initialized in the same way as the
STATIC variables, except that the initial value is zero instead of NIL.

Scope, Visibility:
The scope, visibility and lifetime of TYPED STATIC variables is identical to the
usual, lexical STATIC variables. The only difference is the fixed storage type, which
allows faster runtime access and the direct usage in #Cinline statements. The
lifetime is the entire executable, the scope and visibility depends on the declaration
placement:

•UDF wide scope: if the STATIC...AS declaration is given within the procedure or
function body, the variables are visible in this entity only. The variable is initialized
with the <exp> value when first entering the module.

•File-wide scope: if the declaration is placed prior to the first FUNCTION or
PROCEDURE statement and the compiler switch -na is used, the variable is
visible for all UDFs or UDPs within the .prg file. The initialization with the <exp>
value is done when first entering any of the modules in the file.

CMD 449

The last value of the TYPED STATIC variable is available on the subsequent
entries into the module (or .prg file). If a procedure or UDF is invoked recursively
(calls itself), each recursive activation may change the static variables.

Typed variables can be passed by value to other UDFs or UDPs called at the same
level. In code blocks, only STATIC variables of the module where the block is
declared are visible; see LNG.2.3.3.

Like with all other lexical variables, the STATIC...AS declarations hide all inherited
dynamic variables. For more information, refer to the section LNG.2.6.

Description:
STATIC..AS is a declaration statement that declares TYPED lexical variable, very
similar to STATIC, but:

•The type and storage range is fixed during compile time and cannot be changed
at runtime. Since additional runtime type checking may be omitted, the usage
results in faster program execution.

•The variables occupy only 1, 4 or 8 bytes, compared to approx. 28 bytes for
standard FlagShip variables.

•The programmer must consider the storage range of the variable's <type>.
Otherwise, the resulting value will be truncated to the (last) available bytes.

•The typed variables can be accessed directly in #Cinline statements (giving the
name in lowercase).

•A TYPED variable cannot be used for any macro evaluation, but are usable in
code blocks. The function VALTYPE(varname) will return "N"; TYPE("varname")
cannot be used.

•The TYPED variables will always be passed to a UDF and UDP by value,
regardless of the calling convention used (@ prefix or the DO...WITH procedure
call).

•If typed variables are intermixed with non-typed variables within an operation or
command, they will be internally converted temporarily to non-typed ones.
Therefore, use only typed variables or constants within the e.g. FOR... declaration
to maintain the speed advantages.

The visibility is static to the current procedure, user-defined function or the whole
.prg file. In FlagShip, the STATIC..AS declarator may be placed anywhere in the
function body; the scope and visibility for the compiler start from this declaration.

CMD 450

Example:
See also examples in chapter LOCAL...AS and GLOBAL...AS

*** File test.prg
LOCAL angle
LOCAL radian, sine, cosine AS DOUBLE
STATIC_DOUBLE pi := 3.1415926535, deci := 2
DO WHILE .T.

INPUT "Please enter angle 0..360 or <┘ only:" TO angle
IF angle == NIL

RETURN
ENDIF
radian := 2.0 * pi * angle / 360.0

#Cinline
sine = sin (radian); /* std. math library */
cosine = cos (radian);

#endCinline
SET FIXED ON
SET DECIMALS TO (deci++)
? "sin(" + ltrim(str(angle)) + ")=", sine , ;
"cos(" + ltrim(str(angle)) + ")=", cosine

angle := NIL // for the next entry
ENDDO

Classification:
programming

Compatibility:
Typed variables are available in FlagShip and VO only. To remain compatible to
Clipper 5, use syntax 2 and #defines such as:

#ifndef FlagShip
define STATIC_BYTE STATIC
define STATIC_LONG STATIC
define STATIC_DOUBLE STATIC
#endif

Related:
STATIC, LOCAL...AS, LOCAL, GLOBAL, GLOBAL..AS, PRIVATE, PUBLIC,
FIELDS, DO, FUNCTION, TYPE(), VALTYPE(), #Cinline, #define, #ifdef

CMD 451

STORE
Syntax 1:

STORE <exp> TO <memvarList>
Syntax 2:

<memvar1> := [<memvar2> := ...] <exp>
Purpose:

Initializes and/or assigns a value to one or more memory variables.

Arguments:
<exp> is a value of any data type (constants, expression, memory variables,
database fields) that is to be assigned to the target memory variable(s).

<memvarList> are the memory variables of any class to initialize and/or assign
values. Their names can have any length, only the first 10 characters are significant
(see more LNG.2.6).

Description:
STORE is identical to the simple assignment operators = and :=, and refers to the
syntax 1 and 2. STORE assigns the same value to a set of memory variables. If the
variable name is unknown or invisible, a new autoPRIVATE is created.

When assigning a <memvar>, the same named memory variable takes precedence
over a field variable. To assign a value to a database field (same as REPLACE), the
variable must be declared as FIELD or the alias-> or the FIELD-> pseudo alias
must precede the variable name.

On the other hand, when assigning <exp> to a variable, the field variable <exp>
takes precedence over a dynamic memory variable with the same name, unless the
declarator MEMVAR or the aliasing M-> or MEMVAR-> is used; see LNG.2.6 to
LNG.2.9 and LNG.4.4.

To assign a value to an entire array, use the AFILL() function or the {...} literal array,
see LNG.2.6.4 and LNG.2.7.

Example:
Create PRIVATE variables var1..var3 and a..c:

STORE "String" TO var1, var2, var3
a := b := c := 22
? var1, var3, a, c // String String 22 22

Classification:
programming

Compatibility:
The := assignment is available in FlagShip and C5 only. FlagShip allows an
unlimited number of memory variables to exist at one time. The only physical
limitation is the available RAM memory plus the swap space of the operating
system.

CMD 452

Translation:
<var1> := [<var2 := ...] <exp>

Related:
REPLACE, LOCAL, STATIC, GLOBAL, CLEAR MEMORY, PRIVATE, PUBLIC,
RELEASE, SAVE, RESTORE

CMD 453

SUM
Syntax:

SUM [<scope>] <expList>
TO <memvarList>

[FOR <condition>] [WHILE <condition>]
Purpose:

Sums a list of numeric expressions to specified memory variables for a range of
records in the current database file.

Arguments:
<expList> is a list of numeric expressions (typically database fields) to SUM for
each processed record.

<memvarList> specifies the set of variables in which the results of summing are to
be stored. If a variable does not exist or is invisible, a new autoPRIVATE is created.
The <memvarList> must have the same number of elements as the <expList>.

Options:
<scope> is the part of the current database to SUM. The default scope is ALL.

<condition> specified by the FOR and/or WHILE clause restricts the range of the
database records to be calculated, see general command description.

Description:
SUM totals a series of numeric expressions for a range of records in the current
working area and assigns the results to a series of variables.

Example:
USE employee
present = 29.95
SUM no_child * present TO total_spend FOR EMPTY(leavedate)
? "We'll spend ", total_spend, ;
" on Christmas presents for"

? "the employees' children"

Classification:
database

Translation:
var1 [:= var2 ...] := 0
DBEVAL ({|| var1 += exp1 [, var2 += exp2...]}, ;

{for}, {while}, next, rec, .rest.)

Related:
AVERAGE, TOTAL, DBEVAL(), oRdd:Sum()

CMD 454

TEXT ... ENDTEXT
Syntax:

TEXT [TO PRINT]|[TO FILE <file> [ADDITIVE]]
<text>...

ENDTEXT
Purpose:

Displays a block of text on the screen optionally echoing output to the printer and/or
a text file.

Arguments:
<text> is the block of literal characters to be displayed on the screen, exactly as
formatted. The <text> may contain any number of lines, separated by the NEWLINE
(LF or CR/LF) character.

Options:
TO PRINT: echoes the display to the printer.

TO FILE: echoes the display to the specified <file>. Extension .txt is automatically
added if no other is specified. If the clause ADDITIVE is specified, the text is
appended to, instead of overwriting the <file>.

Description:
TEXT...ENDTEXT is a console command construct that displays a block of text
lines to the screen, optionally echoing output to the printer and/or a ASCII file. To
suppress the screen output, use SET CONSOLE OFF.

The text lines are displayed exactly as formatted in the .prg file, including any
indentation. Macro variables encountered within <text> block are expanded in the
same way as the macro text substitution).

Example:
USE address
DO WHILE .not. EOF()

TEXT TO PRINTER
&first &last
&address

Dear &title &lastname :
...

Sincerely,
ENDTEXT
EJECT ; SKIP

ENDDO

Classification:
programming, sequential output

Compatibility:
The ADDITIVE clause is available in FlagShip only.

