

The whole FlagShip 7 manual consist of following sections:

Section Content Pages

GEN General information: License agreement & warranty,
installation and de-installation, registration and support 18

LNG
FlagShip language: Specification, database, files,
language elements, multiuser, multitasking, FlagShip
extensions and differences

176

FSC Compiler & Tools: Compiling, linking, libraries, make,
run-time requirements, debugging, tools and utilities 90

CMD Commands and statements: Alphabetical reference of
FlagShip commands, declarators and statements 486

FUN Standard functions: Alphabetical reference of FlagShip
functions 640

OBJ
Objects and classes: Standard classes for Get,
Tbrowse, Error, Application, GUI, as well as other
standard classes

368

RDD Replaceable Database Drivers 38

EXT
C-API: FlagShip connection to the C language, Extend
C System, Inline C programs, Open C API, Modifying
the intermediate C code

160

FS2 Alphabetical reference of FS2 Toolbox functions 376

QRF Quick reference: Overview of commands, functions and
environment 40

PRE Preprocessor, includes, directives 30

SYS
System info, porting: System differences to DOS, porting
hints, data transfer, terminals and mapping, distributable
files

42

REL Release notes: Operating system dependent informa-
tion, predefined terminals 8

APP Appendix: Inkey values, control keys, ASCII-ISO table,
error codes, dBase and FoxPro notes, forms 34

IDX Index of all sections 42

fsman The on-line manual contains all above sections, search
function, and additionally last changes and extensions variable

multisoft Datentechnik, Munich, Germany

Copyright (c) 1992..2009
All rights reserved

Object Oriented Database Development System,
Cross-Compatible to UNIX, Linux and MS-Windows

Section FUN

Manual release: 7.1

For the current program release see label on distribution disk and
your Activation Card, or check on-line by issuing FlagShip -version

Copyright
Copyright © 1992..2009 by multisoft Datentechnik, D-81545 Munich, Germany. All rights
reserved worldwide. Manual authors: Jan V. Balek, Ibrahim Tannir, Sven Koester

No part of this publication may be copied or distributed, transmitted, transcripted, stored in a
retrieval system, or translated into any human or computer language, in any form or by any
means, electronic, mechanical, magnetic, manual, or otherwise; or disclosed to third parties
without the express written permission of multisoft Datentechnik. Please see also "License
Agreement", section GEN.2

Made in Germany. Printed in Germany.

Trademarks
FlagShip™ is trademark of multisoft Datentechnik. Other trademarks: dBASE is trademark
of Borland/Ashton-Tate, Clipper of CA/Nantucket, FoxBase of Microsoft/Fox, UNIX of
AT&T/USL/SCO, AIX of IBM, MS-DOS and MS-Windows of Microsoft. Other products
named herein may be trademarks of their respective manufacturers.

Headquarter Address
Headquarter:

multisoft Datentechnik
Harthauser Str. 85
81545 München
Germany

Telephone: (+49-89) 6490040
Fax: (+49-89) 6412974

E-mail: support@flagship.de
support@multisoft.de
sales@multisoft.de

Web/Ftp: http://www.fship.com
ftp://mult-soft.de/pub

Call or e-mail multisoft for your local dealer or distributor

FUN 1

FUN: FlagShip Functions
Notation Used ...11
AADD ()...15
ABS ()..16
ACHOICE () ..17
ACLONE ()..25
ACOPY () ..26
ADEL () ...27
ADIR () ..28
AELEMTYPE () ...30
AEVAL () ...31
AFIELDS ()..33
AFILL () ...34
AFILLALL ()...35
AINS () ..36
ALERT () ...37
ALIAS () ..40
ALLTRIM () ...41
ALTD () ...42
ANSI2OEM () ..43
APPIOMODE ()...44
APPMDIMODE () ..45
APPOBJECT () ...46
ARRAY () ..47
ASC () ...48
ASCAN () ..49
ASIZE () ..51
ASORT () ..52
AT () ..54
ATAIL ()...55
ATANYCHAR () ..56
AUTOxLOCK () ...57
BIN2I ()..59
BIN2L ()...60
BIN2W () ...61
BINAND () ...62
BINOR () ...64
BINXOR ()...65
BINLSHIFT () ..66
BINRSHIFT ()..67
BETWEEN ()...68
BOF () ...69
BREAK () ..70
BROWSE ()...71
CDOW () ...73
CHR () ...74

FUN 2

CHR2SCREEN ()..76
CMONTH ()...78
COL () ...80
COL2PIXEL () ...82
COLVISIBLE ()..83
COLOR2RGB () ..84
COLORSELECT ()..85
CONSOLEOPEN ()...86
CONSOLESIZE () ...88
CRC32 ()...90
CTOD () ..91
CURDIR ()...92
DATE () ...94
DATEVALID ()...95
DAY () ...96
DBAPPEND ()...97
DBCLEARFILTER () ...98
DBCLEARINDEX () ..99
DBCLEARRELATION () ...100
DBCLOSEALL () ...101
DBCLOSEAREA () ...102
DBCOMMIT () ...103
DBCOMMITALL () ..105
DBCREATE () ...107
DBCREATEINDEX ()..110
DBDELETE ()..113
DBEDIT () ...114
DBEVAL () ..121
DBF () ...123
DBFINFO ()...124
DBFILTER () ...126
DBFLOCK()...127
DBFUSED () ...128
DBGETLOCATE ()..130
DBGOBOTTOM () ..131
DBGOTO () ...132
DBGOTOP ()...133
DBOBJECT () ...134
DBRECALL ()..136
DBREINDEX ()..137
DBRELATION ()..138
DBRELCOUNT ()..139
DBRELMULTI ()..140
DBRLOCK() ..141
DBRLOCKLIST () ...142
DBRSELECT () ...143
DBRUNLOCK () ..144
DBSEEK () ..146
DBSELECTAREA ()..147

FUN 3

DBSETDRIVER () ...149
DBSETFILTER () ..150
DBSETINDEX ()..151
DBSETLOCATE () ..153
DBSETORDER ()..154
DBSETRELATION ()...155
DBSKIP () ...157
DBSTRUCT () ...158
DBUNLOCK ()...160
DBUNLOCKALL () ..162
DBUSEAREA () ..164
DEFAULT () ..167
DELETED () ..168
DESCEND () ...169
DEVOUT ()..171
DEVOUTPICT () ...172
DEVPOS ()..173
DIRECTORY () ...174
DISKSPACE () ..176
DISPBEGIN () ...178
DISPBOX ()...179
DISPCOUNT () ...182
DISPEND ()...183
DISPOUT ()...184
DOSERROR ()..185
DOSERROR2STR ()...186
DOW ()..187
DRAWLINE ()..188
DTOC () ..189
DTOS ()...190
EMPTY () ..191
EOF () ...192
ERRBOX () ...193
ERRORBLOCK () ...194
ERRORBOXNEW ()..196
ERRORLEVEL () ..197
EVAL () ...199
EXECNAME () ..200
EXECPIDNUM ()...201
EXP ()..202
FCLOSE () ..203
FATTRIB ()..204
FCOUNT ()..205
FCREATE ()..206
FEOF () ...208
FERASE () ..209
FERROR () ...210
FERROR2STR () ..212
FIELDBLOCK () ..213

FUN 4

FIELDDECI ()..214
FIELDGET () ...216
FIELDGETARR () ...217
FIELDLEN () ...218
FIELDNAME () ..220
FIELDPOS ()...221
FIELDPUT () ...222
FIELDPUTARR ()..224
FIELDTYPE () ...225
FIELDWBLOCK ()...227
FILE () ...228
FINDEXEFILE() ..230
FKLABEL ()...231
FKMAX () ..232
FLAGSHIP_DIR () ..233
FLOCK ()...234
FLOCKF () ..236
FOPEN () ..238
FOUND ()..242
FREAD () ..243
FREADSTDIN ()..245
FREADSTR () ...247
FREADTXT ()..248
FRENAME () ...249
FSEEK ()...251
FS_SET () ...253
FS_SET ("ansi2oem")...255
FS_SET ("break") ...256
FS_SET ("debug") ..257
FS_SET ("develop")..258
FS_SET ("escdelay") ..259
FS_SET ("guikeys") ..260
FS_SET ("inmap")...261
FS_SET ("intvar")..263
FS_SET ("loadLang") ...264
FS_SET ("lower") FS_SET ("upper")..266
FS_SET ("memcomp") ...268
FS_SET ("outmap") FS_SET ("mapping")..269
FS_SET ("pathdelim")...271
FS_SET ("pathlower") FS_SET ("pathupper")..272
FS_SET ("print") ...274
FS_SET ("prset") ..276
FS_SET ("setenvir")..280
FS_SET ("setLang")..282
FS_SET ("shortname") ...283
FS_SET ("speckeys") ...285
FS_SET ("terminal")..287
FS_SET ("translext")...289
FS_SET ("typeahead") ...291

FUN 5

FS_SET ("zerobyte")...292
FWRITE ()...294
GETACTIVE () ..296
GETALIGN () ..297
GETAPPLYKEY () ..298
GETDOSETKEY ()..299
GETENV ()..300
GETENVARR () ..302
GETFUNCTION ()...303
GETPOSTVALID () ...304
GETPREVALID () ...305
GETREADER () ..306
GUIDRAWLINE () ...307
HARDCR () ...308
HEADER ()..309
HELP () ...310
HEX2NUM () ...312
I2BIN ()..313
IF () | IIF () ...314
INDEXCHECK () ...315
INDEXCOUNT ()...318
INDEXDBF () ..319
INDEXEXT ()...320
INDEXKEY () ..321
INDEXNAMES ()...322
INDEXORD ()..323
INFOBOX () ..324
INKEY () ..326
INKEYSTATUS ()..329
INKEYTRAP () ..332
INKEY2READ ()..334
INKEY2STR ()...335
INSTDCHAR ()..336
INSTDSTRING () ..337
INT ()...338
INT2NUM () NUM2INT () ..339
ISALPHA () ...340
ISBEGSEQ () ..341
ISCOLOR () ..342
ISDBEXCL ()...343
ISDBFLOCK () ..345
ISDBRLOCK ()..346
ISDBMULTIPLE ()...347
ISDIGIT ()..348
ISFUNCTION ()...349
ISGUIMODE () ..350
ISLOWER () ..351
ISOBJCLASS () ..352
ISOBJEQUIV () ...354

FUN 6

ISOBJPROPERTY () ..355
ISPRINTER () ...358
ISUPPER ()...359
L2BIN ()...360
LASTKEY () ..361
LASTREC () ..363
LEFT ()..364
LEN ()..365
LISTBOX () ...366
LOCK ()...367
LOG () ...368
LOWER () ...369
LTRIM ()..370
LUPDATE () ..371
MACROEVAL () ..372
MACROSUBST () ...373
MAX ()...375
MAXCOL () MAX_COL ()..376
MAXROW () MAX_ROW ()...378
MCOL () ..380
MDBLCK ()..381
MDICLOSE ()..382
MDIOPEN ()..383
MDISELECT () ..385
MEMOCODE () MEMOENCODE ()..386
MEMODECODE () ..389
MEMOEDIT () ...390
MEMOLINE () ...399
MEMOREAD () ...401
MEMORY () ..402
MEMOTRAN ()..405
MEMOWRIT () ..406
MEMVARBLOCK () ..407
MHIDE () ...408
MIN () ..409
MINMAX () ..410
MLCOUNT ()...411
MLCTOPOS () ..412
MLEFTDOWN () ...413
MLPOS () ..414
MOD () ..415
MONTH () ...416
MPOSTOLC () ..417
MPRESENT ()...418
MRESTSTATE () ..419
MRIGHTDOWN ()...420
MROW ()...421
MSAVESTATE () ..422
MSETCURSOR () ...423

FUN 7

MSETPOS () ...424
MSHOW () ..425
MSTATE () ..426
NETERR ()..427
NETNAME () ...429
NEXTKEY ()..430
NUM2HEX () ...432
OBJCLONE () ...433
OEM2ANSI () ..435
ONKEY () ..436
ORD*() ..437

OrdBagExt() ..437
OrdBagName() ..437
OrdCond() ...437
OrdCondSet() ..437
OrdCreate() ...437
OrdDestroy()..437
OrdDescend()..437
OrdFor()...438
OrdIsunique() ..438
OrdKey() ..438
OrdKeyAdd() ...438
OrdKeyCount() ..438
OrdKeyDel() ..438
OrdKeyGoto() ..438
OrdKeyNo() ...438
OrdKeyVal()...439
OrdListAdd() ..439
OrdListClear()..439
OrdListRebui() ...439
OrdName() ..439
OrdNumber() ...439
OrdScope() ..439
OrdSetFocu()...439
OrdSetRelat() ..439
OrdSkipUnique()..440

OS ()..441
OUTERR () ...442
OUTSTD ()..443
PADC () PADL () PADR () ..444
PARAM ()..446
PARAMETERS ()..447
PCALLS ()...448
PCOL () ...449
PCOUNT () ...450
PIXEL2COL () ...451
PIXEL2ROW ()..452
PRINTGUI () ...453
PRINTSTATUS ()..457

FUN 8

PROCFILE ()...458
PROCLINE () ..459
PROCNAME ()..460
PROCSTACK () ..462
PROPER () ...463
PROW () ...464
QOUT () QOUT2() QQOUT () QQOUT2()..465
RAT () ...467
RDDLIST () ...468
RDDNAME () ..469
RDDSETDEFAULT () ...470
READEXIT ()...471
READGETPOS () ...472
READINSERT () ...474
READKEY () ...475
READKILL () ...476
READMODAL ()..478
READSAVE () ...481
READSELECT ()...482
READUPDATED () ...484
READVAR() ..485
RECCOUNT () ..486
RECNO ()..487
RECSIZE () ...488
REPLICATE ()...489
RESTSCREEN () ..490
RIGHT () ...492
RLOCK () ..493
RLOCKVERIFY () ...499
ROUND () ...501
ROW ()..502
ROW2PIXEL ()..504
ROWADAPT ()..505
ROWVISIBLE () ..506
RTRIM () ...507
SAVESCREEN () ..508
SCRDOS2UNIX () ..510
SCRUNIX2DOS () ..512
SCREEN2CHR ()..514
SCROLL () ..515
SECONDS ()...517
SECONDSCPU () ...519
SELECT ()...521
SET ()..522
SETANSI () ...528
SETBLINK () ...529
SETCANCEL() ..530
SETCOLOR ()...531
SETCOLORBA () ..533

FUN 9

SETCOL2GET ()...535
SETCURSOR () ..536
SETEVENT ()..537
SETGUICURSOR ()..539
SETKEY () ..542
SETMODE ()...544
SETPOS () ..545
SETPRC () ..547
SETVAREMPTY ()..548
SLEEP () ...549
SLEEPMS ()..550
SOUNDEX ()...551
SPACE () ..553
SQRT ()...554
STATBARMSG ()..555
STATUSMESSAGE ()...556
STOD ()...557
STR ()..558
STRLEN () ..560
STRLEN2COL () ...561
STRLEN2PIX ()...562
STRLEN2SPACE () ..563
STRPEEK ()..564
STRPOKE () ...565
STRTRAN ()..566
STRZERO () ...568
STUFF () ...569
SUBSTR () ..571
TBCOLUMNNEW () ..572
TBROWSENEW () TBROWSEARR () TBROWSEDB ()..573
TBMOUSE ()...576
TEMPFILENAME ()...577
TEXTBOX ()..579
TEXTBOXNEW () ...580
TIME () ..581
TONE ()...583
TRANSFORM ()..584
TRIM () RTRIM () ..585
TRUEPATH () ...586
TYPE () ...587
UPDATED () ...589
UPPER () ..590
USED ()...591
USERSACTIVE () ...592
USERSDBF () ...594
USERSMAX () ..596
VAL () ..597
VALTYPE () ..598
VERSION () ..600

FUN 10

WARNBOX () ..602
WARNINGBOX ()..603
WebDate ()..604
WebErrorHandler () ..605
WebGetEnvir () ...606
WebGetFormData () ...607
WebHtmlBegin ()...609
WebHtmlEnd () ...610
WebLogErr () ..611
WebMailDomain () ..612
WebOutData ()..613
WebSendMail () ..614
WORD () ...616
YEAR ()...617
_DISPLARR () _DISPLARRSTD () _DISPLARRERR () ..618
_DISPLOBJ () _DISPLOBJSTD () _DISPLOBJERR () ..619
Index ...621

FUN 11

FlagShip Functions FUN

Notation Used
The syntax of the FlagShip functions is the same as in other xBase languages, such as
dBASE or Clipper. The FlagShip standard functions are included in FlagShip static or
dynamic libraries and will be automatically linked in as needed. The libraries are located

• for Unix/Linux in <FlagShip_dir>/lib/libFlagShip7nn.a, libFlagShip7nn.so
• for MS-Windows in <FlagShip_dir>/lib/FlagShip7nn.lib, FlagShip7nn.dll

Where <FlagShip_dir> is /usr/local/FlagShip7 on Linux or C:\Program Files\FlagShip7 on
MS-Windows.

The following notation is used throughout this manual:

Syntax:
return_val = FUNCT ()

or:
return_val := FUNCT (arg1 [, arg2 [, arg3]])

or:
FUNCT (arg1 [, arg2 [, arg3]])

return_val
The resulting return value, e.g. "retC" for returning a character or a string. If the
value is not needed, the assignment may be omitted.

retC, retN, retD, retL
Return value of type character, numeric, date or logical (see LNG.2.6..2.8).

retA, retS
Return value of type array or screen.

arg1...
The function arguments, sequentially numbered as arg1, arg2, ... The syntax used
for "arg" is generally "exp?" where "?" is the type of this argument, see below.

arg1[,arg2]
The optional arguments (here arg2) are enclosed in [] brackets. It is also possible
to combine more than one optional argument, such as ([arg1 [,arg2 [,arg3]]]). In
such cases, entering all items is optional. You may give (arg1) or (arg1, arg2) or
(arg1, arg2, arg3) or nothing at all (). To skip an argument, at least the comma ","
(or NIL and comma) must be entered, e.g. (arg1, , arg3) or (NIL, NIL, arg3). Do not
enter the [] brackets. See also LNG.2.3.2 and (CMD) PARAMETERS.

FUN 12

<item>
The text within angle brackets informs you which type of information you should
specify; not the item itself. Do not enter the brackets.

item [item ...]
The item may be entered more than once. Do not type the [] brackets.

[item]
The entry is optional, you may either specify it or not. Do not type the [] brackets.

[item1 [,item2]]
The entry of both item1 and item2 is optional, you may give item1 or item1,item2 or
nothing at all. Do not type the [] brackets themselves.

exp
Constant, variable or expression of any type.

expC, expN, expD, expL
Constant, variable or expression of type character, numeric, date or logical (see
LNG.2.8).

expA, expB ,varS
Constant or variable representing an array or a code block; variable of type screen.

Syntax:
The required syntax, keywords and arguments of the command. The ...─> mark
denotes, that the syntax part is continued on the next line.

Arguments/Options:
Explanation of the required or optional arguments.

Multiuser:
Where special or additional requirements or actions in the multi- user and/or multi-
tasking (or network) environment are necessary, they will be listed in this
paragraph.

Example:
Example of one or more function usage possibilities, put into the program context.

Compatibility:
The function syntax and return value have the same syntax as in other xBase
dialects, such as Clipper. If differences exist, they are noted here.

Include:
If a special #include file is available or affected (except the default std.fh), it will be
listed.

Related:
Equivalent, related or similar commands and functions.

FUN 13

COMMANDS, KEYWORDS and standard FUNCTIONS will be specified in this manual in
uppercase, but their case is disregarded during compilation.

FlagShip also supports any number of user defined functions (UDF) programmed in the
FlagShip (xBase) or C language, see LNG.2.3.2. The standard functions that follow are listed
in alphabetical order and may be used as a language reference. For a summary of the
standard functions, see sections QRF and LNG.

FUN 14

FUN 15

AADD ()
Syntax:

ret = AADD (expA1 [, exp2])
Purpose:

Adds a new element to the end of an array.

Arguments:
<expA1> is the array to add a new element to.

<exp2> is the value of any type assigned to the new element. If <exp2> is another
array, the new <expA1> element will contain a reference to it. If <exp2> is not
specified, NIL is assumed.

Returns:
<ret> is the evaluated value of <exp2>

Description:
AADD() is an array function that increases the actual length (of the first dimension)
by one. The newly created array element is assigned the value specified by
<exp2>.

AADD() is used to dynamically increase an array when required. A good example of
this is the GETLIST array used by the GET system to hold GET objects. The READ
or CLEAR GETS commands set the length to zero; any @..GET command adds a
new element, increasing the array length.

AADD() is similar to ASIZE(), which can increase or reduce an array to a specified
size; AADD(), however, can assign a value to the new element, while ASIZE()
cannot. The AINS() function is different from AADD(), since it moves elements
within an array, but it does not change the arrays length.

Example:
LOCAL arr1 := {}, arr2[3,2] // empty arrays
AADD (arr1, 5) // now: arr1[1]
AADD (arr2, {"text1", NIL}) // now: arr2[4,2]
? arr1[1], arr2[3,1], arr2[4,1] // 5 NIL text1

Classification:
programming

Compatibility:
Available in FS and C5 only.

Related:
AINS(), ASIZE()

FUN 16

ABS ()
Syntax:

retN = ABS (expN)
Purpose:

Returns the absolute value of a numeric expression.

Arguments:
<expN> is the numeric expression to evaluate.

Returns:
A positive numeric value, representing the absolute value of the argument.

Description:
If, as a result of some calculation, you need a positive number to express the
quantity, you can use ABS () to eliminate the negative sign.

Example:
a1 = 21
a2 = 35
? "The difference is ", ABS(a1-a2) // 14
? "The difference is ", ABS(a2-a1) // 14

Classification:
programming

Related:
MAX(), MIN()

FUN 17

ACHOICE ()
Syntax:

retN = ACHOICE (expN1, expN2, [expN3], [expN4],
axpA5, [expA6], [expC7], [expN8],
[expN9], [@exp10], [expL11], [expC12],
[expC13], [expCN14])

Purpose:
Displays an array of character strings in the form of a pop-up menu in a defined
window.

Arguments:
<expN1> is the topmost row window coordinate in the range from 0 to MAXROW()

<expN2> is the leftmost column window coordinate in the range from 0 to
MAXCOL()

<expA5> is the array of character strings to display. ACHOICE() displays the array
elements up to the first non-character element. If all array elements are character
strings, the whole array is displayed as menu items. You may specify hot-key for
every item by prefacing the selectable character by "&" or "\&" or "\<". Otherwise the
first character of the menu item is it hotkey.

Options:
<expN3> is the bottom row coordinate in the range from <expN1> +1 to
MAXROW(). If not given or is <= 0, the bottom row is calculated automatically from
the size of <expA5>. This auto-calculated row is set so, that more than 15 elements
or <expN3> greater than MaxRow() produces scrollable Achoice().

<expN4> is the right column coordinate in the range from <expN2> +1 to
MAXCOL(). If not given or is <= 0, the right window column is calculated
automatically from the text width in <expA5> considering the header or footer text
width, if such available.

<expA6> is an array of logical values, parallel to the array <expA5>. Its elements
specify the availability of <expA5> elements to be chosen. If the parallel element is
.F., the menu item with the same index is not available, and is painted in the
"unselected" color; the light-bar always skips over it. If all elements are unavailable
(.F.), ACHOICE() is in display mode, where there is no light-bar, and the cursor
keys scroll the display up and down.

The <expA6> can be specified as logical .T. or .F. value to enable or disable all
items of <expA5>. Also, the elements of the <expA6> array can be specified as
strings, whereby their macro evaluation must result in a logical value. If <expA6> is
not specified, .T. is assumed.

<expC7> is the name of a user-defined function. This function is executed every
time when an unrecognized key is pressed. The function name must be specified as

FUN 18

a character expression without parentheses or arguments. The behavior of
ACHOICE() is affected by the presence of this argument.

<expN8> is the index position in the <expA5> array, at which the light-bar is initially
placed. If not specified, the default is the first available item.

<expN9> is the initial relative position of the light-bar in the window, staring with 0.
If not specified, the default is the initial row of the initial choice element.

<@exp10> is a local or dynamic variable (passed by reference) holding the GUI
widget visible after processing Achoice(). The variable needs to be set to any value
!= NIL, an object will be assigned to. See also description below.

<expL11> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

<expC12> is optional header text, displayed above the Achoice() box. The text is
centered within the expN2..expN4 region. In Terminal i/o mode, the header text is
considered only when also <expC14> is specified, the text is displayed at the box
top line, <expN1> -1. In GUI mode, the header text is also displayed at line
<expN1> -1.

<expC13> is optional footer text, displayed below the Achoice() box. The text is
centered within the expN2..expN4 region, In Terminal i/o mode, the footer text is
considered only when also <expC14> is specified, the text is displayed at the box
bottom line <expN3>+1. In GUI mode, the footer text is also displayed below line
<expN3>.

<expCN14> is optional string of 8 or more characters containing the box frame
drawn in Terminal i/o around the Achoice(). You may use the B_* constants defined
in box.fh (e.g. B_PLAIN, B_SINGLE etc.). If <expC14> is given, the frame is drawn
at <expN1> -1, <expN2> -1, <expN3> +1, <expN4> +1 using the 3rd color pair. It
also includes the header <expC12> and footer <expC13> in the frame, if such are
specified. If <expC14> is not char and <expC12> or <expC13> is of type "C",
B_SINGLE is used as default. In GUI mode you may specify BOX_PLAIN,
BOX_SUNKEN, or BOX_RAISED, default is BOX_SUNKEN when <expC12> or
<expC13> is of type "C" and is not empty.

Returns:
A numerical value, representing the index of the chosen element in the <expA5>
array. If the selection process was aborted, ACHOICE() returns zero.

Description:
ACHOICE() is, in addition to the @..PROMPT/MENU TO command, another
possibility of creating various kinds of pop-up menus; see also LNG.5.2.4. When
ACHOICE() is executed, it displays the array items of <expA5> as a menu inside a
window defined by the coordinates. If the number of items is greater than the length
of the window, the window contents are scrolled each time you try to run the cursor
past its edge.

FUN 19

If a key is pressed, the default action for that key is executed, if available. Then, if a
UDF is specified, it is executed. ACHOICE() supports the following keys and
actions, but in dependence on the UDF specified:

Key Action with UDF
Cursor up ctrl-E Up one item yes
Cursor down ctrl-X Down one item yes
PgUp ctrl-R Previous window yes
PgDn ctrl-C Next window yes
Home ctrl-A First item in menu no
End ctrl-F Last item in menu no
ctrl-PgUp ctrl-- First item in menu yes
ctrl-PgDn ctrl-^ Last item in menu yes
ctrl-Home ctrl-] First item in window yes
ctrl-End ctrl-F Last item in window yes
Cursor <- ctrl-S Abort selection (*) no
Cursor -> ctrl-D Abort selection (*) no
Esc Abort selection no
Enter ctrl-M Select current item no
Hot-key Go to corresp. item (**yes) no
First letter Go to corresp. item (**yes) no
Space Select or search (***) no
Left-mouse double-click Select item (GUI) no
Left-mouse click Select item (GUI) (****) no

(*) The abort by cursor right/left is controlled by global variable
_aGlobSetting[GSET_L_ACHOICEABORTLR] which is per default .F. To achieve
FS4.48 and Clipper backward compatibility, assign .T. to it, or modify directly the
source file achoicehand.prg accordingly.

(**) The selection via hotkey and the first character in item text is available per
default (for backward compatibility) only without UDF. If you wish to make a
selection via hot-key or search for the first item letter even with UDF, assign .T. to
the global variable _aGlobSetting[GSET_L_ACHOICEUDFSEARCH] which default
is .F. See also section "hot-keys" below for behavior of SET CONFIRM ON/OFF.

(***) The space key usually handles same as Enter, i.e. it selects the current item.
You may change it by assigning .F. to the global variable _aGlobSetting[GSET_L_
ACHOICESPACESEL], it default is .T. Alternatively, you also may assign
oParam4:SelectBySpace := .F. in the UDF to hold this setting local to the current
Achoice(). When space select is enabled, the search for leading space in text is
disabled.

(****) Selecting an item by a single click on the left mouse button is enabled for GUI
mode and behaves same as double click, or as the Enter key. You may disable this
feature either by assigning .F. to the global variable _aGlobSetting[GSET_L_
ACHOICESINGLE], whereby it default is .T., or by assigning oParam4:SelectBy-
Single := .F. in the UDF to hold this setting local to the current Achoice().

FUN 20

A key redirection using SET KEY TO has preference over the above ACHOICE()
navigation keys.

You may freely modify the behavior of keyboard and mouse handling in the
achoicehand.prg file, available in source in the .../system directory, see it header for
compiling instruction.

The menu items are displayed in standard color, the light-bar in enhanced color,
and the unavailable items in the unselected color.

Note: pass local/private/public variable by reference as 10th parameter, if Achoice()
should remain visible after return or if the Achoice() is declared as "read-only". The
widget (achoice data) looses focus and visibility on exit from Achoice(). To let it
visible, either:

a) pass less than 10 parameters to Achoice() - this is the usual case for backward
compatible sources, the widget will be hold in a public variable _oAchoice
declared in initio.prg, or

b) pass any declared variable by references as 10th parameter which will hold the
widget, remaining visible for the variable visibility scope. This is required also if
you need more than one Achoice() visible at a time.

You may clear the widget at any time by assigning _oAchoice := NIL for alternative
(a), or by <exp10> := NIL for alternative (b) or via CLS, CLEAR SCREEN or @
r1,c1 CLEAR TO r2,c2 resp.

Tuning:
To disable run-time-error on empty array and return 0 (i.e. behave like Clipper), set
_aGlobSetting[GSET_L_ACHOICEIGNEMPTY] := .T. // default = .F.

If you wish to report all keys in mode 0 to UDF like Clipper, set
_aGlobSetting[GSET_L_ACHOICEALLKEYS] := .T. // default = .F.

You may disable the &x hot-keys (see below) by
_aGlobSetting[GSET_L_ACHOICEHOTKEY] := .F. // default = .T.

which will translate all "&" to "&&", hence the possibility of hot key definition by
prefacing the character with "\<" remains.

If you wish to abort Achoice() selection via Cursor right/left, set
_aGlobSetting[GSET_L_ACHOICEABORTLR] := .T. // default = .F.

You also may modify the Achoice() keyboard handler, see the source code in
<FlagShip_dir>/system/achoicehand.prg

If you wish to ignore current SET CONFIRM settings, use
_aGlobSetting[GSET_L_ACHOICECONFIRM] := .F. // default = .T.

If you wish to abort Achoice() via Cursor Right/Left, set
_aGlobSetting[GSET_L_ACHOICEABORTLR] := .T. // default = .F.

If the Space key should not behave same as Enter key, set
_aGlobSetting[GSET_L_ACHOICESPACESEL]:= .F. // default = .T.

FUN 21

If a single mouse click on item should not behave same as Enter, set
_aGlobSetting[GSET_L_ACHOICESINGLE] := .F. // default = .T.

If you are using UDF and wish to search for 1st character too, set
_aGlobSetting[GSET_L_ACHOICEUDFSEARCH] := .T. // default = .F.

If you don't wish to automatically adjust row/col in GUI mode, set
_aGlobSetting[GSET_G_L_LISTBOX_ADJ] := .F. // default = .T.

If the above adjustment is on (.T.), you may set the pixel values
_aGlobSetting[GSET_G_N_LISTBOX_TOP] := -2 // default
_aGlobSetting[GSET_G_N_LISTBOX_BOT] := 2 // default
_aGlobSetting[GSET_G_N_LISTBOX_LEFT] := -7 // default
_aGlobSetting[GSET_G_N_LISTBOX_RIGH] := 6 // default
_aGlobSetting[GSET_G_N_COMBO_HEIGHT] := 4 // default

In Terminal i/o mode, you may set
_aGlobSetting[GSET_T_L_ACHOICE_LBOX] := .F.

if you don't wish to use the extended functionality via ListBox object (the default is
.T. which enables the extend. functionality). The Achoice() will be slightly faster for
large arrays. In this case, parameters 10..14 are ignored and the UDF receives 3
arguments only (i.e. without the ListBox object). This setting is ignored in GUI
mode, where the ListBox class is always used.

Hot keys
Every first menu item character (case insensitive) is automatically a hot-key. The
item is then selected when the corresponding key is pressed. You may specify
other hot-key characters within the items text by prefacing the character by "&" or
"\&" or "\<". This kind of hot-key is then preferred over the first character. If you wish
to display ampersand "&" within the text, either use "&&" or add a space after the
ampersand. To disable the &x hotkey, see tuning. If an item was found, the
selection terminates when SET CONFIRM is OFF (the default), or requires
additional Return key press when SET CONFIRM is ON. This behavior corresponds
to selection in @..PROMPT/ MENU TO. However, you may disable this feature by
assigning
_aGlobSetting[GSET_L_ACHOICECONFIRM] := .F.

which then behaves same as Clipper and FlagShip 4.4x, where the search selection
needs to be confirmed by Return key. Alternatively you may freely modify the
behavior in the achoicehand.prg available in source code in the .../system directory.

Colors
In Terminal i/o, following color pairs (see SET COLOR) are used:

• unselected item STANDARD (1st color pair)
• unselected item's hotkey BACKGROUND (4th color pair)
• selected item ENHANCED (2nd color pair)
• un-selectable item UNSELECTED (5th color pair)
• border, header BORDER (3rd color pair)

FUN 22

UDF usage:
If a user-defined function UDF is specified by <expC7>, ACHOICE() processes only
a limited set of navigation keys automatically (see table above). All other keys
generate a key exception, which passes control to the UDF for handling. Control is
also passed to the UDF when there are no more keys to process (idle).

When ACHOICE() calls the UDF, four parameters are passed to it:

• the status mode,
• the current highlighted element number in <expA5>,
• its relative position in the menu window, and
• the ListBox object.

The first three parameters are compatible to FS 4.4x and Clipper.

The status mode is a number which reports the state of ACHOICE() just before
entering the UDF. This parameter can have the following values:

Mode achoice.fh Description
0 AC_IDLE Idle, no more key pressed
1 AC_HITTOP Cursor past the top of list
2 AC_HITBOTTOM Cursor past the end of array
3 AC_EXCEPT Exception key pressed
4 AC_NOITEM Display mode, no choice

The UDF usually performs some actions based on LASTKEY() or the status mode,
and returns a number to ACHOICE(), requesting appropriate action. Possible return
values from the UDF are:

Return achoice.fh Description
0 AC_ABORT Abort selection, return 0
1 AC_SELECT Return the no. of selected item
2 AC_CONT Continue ACHOICE selection
3 AC_GOTO Go to item with the 1st letter same as LASTKEY() value

When an UDF is given, the navigation keys are preprocessed by ACHOICE()
before the UDF is called with mode 0, 1 or 3. On all other keys, the UDF is first
called with the exception mode 3, the action returned from the UDF is executed and
the UDF is called again with mode 0, 1 or 2. Do not return 3 (AC_GOTO) in a mode
other than 3 (AC_EXCEPT), since an endless loop will occur.

When the UDF modifies the Achoice() items, it also need to refresh the underlayed
ListBox items by calling the <par4>:SetText(), see example 3 below.

Example 1: Displays field names
USE authors
DECLARE fnames[FCOUNT()]
AFIELDS(fnames)
@ 9,34 CLEAR TO 14,46
@ 9,34 TO 14,46 DOUBLE
ACHOICE (10, 35, 13, 45, fnames, .F.)

FUN 23

Example 2: Usage of the UDF in ACHOICE():
FUNCTION mainmenu (p1, p2, p3, p4)
LOCAL text := {"Add new data", "Edit record", ;

"Delete record", "Quit" }
LOCAL validentry[LEN(text)]
AFILL (validentry, .T.)
validentry[3] = "USED() .and. ! DELETED()"
RETURN ACHOICE (p1, p2, p3, p4, text, validentry, "myudf")

#include "achoice.fh"
#include "inkey.fh"

FUNCTION myudf (status, item, relrow, obj)
DO CASE
CASE status == AC_IDLE

@ 0,0 say TRANSFORM(DATE(), "99/99/99") + " " + TIME()
CASE status == AC_HITTOP

KEYBOARD CHR(K_CTRL_PGDN) // wrap to last element
CASE status == AC_HITBOTTOM

KEYBOARD CHR(K_CTRL_PGUP) // wrap to first element
CASE status == AC_EXCEPT

IF LASTKEY() >= ASC(" ")
RETURN AC_GOTO // goto item

ELSEIF LASTKEY() = K_RETURN
RETURN AC_SELECT // terminate ACHOICE

ELSEIF LASTKEY() = K_ESC
RETURN AC_ABORT // abort

ENDIF
ENDCASE
RETURN AC_CONT // continue ACHOICE

Example 3: Usage of the UDF in ACHOICE() which modifies the item's text:
LOCAL text := {"() item 1", "() item 2", ;

"() item 3", "() item 4" }

do while lastkey() != K_ESC
achoice(5,5,11,25,text,,"myUdf")

enddo
quit

FUNCTION myUdf(status, itemNum, relrow, obj)
local cItemText as character
local lOnOff as logic

if status == 3
/* on ENTER, mark item text () with (X) and vice versa
*/
if lastkey() = K_ENTER .and. valtype(obj) == "O"

cItemText := obj:GetText(itemNum) // get the item text
lOnOff := !empty(substr(cItemText,2,1))
cItemText := strpoke(cItemText, 2, asc(if(lOnOff, " ", "X")))
obj:SetText(itemNum, cItemText) // replace item text

endif
endif
return if(lastkey() == K_ESC, 0, 2)

FUN 24

Example 4:
// Multiple Achoice():
// a) remain them visible in the current UDF (i.e. during the
// visibility scope of Local variables) or until CLS, or
// b) remain them visible forever or until CLS:

local vHold1, vHold2 // a) Achoice()s remain visible in UDF
* public vHold1, vHold2 // b) Achoice()s remain visible forever

achoice(2,2,-1,-1, {"First","second","third"}, .F., ;
nil, nil, nil, nil, @vHold1, nil) // read-only

ret := achoice(2,32,NIL,NIL, {"First","second","third"}, .T., ;
nil, nil, nil, nil, @vHold2, nil) // selectable

Example 5:
Use frame, header and footer, auto-calculate

#include "box.fh"
set color to "W+/B,N/W,,,W+/R"
aTxt := {"&one", "&two", "\&three", "\>four", "fi&ve", "six"}
iSelect := Achoice(5, 10, , , aTxt, , , , , , , ;

"Header", "Footer", B_PLAIN)

Classification:
programming

Compatibility:
The 10th to 14th parameters are new in FS5. In Clipper, <expN3> and <expN4> are
mandatory and are not calculated automatically.

Include:
achoice.fh

Related:
@...PROMPT, MENU TO, @..GET LISTBOX, OBJ.ListBox, OBJ.ComboBox

FUN 25

ACLONE ()
Syntax:

retA = ACLONE (expA)
Purpose:

Duplicates any array, also a nested or multi-dimensional one.

Arguments:
<expA> is the array to duplicate.

Returns:
<retA> contains the duplicate of <expA>.

Description:
ACLONE() creates a complete duplicate of the given array, as opposed to the
assignment <retA> := <expA> which creates another entry point to the same
storage only.

ACLONE() is similar to ACOPY(), but the latter one does not duplicate nested
arrays.

Example:
LOCAL arr1 := {1,2,{3,4}}, arr2, arr3
arr2 := ACLONE (arr1)
arr3 := arr1
arr1[3,2] := 99
? arr1[3,2], arr2[3,2], arr3[3,2] // 99 4 99

Classification:
programming

Compatibility:
Available in FS and C5 only.

Related:
ACOPY(), ADEL(), AINS(), ASIZE(), OBJCLONE(), _DISPLARR()

FUN 26

ACOPY ()
Syntax:

retA = ACOPY (expA1, expA2, [expN3], [expN4],
[expN5])

Purpose:
Copies elements from one array to another.

Arguments:
<expA1> is the source array.

<expA2> is the target array. The array must already exist and be large enough to
hold the copied elements. Otherwise, some elements will not be copied.

Options:
<expN3> is the source array element from which to start copying. If omitted, the
default is 1.

<expN4> is the number of elements to be copied. If not specified, all elements from
<expA1>, starting with <expN3>, and up to LEN(<expA1>) are copied.

<expN5> is the starting element position in the target array <expA2> to receive
<expN4> elements from <expA1>. If omitted, the default is 1.

Returns:
<retA> is a reference to the target array <expA2>.

Description:
ACOPY() copies all, or the specified number of elements from the source array to
the target array. It copies values of all data types including NIL and references to
code blocks and objects. If an element of the source array is a sub-array, the
corresponding element in the target array will contain a reference to the sub-array.
Thus, ACOPY() will not create a complete duplicate of a multi-dimensional array, as
opposed to the ACLONE() function.

Example:
LOCAL arr1 := {9, 8, 7}, arr2 := {"a", "b", "c", "d"}
ACOPY (arr1, arr2, 2, 2, 3)
AEVAL (arr2, {|par| QQOUT(par)}) // a b 8 7

Classification:
programming

Related:
ACLONE(), ADEL(), AEVAL(), AFILL(), AINS(), ASCAN(), ASORT()

FUN 27

ADEL ()
Syntax:

retA = ADEL (expA1, expN2)
Purpose:

Deletes the specified array element, leaving the array size unchanged.

Arguments:
<expA1> is the target array to delete an element from.

<expN2> is the element number to be deleted.

Returns:
<retA> is a reference to the target array <expA1>.

Description:
When the specified array element is deleted, all elements from the deleted one to
the end of the array are shifted up one position, and the last element becomes NIL.

If the deleted element of the target array is a reference to an sub-array (such as a
nested or multi-dimensional array), the reference is lost; see also example and
LNG.2.6.4.

Example:
DECLARE testarr[10], twodim[4,3]
FOR i = 1 TO 10

testarr[i] = i
NEXT
? testarr[5] && 5
ADEL (testarr, 5)
? testarr[5], testarr[10] && 6 NIL

AFILL (twodim[3], 99) // [1,..]: NIL NIL NIL
AFILL (twodim[4], 11) // [2,..]: NIL NIL NIL
* [3,..]: 99 99 99
* [4,..]: 11 11 11

ADEL (twodim, 2) // now: asymmetric
* [1,..]: NIL NIL NIL
* [2,..]: 99 99 99
* [3,..]: 11 11 11
* [4] : NIL

twodim[4] := {44, 55, 66} // now: symmetric again
? twodim[4,2], twodim[2,2] // 55 99
* [3,..]: 11 11 11
* [4,..]: 44 55 66

Classification:
programming

Related:
ACOPY(), ACLONE(), AFILL(), AINS(), LEN()

FUN 28

ADIR ()
Syntax:

retN = ADIR ([expC1], [expA2], [expA3], [expA4],
[expA5], [expA6], [expA7], [expA8],
[expA9], [expA10])

Purpose:
Fills the specified array(s) with directory information about files and return(s) the
number of files matching the wildcard pattern.

Options:
<expC1> is the standard UNIX wildcard pattern used to select files. It can include a
path. Wildcard characters "?", "*" (and on Unix regular expression like "[...]") can be
used. The default pattern is "*.*" for the current directory.

<expA2> is an existing array to be filled with file names matching the skeleton
<expC1>. The resulting file names abide to the UNIX convention (upper/lowercase),
similar to the ls -l or DIR output, but are not sorted. On MS-Windows, the file name
is reported as passed from the system, but the case is irrelevant. Only the file part,
without the path is stored in the array element.

<expA3> is an existing array to be filled with the sizes of files in <expA2> given as
byte count. The elements are of numeric type.

<expA4> is an existing array to be filled with the modification dates of the files.
Each element is of date type.

<expA5> is an existing array to be filled with the modification times of the files.
The elements are of character type in a format of "HH:MM:SS".

<expA6> is an existing array to be filled with the UNIX or MS-Windows file
attributes. The elements are of character type. On Unix, the access rights known
from "ls -la", i.e. "drwxrwxrwx" for directory or "-rwxrwxrwx" for files are reported,
where each "rwx" group is for user, group and others' permission. On MS-Windows,
a combination of R (read only), H (hidden), S (system), D (directory) and A (archive)
or "" for regular file is reported.

<expA7> is an existing array to be filled with the numbers of links to the files. Each
element is numeric (or NIL in MS-Windows when the file has insufficient access
rights).

<expA8> is an existing array to be filled with the inode numbers of the files. Each
element is numeric (or NIL in MS-Windows when the file has insufficient access
rights, otherwise the unique file index number is returned).

<expA9> is an existing array to be filled with the owner names of the files. The
array elements are of character type in upper/lowercase (or NIL on MS-Windows
where this information is not available). See note.

FUN 29

<expA10> is an existing array to be filled with the group names of the files. The
array elements are of character type in upper/lowercase (or NIL on MS-Windows
where this information is not available). See note.

If not all information about the files is required, pass dummy NIL arguments, or
comma only for any array you wish to skip.

Note: When the identification of owner and group names is not required, omit
specifying <expA9> and <expA10>, to gain on execution speed in Unix. In MS-
Windows, omitting <expA7> and <expA8> will speed-up the execution.

Returns:
<retN> is a numeric value, representing the number of files matching the directory
skeleton.

Description:
ADIR () fills the specified arrays with the directory information about the files that
matched the wildcard pattern, very similar to the UNIX command ls -l or DIR on MS-
Windows. The arrays are filled until there are no more files, or there are no more
array elements to fill. This means that ADIR() won't complain if any array are not big
enough.

The best way to use ADIR() is to first find out how many files there are which match
the pattern, then to declare arrays of the returned length. These arrays can then be
filled with the directory information and be displayed and given for choosing files via
ACHOICE().

If the <expA6> array is not specified, directories are not included in the search. If
<expA6> is specified, also "." and ".." for the current and parent directories are
reported in <expA2>.

Note: The similar DIRECTORY() function creates multi-dimensional array of a
variable size, which is mostly easier to handle.

Example:
count = ADIR("*.c")
IF count = 0

RETURN
ENDIF
DECLARE files[count], owners[count]
ADIR("*.c", files, , , , , , , owners)

Classification:
programming, file access

Compatibility:
Due to the structure of UNIX directories, you can obtain more information on files.
ADIR () defaults to Clipper's ADIR () but with the difference that file attributes which
are not the same in UNIX and MSDOS. <expA7> to <expA10> are available in
FlagShip only. Note also the upper/lowercase in <expA2>, <expA6>, <expA9> and
<expA10>.

Related: DIRECTORY(), ACOPY(), ACHOICE(), ADEL(), AFIELDS(), AFILL(), AINS(),
ASCAN(), ASORT(), LEN(), UNIX: man ls

FUN 30

AELEMTYPE ()
Syntax 1:

retL = AElemType (expA1, expC2)
Syntax 2:

retC = AElemType (expA1)
Purpose:

Check if all array elements are of type <expC2> or return a string with Valtype()s
used in array elements (once per variable type)

Arguments:
<expA1> is the array to traverse.

<expC2> is the type (C/D/N/I/A/L/U) which all array elements should have

Returns:
<retL> in syntax 1 if the check succeeds.

<retC> in syntax 2 containing all used element types.

Classification:
programming

Compatibility:
New in FS5.

Related:
AEVAL(), VALTYPE()

FUN 31

AEVAL ()
Syntax:

retA = AEVAL (expA1, expB2, [expN3], [expN4])
Purpose:

Executes a code block for each element in an array.

Arguments:
<expA1> is the array to traverse.

<expB2> is a code block to execute for each element encountered. The code block
parameter list may contain one or more parameters <par1 [, par2 [, ...parN]]>, e.g.

aeval(myArr, { | elem | QOUT(elem) })
or

aeval(myArr, { | elem, pos | ;
QOUT("myArr[" + LTRIM(pos) + "]=", elem) }

During the AEVAL() process, the first parameter <par1> is replaced by content of
each array element within the given scope. If more than one parameter in the code
block parameter list was specified, the second parameter <par2> is replaced by the
current array index, i.e. 1..len(expA1) or <expN3>..<expN4> respectively. If the
code block parameter list contain more than two parameters, the third and following
parameters may be used for local variables in the code block body and remain
unchanged by AEVAL() self.

Options:
<expN3> is the starting element. If not specified, the default is one (1).

<expN4> is the number of elements to process from <expN3>. If not specified, the
default is all elements in the array = LEN(expA1).

Returns:
<retA> is a reference to the array <expA1>.

Description:
AEVAL() repeats the evaluation of a code block once for each element of an array,
passing the element and reference index as a block parameter in the array. The
return value of the block is ignored. All elements in <expA1> are processed unless
the start element or the count is specified.

AEVAL() is similar to DBEVAL() which applies a block to each record of a database.
Both can be used as a primitive for the construction of iteration commands for both
simple and complex array structures.

FUN 32

Example:
// List a multi-dimensional array:

LOCAL arr1 := {1, "aa", {3, NIL, 4}, DATE()}, no := 0
LOCAL blk1 := {|elem| IF (VALTYPE(elem) == "A", ;

(QOUT (++no, ":"), ;
AEVAL(elem, {|subelem| QQOUT(subelem)}) ;
), QOUT (++no, ":", elem))}

AEVAL (arr1, blk1) // multi-dimens.
AEVAL (arr1, {|param| QOUT(param)}, 1, 2) // single-dimens

Classification:
programming

Compatibility:
Available in FS and C5 only. The support of second code block parameter is
available in FlagShip only.

Related:
EVAL(), DBEVAL(), LNG.2.3.3

FUN 33

AFIELDS ()
Syntax:

retN = AFIELDS ([expA1], [expA2], [expA3],
[expA4])

Purpose:
Fill specified array(s) with information about the structure of the current database
file.

Arguments:
<expA1> is the array to be filled with field names of the current database file. All
elements of the array are character strings in uppercase, without trailing spaces.

<expA2> is the array to be filled with field types of the current database. All
elements of the array are single characters C, N, D, L, M in uppercase.

<expA3> is the array to be filled with field lengths of the current database. The
elements are of numeric type.

<expA4> is the array to be filled with numbers of decimal places of the current
database fields. The elements are of numeric type. For fields that are not numeric,
corresponding array elements contain zeros.

Returns:
<retN> is a number, representing the FCOUNT() of the current database, or the
LEN() of the shortest array filled, whichever is less. If no arguments are specified,
zero is returned.

Description:
AFIELDS () fills the specified arrays with the field information about the current
database. If a database file is not in use, zero is returned. Instead of AFIELDS(), the
more convenient DBSTRUCT() function can be used.

Example:
USE article
DECLARE fld_name[FCOUNT()], fld_type[FCOUNT()], ;

fld_info[FCOUNT()]
AFIELDS(fld_name, fld_type)
FOR i = 1 TO FCOUNT()

? fld_info[i] := fld_name[i] + " " + fld_type[i]
NEXT

Classification:
programming, database

Related:
DBSTRUCT(), DBCREATE(), ADIR(), FCOUNT(), FIELDNAME()

FUN 34

AFILL ()
Syntax:

retA = AFILL (expA1, exp2, [expN3], [expN4])
Purpose:

Fills the specified one-dimensional array or the specified dimension of a multi-
dimensional array with the value selected. To fill all elements of multi-dimensional
or nested array by specified value, use AFILLALL() instead.

Arguments:
<expA1> is the array to be filled. With multi-dimensional arrays, enter the
(dimension -1) to be filled or use AFILLALL().

<exp2> is an expression of any type (including an other array), the value (or
reference) of which will be put in the specified array elements. The <exp2> is
evaluated at the beginning of the operation, so it is possible to fill all elements with
the same value.

Options:
<expN3> is the first element number to be filled. If not specified, the default is 1.

<expN4> is the number of elements to be filled, starting from the element <expN3>.
If not specified, this argument defaults to all elements, starting from <expN3> to the
end of the array.

Returns:
<retA> is a reference to the target array <expA1>.

Description:
AFILL() fills the specified array with a single value of any data type (including an
array, code block, or NIL).

Example:
// Fills 5 elements starting with the second element.

LOCAL dates[10], twodim[3,6], fourdim[2,5,3,9]
AFILL (dates, 0) // preset all
AFILL (dates, date(), 2, 5) // fill array range

AFILL (twodim [2], 99) // twodim [2,1...6]
AFILL (fourdim[1,3,2], 0) // fourdim[1,3,2,1...9]

Classification:
programming

Related:
AADD(), ACOPY(), ACLONE(), AEVAL(), AFILLALL()

FUN 35

AFILLALL ()
Syntax:

retA = AFILLALL (expA1, exp2)
Purpose:

Fills all elements of one-dimensional, multi-dimensional or nested array with the
specified value.

Arguments:
<expA1> is the array to be filled.

<exp2> is an expression of any type (except an array, object or code block), the
value of which will be put in all elements of the <expA1> array.

Returns:
<retA> is a reference to the target array <expA1>.

Description:
AFILLALL() is similar to AFILL() but supports also multi-dimensional and nested
arrays. It fills elements of the specified array with a single value of any simple data
type, including NIL.

Elements already containing object, code block or variable of type "special" are
ignored (i.e. these elements will not be overwritten).

Example:
LOCAL onedim[10], twodim[3,6], fourdim[2,5,3,9]
AFILLALL (onedim, 0) // set all 10 elements to zero
AFILLALL (twodim, date()) // set all 3x6=18 elem. to curr.date
AFILLALL (fourdim, seconds()) // all 270 elem. contain same value

Classification:
programming

Compatibility:
new in FS6, not available in Clipper

Related:
AADD(), ACOPY(), ACLONE(), AEVAL(), AFILL()

FUN 36

AINS ()
Syntax:

retA = AINS (expA1, expN2)
Purpose:

Inserts a NIL element into a one-dimensional array, or into the specified dimension
of a multi-dimensional array, leaving the array size unchanged.

Arguments:
<expA1> is the target array in which the new element is to be inserted. With multi-
dimensional arrays, enter the (dimension -1) to be changed.

<expN2> is the position where the new element is to be inserted.

Returns:
<retA> is a reference to the target array <expA1>.

Description:
AINS() inserts a NIL element into the array at the position <expN2>, shifting the rest
of the array elements by one position, beginning with the former element <expN2>.
The last element is discarded.

When AINS() is issued on a multi-dimensional symmetrical array, the symmetry will
be lost, but can be restored by the program, see example.

Example:
LOCAL arr[10], twodim[4,3]
FOR i = 1 TO 10

arr[i] = i
NEXT
? arr[5], arr[6], arr[10] // 5 6 10
AINS(arr, 5)
? arr[5], arr[6], arr[10] // NIL 5 9

AFILL (twodim[2], 33) // [2,n]: 33 33 33
AINS (twodim[2], 2) // [2,n]: 33 NIL 33

AINS (twodim, 2) // [1,n]: NIL NIL NIL
// [2] : NIL
// [3,n]: 33 NIL 33

twodim[2] := {11, 22, NIL} // [1,n]: NIL NIL NIL
// [2,n]: 11 22 NIL
// [3,n]: 33 NIL 33

Classification:
programming

Related:
AADD(), ADEL(), ACOPY(), ACLONE(), AFILL(), ASIZE(), AEVAL()

FUN 37

ALERT ()
Syntax:

retN = ALERT (expC1, [expA2], [expC3], [expC4],
[expN5], [expC6], [expN7])

Purpose:
Displays a simple modal dialog box.

Arguments:
<expC1> is the message shown centered (in Terminal i/o mode) and left justified in
GUI mode within the alert box. You may split the text in several lines by using either
";" (semicolon) or "\n" or chr(10) character(s). If you need to display semicolon,
use "\;". To insert an empty line, use "; ;" or ";;". If the argument is omitted, no
text is displayed. See below for special adjustments and tuning.

Options:
<expA2> defines a list of possible responses to the dialog box. If not specified, a
single "OK" option is presented. In GUI mode, max 3 response options are
supported, the rest is ignored.

<expC3> defines the color specification. The default setting is IF(ISCOLOR(),
"W+/R,W+/B","W+/N,I")). Significant are pairs 1 and 2, see SET COLOR for further
details. Ignored in GUI.

<expC4> defines the border characters (8 characters). The default setting is taken
from _aGlobSetting[GSET_T_C_ALERTBOX], see below. Considered in Terminal
i/o mode only, ignored otherwise.

<expN5> defines the icon type, see MBOX_* in dialog.fh. The default is
MBOX_WARNING. Apply for GUI mode only, ignored otherwise.

<expC6> is a string with the box capture/header.

<expN7> is the number of default button in range 1..len(<expA2>). If not specified,
1 is the default. Apply for GUI only.

Returns:
<retN> is a numeric value indicating which option was chosen. If the ESC key is
pressed, zero is returned.

Description:
The ALERT() function creates a simple modal dialog. It is useful in error handlers
and other "pause" functions. The user can respond by moving a highlight bar and
pressing the RETURN or SPACE keys, or by pressing the key corresponding to the
first letter of the option, similar to MENU TO. SET KEY is not active.

The Alert() function is based on the MessageBox and WarningBox class, which
provides additional functionality. Alternative functions are TextBox(), InfoBox(),
ErrBox() and WarnBox().

FUN 38

In GUI mode, warning icon (yellow triangle with exclamation mark) is displayed.

In Terminal i/o mode, the border is displayed per default in plain ASCII characters
(+---+) specified as B_PLAIN in box.fh. This avoid confusion when an error
message is displayed with incorrect TERM setting. You may freely change this
behavior, i.e. set the display to single or double semi-graphic border characters, by
either:

a) using the 4th parameter, or
b) including the line

#include "fspreset.fh"
at the begin of your main program - which auto invokes (c), or

c) assign somewhere, e.g. at the begin of your application
_aGlobSetting[GSET_T_C_ERRBOX] := B_DOUBLE
_aGlobSetting[GSET_T_C_ALERTBOX] := B_SINGLE
which are pre-defined as B_PLAIN in .../system/initio.prg, where
the P_PLAIN, B_SINGLE or other B_* box define's are specified in
the .../include/box.fh file.

When Alert() is invoked in a by Wopen() created sub-window, and this sub-window
is too small to display the message, such Alert() will be displayed in separate pop-
up window.

In GUI mode, the InfoBox() or ErrBox() is used automatically instead.

Alignment and Tuning:
The default alignment is left justified in GUI and centered in Terminal i/o mode. You
may override this defaults by assigning
_aGlobSetting[GSET_G_N_ALERT_ALIGN] := numValue // default = 0

where <numValue> = 0: default alignment, 1: left justify, 2: center, 3: right justify.
Every single line can additionally be individually aligned by three special characters
at the line begin (i.e. after the ";" or "\n" line separator): "<<!" align left, ">>!" align
right, "><!" or "<>!" to center this line, e.g.
alert("><!centered;<<!left;>>!right;default")

Of course, these special marker are filtered out from the text. See example in
<FlagShip_dir>/system/memoedithand.prg

If the line is too long, it is automatically wrapped. In GUI mode, you may specify the
maximal text width and height (in pixel) by assigning
_aGlobSetting[GSET_G_N_ALERT_WIDTH] := nPix // default = 0
_aGlobSetting[GSET_G_N_ALERT_HEIGHT] := nPix // default = 0

or <nPix> = 0: adjust/fit box to current window size, or <nPix> = -1: adjust/fit box to
desktop size. In GUI mode, the default font oApplic:FontWindow is used, except
you specify your own font object by assigning
_aGlobSetting[GSET_G_O_ALERT_FONT] := oFont|NIL // def = NIL

In Terminal i/o mode, the displayed box and wrapping is adjusted automatically
according to MaxCol() and MaxRow().