Related:
?, ??, @...SAY, MEMOEDIT(), MLCOUNT(), MEMOLINE(), LNG.2.10

CMD 455

TOTAL
Syntax:

TOTAL ON <keyExp> [<scope>]
[FIELDS <fieldList>]

TO <file>|(<expC>)
[FOR <condition>] [WHILE <condition>]

Purpose:
Summarizes records by key value by summing specified fields and copying
summary records to a new database file.

Arguments:
ON <keyExp> defines a group of records that produce, one after another, a new
record in the target database. To make the summarizing operation accurate, the
source database should be indexed or sorted on the same <keyExp>.

TO <file> is the target file where the summary records are to be copied. The default
extension, if not otherwise specified, is .dbf.

Options:
FIELDS <fieldList> specifies the list of numeric fields to total. If the clause is not
specified, the fields are not totaled; while the target record contains the values of
the first record matching the <keyExp>.

<scope> is the part of the current database file to total. The default scope is ALL.

<condition> specified by the FOR and/or WHILE clause restricts the range of the
database records to be totaled, see general command description.

Description:
The TOTAL command sequentially processes the current database summarizing
records by the specified key value and copying them to a new database file.

When the TOTAL starts, it copies first the structure of the source database into the
target; but without memo fields. It then sequentially scans the current database
within the <scope>.

As each record with a unique <keyExp> is encountered, that record is copied to the
target database. Otherwise, if the <fieldList> is specified, the values of source fields
from the <fieldList> are added to the target fields.

Remember that numeric fields in the source database file must be large enough to
hold the largest possible total for that field.

TOTAL considers the SET DELETED and SET FILTER status. If DELETED is OFF,
the deleted records are copied to the target, but the delete flag will be not set.

CMD 456

Example:
LOCAL total := 0
USE employee
INDEX ON UPPER(lastname) TO emplname
TOTAL ON UPPER(lastname) FIELDS salary TO summary ;

FOR YEAR(salarydate) = YEAR(DATE())

USE summary
SET CENTURY ON
? "Salaries for the year", YEAR(DATE()), "to", DATE()
WHILE .not. EOF()

? lastname, salary
total += salary
SKIP

ENDDO
? "Total:", total

Classification:
database

Translation:
__DBTOTAL ("file", {keyexp}, { "field1"... }, ;

{for}, {while}, next, rec, .rest.)

Related:
AVERAGE, SUM, INDEX, SORT, oRdd:Total()

CMD 457

TYPE
Syntax:

TYPE <file1>|(<expC>)
[TO PRINT]
[TO FILE <file2>|(<expC>) [ADDITIVE]]

Purpose:
Displays the contents of a text file to the screen, printer and/or to another file.

Arguments:
<file1> is the name of the ASCII file, including extension, that is to be displayed.

Options:
TO PRINT sends the display to the printer file/device. The clause is equivalent to
SET PRINTER ON.

TO FILE <file2> sends the display to the <file> specified in this clause. If no
extension is specified, .txt is added. When using the ADDITIVE clause, the text is
added to, instead of overwriting the file.

Description:
TYPE is a console command that displays the contents of a text file to the screen,
optionally echoing the display to the printer and/or another text file. To suppress the
screen output, use SET CONSOLE OFF.

Ctrl-S is used to pause output. ESC has no effect on interrupting the listing. For a
similar, but paged output, RUN "cat file1 | pg" or MEMOEDIT() can be used.

Example:
TYPE test.prg

@ MAXROW(),0 SAY "Scroll by PgUp/PgDn, ESC to continue"
MEMOEDIT(MEMOREAD("test.prg"),1,0,MAXROW()-1,MAXVOL(), .F.)
RUN MESSAGE "press any key..." cat test.prg | pg
INKEY (0)
REFRESH

Classification:
sequential output

Compatibility:
The ADDITIVE clause is available in FlagShip only.

Translation:
__TYPEFILE ("file1", .print., ["file2"],
[.add.])

Related:
COPY FILE, SET DEFAULT, SET PATH, SET PRINTER, FS_SET()

CMD 458

UNLOCK
Syntax:

UNLOCK [<expN> | ALL]
Purpose:

Releases file or record locks, which were set by the current program.

Options:
<expN> is the physical record number, that is to be unlocked. When SET
MULTILOCKS is ON and this argument is given (e.g. UNLOCK RECNO() or
UNLOCK 5), only the specified record is unlocked, if such was previously
RLOCKed. Otherwise, all record/file locks are removed.

ALL: if this clause is specified, all locks set by the current program in all used
working areas are released. If the ALL clause is not given, only locks of the
currently selected database are released.

Description:
UNLOCK frees all records and file locks of the current or of all databases used in
the multiuser/multitasking mode.

Multiuser:
In multiuser mode (or when using a concurrent databases accesses in the same
application), SET EXCLUSIVE OFF or USE...SHARED is required to open the
database in the current working area.

Before any write database access (like REPLACE, DELETE, RECALL), the record
or the database must be locked using RLOCK() or FLOCK(). Otherwise, if the lock
is not set by the programmer, FlagShip invokes the AUTOxLOCK() function, if this
is not disabled by SET AUTOLOCK OFF. The only exception is APPEND BLANK
which locks the new record automatically.

Note: global changes of the physical record storage (PACK and ZAP) or rebuilding
the index files (REINDEX and usually INDEX ON) requires an EXCLUSIVE open
mode; for more see LNG.4.8.

When the write access is finished, UNLOCK will release the previously set record
and file locks, so that another user may lock the file or record. If the clause ALL is
given, locks of all active working areas are released.

UNLOCK does not automatically release a record lock along a RELATION chain
unless UNLOCK ALL or alias-> (DBUNLOCK()) is used.

If the AUTOxLOCK() function is invoked by FlagShip, it releases the lock
automatically after the write access, by using the AUTOUNLOCK() function.

Using another RLOCK(), FLOCK() or APPEND BLANK will also release the
previous locking of the current database. Closing the database and ending or
aborting a program automatically releases all locks set by this executable.

CMD 459

The UNLOCK command in FlagShip implies updating the current working area
buffers to UNIX, which makes changes visible to other applications. To flush the
UNIX or MS-Windows buffers physically to the file, use COMMIT, DBCOMMIT() or
DBCOMMITALL(), see LNG.4.8. When SET AUTOCOMMIT is ON (default is OFF),
every UNLOCK will also commit (flush) the current work area physically to hard
disk, same as COMMIT.

Example:
LOCAL new_name := "Smith", new_first := "Peter", count
SET EXCLUSIVE OFF
USE address NEW
WHILE NETERR(); USE ADDRESS; END
SET INDEX to adr1, adr2
FOR count = 1 TO 10

IF RLOCK()
REPLACE name WITH new_name
REPLACE first WITH new_first
UNLOCK
EXIT

ELSEIF count < 10
? "waiting to lock this record"
INKEY(1)

ELSE
? "update failed"

ENDIF
NEXT

Classification:
database

Compatibility:
This command and its usage is fully compatible to other xBASE dialects. The
internal locking mechanism conform to the UNIX standard; the locking mechanism
of other xBASE derivates are mostly not compatible.

In FlagShip, the multiuser mode also applies to the same database concurrently
open in different working areas; cf. the USE command.

The AutoLock and multiple record locking feature is new in FS4 and not available in
Clipper.

Translation:
DBUNLOCK([expN]) | DBUNLOCKALL()

Related:
SET EXCLUSIVE, SET AUTOLOCK, SET MULTILOCKS, USE, FLOCK(),
RLOCK(), APPEND BLANK, AUTORLOCK(), AUTOFLOCK(), oRdd:Unlock(),
oRdd:RlockList()

CMD 460

UPDATE
Syntax:

UPDATE ON <keyExp>
FROM <alias>|(<expC>)
REPLACE <field1> WITH <exp1>

[, <field2> WITH <exp2>...]
[RANDOM] [APPEND <expB>]

Purpose:
Updates the current database file from another database file based on a key
expression.

Arguments:
ON <keyExp> is an expression defining the FROM records to be read.

FROM <alias> specifies the source working area which updates the current (target)
database.

<fieldn> is the target field to be updated.

<expn> is the value or expression which updates the <fieldn>. Any field contained
in the FROM working area must be referenced with the <alias>-> selector.

Options:
RANDOM clause is used, when the FROM database is not indexed or sorted on
<keyExp>, but only the current database has such an index active. If the RANDOM
clause is not used, both the target and source must be indexed or sorted by the
<keyExp>.

APPEND <expB> clause specifies, that, in case the <keyExp> is not found in the
current database, a new record should be added, the code block evaluated, and the
fields replaced by the WITH clause(s). If the current database has not active index,
no action is performed, since unpredictable results may occur.

Description:
UPDATE replaces fields in the current working area with values from another
working area based on the specified key expression.

The UPDATE command supports 1:n and n:1 logical relations between the current
and the FROM area. When in the current (target) working area there is more than
one instance of the <keyExp> value, only the first record with the key value is
updated. However, the FROM work area can have duplicate key values, which
multiply replace the target.

UPDATE works in two different ways, depending on the RANDOM clause:

•If RANDOM is specified, the current database must have an active index
matching <keyExp>. The FROM database is skipped, while the matching record
is SEEKed in the current database and updated only if found; or a new record is

CMD 461

added in the current database, if the APPEND clause is given.

•If the RANDOM clause is not specified, the current database is SKIPped
according to the FROM sequence. The target record is updated only if the
<keyExp> values exactly match in both the target and source record; or a new
record is added in the current database, if the APPEND clause is given.

Multiuser:
In multiuser mode, the current database file must be locked with FLOCK() or used
EXCLUSIVEly; otherwise AUTORLOCK is used, if possible. The FROM database
file may be opened in any mode.

Example:
SELECT 1
USE custom INDEX custom EXCLUSIVE
? INDEXKEY() //UPPER(name)
USE invoice INDEX inv_cust ALIAS inv NEW
? INDEXKEY() //UPPER(name)
SELECT 1
UPDATE ON UPPER(name) FROM inv ;

REPLACE debit WITH debit + inv->amount
USE orders NEW
SELECT 1
FIELD name, id
UPDATE ON UPPER(name) FROM orders ;

REPLACE debit WITH debit + orders->amount ;
APPEND {|| name := orders->name, id := orders->idnum }

Classification:
database

Compatibility:
The APPEND clause is available in FlagShip only.

Translation:
__DBUPDATE ("alias", {keyExp}, .random., ;
{|| _FIELD->fld1 := exp1 [, _FIELD->fld2 := exp2...] }, ;
[appendBlock])

Related:
APPEND FROM, REPLACE, JOIN, INDEX, SORT, SET AUTOLOCK.
oRdd:Update()

CMD 462

USE
Syntax:

USE <file>|(<expC>)
[ALIAS <alias>|(<expC>)]
[INDEX <fileList>|(<expC>)]
[EXCLUSIVE | SHARED]
[READONLY]
[NEW]
[NFS]
[VIA <driver>]

Syntax 2:
USE

Purpose:
Opens the specified database file, its associated memo file when memo fields exist,
and, optionally, associated index files in the selected working area.

Arguments:
<file> is the name of the database file to open in the current (or a NEW) working
area. If an extension is not specified, the default .dbf extension is assumed. The
<file> can optionally include drive and/or path. If only file name is given, the
database file name is searched for:

•in the current directory (see also note below)

•in the path specified by SET DEFAULT statement (if any)

•in all paths specified by SET PATH command (if any)

If the file could not be opened (file not found or access denied), no error message
occurs when SET OPENERROR is OFF. You therefore should test the success or
failure of USE command by subsequent USED() which returns .T., or by NETERR()
which returns .F. on success.

If <file> is not specified (syntax 2), the current working area is closed, equivalent to
the CLOSE command.

Options:
ALIAS <alias> is the name to be associated with the working area. If not specified,
the main part of the <file> name is assigned to <alias>. If the given alias is invalid,
USE will try to generate a valid name and will display corresponding warning.

INDEX <fileList> specifies up to 15 index files to be opened in the current working
area. Each index file may be specified either as a literal filename or as a character
expression enclosed in parentheses. If the <expC> returns NIL or an empty string, it
is ignored. The first index file in the list becomes the controlling index. It is not
recommended to use this clause in multiuser mode. See also SET INDEX, INDEX
ON and LNG.4.5.

CMD 463

EXCLUSIVE opens the database file for non-shared use in a network or
multitasking environment. Other users cannot access the database until it is closed.
It is a synonym for USE with SET EXCLUSIVE ON. This clause overrides the SET
EXCLUSIVE state.

SHARED opens the database file for shared use in a multiuser, multitasking,
network or concurrent mode. It is a synonym for USE with SET EXCLUSIVE OFF.
This clause overrides the current SET EXCLUSIVE state.

NEW selects an unused working area making it the current one, and opens the
database <file> there. The clause is equivalent to SELECT 0 prior to the USE...
command. If this clause is not given, the database is opened in the currently
SELECTed working area.

NFS clause enables the global switch SET NFS ON, which then remain active for
all subsequent database actions and USEs until SET NFS is set OFF. This clause
can be used for databases and indices located on NFS mounted file system, when
the NFS server does not flush all buffers correctly - resulting sometimes in
corrupted index reported by IndexCheck(). See further details in the SET NFS
description.

READONLY opens the database for read-only purposes. The UNIX access rights -
r- are sufficient for the database and memo <file> (but not for index files, which
must be always -rw-). An attempt to REPLACE or APPEND a record brings a run-
time error.

VIA <driver> defines the replaceable database driver (RDD) to use for the current
working area. The default is the "DbfIdx" RDD. You may need to add the statement
"EXTERN <driver>" (e.g. EXTERN myRdd) to force the linker to add your RDD
driver into the executable, if the object file containing "CLASS myRdd" is not linked
explicitly. To set another driver globally, use RddSetDefault("myRdd")

Description:
USE opens an existing database .dbf file, its associated memo .dbt (or .dbv) file,
and optionally associated index .idx files in the current or the next available working
area. Before USE opens a database file and its associated files, it closes any active
files already open in the working area.

Note: when only <file> name is given (without path), the database is tried to open in
the current directory (and then in SET DEFAULT, SET PATH directories when
specified). This means "access in current directory" work fine when you start the
executable from the working directory containing your data. However when you (or
the end-user) invoke the application from other drive or directory or by searching
the PATH environment variable, or via link on desktop, or via file manager (like
Windows Explorer, NC, Konqueror etc.), the used "current directory" is most
probably not what you really meant :-) In such a case, either use fully qualified file
names, or (better) specify the current directory by CURDIR("/my/data") or use SET
DEFAULT TO "D:\my\data" or SET DEFAULT TO (getenv("MYDATA")) which reads
the setting from user's environment variable etc. In doubt, you may check/display

CMD 464

the current directory by CURDIR() and the availability of files by IF
!FILE("mydata.dbf") ; SET DEFAULT ... see example below.

After opening the database, the record pointer refers to the first physical record in
the file which defaults to record 1 if no index file is specified. With active index, the
record pointer is set to the first logical record. When SET DELETED is ON or SET
FILTER is active, you will need to invoke GO TOP to set the pointer to the first
visible record. Note the GO TOP is not done automatically for performance
purposes and to allow you to check the indices via IndexCheck() before moving the
record pointer.

When opening an empty database or an empty index (created by INDEX...FOR),
both BOF() and EOF() return TRUE and the record pointer is set beyond the end-of-
file.

USE without an argument closes the active database file and the associated memo
and index files, if any, equivalent to the CLOSE command. To close the database
files in all work areas, use CLOSE ALL or CLOSE DATABASES.

When the open fail, NetErr() will report .T. and Used() .F. When SET OPENERROR
is ON (the default), an open failure will raise run-time error. If you wish to avoid
RTE, use SET OPENERROR OFF and check the NetErr() or Used() status.

Additional warnings are available by using FS_SET("devel", .T.)

In FlagShip, up to 65534 working areas may be opened simultaneously, each with
up to 65534 indices and relations.

Each working area has the following attributes:

Attribute/Action Retrieving Command/Function
Open/close work area USE, CLOSE DATA
Change work area SELECT WAno, SELECT alias
Indices USE..INDEX, SET INDEX
Relations SET/CLOSE RELATION
Filtering SET FILTER, SET DELETED
Searching SEEK, LOCATE, FIND
Moving GOTO, SKIP
Alias name ALIAS()
Database file DBF(), INDEXDBF()
Working area no. SELECT()
Index file ext, names INDEXEXT(), INDEXNAMES()
Index key, contrl.no. INDEXKEY(), INDEXORD()
Index integrity check INDEXCHECK()
Record number RECNO()
Record count LASTREC(), RECCOUNT()
Field count FCOUNT()
Field name FIELD()
Field description AFIELDS()
Beginning-of-file flag BOF()
End-of-file flag EOF()

CMD 465

Filter condition DBFILTER(), DELETED()
Locate/Seek result FOUND()
Relation DBRELATION(), DBRSELECT()
Header size HEADER()
Network cmd result NETERR()
Locking RLOCK(), FLOCK(), UNLOCK, SET AUTOLOCK, AUTOxLOCK(),

SET MULTILOCKS

Multiuser:
If a multiuser, multitasking and/or network access is required, database files can be
opened EXCLUSIVEly or SHARED. The exclusive status stops the database from
being used by other users (or in other working areas concurrently) until the file is
closed; the shared mode allows other users to use the database and its associated
files for concurrent access.