FUN 39

Example:
alert("hello world")

Example:
LOCAL myopt := {"retry", "main menu", "quit"}
LOCAL dbname := "address", choice, answ
DO WHILE .T.

BEGIN SEQUENCE
choice := mymenu() // your main menu
USE (dbname) SHARED NEW
WHILE !used()

answ := ALERT("Access denied;file: "+dbname+".dbf", myopt)
IF answ == 0 .OR. answ == 3

QUIT
ELSEIF answ == 2

BREAK
ENDIF
USE (dbname) SHARED NEW

ENDDO
END // sequence

ENDDO

Classification:
programming

Compatibility:
Available in FS and C5 (two parameters) only.

Related:
InfoBox(), ErrBox(), TextBox(), WarnBox(), @...PROMPT, MENU TO, ACHOICE(),
@..GET, READ, HELP(), OBJ.MessageBox

FUN 40

ALIAS ()
Syntax:

retC = ALIAS ([expN])
Purpose:

Obtains the alias name of the specified working area.

Arguments:
<expN> is the number of the specified working area.

Returns:
<retC> is the alias name of the specified working area in uppercase. If no argument
is specified, the alias of the current working area is returned. If no database file is in
use, a null string "" is returned.

Description:
ALIAS() is used to determine the alias name of a specified working area. The alias
name is assigned to the working area by the USE command or the DBUSEAREA()
function. ALIAS() is the inverse of the SELECT() function; whereby SELECT()
returns the working area number given the alias name.

Multiuser:
When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Example:
USE article NEW
? ALIAS(), SELECT() && ARTICLE 1
SELECT 0
USE magazine ALIAS Mag
? ALIAS (), ALIAS (1) && MAG ARTICLE
? SELECT(), SELECT("article") && 2 1

Classification:
database

Related:
SELECT, SELECT(), USE, DBUSEAREA(), oRdd:Alias

FUN 41

ALLTRIM ()
Syntax:

retC = ALLTRIM (expC|expN)
Purpose:

Removes all leading and trailing spaces from a string.

Arguments:
<expC> is the character string to be trimmed. <expN> is a numeric value converted
to string first before trimmed.

Returns:
<retC> is the resulting string, with all leading and trailing blanks removed.

Description:
ALLTRIM(expC) has the same effect as LTRIM (TRIM (expC)).

The inverse of ALLTRIM(), LTRIM(), and RTRIM() are the PADC(), PADR(), and
PADL() functions which center, right-justify, or left- justify strings.

Example:
LOCAL str1 := " my string "
? "[" + ALLTRIM(str1) + "]" // [my string]
? "[" + TRIM (str1) + "]" // [my string]
? "[" + LTRIM(str1) + "]" // [my string]

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default. The numeric parameter is supported
by FlagShip only

Related:
LTRIM(), TRIM(), RTRIM(), PADC(), PADR(), PADL(), FS2:RemAll()

FUN 42

ALTD ()
Syntax:

NIL = ALTD ([expN])
Purpose:

Activates the FlagShip Debugger, if the compiler switch -nd was not specified, or
enables/disables the use of the Ctrl-O key to invoke it by the user.

Arguments:
<expN> sets the Debugger activation state:

expN Action
None Invokes the Debugger if it is enabled
0 Disables the Ctrl-O key
1 Enables the Ctrl-O key
2 Enables the Ctrl-O key and invokes debugger
Other No action

Returns:
ALTD() has no return value.

Description:
The reason Ctrl-O is used instead of Alt-D in the DOS dialects is that not all
terminals operating under UNIX applications support the ALT key. The Ctrl-O /
debug-key can be set or changed by the FS_SET("debug") function. In FlagShip for
Windows, the debug key is disabled by default (performance), you need to activate
it by e.g. FS_SET("debug", K_CTRL_O)

If the application is running in GUI mode, you will need to compile with the -d switch
to enable the source-code debugger and hence the Altd() and Ctrl-O trapping. In
terminal i/o mode, you may invoke the debugger by Altd() or Ctrl-O key press also
when compiled w/o the -d switch, see further details in sections FSC.1.3 and
FSC.5.

Note that, if you write your own debugger.prg and link it with your applications, it will
take precedence over FlagShip's Debugger.

Classification:
programming

Related:
FS_SET(), SET ESCAPE, SETCANCEL(), sections FSC.1.3, FSC.5

FUN 43

ANSI2OEM ()
Syntax:

retC = Ansi2oem (<expC1>, [<expL2>], [<expC3>])
Syntax 2:

retC = AnsiToOem (<expC1>, [<expL2>], [<expC3>])
Purpose:

convert <expC1> string from ISO/ANSI character set to PC8/ASCII/OEM character
set, accepts embedded \0 bytes

Arguments:
<expC1> is the character string to be converted.

<expL2> if .F. or not given, the translation should be "as close as possible" for
ANSI characters not in PC8 charset. If .T., all unknown characters are replaced by
<expC3>

<expC3> replacement for unknown/untranslatable chars, default is '?'

Returns:
<retC> is the resulting, translated string

Description:
The ISO/ANSI character set differs to PC8/ASCII/OEM for nearly all character
values > 127. So is e.g. a-umlaut chr(132) in ASCII/PC8 set, but chr(228) in
ISO/ANSI.

The used character set depends on the TERM setting (in Terminal i/o) or is per
default ANSI/ISO in GUI mode. The PC8 char set is used in DOS and in Terminal
i/o FS applications, the ANSI us used by X11 and Windows.

The inverse of Ansi2Oem() is Oem2Ansi(). Both functions are used in automatic
database access/assign with SET ANSI ON.

Classification:
programming

Example:
see <FlagShip_dir>/examples/umlauts.prg for complete examples

Compatibility:
New in FS5

Related:
Oem2Ansi(), SET ANSI

FUN 44

APPIOMODE ()
Syntax:

retC = AppIoMode ()
Purpose:

return the Application type (run-time type)

Returns:
<retC> is "G" for application running in GUI mode, "T" for application using Terminal
i/o, "B" for Basic mode.

Description:
The type of application is set either at compile/link time by using the "FlagShip
... -io=g|t|b" switch, or at run-time when a hybrid application was created by
using the -io=a compiler switch, or the -io= switch was not given at all. The run-
time mode is determined from the used environment, or set by command-line
switch -io=g|t|b passed to the executable. See also initio.prg for details.

To determine whether the X11 server is available and running, use IsGuiMode()

Example:
static aMode := {{"G","GUI"},{"T","Terminal"},{"B","Basic"}}
local cMode := aMode[ascan(aMode, {|x| x[1] == AppIoMode()}), 2]
wait "The application is running in " + cMode + " i/o mode ..."

Example:
if AppIoMode() == "G"

SET GUITRANSL TEXT ON // draw PC8 semi-graphic char set
SET GUITRANSL LINES ON // draw @..TO.. using PC8 charset
SET GUITRANSL BOX ON // draw @..BOX using PC8 charset
SET GUICOLOR ON // use colors also for GUI mode

endif

Classification:
programming

Compatibility:
New in FS5

Related:
IsGuiMode(), system/initio.prg, FSC -io=? switch

FUN 45

APPMDIMODE ()
Syntax:

retL = AppMdiMode ()
Purpose:

determine whether the application is instantiated as MDI (Multiple Document
Interface) or SDI (Single Document Interface), the default.

Returns:
<retL> is true (.T.) if the application is running in MDI mode or false (.F.) otherwise.

Description:
The MDI application mode can either be set automatically by the -mdi compiler
switch at link stage, or manually in initio.prg at instantiating of _gAppWindow{}
class. The MDI mode apply for GUI based application only.

Classification:
programming

Compatibility:
New in FS5

Related:
system/initio.prg

FUN 46

APPOBJECT ()
Syntax:

retO = AppObject ()
Purpose:

return the Application object or NIL

Returns:
<retO> is the Application object or NIL

Description:
This function is equivalent to access to the constant "oApplic" but it checks the
availability, i.e. if the application was already created. See also initio.prg source for
details.

Classification:
programming

Compatibility:
New in FS5

Related:
system/initio.prg

FUN 47

ARRAY ()
Syntax:

retA = ARRAY (expN1 [,expN2 [,expN3 ...]])
Purpose:

Creates an un-initialized one or multi-dimensional, symmetrical array of specified
length.

Arguments:
<expN1> is the number of elements in the first dimension. In FlagShip the
maximum number of elements in a dimension is 65535.

Options:
<expN2..> is the number of elements in the second, third etc. dimension. In
FlagShip, up to 65535 dimensions are supported.

Returns:
<retA> is the created array of specified dimensions, filled by NIL elements.

Description:
ARRAY() creates one or more multidimensional arrays, filled by NIL. It is similar to
the declaration statement LOCAL, STATIC or PRIVATE or the DECLARE
command, e.g.: LOCAL arr1 [expN1], arr2 [expN1,expN2,expN3]

Another option is assigning a literal array to the (declared) variable, e.g.: arr3 :=
{1,2,3}.

ARRAY() has the advantage that the array can be created within expressions or
code blocks. Also, the array copy functions ACOPY() and ACLONE() will create
new arrays. See also LNG.2.6.4 - LNG.2.7.

Example:
All the array declarations are equivalent:

LOCAL arr1 [3], arr2 := {NIL, NIL, NIL}, arr3
arr3 := ARRAY (3)

PRIVATE arr4 [2,2], arr5 := {{NIL, NIL},{NIL, NIL}}, arr6
arr6 := ARRAY (2,2)

Classification:
programming

Compatibility:
Available in FS and C5 only.

Related:
ACLONE(), ACOPY(), AADD(), AFILL(), AINS(), ADEL(), DECLARE, LOCAL,
STATIC, PRIVATE, PUBLIC

FUN 48

ASC ()
Syntax:

retN = ASC (expC)
Purpose:

Takes the leftmost character of a character expression and returns its ASCII value.

Arguments:
<expC> is a character or string expression for which the ASCII value is returned.

Returns:
<retN> is a numeric value in the range of zero to 255, representing the first
character of <expC>. For null string "", zero is returned.

Description:
The ASC() function is used if numeric calculations on a character are required. The
reverse operation of ASC() is CHR().

Example:
? ASC("Article") && 65
? ASC(SUBSTR("Article",2)) && 134
? ASC("") && 0
? ASC("z") - ASC("c") && 23

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
CHR(), INKEY(), STR(), VAL()

FUN 49

ASCAN ()
Syntax:

retN = ASCAN (expA1, exp2 [,expN3 [,expN4]])
Purpose:

Seeks a specified value in an array.

Arguments:
<expA1> is the target array to scan.

<exp2> is an expression of any type, the value of which is to be located in the
array. A code block can also be specified.

Options:
<expN3> is the first element to be scanned. If not specified, the default starting
position is 1.

<expN4> is the number of elements to be scanned, counting from the array
element <expN3>. If not specified, all elements starting from <expN3> to the end of
the array are scanned.

Returns:
<retN> is a numeric value, representing the number of the first matching element,
or zero if a match is not found. If <exp2> is a code block, <retN> is the position of
the element where the block returned TRUE.

Description:
ASCAN() operates like SEEK when searching for a simple value in an array.

On strings beginning with the leftmost character in the target element the <exp2>
value is compared to the target array element, proceeding until there are no more
characters left in the <exp2> string. If there is no match, ASCAN() proceeds to the
next element in the array.

<exp2> is tested against array elements character by character until the end of
<exp2>. If characters are matched up to this point, the search is considered
successful, otherwise ASCAN() proceeds to the next element of the array. Since
ASCAN() uses the equal (=) operator for comparisons, it is sensitive to the status of
SET EXACT, see LNG.2.9.

If the <exp2> is a code block, ASCAN() passes the element value to the code block
parameter, and then performs an EVAL() on the block. If the code block return
FALSE, the operation is repeated with the next element; otherwise, the current
element number is returned.

In FlagShip, the sorting order can be changed to any required human language
using FS_SET("setlang").

FUN 50

Example:
Scan for a single value or use code block to perform a case insensitive search.

LOCAL months := {"Jan","Feb","Mar","Apr","May","Jun", ;
"Jul","Aug","Sep","Oct","Nov","Dec"}

LOCAL block

elem = ASCAN(months, "Ju") && 6
elem = ASCAN(months, "Jul") && 7
elem = ASCAN(months, "Jul ") && 0

block := {|par| UPPER(par) == ;
UPPER(SUBSTR(CMONTH(actdate),1,3)) }

actdate = DATE()
? ASCAN (months, block) && 8

Example:
Scan a multi-dimensional array:

#include "directry.fh"

dir := DIRECTORY ("*.*")
pos := ASCAN (dir, {|x| x[F_NAME] == "address.dbf" })
IF pos > 0

? dir[pos, F_NAME], "size=", dir[pos, F_SIZE], ;
"date=", dir[pos, F_DATE]

ENDIF

Classification:
programming

Compatibility:
The usage of code blocks is new in FS4. The usage of any user- defined sorting
order is available in FlagShip only.

Related:
ACHOICE(), ACOPY(), ADEL(), ADIR(), AFILL(), AFIELDS(), AINS(), ASORT(),
LEN(), SEEK, FS_SET("setlang")

FUN 51

ASIZE ()
Syntax:

retA = ASIZE (expA1, expN2)
Purpose:

Increase or reduce (resize) an array.

Arguments:
<expA1> is the target array to resize.

Options:
<expN1> is the new size of the array.

Returns:
<retA> is a reference to the target array <expA1>.

Description:
ASIZE() changes the actual length of the one-dimensional target array by
shortening or lengthening it to match the specified length of <expN1>. If the array is
reduced, elements at the end of the array are lost. When increasing the target
array, new NIL elements are added to the end of the array.

Increasing ASIZE() is similar to AADD(). It is different from AINS() and ADEL()
functions, which do not change the array length.

Example:
LOCAL arr1 := {1,2}, arr2[0]
ASIZE (arr1, 4) // 1, 2, NIL, NIL
ASIZE (arr1, 1) // 1
ASIZE (arr2, 5) // NIL, NIL, NIL, NIL, NIL

Classification:
programming

Compatibility:
Available in FS and C5 only.

Related:
AADD(), AFILL(), AINS(), ADEL()

FUN 52

ASORT ()
Syntax:

retA = ASORT (expA1, [expN2], [expN3], [expB4])
Purpose:

Sorts the elements of an array in any order.

Arguments:
<expA1> is the target array to sort.

Options:
<expN2> is the position of the first element to be sorted. If not specified, the default
value is 1.

<expN3> is the number of the array elements to be sorted, starting with the element
<expN2>. The default value, if not specified, is all elements, starting with element
<expN2>.

<expB4> is an optional code block used to determine sorting order. If not specified,
the default order is ascending.

Returns:
<retA> is a reference to the target array <expA1>.

Description:
ASORT() is similar to indexing or sorting a database. All array elements which are
being sorted must be of the same data type (C, N, D, L), which does not mean that
the entire array has to be of the same type.

By using a code block <expB4>, any sorting order may be imposed. The code block
receives two parameters, representing two subsequent array elements n and n+1.
The code block must return TRUE if the elements are in sorted order. ASORT()
executes the codeblock until all the desired elements are sorted. Sorting e.g. multi-
dimensional arrays is only possible by using the code block, see examples below.

In FlagShip, the sorting order can by changed to any required human language
using FS_SET("setlang").

Example:
Sort an array in ascending and descending order:

LOCAL arr1 := {4, 5, 2, 19, 10}
LOCAL arr2 := {3, "Xyz", "Bc", "ab", .T.}

ASORT (arr1) // 2 4 5 10 19
ASORT (arr2, 2, 3) // 3 Bc Xyz ab .T.
ASORT (arr1,,, {|one,two| one > two}) // 19 10 5 4 2

ASORT (arr2,2,3, {|one,two| ;
UPPER(one) <= UPPER(two)}) // 3 ab Bc Xyz .T.

FUN 53

Example:
Sort a multi-dimensional array in ascending order:

USE address NEW
arr3 := DBSTRUCT() // arr3[4,n]
ASORT (arr3,,, {|x,y| x[1] < y[1] } // field names
ASORT (arr3,,, {|x,y| x[3] <= y[3] } // field length

Example:
Another example for sorting one dimension of a multi-dimensional array in
ascending order:

LOCAL arr4 := {1, 2, {5, 2, 7}, {"b", "X", "a"}}, arr5
ASORT (arr4[3]) // [3,n]: 2 5 7
arr5 := ASORT (arr4[4]) // [4,n]: X a b
arr5[2] := "y"
AEVAL (arr5, {|par| QQOUT(par)}) // X y b
AEVAL (arr4[4], {|par| QQOUT(par)}) // X y b
no := 0 // see block blk1
AEVAL (arr4, blk1) // in AEVAL()
* 1: 1
* 2: 2
* 3: 2 5 7
* 4: X y b

Example:
Sorting an directory:

#include "directry.fh"
dir := DIRECTORY ("*.*")
dir := ASORT (dir,,, {|x,y| x[F_NAME] < y[F_NAME]})
AEVAL (dir, {|x| QOUT(x[F_NAME])}) // print sorted by name

ASORT (dir,,, {|x,y| x[F_DATE] <= y[F_DATE]}) // sort date
AEVAL (dir, {|x| QOUT(x[F_DATE], x[F_NAME])}) // print it

Classification:
programming

Compatibility:
The usage of code blocks is new in FS4 and C5. The usage of any user-defined
sorting order according to the human language is available in FlagShip only.

Related:
FS2:CharSort(), AFIELDS(), SORT, INDEX, FS_SET("setlang"), LNG.2.3.3

FUN 54

AT ()
Syntax:

retN = AT (expC1, expC2, [expN3])
Purpose:

Searches through a character string for the first instance of the given substring.

Arguments:
<expC1> is the character string to look for.

<expC2> is the character string to search through.

<expN3> is the start position, default is 1

Returns:
<retN> represents the position of the first letter of the first instance of the given
substring. If the search is not successful, AT() returns zero.

Description:
AT() is useful when you need to know the exact position of a token in a string. If you
only need information on whether the substring appears within a string, you can use
the $ operator. To find the last instance of a substring within a string, use RAT().

Example:
AT("cd", "abcdabcdabcd") // 3
AT("cd", "abcdabcdabcd", 2) // 3
AT("cd", "abcdabcdabcd", 3) // 3
AT("cd", "abcdabcdabcd", 4) // 7
AT("cd", "abcdabcdabcd", 8) // 11
AT("cd", "abcdabcdabcd", 12) // 0
AT("ef", "abcdabcdabcd") // 0

Example:
cStr := "abcdabcdabcd"
cToken := "cd"
iCount := 0
iPos := AT(cToken, cStr)
while iPos > 0

iCount++
iPos := AT(cToken, cStr, iPos +1)

enddo
? "The [" + cStr + "] string contains", ltrim(iCount), ;
"times token [" + cToken + "]" // here: 3-times

Classification:
programming

Compatibility:
Embedded zero bytes are supported. The 3rd parameter is new in FS5

Related:
$, RAT(), STRTRAN(), SUBSTR(), FS2:AtToken(), FS2:AtNum()

FUN 55

ATAIL ()
Syntax:

ret = ATAIL (expA)
Purpose:

Returns the value of the highest numbered element of an array.

Arguments:
<expA> is the target array.

Returns:
<ret> is the value (or a reference to an array, object or code block). The array
remains unchanged.

Description:
ATAIL() is shorthand for ret := expA[LEN(expA)] to obtain the last element of an
array.

Example:
arr1 := {1, 2, {"a", "b"}, 3}
arr2 := {{1, 2}, {3, 4}}
val := ATAIL(arr1)
? VALTYPE(val), val // N 3
val := ATAIL(arr2)
? VALTYPE(val), val, val[2] // A ARRAY 4

Classification:
programming

Compatibility:
Available in FS and C5 only.

Related:
LEN(), LNG.2.6.4

FUN 56

ATANYCHAR ()
Syntax:

retN = AtAnyChar (expC1, expC2)
Purpose:

search for the first occurrence of any char of <expC1> pattern in the source
<expC2> string

Arguments:
<expC1> is the string whose characters are searched in <expC2> <expC2> is the
string which is searched thru

Returns:
<retN> is the position in <expC2> if found, or 0 otherwise.

Description:
You may see this function is a combination of

AT(substr(expC1,1,1), expC2)
AT(substr(expC1,2,1), expC2)
:
AT(substr(expC1,n,1), expC2)

and returning the lowest position found. It is of course done more efficiently.

Classification:
programming

Compatibility:
New in FS5

Related:
AT(), Rat(), FS2:AtToken()

FUN 57

AUTOxLOCK ()
Syntax 1:

retL = AUTORLOCK ([expO1], [expN2])
Syntax 2:

retL = AUTOFLOCK ([expO1], [expN2])
Syntax 3:

retL = AUTOUNLOCK ([expO1], [expN2])
Purpose:

Performs a "smart" RLOCK(), FLOCK() or UNLOCK to enable a write access on a
SHARED database in the current working area.

Options:
<expO1> is an optional RDD object, if invoked from an RDD method or when using
an RDD object other than of the DataServer class.

<expN2> is an optional try period in seconds, which temporarily overrides the
current SET AUTOLOCK TO status.

Returns:
<retL> is a logical value, which signals success or error. This is equivalent to the
RLOCK(), FLOCK() or DBUNLOCK() return value.

Description:
These functions are designed to manage automatic record and file locking and
unlocking in cooperation with the SET AUTOLOCK feature. They are also called
from the standard RDD driver on SHARED databases during a write attempt, when
the programmer had not yet locked the record or database.

As opposed to RLOCK() and FLOCK(), these functions don't immediately report a
lock failure, but try to lock the record or file repeatedly during the, by SET
AUTOLOCK, specified period. If this fails, a user communication window is
displayed, to allow him to choose a new trial period, perform a break to menu,
ignore the lock, or abort the execution.

The behavior is highly flexible, since the source code is available in the
<FlagShip_dir>/system/autolock.prg file, and may therefore be modified by the
programmer.

Example:
See examples in SET AUTOLOCK command

Classification:
database

Compatibility:
Available in FlagShip only.

FUN 58

Source:
Available in <FlagShip_dir>/system/autolock.prg

Related:
SET AUTOLOCK, USE...SHARED, RLOCK(), FLOCK(), UNLOCK, DataServer
Class

FUN 59

BIN2I ()
Syntax:

retN = BIN2I (expC)
Purpose:

Takes a string in the format of a 16-bit signed integer and converts it to a numeric
value.

Arguments:
<expC> is the 16-bit signed short integer in the form of two bytes. The least
significant byte comes first (Intel convention). If there are more than two characters
specified, the rest are ignored.

Returns:
<retN> is a numeric value in the range -32768 to +32767, representing the
converted signed short integer.

Description:
BIN2I() is to be used after reading data with FREAD(), to convert a two-byte
character string formatted as a signed integer to FlagShip numeric format. The
inverse operation of BIN2I() is I2BIN().

Example:
Convert the string CHR(160)+CHR(91) which is the binary representation of the
decimal value 23456 (= 5BA0hex ; 5Bhex= 91, A0hex= 160) to a numeric variable:

LOCAL str, num
? str := I2BIN(23456) // " ["
? ASC(SUBSTR(str,1,1)), ASC(SUBSTR(str,2,1)) // 160 91
? num := BIN2I (str) // 23456

Example:
LOCAL handle, numstr
handle = FOPEN("data.num")
DO WHILE .T.

numstr = FREADSTR(handle, 2)
IF LEN(numstr) < 2

EXIT
ENDIF
? BIN2I(numstr)

ENDDO
FCLOSE(handle)

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
BIN2L(), BIN2W(), I2BIN(), L2BIN(), FREAD(), FREADSTR()

FUN 60

BIN2L ()
Syntax:

retN = BIN2L (expC)
Purpose:

Takes a string in the format of a 32-bit signed long integer and converts it to a
numeric value.

Arguments:
<expC> is the 32-bit signed long integer in the form of four bytes. The least
significant byte comes first (Intel convention). If there are more than four characters
specified, the rest are ignored.

Returns:
<retN> is a numeric value in the range -2,147,483,647 to +2,147,483,646,
representing the converted signed long integer.

Description:
BIN2L() is to be used after reading data with FREAD(), to convert long integers to
FlagShip numeric format. The inverse operation of BIN2L() is L2BIN().

Example:
Convert a string with the binary representation of the decimal value 1234567890 (=
499602D2hex ; 49hex= 73, 96hex= 150, 02hex= 2, D2hex= 210) to a numeric
variable:

LOCAL str, num
? str := L2BIN(1234567890) // "????" (binary)
? ASC(SUBSTR(str,1,1)), ASC(SUBSTR(str,2,1)),; // 210 2
ASC(SUBSTR(str,3,1)), ASC(SUBSTR(str,4,1)) // 150 73

? num := BIN2L (str) //1234567890

Example:
LOCAL handle, numstr
handle = FOPEN("data.num")
DO WHILE .T.

numstr = FREADSTR(handle, 4)
IF LEN(numstr) < 4

EXIT
ENDIF
? BIN2L(numstr)

ENDDO
FCLOSE(handle)

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
BIN2I(), BIN2W(), I2BIN(), L2BIN(), FREAD(), FREADSTR()

FUN 61

BIN2W ()
Syntax:

retN = BIN2W (expC)
Purpose:

Takes a string in the format of a 16-bit unsigned integer and converts it to a numeric
value.

Arguments:
<expC> is the 16-bit unsigned short integer in the form of two bytes. The least
significant byte comes first (Intel convention). If there are more than two characters
specified, the rest are ignored.

Returns:
<retN> is a numeric value in the range 0 to +65,535, representing the converted
unsigned short integer.

Description:
BIN2W() is similar to BIN2I(), except with regard to the range. It is generally used
after reading data with FREAD() to convert unsigned short integers to FlagShip
numeric format.

Example:
LOCAL handle, numstr
handle = FOPEN("data.num")
DO WHILE .T.

numstr = FREADSTR(handle, 2)
IF LEN(numstr) < 2

EXIT
ENDIF
? BIN2W(numstr)

ENDDO
FCLOSE(handle)

Example:
See also example in BIN2I()

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
BIN2I(), BIN2L(), I2BIN(), L2BIN(), FREAD(), FREADSTR()

FUN 62

BINAND ()
Syntax:

retN = BinAnd (expNC1, expNC2, [...expNCn])
Purpose:

Perform binary AND of two or more numeric expressions

Arguments:
<expN1...expNn> are numeric constants or variables which should be binary AND-
ed. You may alternatively specify the number as hexadecimal string in the syntax
"FF...FF" or "0xFF..FF" with max. 8 hex chars.

Returns:
<retN> is the product of the AND operation or NIL on error.

Description:
Binary AND set the resulting bit on (1) only if the same bit is on in all of the
arguments, otherwise off (0). The functionality is equivalent to C syntax
iRet = iExp1 & iExp2 & iExp3 &...

and is often used to clear specific bits in <expN1> by bits not set or not available in
the <expN2> mask. With other words, only bits set in the mask <expN2> remain set
in the <expN1> result.

Example:
? BinAnd(0, 0) // 0
? BinAnd(0, 1) // 0
? BinAnd(1, 0) // 0
? BinAnd(1, 1) // 1
? BinAnd(1, 1, 0) // 0 : 1 AND 1 = 1 AND 0 = 0

? BinAnd(65535, 255) // 255
? BinAnd(65535, 255, 5) // 5
? BinAnd("0xFFFFFF", "0xFAFFF0F") // 16776975 = 0xFAFF0F
? BinAnd("0xABCDEG", 14) // NIL (error, invalid hex)

// check if specified bits are set

nVar := 2474 // bin: 100110101010
? "Bit 2 and 6 in", ltrim(nVar), "are " + ;
if(BinAnd(nVar,"0x22") == 0,"not ","") + "set"

? Isbit(nVar,2), Isbit(nVar,6) // .T. .T.

// split 32-bit integer number into bytes

nNum := 305419896 // 0x12345678
byte1 := BinRShift(BinAnd(nNum,"0xFF000000"),24) // 18 = 0x12
byte2 := BinRShift(BinAnd(nNum,"0x00FF0000"),16) // 52 = 0x34
byte3 := BinRShift(BinAnd(nNum,"0x0000FF00"),8) // 86 = 0x56
byte4 := BinAnd(nNum,"0xFF") // 120 = 0x78

FUN 63

Classification:
programming

Compatibility:
New in FS5

Related:
BinOR(), BinXOR(), Hex2num(), Num2hex() FS2:IsBit(), FS2:SetBit(),
FS2:ClearBit(), FS2:NumAnd(), FS2:CharAnd()

FUN 64

BINOR ()
Syntax:

retN = BinOr (expNC1, expNC2, [...expNCn])
Purpose:

Perform binary OR of two or more numeric expressions

Arguments:
<expN1...expNn> are numeric constants or variables which should be binary OR-
ed. You may alternatively specify the number as hexadecimal string in the syntax
"FF...FF" or "0xFF..FF" with max. 8 hex chars.

Returns:
<retN> is the product of the OR operation.

Description:
Binary OR set the resulting bit on (1) if the same bit is on (1) in any of the
arguments. It is 0 only is this bit is 0 in all of the arguments. The functionality is
equivalent to C syntax

iRet = iExp1 | iExp2 | iExp3 |...
It is often used to set bits in <expN1> by corresponding bits set in <expN2> mask.

Example:
? BinOr(0, 0) // 0
? BinOr(0, 1) // 1
? BinOr(1, 0) // 1
? BinOr(1, 1) // 1
? BinOr(1, 0, 1) // 1 : 1 OR 0 = 1 OR 1 = 1

? BinOr(6000, 255) // 6143
? BinOr(6000, 250, 4, 1) // 6143
? BinOr("0x1770", "FA", 4, 1, 0) // 6143 = 0x17FF
? x := BinOr("0xABCD12", "0xFF00") // 11271954
? Num2hex(x,,.T.) // "0xABFF12"
? BinOr("0xABCDEG", 14) // NIL (error, invalid hex)

Classification:
programming

Compatibility:
New in FS5

Related:
BinAND(), BinXOR(), Hex2num(), Num2hex() FS2:IsBit(), FS2:SetBit(),
FS2:ClearBit(), FS2:NumOr(), FS2:CharOr()

FUN 65

BINXOR ()
Syntax:

retN = BinXor (expNC1, expNC2, [...expNCn])
Purpose:

Perform binary Exclusive-OR of two or more numeric expressions

Arguments:
<expN1...expNn> are numeric constants or variables which should be binary XOR-
ed. You may alternatively specify the number as hexadecimal string in the syntax
"FF...FF" or "0xFF..FF" with max. 8 hex chars.