The open status of the database is determined by the SET EXCLUSIVE command,
or the EXCLUSIVE or SHARED clause respectively:

•If SET EXCLUSIVE is ON (the default), the database is open exclusively; the
given SHARED clause will override the current global setting.

•If SET EXCLUSIVE is OFF, the database is open in sharable mode. Specifying
the EXCLUSIVE clause on the USE command will override the default setting.

Opening a database EXCLUSIVEly will succeed only if it is not already in use by
some other user. Attempting to open a database SHARED will succeed only if the
database is not opened exclusively by another user (or concurrently in another
working area).

Instead of USE..INDEX.. it is better practice to open the database, check success
by USED(), then assign index/indices by SET INDEX TO.. and check success by
NETERR() which should be .F.

In the SHARED mode, any write attempt to the database or memo file (like
REPLACE, DELETE, RECALL, or alias->name := ...) requires that the current
record or the whole file is locked beforehand using RLOCK() or FLOCK(). This will
ensure data integrity denying other users a write access to the same record or
database. When the write access is finished, use UNLOCK or UNLOCK ALL to
release the previously set record and file locks, so that another user may lock the
file or record. If the lock is not set by the programmer and SET AUTOLOCK is ON,
FlagShip locks the record or file automatically by using the AUTOxLOCK() function.

Global changes to the physical record storage order (PACK and ZAP) or rebuilding
the index files (INDEX, REINDEX) requires an EXCLUSIVE open mode.

Concurrent Databases:
For special purposes, FlagShip allows the same database to be USEd
simultaneously in different working areas, when the given ALIAS names are
different. Note: FlagShip distinguishes between database equivalents on the same
inode number, not only on the DBF() name itself. When performing operations on

CMD 466

the SAME physical database (used concurrently in different working areas), see
also chapter LNG.4.8.7.

The handling of concurrent databases is the same, as the usage of shared
databases in multiuser mode. Therefore, using concurrent databases in the same
application requires their SHARED use, NETERROR() checking and RLOCK() or
FLOCK() on write access.

Large Files:
FlagShip supports also large files > 2Gigabytes. If you need to use this feature,
enable SET LARGEFILE ON at the begin of your application, latest before open the
database. See additional details in CMD.SET LARGEFILE.

Tuning:
As noted above, FlagShip do not raise run-time error on failure, so check by
USED() or NETERR() reports failure or success. You however may force RTE 501
on failure by assigning

_aGlobSetting[GSET_L_DBUSEAREA_ERR] := .T. // default = .F.
which then behaves FoxPro conform.

When the database is closed, FlagShip flushes the database and index files to hard
disk. You may optimize this by setting

_aGlobSetting[GSET_N_CLOSEOPTIMIZE] := 1 //default
where 0 = flush always except opened read only, 1 = only if changed, and 3 = don't
flush.

Example:
Open 3 databases (and their indices) in single user mode:

SELECT 22
USE address // address in WA 22
SELECT 1 // customer in WA 1
USE "\data\customer" ALIAS cust INDEX customer
if neterr()

alert("cannot open customer database or index")
endif
USE invoices NEW // invoices in next WA
IF .not. FILE("inv_1" + INDEXEXT()) // inv_1.idx

INDEX ON customno TO inv_1
INDEX ON invdate TO inv_2

ENDIF
SET INDEX TO inv_1, inv_2

Example:
Open a database and its indices in multiuser mode:

SET EXCLUSIVE OFF // multiuser
USE address
count := 0
while !used() .and. file("address.dbf") // error ?

sleepms(100) // wait 0.1 sec
USE address // yes, try again
if ++count > 20 // but max.

exit // for 2 seconds
endif

CMD 467

ENDDO
if !used()

alert("cannot open address.dbf")
quit

endif

SET INDEX TO adr_name, adr_zip
if NETERR()

alert("could not open index ...")
quit

endif

Example:
Open a database and indices SHARED with RTE on failure

LOCAL dbfname := "address", idx1 := "adr_name", idx2 := "adr_zip"
_aGlobSetting[GSET_L_DBUSEAREA_ERR] := .T. // force RTE on failure
_aGlobSetting[GSET_L_DBSETINDEX_ERR] := .T. // force RTE on failure

USE (dbfname) SHARED NEW INDEX (idx1), (idx2)

Example:
Check and set the "working directory" from the current location, or from user
environment variable MYDATA, or from location of the executable:

#include "fspreset.fh" // optional, see LNG.9
LOCAL dbfname := "address"
LOCAL cWorkDir := "", lFound := .F.
// check current directory
if file(dbfname + ".dbf")

lFound := .T. // everything is ok
endif
// check directory specified in environment variable
cWorkDir := getenv("MYDATA")
if !lFound .and. !empty(cWorkDir)

if file(cWorkDir + PATH_SLASH + dbfname + ".dbf")
SET DEFAULT TO (cWorkDir) // or: CURDIR(cWorkDir)
lFound := .T.

endif
endif
// check the directory of executable (i.e. of current .exe file)
cWorkDir := left(execname(.T.), rat(execname(.T.),PATH_SLASH) -1)
if !lFound .and. !empty(cWorkDir)

if file(cWorkDir + PATH_SLASH + dbfname + ".dbf")
SET DEFAULT TO (cWorkDir) // or: CURDIR(cWorkDir)
lFound := .T.

endif
endif
if !lFound

alert("Sorry, cannot locate the databases, set MYDATA envir.")
quit

endif
// now you can handle it w/o worrying about current directory
USE (dbfname) ...

CMD 468

Example:
Example for multitasking, support of the DOS file and path names also in
Unix/Linux, the usage of a general open routine, including checking for success:

SET EXCLUSIVE OFF // multiuser mode
#ifdef FlagShip

FS_SET ("lower", .T.) // auto file transl.
FS_SET ("pathlower", .T.) // auto path transl.
IF GETENV("C_FSDRIVE") == "" // C: drive substitution

? "set the environment var C_FSDRIVE first !"
QUIT

END
#endif
SET DEFAULT TO C:\Data\Adr // DOS path support is avail.
SELECT 23
IF .not. FILE("adr_name" + INDEXEXT()) .OR. ;

.not. FILE("adr_idno" + INDEXEXT())
my_use ("Address",, .T., .F.) // USE..EXCLUSIVE
INDEX ON UPPER(name) + STR(zip,1,5) TO adr_name
INDEX ON custno TO adr_idno

END
my_use ("address", "adr" .F., .F.) // USE..SHARED
SET INDEX TO adr_name, adr_idno
SELECT adr
SEEK "SMITH" // seek name
SEEK "SMITH 54321" // seek name + zip
SET ORDER TO 2
SEEK 12345 // seek id number

FUNCTION my_use (dbf, alias, excl, new)

* [dbf] (C) dbf name
* [alias] (C) alias name or NIL for alias=dbf
* [excl] (L) .T. use exclusive, NIL for SET EXCLUSIVE flag
* [new] (L) use in a new working area

LOCAL timebeg := SECONDS(), ii := 0
LOCAL shared := IF (excl != NIL, !excl, NIL)
new := IF (new == NIL, .F., new)
alias := IF (alias == NIL .or. EMPTY(alias), NIL, alias)
#define TIMELIMIT 10
IF EMPTY(dbf)

USE
ELSE

DBUSEAREA (new, , dbf, alias, shared)
WHILE NETERR() .AND. (SECONDS() - timebeg) <= TIMELIMIT

@ 0,0 SAY str(++ii) + ". try to open database " + dbf
INKEY(1) // error, try again
DBUSEAREA (new, , dbf, alias, shared)
@ 0,0

ENDDO
ENDIF
RETURN USED()

CMD 469

Classification:
database

Compatibility:
The clause NEW, SHARED, EXCLUSIVE, READONLY and VIA are available in
FS4 and C5 only. FlagShip is able to handle 65534 working areas simultaneously,
each with additional memo files and up to 15 indices. Clipper'87 supports 255,
Clipper 5.x and VO up to 250 working areas only. Refer to the section SYS for the
UNIX kernel settings for open file limits.

Large file support (over 2 Gigabytes) depends on the used operating system and is
available in VFS 6.1 and newer. Once the file exceeds the 2 GB limit, it is
incompatible to DOS!

See also chapter LNG.9.5 describing how to maintain full compatibility to the DOS
written programs running on UNIX. All databases and memo files must be
transferred from or to DOS using a binary protocol. If the text mode is used the
database is corrupted !

Translation:
DBUSEAREA(.new.,"rdd","dbfName","alias", .shared., .ronly.)
[DBSETINDEX (indexname1) ...]

Related:
CLOSE, SELECT, SET AUTOLOCK, SET MULTILOCKS, SET INDEX, NETERR(),
SELECT(), RLOCK(), FLOCK(), UNLOCK, USED(), DBF(), FS_SET(),
DBUSEAREA(), RddSetDefault(), SET LARGEFILE, OBJ.6, RDD.3

CMD 470

WAIT
Syntax:

WAIT [POPUP | WINDOW]
[TIMEOUT <expN2>]
[COLOR <expC3>]
[GUICOLOR <expC4>]
[GUISHAPE <expN5>] [NOSHAPE]
[ECHO|NOECHO]
[<expC1>]

WAIT [<expC1>]
TO <memvarC>

[POPUP | WINDOW]
[TIMEOUT <expN2>]
[COLOR <expC3>]
[GUICOLOR <expC4>]
[GUISHAPE <expN5>] [NOSHAPE]
[ECHO|NOECHO]

Purpose:
Displays a prompt and waits for a key to be pressed.

Options:
<expC1> is the user prompt which is displayed if specified. It can be an expression
of any data type. If <expC1> is not specified, the default prompt "Press any key to
continue..." will be displayed. Note: this default string is pre-defined in the global
variable _aGlobSetting[GSET_C_WAITPROMPT] (see also the ininit.prg source)
and may hence be simply re-defined to your preferred prompt text. If a null string is
specified, only NEWLINE is printed. When SET CONSOLE is OFF, neither newline
nor the prompt is displayed.

<memvarC> is the memory variable to contain the character entered. If the variable
does not exist or is not visible, a new autoPRIVATE one is created.

POPUP displays the message in Popup window (MessageBox) instead of the next
console row. The equivalent WINDOW clause is supported for FoxPro compatibility.

TIMEOUT <expN2> waits max. for <expN2> seconds. If not given, wait until user
key press.

COLOR <expC3> specifies the color for displaying the <expC1> data. Only the first
color pair (standard) is significant. If this clause is not given, the current color setting
is used. In GUI mode, first the GUICOLOR clause is checked. If not set, the
COLOR <expC3> or the current color is used, but only when SET GUICOLOR is
ON. Specifying COLOR and GUICOLOR allows you to handle different colors for
GUI and Terminal mode, without switching the SET COLOR and SET GUICOLOR
setting.

CMD 471

GUICOLOR <expC4> specifies the color for displaying the <expC1> data
considered in GUI mode. Only the first color pair (standard) is significant. If
GUICOLOR is set, it is used regardless the current SET GUICOLOR on/off setting.
If omitted and SET GUICOLOR is ON, either the COLOR <expC3> is used if given,
or the current SetColor() is used. The GUICOLOR clause apply for GUI mode only,
and is ignored otherwise.

GUISHAPE <expN5> specifies the text cursor shape displayed at the end of the
prompt message <expC1> and signaling an user input. Apply for GUI mode only,
ignored otherwise. The default shape is CURSOR_HAND, but may be re-defined by
any other value assigned to global variable _aGlobSetting[GSET_G_N_
WAITSHAPE]. You may override it temporarily by setting your own shape using the
CURSOR_* constant or it corresponding value:

mouse.fh constant value Description
0 same as CURSOR_INVISIBLE

CURSOR_ARROW -1 standard arrow cursor
CURSOR_UPARROW -12 upwards arrow
CURSOR_CROSS -8 crosshair (+)
CURSOR_WAIT -9 hourglass
CURSOR_IBEAM -11 i-beam (I)
CURSOR_SIZE_VER -2 vertical resize
CURSOR_SIZE_HOR -3 horizontal resize
CURSOR_SIZE_RDIAG -5 diagonal resize (/)
CURSOR_SIZE_LDIAG -4 diagonal resize (\)
CURSOR_SIZE_ALL -13 all directions resize
CURSOR_INVISIBLE -17 blank/invisible cursor
CURSOR_SPLITVER -14 vertical splitting
CURSOR_SPLITHOR -3 horizontal splitting
CURSOR_HAND -6 a pointing hand
CURSOR_FORBIDDEN -16 forbidden action cursor
CURSOR_UNDERSCORE -21 underscore
CURSOR_BOX -22 box in size of one largest character
CURSOR_DEFAULT_TEXT -21 same as CURSOR_UNDERSCORE

NOSHAPE disables the text cursor displayed at the end of the prompt message
and is equivalent to GUISHAPE 0 or GUISHAPE CURSOR_INVISIBLE clause.

ECHO or NOECHO clause temporarily overrides the current setting of Set(_SET_
WAIT_ECHO). Echo is displayed only when SET CONSOLE is ON.

Description:
WAIT is a console command with wait state. The specified or default prompt is
displayed after a NEWLINE. The command then waits for a user input or reads one
from the type-ahead buffer. The input key is echoed on the screen if not disabled by
the NOECHO clause or by global setting SET(_SET_WAIT_ECHO,.F.).

When the TIMEOUT <expN2> is specified and a key is not pressed within the given
time frame, WAIT exits returning "".

CMD 472

When a key assigned via SET KEY or ON KEY is pressed, the UDF is executed
and WAIT waits for next key input. When the Escape (K_ESC) key was assigned to
an UDF by SET KEY or ON [ANY] KEY, you need to press Escape key twice to
terminate WAIT - this avoids a possible infinite loop.

When a FN key is assigned to a string by SET FUNCTION and this FN key was
pressed, WAIT exits returning the assigned string in the <memvarC> variable.

For backward compatibility to other xBase dialects, function keys are ignored if not
associated to SET KEY, ON KEY or SET FUNCTION. When function keys (i.e.
inkey() values 28 and less than 0) should exit WAIT too, use SET(_SET_WAIT_
IGNFUN,.F.) - the default setting is .T.

When you don't wish echo the input key, use Set(_SET_WAIT_ECHO,.F.) where
the default setting is .T. You also may use the ECHO | NOECHO clause to
temporarily override the global status for this WAIT.

WAIT displays the <expC1> or standard prompt per default also with SET
CONSOLE OFF. You may disable this feature by assigning

_aGlobSetting[GSET_L_WAIT_PROMPT] := .F. // default is .T.
which then considers current SET CONSOLE setting. Without this set, you also
may use WAIT "" to avoid prompt, or WAIT "" NOECHO which is then equivalent to
Inkey(0). The above setting however does not affect waiting for user key press,
which always apply.

Example:
WAIT TO key
//
WAIT NOECHO "press any key to continue, ESC to abort"
IF lastkey() = 27

QUIT
ENDIF
//
@ 10,0 say "Press any key: "
key := INKEY(0)
IF key > 32

?? CHR(key)
ENDIF

Classification:
sequential screen output, waiting keyboard input

Compatibility:
The support of foreign language prompts is available in FlagShip only. The COLOR,
GUICOLOR, POPUP, TIMEOUT, ECHO, NOECHO, GUISHAPE and NOSHAPE
clauses are new in FS5. For FlagShip 4 compatible behavior, use
Set(_SET_WAIT_IGNFUN,.F.), see text above.

Translation:
[var :=] __WAIT ([exp], ...)

Related:
@..GET, READ, ACCEPT, INPUT, INKEY(), FS_SET(), ?, ??, QOUT(), SET
GUICURSOR, SetGuiCursor()

CMD 473

ZAP
Syntax:

ZAP
Purpose:

Removes all records from the currently selected database file.

Description:
ZAP permanently removes all records from the database, memo file and associated
indices in the current working area. The disk space previously occupied by the
allocated files is released.

ZAP performs the same operation as COPY STRUCTURE and REINDEX
commands. It is therefore faster, than the similar DELETE ALL followed by PACK.

Multiuser:
ZAP requires the database to be EXCLUSIVEly opened.

Example:
USE taxes INDEX tax
? RECCOUNT() && 34
ZAP
? RECCOUNT() && 0

Example:
// The same example as multiuser:

SET EXCLUSIVE OFF
my_use ("taxes", , .T.) // see example of USE
SET INDEX TO tax
? RECCOUNT() // 34
ZAP
my_use ("taxes", , .F.) // USE shareable
SET INDEX TO tax
? RECCOUNT() // 0

Classification:
database

Translation:
__DBZAP()

Related:
DELETE, PACK, USE, COPY STRUCTURE, oRdd:Zap()

CMD 474

CMD 475

Index CMD

!

! command CMD-11

&

& CMD-see &see comment

*

* comment............................ CMD-14, 239

.

.BMP image CMD-37, 60

.FRM Report file................. CMD-286, 288

.GIF image CMD-37, 60

.JPEG image.......................... CMD-37, 60

.LBL Label file CMD-212, 215

.MEM memory file CMD-291, 301

.PNG image CMD-37, 60

.PPM image CMD-37, 60

.XBM image CMD-37, 60

.XPM image CMD-37, 60

/

/*...*/ comment CMD-14
// comment CMD-14

?