Returns:
<retN> is the product of the XOR operation.

Description:
Binary Exclusive-OR set the resulting bit on (1) if the same bits in the arguments
are different (1 and 0 or 0 and 1), and off (0) if the corresponding bits in arguments
are equal (both 1 or both 0). The X-OR operation is reversible, when the same
mask is used. The functionality is equivalent to C syntax

iRet = (((iExp1 ^ iExp2) ^ iExp3) ^ ...)

Example:
? BinXor(0, 0) // 0
? BinXor(0, 1) // 1
? BinXor(1, 0) // 1
? BinXor(1, 1) // 0
? BinXor(1, 0, 1) // 0 : 1 XOR 0 = 1 XOR 1 = 0

? res := BinXor("0x2222", "0x101") // 8995 = 0x2323
? BinXor(res, "0x101") // 8738 = 0x2222
? BinXor(res, "0x2222") // 257 = 0x101

? BinXor(123456, 1) // 123457

Classification:
programming

Compatibility:
New in FS5

Related:
BinAND(), BinOR(), Hex2num(), Num2hex() FS2:IsBit(), FS2:SetBit(),
FS2:ClearBit(), FS2:NumXor(), FS2:CharXor(), FS2:Crypt()

FUN 66

BINLSHIFT ()
Syntax:

retN = BinLshift (expNC1, expN2)
Purpose:

Perform binary left shift of the numeric expressions

Arguments:
<expN1> is a numeric constants or variables which should be binary shifted. You
may alternatively specify the number as hexadecimal string in the syntax "FF...FF"
or "0xFF..FF" with max. 8 hex chars.

<expN2> is a numeric constants or variables specifying the number of shifted bits.
The valid range is 1 to 31.

Returns:
<retN> is the product of the shift operation.

Description:
Left shift by one bit is equivalent to multiplying by 2, shift by two bits multiplying by 4
etc. but usually faster. You may see the <exp2> as n-times power of 2 multiply
<expN1>. The functionality is equivalent to C syntax

iRet = iExp1 << iExp2

Example:
? BinLShift(1, 1) // 2 = 0x02
? BinLShift(2, 8) // 512 = 0x200
? BinLShift(1, 31) // -2147483648 = 0x80000000
? BinLShift("0x8001", 1) // 65538 = 0x010002
? BinLShift("0xFF01", 8) // 16711936 = 0xFF0100
? BinLShift("0x80000001", 1) // 2 = 0x02

Classification:
programming

Compatibility:
New in FS5

Related:
BinAND(), BinOR(), BinXOR(), BinRshift(), Hex2num(), Num2hex() FS2:IsBit(),
FS2:SetBit(), FS2:NumRol(), FS2:ClearBit()

FUN 67

BINRSHIFT ()
Syntax:

retN = BinRshift (expNC1, expN2)
Purpose:

Perform binary right shift of the numeric expressions

Arguments:
<expN1> is a numeric constants or variables which should be binary shifted. You
may alternatively specify the number as hexadecimal string in the syntax "FF...FF"
or "0xFF..FF" with max. 8 hex chars.

<expN2> is a numeric constants or variables specifying the number of shifted bits.
The valid range is 1 to 31.

Returns:
<retN> is the product of the shift operation.

Description:
Left shift by one bit is equivalent to divide by 2, shift by two bits as divide by 4 etc.
but is usually faster. You may see it as <expN1> divide <exp2>times power of 2.
The functionality is equivalent to C syntax

iRet = iExp1 >> iExp2

Example:
? BinRShift("0x1F", 1) // 0x0F
? BinRShift("0x1F", 4) // 0x01
? BinRShift("0x8FABCD", 4) // 0x8FABC
? BinRShift("0x8FABCD", 6) // 0x23EAF

// split 32-bit integer number into bytes

nNum := 305419896 // 0x12345678
byte1 := BinRShift(BinAnd(nNum,"0xFF000000"),24) // 18 = 0x12
byte2 := BinRShift(BinAnd(nNum,"0x00FF0000"),16) // 52 = 0x34
byte3 := BinRShift(BinAnd(nNum,"0x0000FF00"),8) // 86 = 0x56
byte4 := BinAnd(nNum,"0xFF") // 120 = 0x78

? Num2hex(nNum,,.T.), "=", Num2hex(byte1,,.T.), ;
Num2hex(byte2,,.T.), Num2hex(byte3,,.T.), Num2hex(byte4,,.T.)

Classification:
programming

Compatibility:
New in FS5

Related:
BinAND(), BinOR(), BinXOR(), BinLshift(), Hex2num(), Num2hex() FS2:IsBit(),
FS2:SetBit(), FS2:ClearBit(), FS2:NumRol()

FUN 68

BETWEEN ()
Syntax:

retL = Between (expNDC1, expNDC2, expNDC3)
Purpose:

checks if the expression is >= minimum and <= maximum

Arguments:
<expNDC1> is a numeric, date or character constant or variable which should be
checked to fit in boundary.

<expNDC2> is a numeric, date or character constant or variable but of the same
type as <expNDC1> corresponding the lower boundary.

<expNDC3> is a numeric, date or character constant or variable but of the same
type as <expNDC1> corresponding the upper boundary.

Returns:
<retL> is .T. if the <expNDC1> is great equal <expNDC2> and great equal
<expNDC3>, i.e. if it is in the given boundary. If not, .F. is returned.

Description:
The function is comparable to the operation
retL := expNDC1 <= expNDC2 .and. expNDC1 >= expNDC3

Classification:
programming

Compatibility:
New in FS5

Related:
Min(), Max(), MinMax(), <= and >= operator

FUN 69

BOF ()
Syntax:

retL = BOF ()
Purpose:

Detects if there was an attempt to move past the beginning of the current database
file.

Returns:
<retL> is TRUE (.T.) after an attempt to move the record pointer backward past the
first logical record using SKIP -n; otherwise, it returns FALSE.

If the database file is empty, or all records have been filtered out, both BOF() and
EOF() return .T.

Description:
BOF () is used to test for a boundary condition when the database record pointer
moves backward using the SKIP command. It can also be used after SET FILTER
condition and GOTO TOP to determine if all the records have been filtered out.

Once BOF() is set to TRUE, it retains its value until there is another attempt to
move the record pointer in the corresponding working area.

By default, BOF() operates on the currently selected working area. To determine
the status of an unselected working area, use alias->(BOF()); see also LNG.4.4.

Only the SKIP command, and GOTO TOP, BOTTOM (on empty or filtered- out
database) and GOTO n (where n < 1 or n > LASTREC()) can set BOF() to TRUE.

The inverse operation of BOF () is EOF ().

Example:
USE article
GO TOP
? RECNO(), BOF() && 1 .F.
SKIP -1
? RECNO(), BOF() && 1 .T.

Classification:
database

Related:
SKIP, GOTO, EOF(), LASTREC(), SET FILTER, oRdd:Bof

FUN 70

BREAK ()
Syntax:

NIL = BREAK (exp)
Purpose:

Branches out from a BEGIN SEQUENCE...END construct. This is equivalent to the
command BREAK [WITH exp].

Arguments:
<exp> is the value passed to the RECOVER clause, if any. Note that <exp> is not
optional. NIL may be specified if there is no break value.

Returns:
The function always returns NIL.

Description:
The BREAK() function is identical in functionality to the BREAK statement. It must
be executed during the BEGIN SEQUENCE...END construct; otherwise, a run-time
error occurs. See more in (CMD) BEGIN SEQUENCE and LNG.2.5.3. With the
ISBEGSEQ() function, you may check, if a BREAK is possible.

Example:
olderr := ERRORBLOCK ({|par| BREAK (par) })
:
BEGIN SEQUENCE
:
RECOVER USING acterr
:
END
ERRORBLOCK (olderr)

Classification:
programming

Related:
BEGIN SEQUENCE...END, ISBEGSEQ()

FUN 71

BROWSE ()
Syntax:

retL = BROWSE ([expN1], [expN2], [expN3], [expN4],
[expA5], [expL6])

Purpose:
Screen oriented display and modification of the currently selected database.

Options:
<expN1>...<expN4> are the window coordinates: top row, left column, bottom row,
right column. If not specified, the default window coordinates are 1, 0, MAXROW(),
MAXCOL().

<expA5> is an array of character expressions specifying the color setting of
BROWSE() elements:

expA5[1] color of the browse display and bar
expA5[2] color of the BROWSE() border
expA5[3] color for field editing via GET/READ
expA5[4] color of the status display in header
expA5[5] color of a MEMO field display and edit
expA5[6] color of the MEMO editing border

If the array is not given, or the array element is empty or NIL, the current
SETCOLOR() is used.

<expL6> specifies, if the "Abort Browse?" prompt should be displayed (TRUE, the
default) or should not.

Returns:
<retL> is set to FALSE if no database is in USE, TRUE otherwise.

Description:
BROWSE() is a user-interface function that invokes a general purpose table-
oriented browser and editor for records in the current working area.

Since BROWSE() uses the standard function DBEDIT() with an UDF, the navigation
keys of DBEDIT() are also valid for the BROWSE() function.

BROWSE() supports following modes:

•Browsing: This is the default mode of BROWSE(). Pressing any DBEDIT()
navigation key (e.g. cursor left/right/up/down or PgUp, PgDn) moves the high-
light bar to a new column or row.

•Field edit: Pressing RETURN on any field enters field edit using @..GET/READ.
Pressing RETURN terminates the edit mode, saving the changes. ESC
terminates without saving changes.

•Append: going to the last record (e.g. with Ctrl-PgDn) and then pressing cursor
down enters append mode with the message indicating <new> on the status line.

FUN 72

A new blank record is then inserted. Pressing cursor up terminates the append
mode, saving the new record if data has been entered. If no data has been
entered, the new record is not saved.

BROWSE() displays the current status in the upper right corner of the browse
window:

Message Meaning
<new> Append mode
<bof> Top-of-file
<delete> Current record is deleted
Record Record number display

Example:
USE address INDEX adr1, adr2 SHARED NEW
SET COLOR TO "W+/N,N/W"
@ 1,0 say "use cursor keys to browse, ESC to quit"
BROWSE (2) // start at line 2

Example:
The simplest, complete program for database maintenance. See also examples in
chapter LNG.10 and the file <FlagShip_dir>/examples/ mydbu.prg

PARAMETER dbname
if empty(dbname) ; quit ; endif
@ 0,0 say "File: " + dbname + ".dbf"
USE (dbname) SHARED
BROWSE (1, 0, maxrow()-1, maxcol(), ;

if(iscolor(), {"GB+/B,R+/BG", "GR+/B", ;
"W+/N,N/W", "R+/B", ;
"W+/N", "G/N" }, NIL), .T.)

Classification:
database

Compatibility:
The 5th and 6th parameters are available in FlagShip only.

Related:
DBEDIT(), OBJ.Tbrowse

FUN 73

CDOW ()
Syntax:

retC = CDOW ([expD])
Purpose:

Converts a date value to a character day of the week.

Arguments:
<expD> is the date value. If not specified, the current system date() is used.

Returns:
<retC> is a character string, containing the name of the day of the week (e.g.
"Monday" or "Montag").

Description:
CDOW() can be used to enhance reports, printouts and screen displays.

In FlagShip, the names for foreign human languages can be defined in an ASCII file
(e.g. FSsortab.ger) and activated when required with FS_SET("loadlang") and
FS_SET ("setlang"). By default, English names are in lowercase; the first letter is in
uppercase.

If invalid date is specified, a null string is returned.

The alternative Cdow2() function available in the FS2 Toolbox allows you to define
month names independent on the current language setting via
FS_SET("setlang"|"loadlang").

Example:
? DATE() && 08/23/93
? CDOW(DATE()) && Monday
? CDOW(DATE() + 3) && Thursday
? CDOW(CTOD("08/20/83")) && Friday

SET DATE GERMAN
if FS_SET ("load", 1, "FSsortab.ger")

FS_SET ("setLang", 1) && german language
endif
? CDOW(CTOD("20.08.93")) && Freitag

Classification:
programming

Compatibility:
The support for other human languages is available in FlagShip only. Clipper
requires the <expD> value, it does not use current date() when <expD1> parameter
is empty.

Related:
CMONTH(), CTOD(), DATE(), DAY(), DOW(), DTOC(), DTOS(), FS_SET(),
MONTH(), YEAR(), FS2:Cdow2(), FS2:CtoDow(), FS2:MDY(), FS2:DMY()

FUN 74

CHR ()
Syntax:

retC = CHR (expN, [expN2], [expN3, ...])
Purpose:

Converts one or more ASCII code(s) to a character.

Arguments:
<expN> is a number in the range of one (zero) to 255, representing the ASCII code.
Negative values are supported for the FN key equivalents; see the INKEY() table.

If more than one argument are specified, the following arguments are coded by the
same way and added to the resulting string.

Returns:
<retC> is a single character, corresponding to the given ASCII value. If <expN> is
negative, a two-byte code of the corresponding FN key is returned.

If more than one argument is specified, the resulting string is a concatenation of
each argument.

Description:
CHR() can be used to display graphic characters on the screen, to send control
codes to the printer, to fill the keyboard type-ahead buffer simulating user input, etc.
The inverse operation of CHR() is ASC().

Example:
Prints the ASCII table to the screen. Note: check the correct terminal setting for
TERM=FSxxxx ; export TERM

FOR i = 0 TO 15
FOR j = 0 TO 15

code = i*16 + j
@ i, 5*j SAY CHR(code)
@ i, 5*j+2 SAY code PICTURE "999"

NEXT
NEXT

Example:
The resulting strings "x" and "y" are equivalent

x := chr(65) + chr(66) + chr(67)
y := chr(65, 66, 67)

FUN 75

Example:
Simulate F2 + Return key depress:

#include "inkey.fh"
KEYBOARD CHR(K_F2) + CHR(K_RETURN)
DO WHILE (key := INKEY()) != 0

IF key = -1 ; ? "F2 key" // K_F2
ELSEIF key = 13 ; ? "Return" // K_RETURN
ELSE ; ? "Key:", key
ENDIF

ENDDO

Classification:
programming

Compatibility:
The support of FN keys is available in FlagShip only. To support the CHR(0),
FS_SET("zerobyte",.T.) must be set, see LNG.2.6.5. More than one arguments is
supported in FS5 only.

Include:
Predefined function key constants are available in "inkey.fh"

Related:
KEYBOARD, ASC(), INKEY(), FS_SET()

FUN 76

CHR2SCREEN ()
Syntax:

retS = CHR2SCREEN (expC)
Purpose:

Converts a character string to a screen variable. This function is applicable for
Terminal i/o mode only.

Arguments:
<expC> is a string, generated with SCREEN2CHR()

Returns:
<retS> is a screen variable of the type "S".

Description:
CHR2SCREEN() can be used to restore the screen constants from a database or
.dbt field, text file etc. previously stored by using the SCREEN2CHR() function.

The inverse operation of CHR2SCREEN() is SCREEN2CHR().

If you need to transfer a DOS stored screen contents to FlagShip, use the
SCRDOS2UNIX() function.

GUI mode: The Chr2Screen() cannot be used in GUI mode, where the screen
variable <varS> is compressed or uncompressed bitmap object an hence cannot be
extracted or converted by this function.

Example:
Save and restore the screen contents in a .dbt field:

LOCAL my_screen
FIELD memofield
my_screen = SAVESCREEN (10,5, 20,40)
? VALTYPE(my_screen) // "S"
:
USE initdata ALIAS init
REPLACE memofield WITH CHR2SCREEN (my_screen)
:
RESTSCREEN (10,5, 20,40, SCREEN2CHR (memofield))

Classification:
programming

Compatibility:
In FlagShip, the storage resulting from SAVESCREEN() or SAVE SCREEN TO is of
type screen ("S"). To manipulate it, see the _retscw() function in the EXT section.
The type of the "S" variable is incompatible with the DOS screen storage in
variables of type "C", but may be transferred vice-versa by using SCRUNIX2DOS()
and SCRDOS2UNIX() functions.

FUN 77

By default, FlagShip supports direct saving and restoring of screen variables in/from
.mem files; see also FS_SET ("memcompat").

In GUI, the structure of the screen variable <retS> is incompatible to <retS> from
Terminal i/o mode, see SaveScreen() for details.

Related:
SCREEN2CHR(), SCRDOS2UNIX(), SCRUNIX2DOS(), SAVESCREEN(),
RESTSCREEN(), SAVE TO, RESTORE FROM, FS_SET ("memcompat")

FUN 78

CMONTH ()
Syntax:

retC = CMONTH ([expD])
Purpose:

Converts a date value to a character month.

Arguments:
<expD> is the date value. If not specified, the current system date() is used.

Returns:
<retC> is a character string, containing the name of the month (e.g. "March" or
"März").

Description:
CMONTH() can be used to enhance reports, printouts and screen displays.

In FlagShip, the names for foreign human languages can be defined in an ASCII file
(e.g. FSsortab.ger) and activated when required by FS_SET("loadlang") and
FS_SET ("setlang"). By default, the English names are in lowercase; the first letter
is in uppercase.

If invalid date is specified, a null string is returned.

The alternative Cmonth2() function available in the FS2 Toolbox allows you to
define month names independent on the current language setting via
FS_SET("setlang" | "loadlang").

Example:
? DATE() && 08/23/93
? CMONTH(DATE()) && August
? CMONTH(CTOD("03/20/94")) && March
SET CENTURY ON
today := DATE()
? "Today is " + CDOW(today) + ", " ;
CMONTH(today) + " " + LTRIM(STR(DAY(today))) + ;
", " + LTRIM(STR(YEAR(today)))

SET DATE GERMAN
? DATE() && 23.08.1993
if FS_SET ("load", 1, "FSsortab.ger")

FS_SET ("setLang", 1) && german language
endif
? CMONTH(DATE()) && August
? CMONTH(CTOD("20.03.1994")) && Maerz

Classification:
programming

FUN 79

Compatibility:
The support for other human languages is available in FlagShip only. Clipper
requires the <expD> value, it does not use current date() when <expD1> parameter
is empty.

Related:
CDOW(), CTOD(), DATE(), DAY(), DOW(), DTOC(), DTOS(), FS_SET(), MONTH(),
YEAR(), FS2:Cmonth2(), FS2:CtoMonth(), FS2:MDY(), FS2:DMY()

FUN 80

COL ()
Syntax:

retN = COL ([expL1])
Purpose:

Reports the current column of the cursor on the screen.

Options:
<expL1> is a pixel specification. If .T., the returned value is assumed in pixel, if .F.
in row/col, otherwise the current SET PIXEL status is used.

Returns:
<retN> is a numeric value in the range 0 to MAXCOL(), representing the current
cursor column. When the global variable _aGlobSetting[GSET_L_ROUND-
ROWCOL] is set .T. (default is .F., see initio.prg), the returned <retN> value is
rounded to integer. When SET COORD UNIT is set to PIXEL, MM, CM or INCH,
and <expL1> is not given, the returned value corresponds to these units (GUI only).

Description:
The value of COL() changes whenever the cursor position changes on the screen.
Both console and full-screen commands can change the cursor position. The COL()
value is reset to zero whenever a CLEAR, CLEAR SCREEN, or CLS command or
SETPOS(0,0) function is executed.

The COL() and ROW() values are updated only if SET DEVICE TO SCREEN (the
default) is set. On SET DEVICE TO PRINTER, the PROW() and PCOL() values are
updated instead.

COL() can be used to position the cursor relative to previous output. Usually, the
COL() is used in combination with the ROW() function.

If you are using sub-windows via standard MDIopen() or the Wopen() from FS2
Toolbox, Row() and Col() reports the cursor position in the current sub-window.

In GUI mode, any output is pixel oriented. The COL(.T.) return value therefore
corresponds to the real display position, i.e. where the next output displays. For
your convenience and to achieve cross compatibility to textual based applications,
FlagShip supports also coordinates in common row/col values. When <expL1> is
not given and SET PIXEL is OFF, and SET COORD UNIT is not set, the returned
COL() value corresponds to manual Pixel2col(Col(.T.)) calculation.

When you change the font size or select different font name using SET FONT
command or the FONT class, the current COL() position remain unchanged, but the
next line and COL() coordinate may differ from the current setting. See further
details in LNG.5.3, LNG.5.3.1, LNG.5.3.2, Col2Pixel() and SET FONT.

In Terminal and Basic i/o mode, the column width is fix 1, independent on the used
font, hence COL() and COL(.T.) returns the same value in row/col coordinates.

FUN 81

Example:
@ 10, 5 SAY "Flag"
@ ROW(),COL() SAY "Ship" // Result is: FlagShip
y := ROW()
x := COL()
? y, x // 10 13

Example:
SET FONT "helvetica", 12
@ 0,0 say " Hello" ; ?? COL() // text columns differs
@ 1,5 say "Hello" ; ?? COL() // with proportional font
SET FONT "courier", 12
@ 2,0 say " Hello" ; ?? COL() // text columns aligns
@ 3,5 say "Hello" ; ?? COL() // with fixed font

Classification:
programming, for screen oriented output

The return value is usable only with enabled screen oriented output facility (the
default, see sect. SYS.2.7).

Compatibility:
The optional parameter is new in FS5

Related:
ROW(), PCOL(), PROW(), @..SAY, MAXCOL(), MAXROW()

FUN 82

COL2PIXEL ()
Syntax:

retN = Col2pixel ([expN1], [expO2])
Purpose:

calculates pixels of given column corresponding to the given or current i/o Font.

Arguments:
<expN1> is a numeric constant or variable specifying the column size which should
be recalculated to pixels. If not given or < 0, the pixel size of one column is
returned.

<expO2> is a Font object to be used for the pixel calculation. If not specified, the
default font set by SET FONT is used.

Returns:
<retN> is an integer value corresponding to the width of given columns in pixels.

Description:
In GUI mode, any output is pixel oriented. For your convenience and to achieve
cross compatibility to textual based applications, FlagShip supports also
coordinates in common row/column values. It then internally re-calculates the given
rows by using Row2pixel() and columns by using Col2pixel() function. The line and
character spacing is affected by the currently used default font.

This function allows you to manually calculate the X pixel position from given row
coordinate. It is applicable for COL(), SETPOS() and other positioning commands
and functions. The return value is equivalent to return of oApplic:Col2Pixel(expN1)
method.

In Terminal and Basic i/o mode, the col width is fix 1 independent on the used font
and hence Col2pixel(expN1) returns <expN1>.

See further details about font and coordinates in LNG.5.3, LNG.5.4, Col() and SET
FONT. For minimal porting effort, best to use fixed fonts (e.g. SET FONT "Courier",
12).

Classification:
programming

Compatibility:
New in FS5

Related:
Row2pixel(), Pixel2col(), Pixel2row(), oApplic:Col2Pixel()

FUN 83

COLVISIBLE ()
Syntax:

retN = ColVisible ([expL1])
Purpose:

Reports the currently visible columns on the screen.

Options:
<expL1> is a pixel specification. If .T., the returned value is assumed in pixel, if .F.
in row/col, otherwise the current SET PIXEL status is used.

Returns:
<retN> is a numeric value, representing the currently visible columns in the range
between zero and MAXCOL().

Description:
COLVISIBLE() returns the currently visible columns in the range of zero to
MAXCOL(). In GUI mode, it considers the current/resized window size. In Terminal
or Basic mode, the value is equivalent to MAXCOL().

ColVisible() is equivalent to m->oAppWindow:CurrSize(APP_X_USER)

Example:
? "MaxCol()=",ltrim(MaxCol(),"ColVisible()=",ltrim(ColVisible())
if AppIoMode() == "G"

wait "Resize the screen width by mouse, then press any key..."
endif
? "MaxCol()=",ltrim(MaxCol(),"ColVisible()=",ltrim(ColVisible())
wait

Classification:
programming, for screen oriented output

Compatibility:
ColVisible() is new in FS6

Related:
COL(), MAXCOL(), RowVisible(), oAppWindow:CurrSize()

FUN 84

COLOR2RGB ()
Syntax:

retA = Color2rgb (expCAO1, [expA2])
Purpose:

transform color string or color object to array of RGB triplets

Arguments:
<expCAO1> is a color string, Color object or an array of colors. The array may be
1-dimensional with 3 rgb tokens, or 2-dimensional with tokens for foreground and
background, or 3-dimensional for standard, enhanced etc. color pairs.

<expA2> is a an array specifying default colors, either 1, 2 or 3-dimensional.

Returns:
<retA> is 3-dimensional array [6,2,3] with translated color of <expCAO1> to tokens.

Classification:
programming, almost internally used

Compatibility:
New in FS5

Related:

FUN 85

COLORSELECT ()
Syntax:

NIL = COLORSELECT (expN)
Purpose:

Activate attribute from the current color setting.

Arguments:
<expN> is a number corresponding to the ordinal position in the current list of color
attributes, as set by SETCOLOR().

expN "color.fh" constant Equivalent to command
0 CLR_STANDARD SETSTANDARD
1 CLR_ENHANCED SETENHANCED
2 CLR_BORDER n/a
3 CLR_BACKGROUND n/a
4 CLR_UNSELECTED SETUNSELECTED
5 CLR_EXTRA n/a
6 CLR_DISABLED n/a
7 CLR_INACTIVEWIND n/a

Returns:
The function always returns NIL.

Description:
COLORSELEC() activates the specified color pair from the current list of color
attributes, established by SET COLOR TO or SETCOLOR(). COLORSELECT() is
similar to the above listed SETxxx commands.

The current color string remains unchanged.

Example:
#include "color.fh"
SET COLOR TO "W+/B,R/G"
? SETCOLOR() // W+/B,R/G,,,N/W
COLORSELECT (CLR_ENHANCED) // or: SETENHANCED
? "the output is red on green"
COLORSELECT (CLR_UNSELECTED) // or: SETUNSELECTED
? "the output is black on white"
COLORSELECT (CLR_STANDARD) // or: SETSTANDARD
? "the default output is bright white on blue"

Classification:
programming

Compatibility: Available in FS and C5 only.

Include: The color constants are available in "color.fh"

Related: SET COLOR, SETCOLOR(), SETSTANDARD, SETENHANCED,
SETUNSELECTED

FUN 86

CONSOLEOPEN ()
Syntax:

retL = CONSOLEOPEN ()
Purpose:

Open console window, if required. Applicable for MS-Windows only, ignored in
Unix/Linux.

Returns:
The function returns .T. when the console window was newly opened and .F. if
console is already open or could not be created.

Description:
This ConsoleOpen() is designed for MS-Windows environment. It is supported for
compatibility purposes in Unix/Linux, but ignored.

When a Terminal oriented application (compiled or executed with -io=t switch) is
executed in MS-Windows, it either use the console executed from, or it creates
automatically a new temporary console via this ConsoleOpen() function otherwise.
Such console window is also used in GUI mode to display output directed to stdout
or stderr (e.g. via ?#, ??## commands or OutStd(), OutErr() functions) or from C
UDFs using printf(), fprintf(stdout,...) or fprintf(stderr,...).

You may safely call ConsoleOpen() as often as you want, since only the first
invocation opens the temporary window, all subsequent calls are ignored and
returns .F.

MS-Windows use random position on the desktop when creating new console
window. You may set it position and behavior either at start-up using the
FSCONSOLE environment variable (see section FSC), or at run-time using the
ConsoleSize() function.

To be able to view the last output, a newly created console window remains open
10 seconds after the application terminates. You may re-define this timeout period
by assigning

_aGlobSetting[GSET_N_WAITCLOSEWIND] := 10 // the default
or disable the delay at all by setting this value to 0. To avoid delays in CGI scripts,
the delay is disabled (i.e. assumed 0) when the application was compiled by using
-io=b switch.

If you wish to ensure the console window is open in a C part for an output to stdout
or stderr, you may invoke the equivalent int OpenConsole() function directly from C.
Otherwise, when no console is open, MS-Windows will simply swallow such output.

FUN 87

Example:
ConsoleOpen() // not required, done automatically
ConsoleSize({-1, -1}) // center the console on desktop
?# "hello to stderr"

#Cinline
{

OpenConsole; /* required if console is not open yet */
fprintf(stderr," other hello from C part \n");

}
#endCinline

Classification:
programming

Compatibility:
Available in FS6 only.

Related:
ConsoleSize(), FSCONSOLE envir. variable

FUN 88

CONSOLESIZE ()
Syntax:

retA = CONSOLESIZE ([expA])
Purpose:

Retrieve or and/or set the size of console window.

Options:
<expA> is optional array containing one or more numeric elements containing the
new value to be set. Invalid or non-numeric element values, i.e. NIL or numbers
lower than -1 for expA[1..2] or lower then 1 for expA[3..n] are ignored, same as
expA[7..n] elements. In Unix/Linux, all expA[1..n] input values are ignored.

expA[n] Console coordinates Accepted input
1 x-left coordinate in pixel 0..n, -1 = center horiz
2 y-top coordinate in pixel 0..n, -1 = center vert
3 x-right coordinate in pixel 1..n
4 y-bottom coordinate in pixel 1..n
5 max columns retA[5]..n columns
6 max rows retA[6]..n rows

Returns:
<retA> is an array of numeric elements describing the currently used console
window and desktop size. The console is either the cmd.exe console if Terminal
based application is running from it, or it is the temporary console window created
via ConsoleOpen().

retA[n] Console, Desktop Returned value,equiv.to
1 x-left cons coord in pixel 0..n MS-Windows only
2 y-top cons coord in pixel 0..n MS-Windows only
3 x-right cons coord in pixel 1..n MS-Windows only
4 y-bottom cons coord in pixel 1..n MS-Windows only
5 max console columns 1..n MS-Windows only
6 max console rows 1..n MS-Windows only
7 terminfo columns 0..n envir.var COLUMNS
8 terminfo rows 0..n envir.var LINES
9 desktop left x coord pixel 0..n usually 0
10 desktop right x coord pixel 0..n oApplic:DesktopWidth
11 desktop top y coord pixel 0..n usually 0
12 desktop bottom y coord pixel 0..n oApplic:DesktopHeight

Not available or not determinable values (means e.g. desktop values for non GUI
environment) are set -2. In Unix/Linux, only values in retA[7..12] are filled, when
available.