? command CMD-16
?# command CMD-20
?? command CMD-16
??# command CMD-20
??## command CMD-20

@

@..BOX.. CMD-23
@..CLEAR CMD-22, 28

@..DRAW CIRCLE CMD-33
@..DRAW ELLIPSE..................... CMD-35
@..DRAW IMAGE........................ CMD-37
@..DRAW LINE CMD-39
@..DRAW POLYGON CMD-44
@..DRAW RECTANGLE CMD-46
@..GET .. CMD-64

- align fields CMD-372
- color selection CMD-388
- confirm exit........................... CMD-330
- field delimiters CMD-341
- multi-byte characters............ CMD-399

@..GET..CHECKBOX.................. CMD-76
@..GET..COMBOBOX................. CMD-80
@..GET..LISTBOX....................... CMD-82
@..GET..PUSHBUTTON CMD-88
@..GET..RADIOBUTTON............ CMD-93
@..GET..RADIOGROUP CMD-97
@..GET..TBROWSE.................. CMD-102
@..PROMPT........................ CMD-48, 232

- message............................... CMD-398
@..SAY .. CMD-53
@..SAY BITMAP.......................... CMD-60
@..SAY IMAGE............................ CMD-60
@..SAY..GET............................... CMD-64
@..TO .. CMD-104

A

ACCEPT CMD-106
ACCESS CMD-107, 235
Alias

- assign................................... CMD-462
- select CMD-309

ANNOUNCE CMD-108
ANSI..................... CMD-see character set
APPEND BLANK CMD-110
APPEND FROM......................... CMD-111
Application

- terminate CMD-266
Array

- browsing............................... CMD-102
- declaration............................ CMD-159
- local CMD-219, 222
- private CMD-159, 248

CMD 476

- public.................................... CMD-261
- static............................. CMD-446, 448

ASCENDING clause CMD-199
ASCII.................... CMD-see character set
ASSIGN CMD-107, 235
AVERAGE.................................. CMD-115

B

Background
- processing...................... CMD-12, 296

BEGIN SEQUENCE CMD-116
Box

- checkbox................................ CMD-76
- combo CMD-80
- command CMD-23
- listbox CMD-82
- pushbutton CMD-88

BREAK....................................... CMD-116
Button

- pushbutton CMD-88
- radiobutton CMD-93
- radiobutton group................... CMD-97

C

C function
- invocation CMD-121

Call
- C function CMD-121
- function................................. CMD-186
- procedure CMD-168

CALL .. CMD-121
CANCEL CMD-123, 266
CASE ... CMD-170
Century CMD-320
Change directory CMD-344
Character set

- database CMD-314
-- ISO, ANSI........................ CMD-336
-- PC8, ASCII, OEM............ CMD-336

- in GUI mode......................... CMD-377
- keyboard

-- ISO, ANSI........................ CMD-393
-- PC8, ASCII, OEM............ CMD-393

- source
-- ISO, ANSI........................ CMD-433
-- PC8, ASCII, OEM............ CMD-433

- unprintable characters CMD-408
Checkbox

- create CMD-76
Class

- access method..................... CMD-235
- assign method...................... CMD-235
- declaration............................ CMD-124
- instance................................ CMD-124
- Instance................................ CMD-126

-- exported CMD-126
-- hidden.............................. CMD-126
-- protected CMD-126

- method CMD-235
- prototyping CMD-124

CLASS CMD-124
Clear

- get fields............... CMD-131, 132, 133
- keyboard buffer CMD-138
- memory CMD-134, 279
- screen CMD-28, 131, 136

CLEAR CMD-131
CLEAR ALL................................ CMD-132
CLEAR GETS CMD-133
CLEAR MEMORY...................... CMD-134
CLEAR MENU CMD-135
CLEAR SCREEN....................... CMD-136
CLEAR TYPEAHEAD CMD-138
Close

- alias...................................... CMD-139
- database CMD-139

-- all CMD-132
- get fields............... CMD-131, 132, 133
- index..................................... CMD-139

-- all CMD-132
CLOSE....................................... CMD-139
CLS .. CMD-136
Color

- background CMD-322
- border................................... CMD-322
- enhanced CMD-322, 440
- foreground............................ CMD-322
- in GUI mode CMD-373
- output CMD-17, 53
- standard CMD-322, 440
- unselected.................... CMD-322, 440

Combo box
- create CMD-80

Command
- abbreviation.............................. CMD-7

CMD 477

- argument CMD-7
- case sensitivity CMD-7
- clause....................................... CMD-8
- keyword.................................... CMD-7
- notation CMD-7
- scope.. CMD-8
- translation................................. CMD-9

Comments............................ CMD-14, 239
COMMIT CMD-141
Compiler

- procedure files...................... CMD-420
condition

- if..endif.................................. CMD-197
CONSTANT CMD-145
CONTINUE CMD-144
Coordinate

- units...................................... CMD-437
Coordinates

- in pixel CMD-412
COPY FILE CMD-146
COPY STRUCTURE.................. CMD-151
COPY TO................................... CMD-147
COPY TO..STRUCT CMD-152
Copying

- databases............................. CMD-147
- files CMD-146

COUNT CMD-154
CREATE CMD-155, 156
Cursor

- type....................................... CMD-374
- wait CMD-470

Cut and paste....................... CMD-71, 271

D

Database
- add record CMD-110

-- automatically CMD-347
- add records

-- from other database CMD-111, 209
-- from text file..................... CMD-111

- assign index CMD-384
- average CMD-115
- browsing............................... CMD-102
- calculate

-- average CMD-115
-- records in scope.............. CMD-154
-- sum.................................. CMD-453

- character set CMD-314, 336
- clear CMD-473
- close............................. CMD-139, 462
- close all CMD-132
- commit.................................. CMD-141
- controlling index CMD-406
- copy...................................... CMD-147

-- structure CMD-152
- count records CMD-154
- create

-- from other database CMD-152
-- from structure CMD-156
-- structure CMD-151, 155
-- totals................................ CMD-455

- default directory.................... CMD-410
- delete all records.................. CMD-473
- delete record CMD-161
- deleted records

-- visible CMD-340
- delimited input CMD-111
- delimited output.................... CMD-147
- display

-- records CMD-217
-- records scope.................. CMD-167

- error handling CMD-405
- exclusive CMD-354
- field

-- assign CMD-282
-- modify.............................. CMD-282
-- replace............................. CMD-282

- filter
-- clear................................. CMD-358
-- set.................................... CMD-358

- filtering.................................. CMD-358
- flushing................................. CMD-141
- index

-- close CMD-384
-- create CMD-199
-- open CMD-384

- indexing........................ CMD-199, 277
- join with other database CMD-209
- locking

-- automatic......................... CMD-316
-- multiple CMD-401
-- unlock CMD-458

- merge CMD-209
- modify record CMD-282
- multi-user CMD-462, 465
- open CMD-462

CMD 478

-- error handling CMD-405
-- exclusive.......................... CMD-354
-- shared CMD-354

- packing................................. CMD-244
- record movement CMD-194, 442

-- bottom CMD-194
-- top CMD-194, 371

- relations................................ CMD-421
-- clear................................. CMD-421
-- set.................................... CMD-421

- remove deleted records CMD-244
- scope.. CMD-8
- SDF input CMD-111
- SDF output CMD-147
- search

-- by index CMD-180, 305, 307
-- conditional CMD-228
-- conditional by index. CMD-305, 307
-- continue........................... CMD-144
-- index key CMD-180, 305, 307
-- locate first CMD-228
-- sequential CMD-228
-- soft seek.......................... CMD-431

- select.................................... CMD-309
- shared CMD-354
- sorting CMD-199, 444

-- ascending........................ CMD-201
-- descending...................... CMD-201
-- unique...................... CMD-199, 438

- sum numeric fields CMD-453
- text input............................... CMD-111
- text output CMD-147
- totals to other dbf CMD-455
- translation............................. CMD-314
- un-delete record................... CMD-275
- unique index................. CMD-199, 438
- update from other database. CMD-460

Date
- century CMD-320
- century digits CMD-348
- epoch CMD-348
- format CMD-334

Decimals CMD-338, 360
Declaration

- access global C-like typed vars . CMD-
192

- array
-- local CMD-219, 222
-- private...................... CMD-159, 248

-- public CMD-261
-- static CMD-446, 448

- class CMD-124
-- access method CMD-235
-- assign method................. CMD-235
-- instance CMD-124
-- method CMD-235

- condition
-- case................................. CMD-170
-- if..endif............................. CMD-197

- constant................................ CMD-145
- database field....................... CMD-178
- function......................... CMD-184, 250
- global C-like typed vars........ CMD-189
- loop

-- for CMD-182
-- while CMD-172

- memory variable................... CMD-230
- parameter list CMD-246
- UDF.............................. CMD-184, 250
- variable

-- constant........................... CMD-145
-- local CMD-219, 222
-- parameter CMD-246
-- private.............................. CMD-248
-- protected CMD-145, 264
-- public CMD-261
-- public, protected.............. CMD-264
-- static CMD-446, 448

DECLARE CMD-159
DELETE CMD-161
DELETE FILE CMD-162
DELETE TAG............................. CMD-163
Delimited

- database input...................... CMD-111
- database output CMD-147

DESCENDING clause CMD-199
DIR... CMD-165
Directory

- change CMD-344
- default CMD-339, 410
- listing CMD-165

DISPLAY.................................... CMD-167
DO.. CMD-168
DO CASE................................... CMD-170
DO WHILE CMD-172
DOS coded source..................... CMD-433
Drawing

- bitmap CMD-37, 60

CMD 479

- box.................................. CMD-23, 104
- circle....................................... CMD-33
- ellipse CMD-35
- image CMD-37, 60
- lines................................ CMD-39, 104
- polygon................................... CMD-44
- rectangle CMD-46

E

Edit
- single line CMD-64

EJECT.. CMD-174
ELSE.. CMD-197
ELSEIF....................................... CMD-197
END.................................... CMD-170, 172
END SEQUENCE CMD-116
ENDCASE.................................. CMD-170
ENDDO CMD-172
ENDFOR.................................... CMD-182
ENDIF .. CMD-197
ENDTEXT CMD-454
EOF

- add record automatically...... CMD-347
ERASE....................................... CMD-175
Escape key CMD-350
Exception handling............. CMD-116, 241
EXCLUSIVE clause CMD-462
Execute

- C function CMD-121
Executing

- CMD CMD-12, 296
- external FlagShip program... CMD-298
- external program CMD-11, 295
- in background................. CMD-12, 296
- OpenOffice CMD-298
- shell CMD-12, 296
- StarOffice CMD-298
- WinWord CMD-13, 298

EXIT CMD-172, 182
EXIT FUNCTION CMD-184
EXIT PROCEDURE................... CMD-250
EXPORT instance...................... CMD-126
EXPORT INSTANCE................. CMD-176
External

- announce CMD-108, 177, 290
EXTERNAL CMD-177
External application.................... CMD-295

F

Field
- assign................................... CMD-282
- modify................................... CMD-282
- replace CMD-282

FIELD... CMD-178
File

- alternate output CMD-312, 356
- copy...................................... CMD-146
- default input directory........... CMD-410
- default output directory CMD-339
- delete CMD-162, 175
- directory listing CMD-165
- display CMD-457
- large over 2GB CMD-395
- memory

-- restore CMD-291
-- save................................. CMD-301

- move CMD-280
- rename CMD-280

FIND... CMD-180
FlagShip

- library
-- commands........................... CMD-7

Flushing
- database CMD-141

FOR.. CMD-182
Function

- declaration............................ CMD-184
- invoking CMD-186
- vs. procedure CMD-187

FUNCTION CMD-184
Function key

- simulate input CMD-369

G

Get field
- close..................... CMD-131, 132, 133

GLOBAL..................................... CMD-189
GLOBAL_EXTERN.................... CMD-192
GO.. CMD-194
GOTO... CMD-194
GUI

- colors.................................... CMD-373
GUI mode

- boxes.................................... CMD-377

CMD 480

- character set CMD-377
- cursor type CMD-374
- HTML formatting CMD-381
- PC8 semi-graphic CMD-377

H

Help
- input CMD-70

HIDDEN instance....................... CMD-126
HIDDEN INSTANCE.................. CMD-196
HTML

- output adaption CMD-425
HTML formatting CMD-381

I

IFCMD-197
Image CMD-37, 60
Index

- ascending............................. CMD-200
- close............................. CMD-139, 384
- close all CMD-132
- conditional CMD-199
- controlling............................. CMD-406
- create CMD-199, 277
- default directory CMD-410
- delete tag CMD-163
- descending........................... CMD-200
- error handling CMD-405
- open CMD-384

-- error handling CMD-405
- order..................................... CMD-406
- rebuild CMD-277
- search

-- soft seek.......................... CMD-431
- skip....................................... CMD-442
- sorting

-- ascending........................ CMD-201
-- descending...................... CMD-201

- unique CMD-199, 438
INDEX ON.................................. CMD-199
INIT FUNCTION......................... CMD-184
INIT PROCEDURE CMD-250
Inkey()

- filtering.................................. CMD-351
Input

- accept................................... CMD-106

- checkbox CMD-76
- combo box.............................. CMD-80
- conditional CMD-67
- console oriented........... CMD-106, 206
- cut and paste.................. CMD-71, 271
- database CMD-102
- default directory.................... CMD-410
- escape key........................... CMD-350
- field... CMD-64
- filtering.................................. CMD-351
- formatted CMD-64
- help .. CMD-70
- input CMD-206
- keyboard buffer CMD-436
- listbox CMD-82
- menus CMD-48, 232

-- wrap................................. CMD-439
- on/off CMD-387
- prompt CMD-470
- pushbutton CMD-88
- radiobutton CMD-93, 97
- radiogroup CMD-97
- READ CMD-267

-- confirm exit CMD-330
- redirection CMD-240, 243, 389
- screen oriented CMD-64, 267

-- array CMD-102
-- database.......................... CMD-102

- simulate key press CMD-210
- simulated.............................. CMD-369
- single line CMD-64
- validation CMD-66, 67, 70, 270
- wait CMD-470

INPUT .. CMD-206
INSTANCE......................... CMD-126, 208
Invoking external application CMD-295
ISO....................... CMD-see character set
ISO coded source CMD-433

J

JOIN... CMD-209
Jump

- exception.............................. CMD-116

K

Keyboard

CMD 481

- escape.................................. CMD-350
- filtering.................................. CMD-351
- function key CMD-369
- input CMD-106, 206
- input buffer CMD-436
- localizing CMD-393
- on/off CMD-387
- redirection CMD-240, 243, 389

-- restore CMD-265
-- save................................. CMD-265

- simulate input CMD-369
- simulate key press CMD-210
- translation............................. CMD-393

KEYBOARD CMD-210
Keyboard buffer

- clear CMD-138

L

LABEL EDIT............................... CMD-212
Label file

- creating CMD-212
- display CMD-215
- editing................................... CMD-212
- print CMD-215

LABEL FORM CMD-215
Linker

- announce external CMD-108, 177, 290
LIST.. CMD-217
Listbox

- create CMD-82
LOCAL CMD-219
LOCAL..AS CMD-222
Localizing

- keyboard CMD-393
LOCATE..................................... CMD-228
Locking

- automatic.............................. CMD-316
- multiple records.................... CMD-401
- unlock................................... CMD-458

Loop
- for ... CMD-182
- while CMD-172

LOOP CMD-172, 182

M

MemoEdit()

- messages............................. CMD-430
Memory

- release CMD-134, 279
MEMVAR CMD-230
MENU TO CMD-48, 232

- message............................... CMD-398
- wrap CMD-439

METHOD CMD-235
MS-Word.............................. CMD-13, 298

N

NEW clause CMD-462
NEXT.. CMD-182
NFS

- handling................................ CMD-403
NOTE command CMD-14, 239
Number

- output
-- decimals CMD-338, 360

O

OEM..................... CMD-see character set
ON ANY KEY CMD-240
ON ERROR................................ CMD-241
ON ESCAPE CMD-243
ON KEY CMD-240
OpenOffice................................. CMD-298
OTHERWISE CMD-170
Output

- bell.. CMD-319
- box.................................. CMD-23, 104
- browsing............................... CMD-102
- database

-- screen oriented................ CMD-102
- decimals CMD-338, 360
- default directory.................... CMD-339
- display text file...................... CMD-457
- embedded program text....... CMD-454
- extra file.................. CMD-16, 312, 356
- formatted CMD-53

-- labels CMD-215
-- report CMD-288

- line.. CMD-104
- printer CMD-16

-- GUI/GDI mode................. CMD-376
-- on/off CMD-343

CMD 482

- redirection CMD-20, 343
- screen

-- adaption for HTML CMD-425
-- adaption of ROW() CMD-426
-- boxes......................... CMD-23, 104
-- circle CMD-33
-- clear................... CMD-28, 131, 136
-- clear line CMD-22
-- color............. CMD-17, 53, 322, 440
-- color in GUI mode CMD-373
-- cursor CMD-333