The <retA> value represents the resulting values set/modified by the input <expA>
if a parameter was passed.

FUN 89

Description:
With ConsoleSize(), you may determine, resize or move the console window used
in Terminal based application (-io=t or -io=b), or on console window temporarily
created via ConsoleOpen() when an output to stdout or stderr (via ?#, ??##
commands or OutStd(), OutErr() functions) was invoked in GUI mode (-io=g). With
the environment variable FSCONSOLE (see section FSC), you may set
axpA[1,2,5,6] values already at start-up time.

ConsoleSize() is designed mainly for MS-Windows but supported for compatibility
purposes in Unix/Linux. The set CMD terminal size (height and/or width) can only
be in range (be max) of currently open CMD window size (Properties -> Layout ->
Screen Buffer Size), which is however configurable. In Linux, use xterm settings by
newfswin script to set terminal size and coordinates.

Example 1:
aCon := ConsoleSize() // determine console/desktop size
DisplArrStd(aCons, "ConsoleSize") // display array elements

Example 2:
ok := ConsoleOpen() // open console window if possible
aCons := ConsoleSize() // get coordinates
? "orig. x/y console coordinates =", ;
ltrim(aCons[1]), "/", ltrim(aCons[2]), "pixel"

aCons := ConsoleSize({-1, -1}) // center the console on desktop
? "new x/y console coordinates =", ;
ltrim(aCons[1]), "/", ltrim(aCons[2]), "pixel"

Example 3:
ConsoleSize({-1, 10, , , 100}) // center horiz, set 100 columns

Classification:
programming

Compatibility:
Available in FS6 only.

Related:
ConsoleOpen(), FSCONSOLE envir. variable

FUN 90

CRC32 ()
Syntax:

retN = Crc32 (expCA1, [expN2])
Purpose:

calculates CRC32 value conform to ANSI X3.66, ADCCP, CCITT X.25

Arguments:
<expCA1> is a character string or an array of strings

<expN2> is length of the string to be calculated. If not given, the whole string or the
array of strings is calculated.

Returns:
<retN> is the calculated CRC value of <expCA1>.

Description:
The CRC value can be used for validity checking and for security purposes and for
test of communication errors. It uses 32-bit CRC value conformant to ANSI X3.66,
ADCCP, CCITT X.25

Classification:
programming

Compatibility:
New in FS5

Related:
FS2:Crc16(), FS2:Com_Crc()

FUN 91

CTOD ()
Syntax:

retD = CTOD (expC)
Purpose:

Converts a date string to a data value.

Arguments:
<expC> is a character string consisting of numbers representing month, day and
year separated by any character other than a digit. The order of the parts of the
date depends on the current SET DATE value; the default is SET DATE
AMERICAN ("mm/dd/yy"). If only two digits are specified for the year, the SET
EPOCH value (the default is 1900) is considered.

An empty date can be specified as SPACE(8), null-string "", or " / / ".

Returns:
<retD> is the resulting date value. An invalid <expC> leads to an empty date of
{00/01/0001} or " / / " being returned.

Description:
CTOD() is used when initializing or comparing a date variable, or to set a date
variable or field to a specific value. FlagShip also supports a date constant given in
curly brackets, so {08/20/93} is equivalent to CTOD("08/20/93").

Example:
LOCAL today := DATE(), newyear := CTOD("01/01/94")
IF today = CTOD("12/31/1999")

? "use SET EPOCH 2000 tomorrow !"
ELSEIF today = newyear

? "Happy new year!"
ENDIF
SET CENTURY ON
? {02-15-94} // 2/15/1994
SET DATE GERMAN
? CTOD("31 10 93") // 31.10.1993
? CTOD(SPACE(8)) + 2 // 02.01.0001

Classification:
programming

Compatibility:
The date constant given in curly brackets is not available in C5. FlagShip supports
valid date values from 01/01/0001 to 12/31/9999. FS supports embedded zero
bytes by default.

Related:
SET DATE, CDOW(), CMONTH(), DATE(), DAY(), DOW(), DTOC(), DTOS(),
MONTH(), YEAR(), STOD()

FUN 92

CURDIR ()
Syntax:

retC = CURDIR ([expC1], [expL2])
Purpose:

Returns the current UNIX or Windows directory.

Options:
In DOS or MS-Windows, <expC1> specifies optional letter of the disk drive (A ... Z)
optionally with colon (A: ... Z:), case insensitive. If <expC1> is not specified or is NIL
or empty, the directory path of current drive is returned.

In Unix/Linux, FlagShip supports the drive letter by substituting the environment
variable ?_FSDRIVE (where ? is the drive letter, like D_FSDRIVE) with a given
UNIX directory, see LNG.9.5 and FSC.3.3. <expC1> is here case sensitive and
must contain colon. If the argument is not specified, or the corresponding
environment variable is not exported, the current directory is used.

<expL2> is a compatibility switch to Clipper. If set .T., the returned path is without
drive letter and without leading backslash, long path names are converted to short
names and the result is in upper case (in FlagShip for MS-Windows). In Unix/Linux,
the returned path is without the leading slash when <expL2> is .T.

Returns:
<retC> is a character string, representing the current UNIX directory in upper and
lower case. In MS-Windows, it contain fully qualified path including drive, except
when <expL2> is .T.

If an error occurred (e.g. access denied), a null string is returned.

Example:
#ifdef FS_WIN32
/*
* FlagShip for MS-Windows
*/
? CURDIR() && C:\Documents and Settings\John Miller
? CURDIR(,.T.) && DOCUME~2\JOHN~ER
? CURDIR("E:") && E:\server\Common data\source
? CURDIR("E:", .T.) && SERVER\COMMON~1\SOURCE

SET DIRECTORY TO ("E:\server\Common data")
? CURDIR() && E:\server\Common data
? CURDIR("",.T.) && SERVER\COMMON~1

#else
/*
* FlagShip for Linux/Unix
* assuming C_FSDRIVE and D_FSDIVE is set,see LNG.9.5 and FSC.3.3
*/
? CURDIR() && Result: /usr/users/martin

FUN 93

? GETENV("C_FSDRIVE") && "/usr/data/hugo"
? GETENV("D_FSDRIVE") && "/home"
? GETENV("E_FSDRIVE") && ""
? CURDIR("D:") && Result: /home
? CURDIR("C:") && Result: /usr/data/hugo
? CURDIR("E:") && Result: /usr/users/martin

SET DIRECTORY TO /tmp

// or with FS2 Toolbox:
DirChange("/tmp") && change directory

? CURDIR() && Result: /tmp

SET DIRECTORY TO "D:\data"
// ? DirChange("D:\data")
? CURDIR() && Result: /home/data
? CURDIR(, .T.) && Result: home/data

#endif

Classification:
system, file access

Compatibility:
On UNIX the path and file names are case sensitive, the directory separator is a
slash character. See also LNG.3.2 and LNG.9.3. The second parameter achieves
compatibility to Clipper in MS-Windows.

Related:
SET DIRECTORY, SET DEFAULT, SET PATH, GETENV(), DIRECTORY(),
FSC:environment variables, FS2:DIRCHANGE(), FS2:DIRMAKE()

FUN 94

DATE ()
Syntax:

retD = DATE ()
Purpose:

Returns the system date in form of a date value.

Returns:
<retD> is a date value, representing the current UNIX system date.

Description:
DATE() is used whenever we need to know the system date, and perform
operations with it.

The date output depends on the current state of SET DATE, SET CENTURY and
SET EPOCH commands. The date value stored is not affected by these settings.
See also LNG.2.6.4.

Example:
? DATE() && 08/20/93
? DATE() + 5 && 08/25/93
? DATE() + 30 && 09/19/93
? YEAR(DATE()) && 1993
SET DATE GERMAN
? DATE() && 20.08.93
? DATE() - 22 && 29.07.93

Classification:
programming

Compatibility:
The proper date and time value depends on the correct setting of the TZ
environment variable.

Related:
DATEVALID(), SET DATE, SET CENTURY, SET EPOCH, DAY(), MONTH(),
YEAR(), CDOW(), CMONTH(), DOW(), DTOC(), DTOS(), TIME(), FS2:AddMonth(),
FS2:DoY(), FS2:DoM(), FS2:IsLeap(), FS2:DMY(), FS2:MDY(), FS2:Week(),
FS2:Quarter(), FS2:WoM(), FS2:SetDate()

FUN 95

DATEVALID ()
Syntax:

retL = DateValid (expD)
Purpose:

Test the given date if valid.

Returns:
<retL> is .T. if <expD> is a valid date, and is .F. when <expD> is not of date type or
contains invalid date value.

Description:
DateValid() is used to test date value for validity.

Example:
? DateValid(25) // .F.
? DateValid(date()) // .T.
? DateValid(ctod("12/31/02")) // .T.
? DateValid(ctod("13/31/02")) // .F.
? DateValid(stod("")) // .F.

Classification:
programming

Compatibility:
Available in VFS only

Related:
DATE(), CTOD(), STOD(), EMPTY(), VALTYPE()

FUN 96

DAY ()
Syntax:

retN = DAY (expD)
Purpose:

Extracts the day of the month from a date value and returns it as a number.

Arguments:
<expD> is the date value.

Returns:
<retN> is a numeric value, representing the day of the month. This number ranges
from 1 to 31. If the month is February, leap years are considered. If the date value
is empty or invalid, zero is returned.

Description:
DAY() can be used in cases where the day of month is needed for calculations.
Other date extracting functions are MONTH() and YEAR().

Example:
? DATE() && 08/24/93
? DAY(DATE()) && 24
? DAY(DATE()-11) && 13
? DAY(CTOD("")) && 0

Classification:
programming

Related:
DATE(), DOW(), MONTH(), YEAR(), CDOW(), CMONTH(), DTOC(), DTOS()
FS2:CtoDow(), FS2:DoY(), FS2:DMY(), FS2:MDY(), FS2:LastDayOm(),
FS2:Week(), FS2:Quarter()

FUN 97

DBAPPEND ()
Syntax:

retL = DBAPPEND ()
Purpose:

Adds a new empty record to the end of the currently selected database.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBAPPEND() function is equivalent to the APPEND BLANK command. It adds a
new record to the database associated with the current working area. After
APPENDing, the new blank record becomes the current record. The new field
values are initialized to empty values for each data type: character fields are filled
with spaces; numeric fields with zero; logical fields are assigned FALSE; date fields
are assigned CTOD("") and memo fields are left empty.

Multiuser:
In shared mode, DBAPPEND() automatically locks the new record. The lock
remains active until UNLOCK or another lock (or DBAPPEND(), APPEND BLANK)
is executed by the corresponding user. This automatic lock does not release a
FLOCK().

If another application or user has locked the database with FLOCK(), the record is
not appended and NETERR() function returns TRUE.

When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Example:
USE address SHARED NEW
WHILE NETERR(); USE address SHARED NEW; END
USE employee SHARED NEW
WHILE NETERR(); USE employee SHARED NEW; END
? address->(LASTREC()) // 23456
? LASTREC() // 100
address->(DBAPPEND())
WHILE NETERR() // check success

address->(DBAPPEND()) // or try again
ENDDO
? address->name // " "

Classification:
database

Compatibility:
Clipper always returns NIL.

Related: APPEND BLANK, NETERR(), APPEND FROM, RLOCK(), FLOCK(), UNLOCK,
oRdd:Append()

FUN 98

DBCLEARFILTER ()
Syntax:

retL = DBCLEARFILTER ()
Purpose:

Clears a filter condition.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBCLEARFIL() function is equivalent to the SET FILTER TO command with no
arguments. It clears the logical filter condition, if any, for the current working area.
To clear a filter in any working area, use alias->(DBCLEARFILTER()).

For more information, refer to the SET FILTER command, the DBSETFILTER()
function and LNG.4.6.

Example:
Set/reset filter in a non-current working area:

USE address NEW
USE employee NEW
address->(DBSETFILTER(;

{|| TRIM(UPPER(address->name)) == "SMITH"}))
address->(DBGOTOP())
DO WHILE ! address->(EOF())

? address->name, address->address
address->(DBSKIP())

ENDDO
address->(DBCLEARFILTER())

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
SET FILTER, DBSETFILTER(), DBFILTER(), oRdd:ClearFilter(), oRdd:Filter

FUN 99

DBCLEARINDEX ()
Syntax:

retL = DBCLEARINDEX ()
Purpose:

Closes all open indices in the current working area, just as the SET INDEX TO or
CLOSE INDEXES commands.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
The function is equivalent to the CLOSE INDEXES or SET INDEX TO command,
without arguments. Any pending index changes are written to the file before it is
closed and flushed.

To apply the function on a different working area from the current one,
alias->(DBCLEARIND()) may be used.

Example:
USE address NEW
SET INDEX TO adr1, adr2
USE employee NEW
address->(DBCLEARIND())

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
SET INDEX, CLOSE INDEX, DBSETINDEX(), oRdd:ClearIndex()

FUN 100

DBCLEARRELATION ()
Syntax:

retL = DBCLEARRELATION ()
Purpose:

Clears all open relations in the current working area, just as the SET RELATION TO
command.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
The function is a equivalent to the SET RELATION TO command, without
arguments. It clears any active relations for the current working area. For more
information on relations, refer to the SET RELATION command and LNG.4.7.

To apply the function in a different working area from the current one,
alias->(DBCLEARREL()) may be used.

Example:
USE employee NEW
SET INDEX TO emplid
USE children
SELECT employee
SET RELATION TO emplid INTO employee
LIST employee->name, first, birthdate
DBCLEARRELation()

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
SET RELATION, DBSETRELATion(), oRdd:ClearRelation()

FUN 101

DBCLOSEALL ()
Syntax:

retL = DBCLOSEALL ()
Purpose:

Closes database and index files in all working areas.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
The function is equivalent to the CLOSE DATABASES command or to invoking the
USE command or DBCLOSEAREA() function in every working area used.

DBCLOSEALL() releases active filters, database and index locks and relations,
flushes pending changes to the database and index files, and closes the files in all
working areas.

Example:
USE address NEW
SET INDEX TO name, city
USE employee NEW
SET INDEX TO emplid
// any database processing
DBCLOSEALL()

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
CLOSE DATABASES, CLOSE, USE, DBCLOSEAREA(), COMMIT,
DBCOMMITALL(), oRdd:Close()

FUN 102

DBCLOSEAREA ()
Syntax:

retL = DBCLOSEAREA ([expCN1])
Purpose:

Closes database and index files in the current working area.

Options:
<expCN1> is optional numeric working area, or character Alias name specifying the
database to be closed. If <expCN1> is not given, the database in the current
working area is closed.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
The function is equivalent to the CLOSE command or to invoking USE without
arguments, or to CLOSE <alias> command.

DBCLOSEARE() releases active filters, database and index locks and relations in
the current working area, flushes pending changes to the database and index files,
and closes the files associated with those working areas.

To apply the function in a different working area from the current one,
DBCLOSEAREA("cAlias") or DBCLOSEAREA(nSelect) may be used.

Tuning:
When the database is closed, FlagShip flushes the database and index files to hard
disk. You may optimize this by setting

_aGlobSetting[GSET_N_CLOSEOPTIMIZE] := 1 //default
where 0 = flush always except opened read only, 1 = only if changed, and 3 = don't
flush.

Example:
USE employee NEW
SET INDEX TO emplid
USE children
SELECT employee
SET RELATION TO emplid INTO employee
LIST employee->name, first, birthdate
DBCLOSEAREA() // close children
SELECT employee
LIST name, birthdate

Classification: database
Compatibility: Available in FS4, VFS and C5 only. Clipper always returns NIL.
Related: CLOSE, USE, DBCLOSEALL(), COMMIT, DBCOMMIT(), oRdd:Close()

FUN 103

DBCOMMIT ()
Syntax:

retL = DBCOMMIT ([expL1])
Purpose:

Writes database and index changes of the current working area to the UNIX (or
Windows) buffers and flushes them asynchronously to the hard disk.

Options:
<expL1> is an optional logical value that specifies whether an EXCLUSIVE open
database should be COMMITed too. If <expL1> is not given or is .F., only SHARED
open databases are committed. Passing .T. will commit both SHARED and
EXCLUSIVE open databases. You may set the global switch

_aGlobSetting[GSET_L_DBCOMMIT_EXCL] := .T. // default is .F.
which then behaves same as passing .T. for <expL1>

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBCOMMIT() is similar to COMMIT or DBCOMMITALL(), but it flushes and updates
the internal buffers only of the current working area, not all of them. It also writes
the UNIX buffers asynchronously (in the background) to the hard disk, instead of
doing this immediately.

DBCOMMIT() performs a operation similar to the UNIX system command "sync".
Performing the DBCOMMIT() twice forces the system to update the buffers
immediately, and is processed so automatically in DbCommitAll(). In Windows,
corresponding kernel flush functions are used.

To apply the function in a different working area from the current one,
alias->(DBCOMMIT()) may be used.

Multiuser:
Besides SKIP 0, DBCOMMIT() also makes database updates visible to and from
other processes. Because of the asynchronous processing, execution may be faster
than the similar invocations COMMIT or DBCOMMITALL(). For more information
and for differences, refer to the COMMIT command and section LNG.4.8.

DBCOMMIT() or DBCOMMITALL() should be executed before you free the by
Flock() or Rlock() locked records or database. On heavy loaded database,
DbCommitAll() should be preferably used. If SET AUTOLOCK is ON (the default),
DbCommitAll() is executed automatically in AutoUnlock(), see <FlagShip_dir>/
system/autolock.prg.

Tuning:
There are different standard system mechanism available for flushing: either sync(),
which asynchronously flushes buffers to disk by scheduled kernel request, or
fsync() which flushes specific file buffers programmatically. They differ in

FUN 104

performance and security: sync() may be faster with only few open files (system
wide), whilst fsync() ensures flushing of files in current work area, the performance
does not depend on system-wide open files, and the time of flushing is exactly
anticipated. You may choose preferred flush method for DbCommit() by assigning

_aGlobSetting[GSET_N_DBCOMMIT] := mode // default = 4
where <mode>

= 1: use asynchronous, delayed flushing by kernel sync() which flushes all
open files, but not if the last sync was already done within past <n> sec-
onds, set by
_aGlobSetting[GSET_N_DBCOMMIT_FLUSH] := 3.0 // default 3 sec
to increase performance. 0 disables this optimization and calls sync()
always (comparable to mode 2). You may use this mode 1 to increase
performance in some cases, by decreasing security. Not applicable in MS-
Windows, where mode 4 is always used.

= 2: use synchronous flushing by immediate sync().This ensures flush of all
open files but may be time consuming especially with many open files.

= 4: use flushing by fsync() for all files used in this work area, i.e. current .dbf,
.dbt, .dbv, .idx. This ensures security by flushing the current work area, but
may be slightly slower than mode 1 when only few files are open. Manda-
tory in MS-Windows.

= 5: combination of method 1 and 4
= 6: combination of method 2 and 4

When you use method 4 and relations, DbCommitAll() = COMMIT ALL should be
used instead of DbCommit(), since method 4 is bound to current work area.

You may automatically perform DbCommit() at the time of UNLOCK by assigning
_aGlobSetting[GSET_N_UNLOCK_COMMIT] := 1 // default = 0

where 0 disables this feature, and 2 performs DbCommitAll() instead. Alternatively,
SET AUTOCOMMIT ON has similar functionality.

Example:
USE address NEW SHARED
SET INDEX TO name, city
WHILE !RLOCK(); ENDDO
REPLACE name WITH "Miller", city WITH "Munich"
DBCOMMIT() // flush changes
UNLOCK

Classification:
database, system, file access

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL and does not
support the optional parameter nor tuning. Previous FlagShip versions (FS4, VFS5
and lower releases of VFS6) have used sync mode 1 by default. This default was
changed to mode 4 to increase security.

Related:
COMMIT, SKIP, UNLOCK, DBCOMMITALL(), USE, oRdd:Commit()

FUN 105

DBCOMMITALL ()
Syntax:

retL = DBCOMMITALL ([expL1])
Purpose:

Writes database and index changes of all working areas used to the UNIX (or
Windows) buffers and flushes them immediately to the hard disk.

Options:
<expL1> is an optional logical value that specifies whether an EXCLUSIVE open
database should be COMMITed too. If <expL1> is not given or is .F., only SHARED
open databases are committed. Passing .T. will commit both SHARED and
EXCLUSIVE open databases. You may set the global switch

_aGlobSetting[GSET_L_DBCOMMIT_EXCL] := .T. // default is .F.
which then behaves same as passing .T. for <expL1>

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBCOMMITALL() is equivalent to the COMMIT command. As opposed to the
DBCOMMIT() function, it writes the UNIX (or Windows) buffers immediately to the
hard disk, instead of doing it in the background.

DBCOMMITALL() performs an operation similar to the UNIX system command
"sync" and corresponding flush functions in Windows.

Multiuser:
DBCOMMITALL() or COMMIT makes all database updates immediately visible to
and from other processes. The execution may be slower than the similar
invocations DBCOMMIT() or SKIP 0. For more information and for differences, refer
to the COMMIT command and section LNG.4.8.

DBCOMMIT() or DBCOMMITALL() should be executed before you free the by
Flock() or Rlock() locked records or database. If SET AUTOLOCK is ON (the
default), COMMIT is executed automatically in AutoUnlock().

Tuning:
There are different standard system mechanism available for flushing, see details in
DbCommit() function. You may choose preferred flush method for DbCommitAll() by
assigning

_aGlobSetting[GSET_N_DBCOMMITALL] := mode // default = 4
where the <mode> is 1 to 6, same as in DbCommit(), except that this setting apply
for commit of all open work areas.

You may automatically perform DbCommitAll() at the time of UNLOCK by assigning
_aGlobSetting[GSET_N_UNLOCK_COMMIT] := 2 // default = 0

where 0 disables this feature, and 1 performs DbCommit() instead. Alternatively,
SET AUTOCOMMIT ON has similar functionality.

FUN 106

Example:
USE address NEW SHARED
SET INDEX TO name, city
USE invoice NEW SHARED
:
@ 1,0 GET address->name
@ 2,0 GET invoice->number
WHILE !RLOCK(); ENDDO // lock invoice
WHILE !(address->(RLOCK())); END // lock address
READ // perform update
DBCOMMITALL() // flush, make changes visible
UNLOCK ALL // release locks

Classification:
database, system

Compatibility:
Available also in FS4, VFS and C5. Clipper always returns NIL and does not
support the optional parameter.

Related:
COMMIT, DBCOMMIT(), SKIP, UNLOCK, USE, oRdd:Commit()

FUN 107

DBCREATE ()
Syntax:

retL = DBCREATE (expC1, expA2, [expC3],
[expN4|expC4])

Purpose:
Creates a database file from a structure array.

Arguments:
<expC1> is the name of the new database file to be created. If the extension is not
specified, .dbf is used. If specified without path, the database is created in the SET
DEFAULT or the current directory.

<expA2> is a two-dimensional array that contains the structure of the database to
be created. Each sub-array contain the information for one .dbf field:

Element Type #define Description Usage
expA2 [n,1] expC DBS_NAME Field name 1..10 chars
expA2 [n,2] expC DBS_TYPE Field type C,N,F,D,L,M
expA2 [n,3] expN DBS_LEN Field length 1..65535
expA2 [n,4] expN DBS_DEC Deci places 0..18

Valid entries for the field specification:

Field type [n,2] Field length [n,3], value Deci [n,4]
Character C 1..65535 = chars 0
Number N 1..19 = digits incl. sign & deci 0..18
Float Number F 1..19 = digits, same as N 0..18
2-byte bin int * 2 2 = -32768 to 32767 0
4-byte bin int * 4 4 = -2147483648 to 2147483647 0
8-byte bin float * 8 8 = 4.94e-324 to 1.79e+308 0
Date D 8 = julian date 0
Logical L 1 = 0,1,T,F,Y,N 0
Memo M 10 = 0 to 64KB block ea 512 0 (.dbt)
Variable Char * VC 10 = 0 to 2 GB variable size 0 (.dbv)
Var Char compr * VCZ 10 = 0 to 2 GB variable size 0 (.dbv)
Binary/Blob * VB 10 = 0 to 2 GB variable size 0 (.dbv)
Bin/Blob compr * VBZ 10 = 0 to 2 GB variable size 0 (.dbv)

If the field name is > 10 characters, it will be truncated - with developer's warning if
such is set, see FS_SET("devel"). If the field length or deci size does not fit for field
type D,L,M it will be automatically fixed (with developer's warning). On other errors,
RTE (run-time error) displays and the database creation is aborted. As opposite to
Clipper, FlagShip checks also for the same, double defined field names.

(*) Field types VC,VCZ,VB,VBZ,2,4,8 are FlagShip specific and will break cross
compatibility of the .dbf to other xBase dialects. Use them only in FlagShip
environment. VCZ and VBZ are auto compressed types VC and VB.

FUN 108

Options:
<expC3> specifies the replaceable database driver RDD for processing in the
current working area.

<expN4>|<expC4> are the access rights associated to the given file in a semi-octal
notation or as a string (e.g. 664 = "rw-rw-r--"). The semi-octal notation includes
three digits (for the owner, group, world), each in the range 0..7 are required. 0 digit
specifies no permission, 4 = read only, 2 = write only, 6 = read/ write. If not
specified, the default "umask" is used.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBCREATE() is similar to the CREATE FROM command which creates a new
database file from a structure extended file instead of an array variable.

Before using DBCREATE(), the array <expA2> must be specified and filled with the
field definitions. All four elements of the sub-array have to be filled with a valid
entry; see above table. The field name given in the [n, 1] element can be given in
upper or lower case. It will be translated to uppercase. Up to 10 characters are
significant; refer also to LNG.4.2. The field type in the [n,2] element must contain at
least the first character of the data type, e.g. both "C" or "Char" are valid entries.

Example:
#include "dbstruct.fh"
LOCAL tmp[1,4]
LOCAL adr := {{"Name", "C", 30, 0}, ;

{"Birth", "D", 8, 0}, ;
{"Zip_Code", "N", 6, 0}, ; // 999999
{"City", "C", 25, 0}, ;
{"Earn", "N", 9, 2}} // 999999.99

tmp [1,DBS_NAME] := "Name"
tmp [1,DBS_TYPE] := "Character"
tmp [1,DBS_LEN] := 30
tmp [1,DBS_DEC] := 0

DBCREATE ("address", adr)
DBCREATE ("/tmp/temp.dbf", tmp, "DBFIDX", 666) // -rw-rw-rw-

FUN 109

Example:
Modify a database structure:

LOCAL stru, oldlen

USE mydbf
stru := DBSTRUCT() // current structure
oldlen := LASTREC()
USE
RENAME mydbf.dbf TO mydbf.old // save old data
IF DOSERROR() > 0 .OR. !FILE("mydbf.old")

? "Error on rename" ; QUIT
ENDIF
IF stru[5,1] == "XYZ"

ADEL (stru,5) // delete 5th field
ASIZE (stru, LEN(stru) -1)

ENDIF

AADD (stru, {"NewField", "Num", 8, 2}) // add a new field
DBCREATE ("mydbf", stru) // create new database
USE mydbf
APPEND FROM mydbf.old // get the old data
IF LASTREC() != oldlen // OK ?

? "Error, modification failed" ; QUIT
ENDIF

Classification:
database

Compatibility:
Available in FS4, VFS, C5 and VO, the fourth parameter is available in FS4 and
VFS only. C5 returns NIL.

Include:
The constants for array elements are available in the "dbstruct.fh" file.

Related:
COPY STRUCT EXTEND, CREATE FROM, AFIELDS(), DBSTRUCT(),
oRdd:CREATEDB()

FUN 110

DBCREATEINDEX ()
Syntax:

retL = DBCREATEINDEX (expC1, expC2, expB3, [expL4],
[expL5])

Purpose:
Creates an index file, equivalent to the INDEX ON command.

Arguments:
<expC1> is the name of the index file to be created. The default file name
extension is .idx, if none is specified.

<expC2> is an expression that returns, evaluated as a macro, the key value to
place in the index. The given <expC2> must be a character string, the macro
evaluated value can be character, numeric, date, or logical.

The <expC2> is stored in the index file header and is evaluated later on any
database/index movement. The maximum length of the given <expC2> is 420
bytes, of the macro evaluated expression (index key) up to 238 bytes.

LOCAL, STATIC and typed variables cannot be used in <expC2> expressions.
Also, the compile-time declaration using MEMVAR or FIELD are not valid within an
index key expression <expC2>; but the explicit aliasing may be used instead, if
required.

To create descending order indices, use the DESCEND() function or the
DESCENDING clause in INDEX ON command. The DESCEND() function accepts
any data type as an argument and returns the value in complemented form. Then,
when performing a SEEK into the index, use DESCEND() as a part of the SEEK
argument. By using the DESCENDING clause, SEEK takes normal arguments
(without the DESCEND() function).

<expB3> is a code block that returns the index key of the current record. If the
block returns a FIELD variable only (like {|| name} etc.), the indexing is optimized to
use this field directly. Therefore, to be sure of executing the code block, e.g. to
report the ready status, use a UDF, standard function or any other operation, such
as {|| UPPER(name)}, {|| myudf()}, {|| name + ""} or {|| zip+0} etc.

Instead, specifying i.e. {|| myudf(), name} will enter the myudf() function only once,
since the return value of the code block is the FIELD "name".