--- gui type....................... CMD-374
-- drawing...... CMD-33, 35, 39, 44, 46
-- ellipse CMD-35
-- lines CMD-39, 104
-- on/off CMD-331, 343
-- pixel coordinates CMD-412
-- polygon.............................. CMD-44
-- prompt CMD-48, 232
-- rectangle CMD-46
-- refresh CMD-276
-- restore CMD-293
-- sequential CMD-16
-- store CMD-303
-- text..................................... CMD-53

- screen oriented
-- array CMD-102
-- database CMD-102

- to console window.................. CMD-20
- to stderr CMD-20
- unprintable characters CMD-408
- zero byte CMD-441

P

PACK ... CMD-244
Parameter passing............. CMD-186, 252
PARAMETERS CMD-184, 246, 250
PC8 CMD-see character set
Pixel coordinates CMD-412
POP KEY CMD-265
Print

- embedded program text....... CMD-454
Printer

- margin CMD-396
- new page.............................. CMD-346
- new page.............................. CMD-174
- on/off CMD-343, 413

- redirection CMD-413
PRIVATE.................................... CMD-248
Procedure

- automatic.............................. CMD-252
- compiler instruction CMD-420
- declaration............................ CMD-250
- files....................................... CMD-420
- invoking CMD-168
- vs. function CMD-253

PROCEDURE............................ CMD-250
Program

- character set CMD-433
- exception handling CMD-116
- exit................................ CMD-123, 266
- terminate CMD-123, 266

PROTECT instance CMD-126
PROTECT INSTANCE CMD-255
PROTECT PUBLIC.................... CMD-264
PROTOTYPE............................. CMD-256
PROTOTYPE ACCESS............. CMD-235
PROTOTYPE ASSIGN CMD-235
PROTOTYPE CLASS................ CMD-124
PROTOTYPE METHOD CMD-235
PUBLIC CMD-261
PUSH KEY................................. CMD-265
Pushbutton

- create CMD-88

Q

QUIT CMD-123, 266

R

Radiobutton
- create CMD-93
- group CMD-97

READ CMD-64, 267
- align fields CMD-372
- color selection CMD-388
- confirm exit........................... CMD-330
- messages............................. CMD-430
- termination by escape.......... CMD-350

READONLY clause.................... CMD-462
RECALL CMD-275
Record

- delete CMD-161
- delete all............................... CMD-473

CMD 483

- deleted
-- visible CMD-340

- display CMD-167, 217
- filtering.................................. CMD-358
- locking

-- automatic......................... CMD-316
-- unlock CMD-458

- modify................................... CMD-282
- movement CMD-194, 442

-- first........................... CMD-194, 371
-- last................................... CMD-194

- new....................................... CMD-110
-- automatically CMD-347

- remove deleted CMD-244
- replace CMD-282
- un-delete CMD-275

RECOVER CMD-116
Redirection

- output CMD-20
REFRESH.................................. CMD-276
REINDEX CMD-277
Relation of databases CMD-421
RELEASE CMD-279
Remove file CMD-162, 175
RENAME.................................... CMD-280
Rename file................................ CMD-280
REPLACE CMD-282
REPORT EDIT........................... CMD-286
Report file

- creating CMD-286
- display CMD-288
- editing................................... CMD-286
- print CMD-288

REPORT FORM CMD-288
REQUEST.................................. CMD-290
RESTORE FROM CMD-291
RESTORE SCREEN.................. CMD-293
RETURN CMD-184, 250, 294
ROW()

- adaption CMD-426
RUN ... CMD-295

S

SAVE SCREEN CMD-303
SAVE TO CMD-301
Screen

- clear CMD-28, 131, 136

- cursor CMD-333, 374
- output

-- on/off CMD-331
- restore CMD-293
- store CMD-303

Screen output
- from external applic.............. CMD-296

SDF
- database input...................... CMD-111
- database output CMD-147

SEEK.. CMD-305
SEEK EVAL CMD-307
SELECT CMD-309
SET ALTERNATE...................... CMD-312
SET ANSI................................... CMD-314
SET AUTOLOCK CMD-316
SET BELL CMD-319
SET CENTURY.......................... CMD-320
SET CHARSET.................. CMD-321, 393
SET COLOR or COLOUR CMD-322
SET CONFIRM CMD-330
SET CONSOLE CMD-331
SET COORDINATE................... CMD-437
SET CURSOR CMD-333
SET DATE CMD-334
SET DBREAD CMD-336
SET DBWRITE CMD-336
SET DECIMALS......................... CMD-338
SET DEFAULT........................... CMD-339
SET DELETED CMD-340
SET DELIMITERS CMD-341
SET DEVICE.............................. CMD-343
SET DIRECTORY...................... CMD-344
SET EJECT................................ CMD-346
SET EOFAPPEND..................... CMD-347
SET EPOCH CMD-348
SET ESCAPE CMD-350
SET EVENTMASK..................... CMD-351
SET EXACT CMD-352
SET EXCLUSIVE....................... CMD-354
SET EXTRA CMD-356
SET FILTER............................... CMD-358
SET FIXED CMD-360
SET FORMAT............................ CMD-367
SET FUNCTION CMD-369
SET GOTOP.............................. CMD-371
SET GUIALIGN.......................... CMD-372
SET GUICOLORS CMD-373
SET GUICURSOR..................... CMD-374

CMD 484

SET GUIPRINTER..................... CMD-376
SET GUITRANSL CMD-377
SET HTMLTEXT........................ CMD-381
SET INDEX CMD-384
SET INPUT CMD-387
SET INTENSITY CMD-388
SET KEY.................................... CMD-389
SET KEYTRANSL CMD-393
SET LARGEFILE CMD-395
SET LOCK CMD-318
SET MARGIN............................. CMD-396
SET MESSAGE CMD-398
SET MULTIBYTE....................... CMD-399
SET MULTILOCKS.................... CMD-401
SET NFS.................................... CMD-403
SET OPENERROR.................... CMD-405
SET ORDER.............................. CMD-406
SET OUTMODE......................... CMD-408
SET PATH CMD-410
SET PIXEL................................. CMD-412
SET PRINTER CMD-413
SET PROCEDURE.................... CMD-420
SET RELATION......................... CMD-421
SET REPROCESS CMD-318
SET ROWADAPT CMD-425
SET ROWALIGN CMD-426
SET SCOREBOARD CMD-430
SET SCRCOMPRESS............... CMD-429
SET SOFTSEEK........................ CMD-431
SET SOURCE............................ CMD-433
SET TYPEAHEAD CMD-436
SET UNIQUE............................. CMD-438
SET UNIT................................... CMD-437
SET WRAP CMD-439
SET ZEROBYTEOUT................ CMD-441
SETENHANCED........................ CMD-440
SETSTANDARD CMD-440
SETUNSELECTED.................... CMD-440
SHARED clause......................... CMD-462
SKIP... CMD-442
SOFTSEEK................................ CMD-305
SORT ... CMD-444
Sorting

- ascending............................. CMD-201
- descending........................... CMD-201

Source
- autolock.prg.......................... CMD-318
- DOS/OEM vs. ISO/ANSI...... CMD-433

StarOffice CMD-298

STATIC CMD-446
STATIC CLASS CMD-124
STATIC FUNCTION................... CMD-184
STATIC PROCEDURE CMD-250
STATIC..AS CMD-448
std.fh file....................................... CMD-10
Stderr

- output CMD-20
- redirection CMD-20

STORE....................................... CMD-451
String

- comparison
-- influencing CMD-352

SUM ... CMD-453

T

TEXT.. CMD-454
TOTAL CMD-455
Translation

- character set CMD-377
Trigger

- UDF
-- at key press..................... CMD-389

TYPE.. CMD-457

U

UDF.. CMD-184
UDP ... CMD-250
UNIQUE clause.......................... CMD-199
Unique index CMD-199, 438
Units ... CMD-437
UNLOCK CMD-458
Unprintable characters............... CMD-408
UPDATE CMD-460
USE.. CMD-462

V

Variable
- assigning CMD-451
- local CMD-219, 222
- modifying.............................. CMD-451
- parameter............................. CMD-246
- private CMD-248
- protected CMD-145, 264

CMD 485

- public CMD-261
- public, protected................... CMD-264
- release CMD-134, 279
- restore from file CMD-291
- save to file CMD-301
- static CMD-446, 448
- typed local CMD-222
- typed static CMD-448

W

WAIT .. CMD-470
WHILE.. CMD-172

WinWord CMD-13, 298
Work area

- close..................................... CMD-462
- new............................... CMD-309, 462
- open CMD-462
- select CMD-309

Z

ZAP .. CMD-473
Zero byte

- displaying CMD-408, 441

CMD 486

CMD 487

ty

CMD 488