On the first invocation of the code block, prior the indexing itself, both EOF() and
BOF() are set to TRUE. When indexing is finished, EOF() and BOF() are set to
TRUE only if the database is empty or filtered out.

Options:
<expL4> is an optional logical value that specifies whether a UNIQUE index is to be
created. If <expL4> is omitted or NIL, the current SET UNIQUE status is used.

FUN 111

<expL5> is an optional logical value that specifies avoiding of the check for the
FLOCK() or EXCLUSIVE open, being in SHARED mode..

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
The DBCREATEIN() function is equivalent to the INDEX ON..TO command (without
condition). To create a conditional index, use the INDEX ON command or
ORDCONDSET() and ORDCREATE() functions.

When DBCREATEIN() is invoked, all open index files in the current working area
are closed and the new index file is created. After the command is completed, the
index file created remains open, becoming the controlling index, and the record
pointer is positioned to the first record in the index. The created index file can be
used by the executable which creates it only, until another DBCREATEIN() is
issued, or SET INDEX, USE or CLOSE releases it to shared mode.

The DBCREATEIN() function stores following data in the header of the .idx file:

•the <expC2> string as given (max. 430 bytes),

•the UNIQUE (or actual SET UNIQUE) status,

•ascending index order,

•the name of the active database, and

•the current update counter of the .dbf to synchronize integrity checking (see
LNG.4.5)

•Note: Additional header data, as the FOR condition or the descending order may
be set by INDEX ON or ORDCREATE (), if this alternative index function is
invoked instead of DBCREATEIND().

On REINDEX, this data will be considered. For more information, refer to INDEX
ON and REINDEX.

When an alias->(DBCREATEIN()) is used, the aliased working area is
automatically selected as the current one before the execution of DBCREATEIN();
the previously selected working area is automatically restored afterwards.

Multiuser:
During DBCREATEIN() execution, the required database must be opened
exclusively using USE.. ..EXCLUSIVE or SET EXCLUSIVE ON. If the index file is
not used by another user, the FLOCK() can alternatively be used in SHARED mode
to ensure data integrity, or AUTOFLOCK will be used, if not disabled. See also
LNG.4.5 and LNG.4.8. You may avoid the FLOCK() check or the AUTOFLOCK()
invocation by the optional <expL5> argument.

Example:
Graphically display the percentage and the status of the indexing process, allow
aborting indexing using the ESC key:

FUN 112

USE address EXCLUSIVE
SET CURSOR OFF
DBCREATEINDEX ("adrname", "UPPER(name + first)", ;

{|| showindex (UPPER(name+first),"address")})
SET CURSOR ON
USE address SHARED
SET INDEX TO adrname

FUNCTION showindex (key, text) // general purpose

STATIC savescreen, percent := 0, lastrec, every
STATIC y := MIN(23, MAXROW()-1), x := 14
IF EOF()

RETURN key
END
IF RECNO() <= 1 // draw index box

savescreen := SAVESCREEN(y-1,x-2, y+1,x+51)
@ y-1, x-2 CLEAR TO y+1,x+51
@ y-1, x-2 TO y+1,x+51
@ y-1, x SAY "Creating index for " + text
@ y-1, x+40 SAY " 0% ready"
lastrec := LASTREC() // optimize access
every := MAX(ROUND(lastrec / 50, 0), 1)
percent := 0

ELSEIF RECNO() = lastrec // finished
RESTSCREEN (y-1,x-2, y+1,x+51, savescreen)

ELSEIF INKEY() == 27 // user termination
@ y,x say " **** aborted by user **** "
QUIT

ELSEIF (RECNO() % every) == 0 .and. percent < 100
percent += 2
@ y, x-1 + (percent/2) SAY CHR(219)
@ y-1, x + 40 SAY STR(percent,3)

ENDIF
RETURN key

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL and does not
support the 5th parameter.

The index <file> has the default extension .idx in FlagShip, .NTX in Clipper and
.NDX in dBASE. The internal structures of the index files and the locking
mechanism are not compatible in these different dialects. Index files .idx from
FoxPro and from FS4 are not compatible to VFS5, VFS6 and VFS7. Programs
ported from DOS or FS4 have to create new indices using INDEX ON. To check the
index file existence by using FILE(), either INDEXEXT() or FS_SET("transl") can be
used for the translation of the index extension of portable applications.

Related:
SET INDEX, REINDEX, USE, SET EXCLUSIVE, FLOCK(), ORDCREATE(),
oRdd:CreateIndex(), oRdd:CreateOrder(), oRdd:SetOrderCondition()

FUN 113

DBDELETE ()
Syntax:

retL = DBDELETE ()
Purpose:

Marks a record for deletion, equivalent to the DELETE command.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBDELETE() performs the same function as the standard DELETE command
without arguments. It marks the current record as deleted. Afterwards, deleted
records remain in the database until they are removed with PACK or reinstated with
RECALL or DBRECALL(). These are queried with DELETED() and filtered out with
SET DELETED ON.

Even if SET DELETED is ON, the current deleted record remains visible until the
record pointer is moved.

Multiuser:
In a multiuser/multitasking environment, DBDELETE() requires that the current
record be locked with RLOCK(). Otherwise, AUTO- RLOCK() is used automatically,
if SET AUTOLOCK is active. See also LNG.4.8 and the DELETE command.

Example:
DBUSEAREA (.T., , "invoice", "inv", .T.)
DBSETINDEX("invdate")
WHILE ! EOF() .and. invdate < DATE() -30 .and. paid

WHILE !RLOCK(); ENDDO // lock record
DBDELETE() // DELETE

ENDDO
DBUNLOCK() // UNLOCK last lock

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
DELETE, RECALL, DBRECALL(), RLOCK(), PACK, ZAP, SET DELETED,
DELETED(), oRdd:Delete()

FUN 114

DBEDIT ()
Syntax:

NIL = DBEDIT ([expN1], [expN2], [expN3], [expN4],
[expA5], [expBC6], [expA7], [expA8],
[expA9], [expA10], [expA11], [expA12],
[expBC13], [expBC14], [expN15],
[expL16], [expAL17], [expL18], [expL19])

Syntax 2:
NIL = DBEDIT ([expN1], [expN2], [expN3], [expN4],

[expA5], [expAL17], [expL18], [expL19])
Syntax 3:

NIL = DBEDIT6 ([expN1], [expN2], [expN3], [expN4],
[expA5], [expBC6], [expA7], [expA8],
[expA9], [expA10], [expA11], [expA12],
[expBC13], [expBC14], [expN15])

Purpose:
Displays records from one or more database files in the form of a menu defined with
screen coordinates. The behavior of DbEdit6() function corresponds to FlagShip 6,
where the editing, appending or deleting of records needs to be handled by user's
UDF.

Arguments:
<expN1...expN4> are the window coordinates (top, left, bottom and right, in the
same order). The default values are 0, 0, MAXROW(), MAXCOL(). If <expL16> is
.T. or SET PIXEL is ON, the coordinates are in pixel instead of row/col (GUI mode
only).

<expA5> is an array of character expressions containing field names or
expressions to be displayed in the respective columns. If this argument is not
specified, DBEDIT() displays all fields of the current database.

<expBC6> is the name of a user-defined function, or a user-defined code block.
Such a function or code block is used to customize the behavior of DBEDIT(). After
performing the default action, if any, DBEDIT() executes the UDF or codeblock, if
present. If the <expBC6> is a logical value or array, it is treated as <expAL17> =
shifted parameters 17..19 (Syntax 2).

<expA7> is an array of character strings containing the picture formats for
<expA5>. If the array element is NIL, default picture is used. If <expC> is specified
instead, all columns are formatted with the same picture format.

<expA8> is an array of character strings containing the column headings. An
<expC>, instead of an array, gives all columns the same heading. To display a
multi-line heading, embedded semicolons can be used as meta-characters for

FUN 115

NEWLINE (not in GUI). If <expA8> is not specified or the array element is NIL, the
field name from <expA5> or from the database is displayed.

<expA9> contains the character strings used as a header separator to draw
horizontal lines between the header and the database columns. An <expC>
instead of an array gives all columns the same heading line. If not specified,
CHR(196,194,196) = single line left, down and right ("T") is used. To achieve back-
ward compatibility to Clipper and FS4, you may set CHR(205,209,205) = double
line with single line down instead - but this may be displayed incorrectly on systems
with codepage CP850. Applicable for Terminal i/o, ignored in GUI.

<expA10> contains the character strings used to separate columns drawing the
vertical lines. An <expC> instead of an array gives all columns the same separator
character. If not specified, single line down embedded in spaces CHR(32,179,32) is
used. Applicable for Terminal i/o, ignored in GUI.

<expA11> contains the character strings used to separate the field display area
from the footings area. An <expC> instead of an array uses the same footing
separator for all columns. If not specified, there is no footing separator. Applicable
for Terminal i/o, ignored in GUI.

<expA12> is an array of character strings containing the column footings. An
<expC> instead of array uses the same footing text for all columns. If not
specified, there are no column footings. Applicable for Terminal i/o, ignored in GUI.

<expBC13> is a code block or string specifying the FOR (display) condition. The
block or the expression, if given, must evaluate to a logical. If specified, DBEDIT()
displays only records satisfying the condition, whereas other records are invisibly
skipped. Note: on a large database, a conditional index may perform significantly
faster.

<expBC14> is a code block or string specifying the WHILE (display scope)
condition. The block or the expression, if given, must evaluate to a logical. If
specified, DBEDIT() displays only a block of (sorted) records meeting the condition.
If the condition returns FALSE when invoking DBEDIT(), no records are displayed.
The same occurs for each further movement, if another process changes the
WHILE key value of the current record in the meantime.

<expN15> is the NEXT scope, specifying the range of records (starting with the
current one), to be displayed. To simulate the REST clause, simply give a large
number (like 4 000 000 000). This parameter also restricts the range of processed
records for the FOR and/or WHILE condition. On the other hand, the WHILE scope
and EOF() also automatically restrict the NEXT size.

<expL16> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

<expAL17> is either logical value or an array with logical values. If the value is .T.,
all fields are editable, .F. or NIL specifies that all fields are read-only. If <expAL17>
is an array, it elements allows or disables editing of the corresponding DbEdit()
column. Editing is considered only if the database is not open in read-only mode. If

FUN 116

<expAL17> is given, and is 6th parameter, remaining parameters are shifted and
treated as parameter 18..19 (Syntax 2). Note that Editing of specific column fields is
automatically disabled for composed field columns (like "field1 + field2"), or for
functions like "str(field3,5)"

<expL18> is a logical value. If .T., DbEdit() handles appending of new records in
the selected database by Ctrl-PgDn + Cursor-Down key combination. Other than .T.
value, or read-only open database disables the automatic append.

<expL19> is a logical value. If .T., DbEdit() handles deleting and un-deleting of
records in the selected database by Delete key, with optional confirmation (see
Tuning below). Other than .T. value, or read-only open database disables this
feature.

Returns:
The function always returns NIL.

Description:
DBEDIT () is a menu function, which displays parts of database files inside a
defined window, allowing the user to browse around the database (starting at the
current record), to choose records for performing various tasks, with the greatest
possible information in front of him. The behavior of DBEDIT() can be easily
customized by means of writing user-defined functions. Fields from the current
database file, and other database files (usually binded by relations), and any
expressions, can be displayed in the window.

DBEDIT() supports the following keys and actions, but depends on the UDF
specified:

Key Action with UDF
Cursor up ctrl-E Up one row yes
Cursor down ctrl-X Down one row yes
Cursor <- ctrl-S Column left yes
Cursor -> ctrl-D Column right yes
TAB ctrl-H Column left no
shift-TAB shift-ctrl-H Column right no
PgUp ctrl-R Previous window yes
PgDn ctrl-C Next window yes
Home ctrl-A Leftmost curr. column yes
End ctrl-F Rightmost curr. column yes
ctrl-Home ctrl-] First item in window yes
ctrl-End ctrl-F Last item in window yes
ctrl-PgUp ctrl-- First screen row yes
ctrl-PgDn ctrl-^ Last screen row yes
Esc Terminate DBEDIT() no
Enter ctrl-M Terminate DBEDIT() * no
Delete ctrl-G Delete/Undelete record ** no

FUN 117

(*) When DbEdit() is auto-editable, i.e. <expAL17> is .T. (or at least one element
of the array is set .T.), the Enter key will trigger editing modus and DbEdit()
exits by ESC key only.

(**) Delete key is supported in VFS7 and considered only when <expL19> is .T.

A key redirection using SET KEY TO has preference to the above DBEDIT()
navigation keys.

Performance:
It should be pointed out that it is not recommended to display large, filtered (SET
FILTER) databases by means of DBEDIT(), because it may be rather slow. It may
be much faster to create and use an filtered INDEX. Using the FOR parameter
together with the WHILE or NEXT condition may also perform faster than SET
FILTER outside of DbEdit().

UDF usage:
If the <expC6> or <expB6> argument is used to specify the name of a user-defined
function or code block, DBEDIT() executes the function (or block) every time a key
is pressed when the navigation key action is performed. The function name given in
<expC6> has to be specified without parenthesis and arguments.

Each time that DBEDIT() calls the UDF or code block, three parameters are passed
to it:

argN1: The status mode, indicating the current state of DBEDIT() depending on
the last key executed,

argN2: The index number of the current column, pointing to the position of the
current column definition in the <expA5> array. If not specified, <argN2>
indicates the current field position in FIELDS().

argO3: The allocated Tbrowse object self. You may change the object instances
at any time (but preferably at the program beginning, when <argN1>
returns DE_START).

Possible values of status modes <argN1> are:

mode dbedit.fh Meaning
0 DE_IDLE Idle, no keystrokes are pending
1 DE_HITTOP Attempt to pass top of file
2 DE_HITBOTTOM Attempt to pass bottom of file
3 DE_EMPTY Database is empty
4 DE_EXCEPT Key exception (Esc or Enter)
5 DE_START Start of DbEdit()

The UDF is entered first unconditionally with mode 5 == DE_START which allows
you to set or modify its behavior before processing, e.g. by using the Tbrowse
object property. You should return 1 == DE_CONT or 2 == DE_REFRESH to
continue the DbEdit() process. Thereafter, the UDF is entered each time with mode
0...4 when a key was pressed by the user - which you may retrieve by LastKey() -
or when the inkey() timeout is expired.

FUN 118

After the UDF or code block has finished its actions, which usually depend on
status, field pointer, LASTKEY(), RECNO() etc., it should return a number to
DBEDIT(). Here is a list of possible return values with their effects:

retVal dbedit.fh Meaning
0 DE_ABORT Abort DBEDIT()
1 DE_CONT Continue DBEDIT()
2 DE_REFRESH Continue, repaint the window
3 DE_APPEND Append a record

If the database was edited from inside a UDF, it should RETURN 2, so that the
changes become visible on the screen. If RETURN 1 is issued, and the new record
chosen is inside the same screen, only the old current record and the new current
record are painted again, showing the new value. If the screen has moved, all the
records are painted again, even if one is returned. Returning 2 on mode 4 may
produce an endless loop.

Tuning:
An array of strings, stored in _aGlobSetting[GSET_A_TBROWSE_MSG] specifies
user defined messages displayed in the status bar of GUI based application,
together with color specification. See defaults in <FlagShip_dir>/system/initio.prg

The logical value in _aGlobSetting[GSET_A_TBROWSE_DISPLMSG, 1] specifies
whether the above messages should be displayed (if .T., the default setting is .F.)

The logical value in _aGlobSetting[GSET_A_TBROWSE_DISPLMSG, 2] specifies
whether a message should be displayed (if .T.) when the current record is marked
as "deleted", the default setting is .F. Apply only if _aGlobSetting[GSET_A_
TBROWSE_DISPLMSG, 1] is also .T.

The FUNCTION _DbeditUdf(p1,p2,p3) available in dbedit.prg is the default
keyboard handler used without user's UDF specified in <expC6>, but it also can be
called explicitly from your UDF.

Source:
See the <FlagShip_dir>/system/dbedit.prg and dbedit6.prg source for further
details; you of course may modify the behavior of DbEdit() according to your needs
by changing and re-compiling this source.

Example:
The minimal DBEDIT() program:

USE address
DBEDIT()

Example:
This example shows the skeleton for an edit procedure using DBEDIT(), and a
temporary index created "on-the-fly":

FUN 119

#include "dbedit.fh"
PRIVATE fields [2]
fields[1] = "PADR(TRIM(lastname) + ', ' + firstname, 40)"
fields[2] = "article"

_aGlobSetting[GSET_A_TBROWSE_DISPLMSG, 1] := .T. // see Tuning
_aGlobSetting[GSET_A_TBROWSE_DISPLMSG, 2] := .T. // see Tuning
_aGlobSetting[GSET_A_TBROWSE_MSG, 15] := ;

{"", "N/W+,W+/R"} // GUI color for field editing, see Tuning

SET DELETED OFF // display also deleted records
USE authors NEW
INDEX ON UPPER(lastname) + UPPER(SUBSTR(article,1,10)) ;

FOR UPPER(SUBSTR(magazine,1,1)) $ "ABCD" TO temp
DBEDIT(10,0, 20,79, fields) // browse database
// DBEDIT(10,0, 20,79, fields,.T.,.T.,.T.) // browse & edit
// DBEDIT(10,0, 20,79, fields,,,,,,,,,,,,.T.,.T.,.T.) //browse&edit
QUIT

Example:
This example is similar to the above one, but uses an available index to display only
a subset of names and has own UDF handler:

#include "dbedit.fh"
LOCAL fields[2]
fields[1] = "PADR(TRIM(lastname) + ', ' + firstname, 40)"
fields[2] = "article"

USE authors NEW INDEX lastname
SEEK "SMITH"
if !eof()

DBEDIT(10,0, 20,79, fields, "choose", , , , , , , ;
{|| UPPER(SUBSTR(magazine,1,1)) $ "ABCD"}, ;
"upper(left(LastName,5)) == 'SMITH'", 100)

endif
QUIT

FUNCTION choose (mode, fld_ptr, oTbrow)
LOCAL lk := LASTKEY()
LOCAL getlist := {}, fieldvar, comma
DO CASE
CASE mode = 5 // no action at start up

return 1
CASE mode = 1 .or. mode = 2 // BOF, EOF

?? CHR(7)
CASE mode = DE_EXCEPT // exception

IF lk = 27 // Exit DBEDIT()
RETURN 0

ENDIF
fieldvar := &(fields[fld_ptr])
@ ROW(), COL() GET fieldvar
READ CLEAR

FUN 120

IF UPDATED()
IF fld_ptr == 1

comma := AT(",", fieldvar)
REPLACE lastname WITH SUBSTR(fieldvar, 1, comma-1)
REPLACE firstname WITH SUBSTR(fieldvar, comma+1)

ELSE
REPLACE &(fields[fld_ptr]) WITH fieldvar

ENDIF
ENDIF

CASE lk = -5 // F6: print current
SET PRINTER ON; SET CONSOLE OFF
? &(fields[1]), &(fields[2])
SET PRINTER OFF; SET CONSOLE ON

CASE lk = -6 // F7: print all
REPORT FORM article TO PRINT NOCONSOLE

ENDCASE
RETURN 1

Example:
See additional example in <FlagShip_dir>/examples/tdbedit.prg and
tbrowse_db.prg

Classification:
database

Compatibility:
FlagShip's DBEDIT() is a superset of the C5 or VO's one. The FOR, WHILE
conditions and the NEXT scope are available in FS only. Also, C5 and VO do not
support code block <expB6>, pass only the first 2 parameters to the UDF, and do
not support DE_START = mode 5. Parameters 16..19 are available in VFS7 only.
The heading separator <expA9> was changed in VFS7. For backward compatibility
to VFS6, you may use DbEdit6() instead.

Include:
The #include constants are available in "dbedit.fh"

Source:
Available in <FlagShip_dir>/system/dbedit.prg and dbedit6.prg

Related:
BROWSE(), OBJ.Tbrowse

FUN 121

DBEVAL ()
Syntax:

retL = DBEVAL (expB1, [expB2], [expB3], [expN4],
[expN5], [expL6])

Purpose:
Evaluates a code block for each record matching a scope and condition.

Arguments:
<expB1> is a code block to execute for each record processed. The code block
parameter list may contain one or more parameters, which remain unaffected by
DBEVAL() self and which may be used for local variables in the code block body.

Options:
<expB2> is a condition specified as a code block, evaluated for each record in the
scope <expN5> to <expL6>. It is equivalent to the FOR clause of the database
commands. The <expB1> code block is not evaluated on records where the
condition returns FALSE.

<expB3> is a condition specified as a code block, evaluated for each record from
the current record until the condition returns FALSE. It is equivalent to the WHILE
clause of the database commands.

<expN4> is the number of records to be processed starting with the current record.
It is equivalent to the NEXT clause of the database commands.

<expN5> is the record number to be processed. It is equivalent to the RECORD
clause of the database commands.

<expL6> is the scope that determines whether the DBEVAL() processes all the
records (FALSE, the default), or the remainder starting with the current record
(TRUE).

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBEVAL() is a database function that evaluates a single block for each record
within the current working area that matches a specified scope and/or condition. All
records within the scope or which match the condition are processed until the end
of file is reached or <expB3> returns FALSE.

To execute the evaluation in a working area other than the current one, use
alias->(DBEVAL(...)).

DBEVAL() is similar to AEVAL() which applies a block to each element in an array.
Like AEVAL(), DBEVAL() can be used as a primitive for the construction of user-
defined commands that process database files. See also the <FlagShip_dir>/
include/std.fh file, which translates many standard commands using DBEVAL().

FUN 122

Example:
Delete a scope of records, issuing a record locking:

LOCAL count := 0
USE address SHARED
SET INDEX TO adrname
DBEVAL ({|| count++, DBDELETE()}, ; // action

{|| .not. DELETED()}, ; // FOR
{|| RLOCK() .and. EMPTY(name)}, ; // WHILE
NIL, NIL, .T.) // REST

? "deleted:", count

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
EVAL(), AEVAL()

FUN 123

DBF ()
Syntax:

retC = DBF ([exp1], [expL2])
Purpose:

Returns the file name of the current database.

Options:
<exp1> is an optional alias name given as a character expression or the working
area number given as a numeric expression. If not specified, the current working
area is used.

<expL2> is the requested output format of <retC>. If the argument is FALSE or not
specified, the returned name does not include the path specification. Otherwise,
the given path of USE, or the default SET PATH of the opened database preceding
the file name is returned.

Returns:
<retC> is the true file name of the database USEd in the current working area,
including the extension (usually .dbf) in upper/lowercase. The path output depends
on the <expL2> argument. If no database is USEd in the working area, a null string
"" is returned.

Description:
The function determines the file name USEd in the current or specified working
area. The file name is case sensitive in UNIX.

Example:
#ifdef FlagShip

FS_SET ("lower", .T.) ; FS_SET ("pathlower", .T.)
#endif
SET PATH TO \Data\Xyz;\usr\Data
SELECT 15
USE Address ALIAS addr
USE Invoice ALIAS xyz NEW
? DBF(), ALIAS() && invoice.dbf XYZ
? DBF("addr"), addr->ALIAS() && address.dbf ADDR
? DBF(15, .T.) && /usr/data/address.dbf

Classification:
database

Compatibility:
Compatible to DB3 and DB4. The optional parameters are available in FS4 and
VFS. In C5, the function returns the alias name only, equivalent to the ALIAS()
function; there is no possibility of determining the file name.

Related:
ALIAS(), USED(), INDEXNAME(), INDEXDBF(), TRUEPATH(), oRdd:Name,
oRdd:Info()

FUN 124

DBFINFO ()
Syntax:

retA = DbfInfo ()
Purpose:

Return information about all open working areas. This is simplified functionality of
DbfUsed()

Returns:
<retA> is 2-dimensional array containing information about the work area and
assigned database. If no database is open, empty array is returned.

retA[n,1] = area number
retA[n,2] = alias
retA[n,3] = open mode, combination of R/S/E read-only/shared/exclus
retA[n,4] = .dbf name, same as dbf(NIL, .T.)
retA[n,5] = number of indices, same as indexcount()
retA[n,6] = number of relations
retA[n,7] = array of parents in relation

Description:
This function can be used to determine which databases are currently open and to
retrieve their characteristic.

Example:
local aRet := dbfinfo()
_displarrstd(aret,"aRet") // display the array
*output:
* aRet[1] (A) = {1, 'ADDRESS', 'S', '/home/data/address.dbf',
* 2, 0, NIL}
* aRet[2] (A) = {5, 'ORDER', 'S', '/tmp/order.dbf',
* 1, 0, NIL}
* aRet[3] (A) = {7, 'ARTICLE', 'S', '/server/common/article.dbf',
* 1, 0, NIL}

Example:
USE multi new shared
USE test new shared
USE multi new shared // multiple open

? "database 'test' is open", myDbfCheckOpen("test") + "-times"
? "database 'multi' is open", myDbfCheckOpen("multi")+ "-times"
? "database 'foo' is open", myDbfCheckOpen("foo") + "-times"

// --
// Determine whether a database is already open in current applic.
// Only the main dbf name is tested, without regard of case
// Returns the number of used work areas for the given database
// name, i.e. 0=not open, 1=open once, 2..n=multiple open
//

FUN 125

// Note: the IsDbMultipleOpen() function may work more precise
// since it checks the file inode/index number instead of the
// name only and hence considers also links and different paths
// (or drives).
//
FUNCTION myDbfCheckOpen(cTestName)
local cDbfName, ii, iPos, iRet := 0
local aUsed := dbfinfo()

iPos := rat(PATH_SLASH, cTestName) // look for "/" or "\"
if iPos > 0

cTestName := substr(cTestName, iPos +1) // extract dbf name
endif
if !("." $ cTestName)

cTestName += ".dbf"
endif

for ii := 1 to len(aUsed)
cDbfName := aUsed[ii,4]
iPos := rat(PATH_SLASH, cDbfName) // look for "/" or "\"
if iPos > 0 // extract dbf name

cDbfName := substr(cDbfName, iPos +1)
endif
if lower(cTestName) == lower(cDbfName) // ignore path and case

iRet++ // found
endif

next
return iRet

Classification:
database, programming

Compatibility:
New in VFS

Related:
DbfUsed(), ALIAS(), DBF(), USED(), INDEXNAME(), INDEXDBF(), oRdd:Name,
oRdd:Info()

FUN 126

DBFILTER ()
Syntax:

retC = DBFILTER ()
Purpose:

Retrieves the active filter expression of the selected working area.

Returns:
<retC> is a character string representing the filter condition defined for the selected
working area. If a filter is not set, a null string "" is returned.

Description:
Since each working area can have an active filter, DBFILTER() can return the filter
expression of any working area, if alias->(DBFILTER()) is used.

Example:
// To change, and then restore the old filter condition.

SELECT magazine
old_filt = DBFILTER()
SET FILTER TO Country = "Canada"
LOCATE FOR trim(name)="Smith" && Smith in Canada
:
SET FILTER TO &old_filt
LOCATE FOR trim(name)="Smith" && all Smiths

Classification:
database

Related:
SET FILTER, DBRELATION(), DBRSELECT(), oRdd:Filter

FUN 127

DBFLOCK()
Syntax:

retL = DBFLOCK ()
Purpose:

Locks the current database selected to allow global write access in multiuser mode.
This function is fully equivalent to FLOCK()

Returns:
The return value is equivalent to FLOCK(), see description there.

Description:
DBFLOCK() is a network function that locks the current database for a global write
access. To lock other database, use aliasing, e.g. alias->(DBFLOCK()) Since
DBFLOCK() is an equivalence for FLOCK(), see additional description there.

Example:
See FLOCK()

Compatibility:
Refer to the FLOCK() description.

Related:
FLOCK(), RLOCK(), USE...EXCLUSIVE|SHARED, SET EXCLUSIVE, UNLOCK,
ISDBRLOCK(), ISDBFLOCK(), DBRLOCK(), DBUNLOCK()

FUN 128

DBFUSED ()
Syntax:

retA = DbfUsed ([expN1], [expN2], [expC3])
Purpose:

Return and/or print information about the specified or all open working areas.

Options:
<expN1> is optional number of the work area (select#) to be determined. If
<expN1> is

> 0 a full info (2-dimensional array) of the specified working area <expN1>
is returned and/or printed. An empty array is returned if the area is not
in use

= 0 a full info (2-dimensional array) of all working areas in use is returned
and/or printed. If no areas are in use, an empty array is returned

otherwise a short info (1-dimensional array) about all working areas currently in
use is returned.

<expN2> is optional, numeric value specifying the kind of printing. Considered only
when <expN1> is >= 0.

= 1 print 1-line info
= 2 print all data
= -1, -2 same as above, sort on WA instead of ALIAS
else don't print

<expC3> is optional character value specifying the file name for print-out. Same as
SET ALTERN with the ADDIT clause If NIL, the printout (if <expN2> # 0) goes to
console

Returns:
<retA> is 1- or 2-dimensional array containing information about the work area:

When <expN1> is not given, or not numeric, or < 0: retA[n] contains the work area
number, same as Select() function

When <expN1> is >= 0:

retA [n,1] = (N) WA (work area) number
[n,2] = (C) alias name
[n,3] = (C) dbf name incl. path
[n,4] = (C) open status, a combination of "S"/"E" shared/

exclusive and "R"/"W" read-only/read-write
[n,5] = (N) control.index (SET ORDER) from [n,6] or 0
[n,6] = (A) {C,C} names and keys of assigned indices (or an

empty array if no indices are open)
[n,7] = (C) filter used (or an empty string)
[n,8] = (A) {N,C,C} WA, alias and relation string (or an

FUN 129

empty array)
[n,9] = (A) {N [,N,N,...]} rlock-ed records or -1 on Flock-ed

file

On error, i.e. when the specified working area <expN1> is not open, or when no
working areas are in use, an empty array {} is returned.

Description:
This function can be used to determine and/or print an info which databases are
currently open and to retrieve their characteristic. It is a superset of DbfInfo().

Example:
// print/display all used databases, short info
DbfUsed(0, 1)

*output:
* WA=1 ADDRESS /home/data/address.dbf SHAR idx= 2/ 1
* relat= 0 filt=[]
* WA=7 ARTICLE /home/data/article.dbf SHAR idx= 1/ 1
* relat= 0 filt=[]
* WA=5 ORDER /home/tmp/order.dbf EXCL idx= 1/ 1
* relat= 0 filt=[id>=234]

// print/display all used databases, long info
DbfUsed(0, -2)

*output:
* WorkArea=1 Alias=ADDRESS SHARED Name=/home/data/address.dbf
* *Index=/home/data/address1.idx
* key=name+left(first,10)
* Index=/tmp/address2.idx
* key=id
* WorkArea=5 Alias=ORDER SHARED Name=/home/tmp/order.dbf
* *Index=/home/tmp/order.idx
* key=id
* Filter=id>=234
* WorkArea=7 Alias=ARTICLE EXCLUSIVE Name=/home/data/article.dbf
* *Index=/home/data/article.idx
* key=artnum

Classification:
database, programming

Compatibility:
New in VFS

Related:
DbfInfo(), ALIAS(), DBF(), USED(), INDEXNAME(), INDEXDBF(), oRdd:Name,
oRdd:Info()

FUN 130

DBGETLOCATE ()
Syntax:

retB = DBGETLOCATeBlock ()
Purpose:

Returns the code block of the current LOCATE condition.

Returns:
<retB> is a code block created from the given LOCATE..FOR condition or specified
by DBSETLOCATE(). If no locate condition has been specified in the current
working area, NIL is returned.

Description:
DBGETLOCATE() returns the current LOCATE ... FOR condition as a code block, if
one was specified in the current working area.

Example:
USE test index test1 NEW
LOCATE FOR "SMITH" $ UPPER(name)
// == DBSETLOCATE ({|| "SMITH" $ UPPER(name)})

? Found(), Eval(DBGETLOCATE()) // .T., .T.

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only.

Related:
DBSETLOCATE(), LOCATE, CONTINUE, EVAL(), oRdd:GetLocate(), oRdd:Info()

FUN 131

DBGOBOTTOM ()
Syntax:

retL = DBGOBOTTOM ()
Purpose:

Moves the database pointer to the last logical record.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBGOBOTTOM() is equivalent to the standard GOTO BOTTOM command. For
more information, refer to the GOTO command.

The function moves to the last record of the controlling index, if there is one, or to
LASTREC(), if no index is in use. If there is a filter scope, DBGOBOTTOM() moves
to the last record of the scope. This may be time-consuming on large databases,
because the criteria fulfilled has to be looked for, skipping backwards from the last
record.

If the database is empty, or all records have been filtered out, both BOF() and
EOF() return .T.

To execute the function in a different working area than the current one, use
alias->(DBGOBOTTOM()).

Multiuser:
In a multiuser environment, after executing DBGOBOTTOM() the internal and UNIX
buffers are refreshed. The changes are then available to other users. Refer to
LNG.4.8.

Example:
USE test NEW
? LASTREC() // 1234
USE address NEW
ZAP
test->DBGOBOTTOM()
? test->EOF(), rest->RECNO() // .F. 1234
DBGOBOTTOM()
? EOF(), RECNO() // .T. 1

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
GOTO, DBGOTO(), DBGOTOP(), BOF(), oRdd:GoBottom()

FUN 132

DBGOTO ()
Syntax:

retL = DBGOTO (expN)
Purpose:

Moves the database pointer to the specified record.

Arguments:
<expN> is the record to which the record pointer is to be positioned. Positioning is
done even if the record falls outside the FILTER scope, or SET DELETED is ON.
Records not present in an index created with SET UNIQUE ON or INDEX...
UNIQUE can be accessed too. If the <expN> is out of range, the database pointer
is positioned to LASTREC() + 1; both EOF() and BOF() are set to true.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBGOTO() is equivalent to the standard GOTO command. The function moves to
the specified physical record of the database.

To execute the function in a different working area from the current one, use
alias->(DBGOTO()).

Multiuser:
In a multiuser environment, after executing DBGOTO() the internal and UNIX
buffers are refreshed. The changes are then available to other users. Refer to
LNG.4.8.

Example:
USE employee
? RECNO(), RECCOUNT() // 1 123
DBGOTO (25)
? RECNO(), EOF() // 25 .F.
DBGOTO (999)
? RECNO(), EOF() // 124 .T.

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
GOTO, DBGOBOTTOM(), DBGOTOP(), BOF(), EOF(), oRdd:GoTo()

FUN 133

DBGOTOP ()
Syntax:

retL = DBGOTOP ()
Purpose:

Moves the database pointer to the first logical record.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBGOTOP() is equivalent to the standard GOTO TOP command. For more
information, refer to the GOTO command.

The function moves to the first record of the controlling index, if there is one, or to
record 1, if there is no index in use. If there is a filter scope, DBGOTOP() moves to
the first record of the scope, just as the command LOCATE does.

If the database is empty, or all records have been filtered out, both BOF() and
EOF() return .T.

To execute the function in a different working area from the current one, use
alias->(DBGOTOP()).

Multiuser:
In a multiuser environment, after executing DBGOTOP() the internal and UNIX
buffers are refreshed. The changes are then available to other users. Refer to
LNG.4.8.

Example:
USE test NEW
SET INDEX TO test
USE address NEW
test->DBGOTOP()
? test->EOF(), rest->RECNO() // .F. 25
DBGOTOP()
? EOF(), RECNO() // .F. 1

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
GOTO, DBGOTO(), DBGOBOTTOM(), BOF(), oRdd:GoTop()

FUN 134

DBOBJECT ()
Syntax:

retO = DBOBJECT ([expN1|expC1])
Purpose:

Retrieves the DataServer or DBserver object of a database opened in the current or
specified work area, regardless of the way opened (USE, DBUSEAREA(),
DBSERVERNEW(), instantiation).

Options:
<expN1>|<expC1> specifies the working area number (1 to 65535) or the alias
name of the required database. Zero (0), NIL or omitting this argument assumes the
currently selected working area.

Returns:
<retO> is the DataServer or DBserver object, which may be assigned to a regular
FlagShip variable or to an array element. Before using the object, verify that the
database was successfully opened and is still open, by using the obj:USED
instance. If no database is open in the requested work area, and or in case of a
parameter error, NIL is returned.

Description:
In view of the heterogeneous usage of database commands, functions and objects,
FlagShip's run-time keeps internally record of the assigned databases to the
working areas. This allows you to manage the database by the common,
conventional commands and functions, and perform special RDD requests by using
the class properties (instances and methods) described below. It also avoids the
unintentional database closing when leaving the valid variable scope, e.g. by
returning from an UDF which had instantiated only a LOCAL DataServer or
DBserver object.

In other words: regardless of the opening method, the database remains open and
assigned to a working area until it is explicitly closed, or closed implicitly by opening
another database in the same area, or by terminating the application.

If the DBserver object is not available yet (due to opening the database by mean of
USE or DBUSEAREA), or the variable becomes invisible, you may access, assign
or restore it by using the DBOBJECT() function.

As with all objects, using TYPED variables (of the known RDD or DBSERVER type)
will speed up the application significantly.

Example 1:
LOCAL oAdr AS DBSERVER
SELECT 54321
USE address SHARED
if LASTREC() > 5

GOTO 5
endif

FUN 135

oAdr := DBOBJECT()
? oAdr:INFO(DBI_ACCESSRIGHTS)
SKIP 3
if oAdr:INFO(DBI_CANPUTREC)

APPEND BLANK
endif

Example 2:
LOCAL oServ1, oServ2 AS DBSERVER
USED() // .F.
doUdf1()
? USED(), RECNO() // .T. 2
oServ1 := DBOBJECT()

doUdf2()
? USED(), RECNO() // .T. 5
oServ2 := DBOBJECT()
? oServ1:USED, oServ1:ALIAS // .T. ADDRESS
? oServ2:USED, oServ2:ALIAS // .T. ADDRESS
QUIT
FUNCTION doUdf1()
LOCAL oAdr AS DBSERVER
oAdr := DBSERVER {"address", DB_SHARED)
oAdr:SKIP()
? recno(), dbf() // 2 address.dbf

RETURN
FUNCTION doUdf2()
LOCAL oTemp := DBOBJECT() AS DBSERVER
oTemp:SKIP()
SKIP 2
? oTemp:RECNO, ;
oTemp:INFO(DBI_FULLPATH) // 5 /usr/tmp/address.dbf

RETURN

Classification:
programming

Compatibility:
Available in FS4, VFS only, not available in C5 or in VO.

Related:
USE, DBUSEAREA(), ISOBJCLASS(), ISOBJPROPRETY(), (OBJ)
DBSERVERNEW()

FUN 136

DBRECALL ()
Syntax:

retL = DBRECALL ()
Purpose:

Reinstates the DELETEd, current record in the current working area. If the record
was not deleted, no action is taken.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBRECALL() is equivalent to the standard RECALL command processing the
current record.

The deleted records are invisible when SET DELETED is ON and the database
pointer was moved. To reach deleted records, use GOTO, DBGOTO() or SET
DELETED OFF.

To execute the function in a different working area from the current one, use
alias->(DBRECALL()).

Multiuser:
RLOCK() is required when reinstating one record, while FLOCK() when
DBRECALL() is used in DBEVAL() to process multiple records. Otherwise,
AUTORLOCK() is used automatically, if SET AUTOLOCK is active.

Example:
USE employee NEW
DBDELETE()
? DELETED() && .T.
DBRECALL()
? DELETED() && .F.

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
RECALL, DELETED(), DELETE, DBDELETE(), PACK, ZAP, SET DELETED,
oRdd:Recall()

FUN 137

DBREINDEX ()
Syntax:

retL = DBREINDEX ()
Purpose:

Rebuilds all open indices in the current working area.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBREINDEX() is equivalent to the standard command REINDEX. It performs the
same action as INDEX ON... or DBINDEX() but uses the index criteria already
stored in the index header. Therefore, should the index file be corrupted, the INDEX
ON command should be used.

REINDEX() conforms to the UNIQUE and ASCEND/ DESCEND status as well as to
the FOR <condition> of the first creation with INDEX ON. The current SET UNIQUE
program status is not considered, but the stored status in the index header is used
instead (see INDEX ON).

When REINDEX is finished, all current indices remain open, the ORDER is set to 1,
and the database pointer is positioned to the first logical record. To execute the
function in a different working area from the current one, use
alias->(DBREINDEX()).

Refer to the REINDEX command for more information.

Multiuser:
The required database must be exclusively opened. In a multiuser environment, the
time-consuming REINDEX() can be fully omitted, if all relevant index files are
always assigned to the open databases. To select the required index file, use the
SET ORDER command.

Example:
USE employee INDEX name
REPLACE ALL salary WITH salary + 100
SET INDEX TO id, birthdate, salary, name
REINDEX()

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
REINDEX, INDEX, PACK, SET INDEX, SET ORDER, USE, INDEXCHECK(),
INDEXNAMES(), INDEXDBF(), oRdd:Reindex()

FUN 138

DBRELATION ()
Syntax:

retC = DBRELATION ([expN])
Purpose:

Retrieves the relational expression of the specified relation in the selected working
area.

Options:
<expN> is the ordinal number of a relation in the relations list of the selected
working area. The relations are numbered according to the order in which they were
defined with SET RELATION.

If the argument is not specified, 1 is assumed.

Returns:
<retC> is a character string representing the relational expression of the relation
specified by <expN>. If the specified relation does not exist, a null string "" is
returned.

Description:
Using DBRELATION () with DBRSELECT () makes it possible for the user to save
and restore relations to create and save environments.

Example:
USE article
SELECT 2
USE magazine INDEX magazine
SELECT 3
USE author INDEX author
SELECT Article
SET RELATION TO magazine INTO magazine, ;

TO author INTO author
? DBRELATION(1) && Result: magazine
? DBRELATION(2) && Result: author
? DBRELATION(3) && Result: ""

Classification:
database

Related:
SET RELATION, DbFilter(), DbRSelect(), DbRelCount(), oRdd:Relation()

FUN 139

DBRELCOUNT ()
Syntax:

retN = DBRELCOUNT ()
Purpose:

Retrieves number of relations to child working areas from current working area.

Returns:
<retN> is a numeric value, representing the number of active relations from the
current WA, or zero if there are no relations set by SET RELATION or
DbSetRelation().

Example:
USE company
SELECT 20
USE departments INDEX comp_departm
SELECT 30
USE names INDEX comp_names
SELECT company
SET RELATION TO IdDepart INTO departments, TO IdName INTO names
? DbRSelect(1), DbRSelect(2) // Result: 20 30

? "relations from current WA", ltrim(select()), alias()
FOR ii := 1 to DbRelCount()

? "relation #" + ltrim(ii) + " to WA " + ltrim(DbRselect(ii)), ;
"=", alias(DbRselect(ii))

if DbRelMultiple(ii)
?? " MULTIPLE = 1:n"

endif
?? " by expression:", DbRelation(ii)

NEXT

Classification:
database

Compatibility:
Available in VFS7 and later.

Related:
SET RELATION, DbRelation(), DbRselect(), DbRelMultiple(), oRdd:Relation-
Object(), oRdd:SetRelation(), oRdd:Info(DBI_RELAT_COUNT)

FUN 140

DBRELMULTI ()
Syntax:

retL = DBRELMULTI ([expN1], [expL2])
retL = DBRELMULTIPLE ([expN1], [expL2])

Purpose:
Retrieves or set 1:n status of already set relation within current working area.

Options:
<expN1> is the ordinal number of a relation in the relations list of the selected
working area. If the argument is not specified, 1 (the first relation) is assumed.

<expL2> is the new 1:n status to be set. If <expL2> is .T., the relation becomes 1:n,
or 1:1 when <expL2> is .F. Default is NIL which does not change the status.

Returns:
<retL> is a logical value, representing the status of active relation from the current
WA (before setting new value if <expL2> was given). .T. signals multiple 1:n
relation, .F. is related 1:1. On error, .F. is returned.

Description:
SET RELATION links the active database (parent) with other opened databases
(children) identified by INTO <alias>, see LNG.4.7. Each parent working area can
be linked to unlimited number of child working areas. FlagShip supports per default
1:1 relations, upon request also 1:n or 1:n:n... which is set by the MULTIPLE clause
of SET RELATION command or corresponding argument of DbSetRelation(). With
DbRelMulti(), you may retrieve or change this status. For further details, see
CMD.SET RELATION and LNG.4.7

Example:
USE company
SELECT 20
USE departments INDEX comp_departm
SET RELATION TO IdDepart INTO departments

? "relations from current WA", ltrim(select()), alias()
FOR ii := 1 to DbRelCount()

? "relation #" + ltrim(ii) + " to WA " + ltrim(DbRselect(ii)), ;
"=", alias(DbRselect(ii))

if DbRelMultiple(ii)
?? " MULTIPLE = 1:n"

endif
?? " by expression:", DbRelation(ii)

NEXT

Classification: database
Compatibility: Available in VFS7 and later.
Related: SET RELATION, DbRelation(), DbRselect(), DbRelCount(), oRdd:RelationObject(),

oRdd:SetRelation(), oRdd:Info(DBI_RELAT_COUNT)

FUN 141

DBRLOCK()
Syntax:

retL = DBRLOCK ([expN])
retL = DBRLOCK ([expN1], [expN2,...])
retL = DBRLOCK ([expA])

Purpose:
Locks the current or specified record(s) in the selected working area to enable
exclusive write access in multiuser mode. This function is fully equivalent to
RLOCK()

Options:
The parameters are equivalent to RLOCK(), see the description there

Returns:
The return value is equivalent to RLOCK(), see description there.

Description:
DBRLOCK() is a network function that locks the current or specified record(s),
preventing other users from updating the record(s) until the lock is released. Since
DBRLOCK() is an equivalence for RLOCK(), see additional description there.

Example:
See RLOCK()

Compatibility:
Refer to the RLOCK() description.

Related:
ISDBRLOCK(), DBRLOCKLIST(), DBRUNLOCK(), USE...EXCLUSIVE, SET
EXCLUSIVE, UNLOCK, FLOCK(), ISDBFLOCK(), SET AUTOLOCK, SET
MULTILOCK, RLOCKVERIFY(), oRdd:Rlock(), RLOCK()

FUN 142

DBRLOCKLIST ()
Syntax:

retA = DBRLOCKLIST ()
Purpose:

Determines list of records locked by the RLOCK() function.

Returns:
<retA> is an array with the numbers of currently locked records. An empty array is
returned if no records are locked.

Description:
DBRLOCKLIST() is used to obtain the list of record locks in the current working
area. The LEN(<retA>) returns the number of all locked records in the area. To
perform the function in a different working area from the current one, use
alias->(DBRLOCKLIST()).

To determine if the current or specified record is locked, you may also use the
ISDBRLOCK() function.

Example:
USE address SHARED
for ii := 1 to lastrec() STEP 5

RLOCK (ii)
next
GOTO 6 ; replace
aLocks := DBRLOCKLIST()
aeval (aLocks, {|x| qqout(x)}) // 1, 6, 11, 16,
? len(aLocks) // 1050
DBRUNLOCK (1)
? len(DBRLOCKLIST()) // 1049
UNLOCK
? len(DBRLOCKLIST()) // 0

Classification:
database

Compatibility:
Available in FS4, VFS and VO only.

Related:
RLOCK(), ISDBRLOCK(), DBRUNLOCK(), DBUNLOCK(), DBUNLOCKALL(),
UNLOCK, oRdd:RlockList()

FUN 143

DBRSELECT ()
Syntax:

retN = DBRSELECT ([expN])
Purpose:

Retrieves the child working area of the specified relation, defined in the selected
working area.

Options:
<expN> is the ordinal number of a relation in the relations list of the selected
working area. If the argument is not specified, 1 (the first relation) is assumed.

Returns:
<retN> is a numeric value, representing the working area to which the specified
relation has been set. If the specified relation does not exist, zero is returned.

Example:
USE article
SELECT 2
USE magazine INDEX magazine
SELECT 3
USE author INDEX author
SELECT article
SET RELATION TO magazine INTO magazine, ;

TO author INTO author
? DBRSELECT(1), DBRSELECT(2) && Result: 2 3

? "relations from current WA", ltrim(select()), alias()
FOR ii := 1 to DbRelCount()

? "relation #" + ltrim(ii) + " to WA " + ltrim(DbRselect(ii)), ;
"=", alias(DbRselect(ii))

if DbRelMultiple(ii)
?? " MULTIPLE = 1:n"

endif
?? " by expression:", DbRelation(ii)

NEXT

Classification:
database

Related:
SET RELATION, DbFilter(), DbRelation(), DbRelCount(), DbRelMulti(),
oRdd:RelationObject(), oRdd:SetRelation()

FUN 144

DBRUNLOCK ()
Syntax:

retL = DBRUNLOCK ([expN1])
Purpose:

Releases RLOCK() of the specified record or all record locks.

Options:
<expN1> is the record number, of which the record lock should be released. If this
record was not previously locked by RLOCK(), the function return FALSE. If
<expN1> is not given or specified 0, all record locks are released.

Returns:
<retL> signals a successful release of the record lock.

Description:
DBRUNLOCK() is an opposite function of RLOCK(). If the argument <expN1> is not
given, it is similar to DBUNLOCK() or the standard UNLOCK command, but frees
only previously record locks, not a file lock. If the database is used EXCLUSIVE, no
action is performed.

To perform the function in a different working area from the current one, use
alias->(DBRUNLOCK()).

To determine the currently Rlock-ed records, use DBRLOCKLIST() or
ISDBRLOCK() functions.

Tuning:
You may automatically perform DbCommit() or DbCommitAll() at the time of
DbrUnlock() by assigning

_aGlobSetting[GSET_N_UNLOCK_COMMIT] := num // default = 0
where num=0 disables this feature, num=1 performs DbCommit() and num=2
invokes DbCommitAll() instead. Alternatively, SET AUTOCOMMIT ON has similar
functionality.

Example:
USE address SHARED
for ii := 1 to lastrec() STEP 5

RLOCK (ii)
next
GOTO 6 ; replace
aLocks := DBRLOCKLIST() // 1, 6, 11, 16,
? DBRUNLOCK (recno()) // .T.
? DBRUNLOCK (5) // .F.
? DBRUNLOCK (11), RECNO() // .T. 6
aLocks := DBRLOCKLIST() // 1, 16,
? ISDBRLOCK (), RECNO() // .F. 6
? ISDBRLOCK (16) // .T.

FUN 145

Classification:
database

Compatibility:
Available in FS4, VFS and VO only.

Related:
RLOCK(), DBRLOCKOCKLIST(), ISDBRLOCK(), DBUNLOCK(), DBUNLOCKALL(),
UNLOCK, oRdd:Unlock()

FUN 146

DBSEEK ()
Syntax:

retL = DBSEEK (exp1, [expL2])
Purpose:

Seeks through an index file until the first key matching the given expression is
found.

Arguments:
<exp1> is an expression to be matched with the index key of the currently active
index file (controlling index). The scope is ALL (the search starts with the first logical
record).

Options:
<expL2> is an optional logical value that specifies whether a soft seek is to be
performed. If the argument is not specified, the current SET SOFTSEEK state is
used.

Returns:
<retL> is the equivalent to FOUND(), specifying if the specified key value was
found.

Description:
DBSEEK() is equivalent to the standard SEEK command.

The searching of the controlling index starts from the first key. If a match is found,
the record pointer is positioned to the record number found in the index and
FOUND() returns TRUE, EOF() returns FALSE.

If the searched value is not found, the <expL2> argument or the current setting of
SET SOFTSEEK affects the returning value of FOUND(), EOF() and the position of
the record pointer; refer to the SEEK command.

DBSEEK() does not affect a working area with no active index. The SET DELETED
and SET FILTER switch/condition is considered. The current setting of SET EXACT
does not affect the search; the comparison is the same as SET EXACT OFF.

Example:
USE address NEW
DBSETINDEX ("adrname") // UPPER(name)
DBSETINDEX ("adrzip") // zipcode
? DBSEEK ("SMITH") // .T.
? FOUND(), EOF(), name // .T. .F. Smith
SET ORDER TO 2
? DBSEEK (1234, .T.) // .F.
? FOUND(), EOF(), zipcode // .F. .F. 1255

Classification: database
Compatibility: Available in FS4, VFS and C5 only.
Related: SEEK, DBGOBOTTOM(), DBGOTOP(), DBSKIP(), EOF(), FOUND()

FUN 147

DBSELECTAREA ()
Syntax 1:

retL = DBSELECTAREA (expN1|expC1)
Syntax 2:

retN = DBSELECTAREA ()
Purpose:

Changes the current working area or determines current WA number.

Arguments:
<expN1> is a numeric value between zero and 65534, inclusive, that specifies the
SELECT() number of the working area being selected. A zero (0) argument selects
the first unused working area, similar to the USE ... NEW clause.

<expC1> is a character value that specifies the alias of the working area being
selected.

If no parameter is passed, DbSelectArea() behaves same as SELECT() function,
i.e. returns the current working area number (1 to 65534).

Returns:
<retL> with syntax 1 signals success if TRUE, or is FALSE otherwise.

<retN> with syntax 2 returns the current working area number.

Description:
DBSELECTAR(param) is equivalent to the standard SELECT ... command and
DBSELECTAR() is equivalent to the standard SELECT() function.

In FlagShip, 65534 working areas are available for simultaneously open databases.
The ALIAS of a working area is automatically assigned when a database file is
opened by the USE command.

For more information refer to the SELECT command.

Multiuser:
When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Example:
USE address NEW // same as: DbSelectArea(0); USE ...
SELECT 155 // same as: DbSelectArea(155)
USE invoice INDEX invcust NEW
DBSELECTAREA ("address") // same as: SELECT address
? name
DBSELECTAREA (155) // same as: SELECT 155
SEEK address->custno
? DBSELECTAREA() // same as: SELECT()

FUN 148

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL and supports 250 to
255 working areas; other Xbase systems, like dBASE or FoxPro even less.

Related:
SELECT, SELECT(), USE, USED(), DBUSEAREA(), oRdd:Used

FUN 149

DBSETDRIVER ()
Syntax:

retC = DBSETDRIVER ([expC1])
Purpose:

Returns the default database driver and optionally sets a new driver.

Options:
<expC1> is an optional character value that specifies the name of the database
driver RDD that should be used to activate and manage new working areas when
no driver is explicitly specified.

Returns:
<retC> is the name of the current database driver. The default "DBFIDX" is
returned, if not otherwise set.

Description:
DBSETDRIVER() is equivalent to RDDSETDEFAULT(), see also its description.
The function sets the database driver to be used when activating new working
areas without specifying a driver. If the specified driver is not available to the
application, the call has no effect.

Example:
? DBSETDRIVER () // dbfidx
DBFSETDRIVER ("dbfntx")
IF LOWER(DBSETDRIVER ()) != "dbfntx"

? "DBFnxt driver is not available"
ENDIF
USE address

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only.

Related:
USE, DBUSEAREA(), RDDSETDEFAULT(), oRdd:Driver

FUN 150

DBSETFILTER ()
Syntax:

retL = DBSETFILTER (expB1, [expC2])
Purpose:

Makes a database appear as if it contains only the records meeting the specified
condition.

Arguments:
<expB1> is a code block that expresses the filter condition in executable form. The
code block body is equivalent to the <condition> argument of the SET FILTER TO
command.

Options:
<expC2> is an optional character value that expresses the filter condition in textual
form. If not specified, the DBFILTER() function will return an empty string for the
working area.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBSETFILTER() is equivalent to the standard SET FILTER command.

Each working area can have an active filter. When set, a filter is activated on the
first movement of the record pointer in the corresponding working area, e.g. using
the GOTO TOP command. The current filter condition can be returned as a
character string using the DBFILTER() function.

For more information, refer to the SET FILTER command.

Example:
USE address NEW
DBSETFILTER ({|| "SMITH" $ UPPER(name)}, ;

"'SMITH' $ UPPER(name)")

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
SET FILTER, SET DELETED, DBFILTER(), LOCATE, SEEK, oRdd:Filter,
oRdd:FilterString

FUN 151

DBSETINDEX ()
Syntax:

retL = DBSETINDEX (expC1 [, expC2 [,expCn]]
[,expL2])

Purpose:
Opens the specified index file and adds it to the list of open indices in the current
working area.

Arguments:
<expC1> is the file name to be opened and added to the current working area. A
file name resulting in either a null string "", NIL or spaces is ignored. If an extension
is not specified, .idx is assumed.

Options:
<expC2..expCn> are additional index file names to be opened. If one the index files
could not be open correctly, the return value is .F. and NetErr() returns .T.

<expL2> is a logical expression that specifies whether the index should be opened
EXCLUSIVE to that application. If not specified, the default is FALSE, which opens
the index in SHARED mode.

Returns:
<retL> is equivalent to .NOT. NETERR(). A TRUE value indicates successful index
opening.

Description:
DBSETINDEX() performs the same function as the standard SET INDEX command
or the INDEX clause of the USE command, except it does not clear already
assigned indices, as SET INDEX do. To clear already assigned indices in the active
work area, use DbClearIndex().

If the newly opened index is the first index associated with the working area, it
becomes the controlling index; otherwise, the controlling order remains unchanged.

After the new index file is opened, the working area is positioned to the first logical
record in the controlling order. For more information, refer to the SET INDEX
command.

When the open fails, DbSetIndex() will return .F. When SET OPENERROR is ON
(the default), an open failure will raise run-time error. For a full backward
compatibility to FS 4.4, or to avoid RTE, use SET OPENERROR OFF and check
the return status thereafter. Multiple assignment of the same index file into the
same work area is not allowed and will be ignored, this will also raise developer
warning when FS_SET("devel",.T.) is set.

FUN 152

Tuning:
FlagShip do not raise run-time error on failure, you should check the return value or
NETERR() for success. You however may force run- time-error RTE 501 on failure
by assigning

_aGlobSetting[GSET_L_DBSETINDEX_ERR] := .T. // default = .F.
which then behaves FoxPro conform.

Example:
USE address NEW
DBSETINDEX ("adrname")
DBSETINDEX ("adrzip")
? INDEXORD(), INDEXKEY() // 1 UPPER(name)
SET ORDER TO 2
? INDEXORD(), INDEXKEY() // 2 zipcode

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. The optional arguments are available in
FlagShip only. C5 returns NIL value.

Related:
SET INDEX, CLOSE, INDEX, REINDEX, SET ORDER, USE, INDEXEXT(),
INDEXORD(), NETERR(), DbClearIndex(), FS_SET(), oRdd:SetIndex()

FUN 153

DBSETLOCATE ()
Syntax:

retL = DBSETLOCATeBlock (expB1)
Purpose:

Sets the LOCATE...FOR condition.

Arguments:
<expB1> is a code block that specifies the FOR condition of the LOCATE
command. The code block should return a logical expression. This code block is
valid until it is overwritten by the next DBSETLOCATE(), LOCATE .. FOR, or the
database is closed.

Returns:
<retL> signals the success, if TRUE.

Description:
DBSETLOCATE() allows you to change the LOCATE .. FOR condition of the
current working area, e.g. to modify the CONTINUE searching. To execute the
function in a different working area from the current one, use
alias->(DBSETLOCATE(...)).

As opposed to the LOCATE or CONTINUE commands, DBSETLOCATE() does not
perform any search action.

Example:
USE test NEW
LOCATE FOR "SMITH" $ UPPER(name)
if Found()

DBSETLOCATE ({|| "SMITH" $ UPPER(name) .and. ;
"John" $ first})

WHILE found()
? name, first, eval(DbGetLocate())
CONTINUE

ENDDO
endif

Classification:
database

Compatibility:
Available in FS4, VFS and VO only.

Related:
DBGETLOCATE(), LOCATE, CONTINUE, EVAL(), oRdd:Info()

FUN 154

DBSETORDER ()
Syntax:

retC = DBSETORDER (expN1)
Purpose:

Sets the specified index number as the (master) controlling index.

Arguments:
<expN1> is a numeric value that specifies which index number, according to the
position in the list of open indices (1..n), will become the controlling index.
Permissible values of <expN1> range from 0 to 15.

Returns:
<retC> is the name of the selected index/order, or null-string "" on error.

Description:
DBSETORDER() is equivalent to the standard SET ORDER command.

By using DBSETORDER() or SET ORDER, any of the previously assigned index
files (using SET INDEX or DBSETINDEX()) can be declared as the controlling
index. Changing the index order does not change the database record position.

DBSETORDER(0) deselects the controlling index, switches to the natural order of
records in the database, but leaves all the indices open. This is useful for replacing
an area of indexed records without having the index interfering with the position in
the database.

For more information, refer to the SET ORDER command.

Example:
USE employees
SET INDEX TO persid, name
DBSETORDER (2)
SEEK "SMITH"

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
SET ORDER, SET INDEX, DBSETINDEX(), DBCLEARIND(), INDEXORD(),
INDEXEXT(), INDEXKEY(), INDEXCHECK(), oRdd:SetOrder()

FUN 155

DBSETRELATION ()
Syntax:

retL = DBSETRELATION (expN1|expC1, [expB2],
[expC3], [expL4])

Purpose:
Adds a new relation from current (parent) work area to child work area (<expN1> or
<expC1>) by using key expression <expB2>/<expC3> or record number.

Arguments:
<expN1> is a numeric value that specifies the working area number of the child
working area. This is equivalent to the INTO clause of the SET RELATION
command.

<expC1> is a character value that specifies the alias of the child working area. This
is equivalent to the INTO clause of the SET RELATION command.

<expB2> is a code block that expresses the relational expression in executable
form. The body of the code block is equivalent to the TO clause of the SET
RELATION command.

Options:
<expC3> is an optional character value that expresses the relational expression in
textual form. The string is equivalent to the TO clause of the SET RELATION
command. If not specified, the DBRELATION() function returns an empty string for
the relation.

<expL4> is optional logical value. If set .T., the child database is processed as 1:n
relation, otherwise it is 1:1 relation. You may set or clear the 1:n relation also later
by DbRelMultiple().

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DbSetRelat() is equivalent to the standard SET RELATION command. It links the
active database (parent) with other opened databases (children) identified by
<exp1>, see LNG.4.7. Each parent working area can be linked to as many as eight
child working areas.

When the relational expression is evaluated, the parent working area is
automatically selected as the current working area before the evaluation; the
previously selected working area is automatically restored afterward.

For more information, refer to the SET RELATION command.

FUN 156

Example:
USE employee NEW ALIAS empl // child relat.
DBSETINDEX ("empl_id")
USE children NEW // parent relat.
DBSETRELATION ("empl", {|| id_numb}, "id_numb")

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL. 1:n relations are
available in VFS7 and later.

Related:
SET RELATION, DbRelation(), DbClearRel(), DbRselect(), DbRelCount(),
DbRelMultiple(), oRdd:SetRelation()

FUN 157

DBSKIP ()
Syntax:

retN = DBSKIP ([expN1])
Purpose:

Moves the record pointer in the specified working area relative to the current pointer
position.

Option:
<expN1> specifies the number of records to move the record pointer from the
current position. A positive value moves the pointer forward, while a negative value
moves the pointer backwards. If <expN1> is not specified, 1 is assumed.

Returns:
<retN> is the number of records skipped.

Description:
DBSKIP() is equivalent to the standard SKIP command. It moves the record pointer
to a new position relative to the record position in the current or specified working
area. If an index file is in use, DBSKIP() moves the specified number of positions
according to the index keys.

To skip in a working area other than the current one, use alias->(DBSKIP(n)).
Refer to the SKIP command for more information.

Multiuser:
Any record movement command, including DBSKIP(), will make changes in the
current working area visible to other applications, if the current file is shared and
changes were made. DBSKIP(0) flushes the current working area and the UNIX
buffers to disk, as does DBCOMMIT(). See more in chapter LNG.4.8.

Example:
USE employee NEW ALIAS empl
? RECNO(), name && 1 Miller
DBSKIP ()
? RECNO(), name && 2 Johnson
USE newdbf NEW
empl->(SKIP (1 + MAX(3,2)))
? empl->(RECNO()), empl->name && 5 Smith

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
SKIP, BOF(), EOF(), RECNO(), GOTO, oRdd:Skip()

FUN 158

DBSTRUCT ()
Syntax:

retA = DBSTRUCT ()
Purpose:

Creates an array containing the structure of the current database file.

Returns:
<retA> is a two-dimensional array containing the structure of the current database
file, whose length is equal to the number of fields in the database. Each element of
the array is a sub-array containing information for one .dbf field:

Element Type #define Description Usage
retA [n,1] expC DBS_NAME Field name 1..10 chars
retA [n,2] expC DBS_TYPE Field type C,N,D,L,M,V*
retA [n,3] expN DBS_LEN Field length 1..65535
retA [n,4] expN DBS_DEC Deci places 0..18

If there is no database file in USE in the current working area, DBSTRUCT() returns
an empty array {}.

Description:
DBSTRUCT() is similar to COPY STRUCTURE EXTENDED in creating an array
containing the structure information rather than a database. To perform the function
in a working area other than the current one, use retA = alias->(DBSTRUCT()).

Using the function DBCREATE(), a new database can be created using the
structure array information.

For Numeric fields, retA[n,DBS_LEN] reports the total size of digits including sign,
deci point (if any) and the deci fraction, and retA[n,DBS_DEC] reports the number
of decimal digits in the fraction.

On databases created by CREATE FROM, the character field length may be given
as FIELD_DEC *256 + FIELD_LEN. This is considered by DbStruct() automatically,
where retA[n,DBS_LEN] reports the total length and retA[n,DBS_DEC] reports 0. If
you wish to determine the field characteristics as stored in the database header,
you may use FieldLen(n, .T.) and FieldDeci(n, .T.) instead.

For fields of type Date, Logical, Memo, Variable character and Binary,
retA[n,DBS_DEC] always reports 0 and retA[n,DBS_LEN] the number of bytes used
in the .dbf file, i.e. 1 for Logical, 8 for Date, 10 for Memo and Variable data fields,
and 2,4,8 for these binary fields.

FUN 159

Example:
See also the example in DBCREATE() for modifying the database structure using
the DBSTRUCT() function.

#include "dbstruct.fh"
LOCAL dbfstru
USE address NEW
dbfstru := DBSTRUCT()
AEVAL (dbfstru, {|x| QOUT(x[DBS_NAME])}) // list struct

Classification:
database

Compatibility:
Available in FS4, VFS and C5. C5 supports up to 17 deci places. The binary fields
2,4,8 and variable data/blob are available in VFS only.

Include:
The #include constants are available in "dbstruct.fh"

Related:
COPY STRUCTURE EXTENDED, DBCREATE(), oRdd:DbStruct(), FieldName(),
FieldType(), FieldLen(), FieldDeci()

FUN 160

DBUNLOCK ()
Syntax:

retL = DBUNLOCK ()
Purpose:

Releases all locks for the current working area.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBUNLOCK() is equivalent to the standard UNLOCK command. It frees all record
and file locking of the current databases used in the multiuser/multitasking mode. If
the database is used EXCLUSIVE, no action is performed.

To perform the function in a different working area from the current one, use
alias->(DBUNLOCK()). For more information, refer to the UNLOCK command.

Multiuser:
In multiuser mode (or when using a concurrent database access in the same
application), SET EXCLUSIVE OFF or USE...SHARED is required to open the
database in the current working area. Before any write database access, the record
or the database must be locked using RLOCK() or FLOCK(). Otherwise,
AUTOxLOCK() is used, when SET AUTOLOCK is enabled (the default). The only
exception is APPEND BLANK or DBAPPEND(), which locks the new record
automatically.

The DBUNLOCK() function in FlagShip implies updating the current working area
buffers to UNIX (or Windows), which flushes buffers, and makes changes visible to
other applications. If SET MULTILOCKS is ON, you may unlock specific record by
using DBRUNLOCK() function.

Tuning:
You may automatically perform DbCommit() or DbCommitAll() at the time of
DbUnlock() by assigning

_aGlobSetting[GSET_N_UNLOCK_COMMIT] := num // default = 0
where num=0 disables this feature, num=1 performs DbCommit() and num=2
invokes DbCommitAll() instead. Alternatively, SET AUTOCOMMIT ON has similar
functionality.

Example:
WHILE !DBUSEAREA (.T., , "invoice", , .T.) ; ENDDO
WHILE !FLOCK() ; ENDDO
DELETE ALL FOR paid
DBCOMMIT()
DBUNLOCK()

Classification:
database

FUN 161

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
UNLOCK, DBRUNLOCK(), DBUNLOCKALL(), USE, COMMIT, DBCOMMIT(),
DBCOMMITALL(), DBCLOSEAREA(), oRdd:Unlock(), SET AUTOCOMMIT

FUN 162

DBUNLOCKALL ()
Syntax:

retL = DBUNLOCKALL ()
Purpose:

Releases all locks for all working areas.

Returns:
<retL> signals success if TRUE, or is FALSE otherwise.

Description:
DBUNLOCKAL() is equivalent to the standard UNLOCK ALL command. It frees all
record and file locks in all working areas used. If any of the databases is used
EXCLUSIVE, no action is performed in that working area. For more information,
refer to the UNLOCK command.

Multiuser:
In multiuser mode (or when using a concurrent database access in the same
application), SET EXCLUSIVE OFF or USE...SHARED is required to open the
database in the current working area. Before any write database access, the record
or the database must be locked using RLOCK() or FLOCK(). Otherwise,
AUTOxLOCK() is used, when SET AUTOLOCK is enabled (the default). The only
exception is APPEND BLANK or DBAPPEND() both of which lock the new record
automatically.

The DBUNLOCKALL() function in FlagShip implies updating all working area
buffers to UNIX (or Windows), which flushes buffers, and makes changes visible to
other applications.

Tuning:
You may automatically perform DbCommit() or DbCommitAll() at the time of
DbUnlockAll() by assigning

_aGlobSetting[GSET_N_UNLOCK_COMMIT] := num // default = 0
where num=0 disables this feature, num=1 performs DbCommit() and num=2
invokes DbCommitAll() instead. Alternatively, SET AUTOCOMMIT ON has similar
functionality.

Example:
WHILE !DBUSEAREA (.T., , "custom", , .T.) ; ENDDO
WHILE !DBSETINDEX("custno") ; ENDDO
WHILE !DBUSEAREA (.T., , "invoice", , .T.) ; ENDDO
SET RELATION TO cust_no INTO custom
SELECT custom
DBSEEK (1234)
WHILE !RLOCK() ; ENDDO // lock custom
WHILE !(invoice->(RLOCK()) ; ENDDO // lock invoice
REPLACE sum WITH sum + paidamount, invoice->paid WITH .T.
DBCOMMITALL()
DBUNLOCKALL() // unlock all

FUN 163

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. Clipper always returns NIL.

Related:
UNLOCK, DBUNLOCKALL(), USE, DBCLOSEAREA(), oRdd:Unlock()

FUN 164

DBUSEAREA ()
Syntax:

retL = DBUSEAREA ([expL1], [expC2], expC3, [expC4],
[expL5], [expL6])

Purpose:
Opens the specified database file, and its associated memo file when memo fields
exist.

Arguments:
<expC3> specifies the name of the database file to open in the current or a next
free working area. If no extension is specified, the default .dbf extension is
assumed.

Options:
<expL1> is a synonym for the NEW clause of the USE command. If <expL1> is
specified as a TRUE value, an unused working area is selected first, making it to
the current one, and the database <expC3> is opened there. If the argument is
FALSE or not given, the database is opened in the currently SELECTed working
area, closing any active database occupying that working area.

<expC2> is a synonym for the VIA clause of the USE command. It defines the
replaceable database driver (RDD) to process the current working area. If not
specified, the default "DBFIDX" driver, or the one specified by RDDSETDEFAULT(),
is used.

<expC4> is a synonym for the ALIAS clause of the USE command. It specifies the
alias name to be associated with the working area. If not specified or using a NIL
value, the main part of the file name <expC3> is assigned to the alias. When a null
string is specified, the alias-> operator will be not applicable. If the given alias is
invalid, DbUseArea() will try to generate a valid name and will display
corresponding warning.

<expL5> is a synonym for the SHARED clause of the USE command. If specified
TRUE, the database is open for shared use in a multiuser, multitasking network or
concurrent mode. If the argument is FALSE, the database is opened in EXCLUSIVE
mode. If not specified, the current SET EXCLUSIVE status is used.

<expL6> is a synonym for the READONLY clause of the USE command. If the
argument is TRUE, the database is opened for read-only purposes. The UNIX
access rights -r- are sufficient for the database and memo <file> (but not for index
files, which must always be -rw-). In an attempt to REPLACE or APPEND a record,
a run-time error is made to occur. If the argument is FALSE or not specified, the
database is open in read-write mode.

Returns:
<retL> is equivalent to .NOT. NETERR(). A TRUE value indicates a successful
database opening.

FUN 165

Description:
DBUSEAREA() is equivalent to the standard USE command. It opens an existing
database .dbf file, and its associated memo .dbt file in the current or the next
available working area.

After opening the database, the record pointer refers to the first physical record in
the file which defaults to record 1 if no index file is specified. With active index, the
record pointer is set to the first logical record. When SET DELETED is ON or SET
FILTER is active, you will need to invoke GO TOP to set the pointer to the first
visible record. Note the GO TOP is not done automatically for performance
purposes and to allow you to check the indices via IndexCheck() before moving the
record pointer.

If the database is empty, both BOF() and EOF() are set TRUE. When the open fails,
DbUseArea() and Used() will return .F. When SET OPENERROR is ON (the
default), an open failure will raise run-time error. If you wish to avoid RTE, use SET
OPENERROR OFF and check the return status.

Additional warnings are available by using FS_SET("devel", .T.)

For more information, refer to the USE command.

Multiuser:
If a multiuser, multitasking and/or network access is required, database files can be
opened EXCLUSIVE or SHARED, using the <expL5> argument or the SET
EXCLUSIVE command.

Opening a database EXCLUSIVEly will succeed only if it is not already in use by
some other user. Attempting to open a database SHARED will succeed only if the
database is not opened exclusively by other user (or concurrently in another
working area). Always check whether the database has been successfully opened
using the return value <retL> or the NETERR() function.

For special purposes, FlagShip allows the same database to be used
simultaneously in different working areas, when the given ALIAS names given by
<expC4> are different. The handling of concurrent databases is the same, as the
usage of shared databases in multi- user mode. You may check the concurrent use
by IsDbMuplipleOpen()

When the global switch SET NFS is ON, additional actions are taken to ensure
correct buffer flushing on the NFS mounted server to avoid corrupted indices in
some over-optimized NFS versions. See further details in SET NFS.

Refer to the USE command and LNG.4.8 for more information about multiuser
programming.

Tuning:
FlagShip do not raise run-time error on failure, checking the return value or USED()
or NETERR() reports failure or success. You however may force RTE 501 on failure
by assigning

_aGlobSetting[GSET_L_DBUSEAREA_ERR] := .T. // default = .F.
which then behaves FoxPro conform.

FUN 166

Example:
DBUSEAREA (,,"tempor") // minimal usage

DBUSEAREA (.T., "dbfidx", "address", "adr", .T., .T.)
** is equivalent to:
** USE address ALIAS adr SHARED READONLY NEW VIA "dbfidx"

WHILE ! DBUSEAREA (.T., , "invoice", NIL, .T.)
? "trying to open invoice.dbf in multiuser mode"

ENDDO
IF ! DBSETINDEX ("invoice")

? "cannot open invoice.idx in multiuser mode"
QUIT

ENDIF

Classification:
database

Compatibility:
Available in FS4, VFS and C5 only. In C5, the function returns NIL.

Related:
USE, DBCLOSEAREA(), DBSETDRIVER(), SELECT(), DBFIDXNEW(),
DBSETDRIVER(), RDDSETDEFAULT(), oRdd := DBFIDX {...}, oRdd :=
DBSERVER {...}

FUN 167

DEFAULT ()
Syntax:

ret = Default (@var, exp2)
Purpose:

Check and set default value for variable <var>

Arguments:
<@var> is the variable (passed by reference) to be tested.

Returns:
<ret> is either equal to <var> or to <exp2>.

Description:
This function is used to set default value to specified variable, if required. If the
<var> is un-initialized, i.e. the <var> is NIL or the valtype(var) is not equal to
valtype(exp2), the value of <exp2> is returned. Otherwise the value of <var> is
returned.

Classification:
programming

Compatibility:
New in VFS

Related:
VALTYPE()

FUN 168

DELETED ()
Syntax:

retL = DELETED ()
Purpose:

Finds out whether the current record is marked for deletion.

Returns:
<retL> is a logical value. The return value is .T. if the record is marked for deletion,
FALSE otherwise.

Description:
The "deleted" byte is a part of any database record. The DELETED() status can be
examined in a different working area from the current one, using
alias->(DELETED()).

Example:
USE article
? DELETED() && .F.
DELETE
? DELETED() && .T.
RECALL
? DELETED() && .F.

Example:
Create an index including non-deleted records only:

USE address
INDEX ON name FOR .not. DELETED() TO adrpure

Classification:
database

Related:
DELETE, RECALL, PACK, SET DELETED, oRdd:Deleted

FUN 169

DESCEND ()
Syntax:

ret = DESCEND (exp)
Purpose:

For creating and searching indices in reverse order.

Arguments:
<exp> is an expression of any data type.

Returns:
<ret> is the same type as <exp>, but in a complemented form.

Description:
DESCEND () can be used for creating descending order indices and to search them
with SEEK. An alternative is to create the index using the DESCENDING clause;
see the INDEX ON command.

Note that the DESCEND(string) result may be affected by the LANG environment
variable, and availability of the FSsortab.def (sorting) file or use of
FS_SET("loadlang", num, file) + FS_SET("setlang", num). The DESCEND(numeric
or logical or date) is not affected hereby.

Note, that the DESCEND clause may be used during the index creation. This
however does not store key converted by DESCEND() in the index structure, but
reverts the index sorting order. To store inverted field value into index key, use the
DESCEND() function during INDEX ON..TO.. and for SEEK or SEEK EVAL, see
example below.

Tuning:
When the input string contains binary 0 character, it is considered but specially
handled. You may modify the return equivalence of the DESCEND(chr(0)) character
by assigning num value of 0 to 255 to

_aGlobSetting[GSET_N_DESCEND_ZERO] := 255 // default setting
where 0 is compatible to Clipper and FS4, 255 is compatible to VFS6 and the byte
order corresponds to it value - but is same as chr(1), except you set

_aGlobSetting[GSET_N_DESCEND_ADD] := 0 // default is 1
which then behaves differently to standard, but allows real descend sort for
chr(0)..chr(255) in reverse order.

FUN 170

Example:
USE magazine
INDEX ON price TO price_up
SEEK 2.50 // found if available
SKIP ; ? price // >= 2.50
INDEX ON price TO price_down DESCENDING
SEEK 2.50 // found if available
SKIP ; ? price // <= 2.50

INDEX ON DESCEND(price) TO price_desc
SEEK DESCEND(2.50) // found if available
SKIP ; ? price // <= 2.50

Classification:
programming (used often for database)

Compatibility:
As opposite to FlagShip, Clipper returns numeric value for a "date" argument; in
FlagShip the result remain "date" type. Embedded zero bytes are supported, see
Tuning above.

Related:
INDEX, SEEK, DBCREATEINDEX(), oRdd:CreateIndex(), oRdd:CreateOrder()

FUN 171

DEVOUT ()
Syntax:

NIL = DEVOUT (exp1, [expC2], [expC3])
Purpose:

Outputs a value to the current SET DEVICE.

Arguments:
<exp1> is an expression of any data type to display.

Options:
<expC2> is an optional argument that defines the display color of <exp1>. If the
current DEVICE setting is not SCREEN, the argument is ignored. If not specified,
the <exp1> is displayed using the current color setting. Only the first color pair
(standard) of <expC2> is significant. See SET COLOR command or SETCOLOR()
function for the format of <expC2> string. This argument is always considered in
Terminal i/o mode. GUI mode check first for availability of <expC3> and if not set,
uses <expC2> only if SET GUICOLOR is ON.

<expC3> is an optional argument that defines the display color of <exp1> used in
GUI mode. If the current DEVICE setting is not SCREEN, or the AppIoMode() is not
"G", the argument is ignored and <expC2> used instead.

Returns:
The function always returns NIL.

Description:
DEVOUT() is similar to the @ ROW(),COL() SAY.. command performing a full-
screen display at the current cursor (or printhead) position. To set the cursor to
other coordinates, use DEVPOS() function.

Example:
SET COLOR TO "W+/B"
CLS
@ 10,0 SAY "First part" COLOR "GR+/B"
DEVOUT(" second part ")
DEVOUT(" third part", "R+/B")

Classification:
screen oriented or coordinates oriented printer/file output.

Compatibility:
Available in FS4, VFS and C5 only. Embedded zero bytes in <expC1> are not
supported. The <expC3> argument is available in VFS only.

Related:
@..SAY, DEVOUTPICT(), DEVPOS(), COL(), ROW(), SET COLOR, SETCOLOR()

FUN 172

DEVOUTPICT ()
Syntax:

NIL = DEVOUTPICT (exp1, expC2, [expC3], [expC4])
Purpose:

Outputs a value to the current SET DEVICE using a picture clause.

Arguments:
<exp1> is an expression of any data type to display.

<expC2> is the formatting rule for output of <exp1>. Refer to the PICTURE clause
of the @...SAY command for more information. If <expC2> is not given, or is NIL or
empty, DevOutPict() behaves same as DevOut().

Options:
<expC3> is an optional argument that defines the display color of <exp1>. If the
current DEVICE setting is not SCREEN, the argument is ignored. If not specified,
the <exp1> is displayed using the current color setting. Only the first color pair
(standard) of <expC3> is significant. See SET COLOR command or SETCOLOR()
function for the format of <expC3> string. This argument is always considered in
Terminal i/o mode. GUI mode check first for availability of <expC4> and if not set,
uses <expC3> only if SET GUICOLOR is ON.

<expC4> is an optional argument that defines the display color of <exp1> used in
GUI mode. If the current DEVICE setting is not SCREEN, or the AppIoMode() is not
"G", the argument is ignored and <expC3> used instead.

Returns:
The function always returns NIL.

Description:
DEVOUTPICT() is similar to the @ ROW(),COL() SAY... PICTURE... command
performing a full-screen display at the current cursor (or printhead) position. To set
the cursor to other coordinates, use DEVPOS() function.

Example:
SET COLOR TO "W+/B"
CLS
@ 10,0 SAY 123.3 PICTURE "999.9" COLOR "GR+/B"
DEVOUTPICT (234.5, "9999.9")
DEVPOS (ROW(), COL() +1)
DEVOUTPICT (DATE(), "99-99-99", "R+/B")

Classification:
screen oriented or coordinates oriented printer/file output

Compatibility:
Available in FS4, VFS and C5 only. Embedded zero bytes in <expC1> are not
supported. The <expC4> argument is available in VFS only.

Related: @..SAY, DEVOUT(), DEVPOS(), COL(), ROW(), SET COLOR, SETCOLOR()

FUN 173

DEVPOS ()
Syntax:

NIL = DEVPOS (expN1, expN2, [expL3])
Purpose:

Moves the cursor or printhead to a new position.

Arguments:
<expN1> and <expN2> are the new row and column positions, starting with zero. If
the DEVICE is SCREEN, the valid range is 0...MAXROW() and 0...MAXCOL().

<expL3> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

Returns:
The function always returns NIL.

Description:
DEVPOS() moves the screen or printhead depending on the current SET DEVICE
status.

If SET DEVICE TO SCREEN is active (the default), DEVPOS() behaves like
SETPOS(), moving the cursor on the screen and updating the COL() and ROW()
values.

If SET DEVICE TO PRINTER is active, DEVPOS() moves the printhead instead.
Movement forwards is issued by sending spaces, backwards by sending
backspaces CHR(8) and downwards by sending linefeeds CHR(10). If the <expN1>
is lower than the current PROW() value, a form-feed CHR(12) is executed first. If
the current SET MARGIN value is greater than zero, it is added to <expN2>. The
values of PROW() and PCOL() are updated according to the new printhead
position.

If the printer is redirected to a file using the SET PRINTER command, DEVPOS()
updates the file instead of the printer.

Example:
DEVPOS (10,5) // equivalent to:
DEVOUT ("my text") // @ 10,5 SAY "my text"

Classification:
screen oriented or coordinates oriented printer/file output

Compatibility:
Available in FS4, VFS and C5 only. The 3rd parameter is new in VFS.

Related:
@..SAY, SETPOS(), DEVOUT(), DEVOUTPICT(), COL(), ROW(), PCOL(),
PROW(), SETPRC()

FUN 174

DIRECTORY ()
Syntax:

retA = DIRECTORY ([expC1], [expC2])
Purpose:

Creates an array of directory and file information.

Options:
<expC1> is a standard UNIX or Windows wildcard pattern specifying the path and
file search. Wildcard characters "?", "*" (and on Unix regular expression like "[...]")
can be used. If the argument is not specified, "*" or ".*", depending on the <expC2>
argument, is assumed. The automatic path and file conversion using FS_SET() and
the DOS drive substitution by x_FSDRIVE environment variable also applies to the
<expC2> argument on Unix systems.

<expC2> specifies inclusion of files with special attributes in the information
returned. <expC2> is a string containing one or more of the following characters:

Attr FlagShip/Unix FlagShip/MS-Windows
H Include .* hidden files Include hidden files
S ignored Include system files
D Include directories Include directories
V ignored Include DOS volume label (ignored)
A Date,time = Last access Date,time = Last access (not FAT)
C Date,time = Creation Date,time = Last access (not FAT)

If the "D" attribute is not specified in <exp2>, directories are not included in the
search. If specified, also "." and ".." for the current and parent directories are
reported in element 1 of the <retA> array. The "A" and "C" attribute is not supported
on FAT file system, where the write/modification time is reported instead.

Returns:
<retA> is a two-dimensional array, containing information about each file matching
<expC1>:

Element Type #define Description
retA [n,1] C F_NAME File name, case sensitive
retA [n,2] N F_SIZE File size in bytes
retA [n,3] D F_DATE Last modification date
retA [n,4] C F_TIME Last modif. time hh:mm:ss
retA [n,5] C F_ATT File attribute, see below

The first element (file name) is in usual convention, i.e. case sensitive on Unix. On
MS-Windows, the file name is reported as passed from the system, but the case is
irrelevant. Only the file part, without the path is stored in the array element.

The fifth element is filled with the UNIX file attributes (access rights). The elements
are of character type in the syntax "drwxrwxrwx" for the directory, owner, group and

FUN 175

other rights; see section LNG.3.3. On MS-Windows, a combination of R (read only),
H (hidden), S (system), D (directory), A (archive) or "" for regular file is reported.

If no files are found matching <expC1> or <expC2>, or if the given path is illegal, an
empty { } array is returned.

Description:
DIRECTORY() returns information about files in the current or specified directory. It
is similar to ADIR(), but returns a single array instead of adding values to a series of
existing arrays passed by reference.

Example:
#include "directry.fh"
LOCAL dirstru
#ifdef FlagShip

FS_SET ("lower", .T.)
FS_SET ("pathlower", .T.)

#else
define TRUEPATH UPPER
#endif

? "all files in current directory, including hidden:"
dirstru := DIRECTORY ()
AEVAL (dirstru, {|elem| QOUT(elem[F_NAME], elem[F_SIZE])})
? "all files t* in the parent directory " + ;

TRUEPATH("..\") + ":"
dirstru := DIRECTORY ("..\t*", "D")
AEVAL (dirstru, {|elem| QOUT(PADR(elem[F_NAME],30), ;

elem[F_SIZE], elem[F_ATT]) })
? "all index files in the parent directory " + ;

TRUEPATH("..\") + " with access time:"
dirstru := DIRECTORY ("..*" + INDEXEXT(), "A")
AEVAL (dirstru, {|elem| QOUT(PADR(elem[F_NAME],30), ;

elem[F_SIZE], elem[F_ATT]) })

Classification:
system, file access

Compatibility:
Available in FS4, VFS and C5 only. Note the above differences on the UNIX and
DOS file access (support of UNIX wildcard in <expC1> argument, slightly different
<expC2> argument, case-sensitive file names in the first returned element, and the
UNIX file attributes returned in the 5th element).

Note the differences in file names specified by wildcard on DOS and UNIX: on DOS
"*." means "all files without an extension", as opposed to the UNIX interpretation
"all files with a trailing dot".

Include:
The constants to #include are in the "directry.fh" file.

Related:
ADIR(), DIR, FILE()

FUN 176

DISKSPACE ()
Syntax:

retN = DISKSPACE ([expC])
Purpose:

Determines the number of bytes left free on the specified UNIX file system.

Arguments:
<expC> is the character string containing the name of the file system you want to
determine the free space for.

The automatic path and file conversion using FS_SET() and the DOS drive
substitution by x_FSDRIVE environment variable also applies to the <expC>
argument. To substitute e.g. second diskette, enter "B:" in <expC> and ensure
B_FSDRIVE is assigned to any valid UNIX path and exported before the application
is started.

If the argument is not of the character type, or is not specified at all, the default is
the current file system (not the file system set by SET DEFAULT).

Return value:
<retN> is a numeric value representing the number of free bytes remaining on the
specified file system.

Description:
DISKSPACE() is used when you want to determine the amount of free space for the
purpose of back-up, copying, sorting file, or any other purpose where disk space is
needed.

Example:
FUNCTION backup (dbf_name)
LOCAL min
USE (dbf_name)
min = RECSIZE() * RECCOUNT() + HEADER() +1
IF DISKSPACE() < min

? "not enough space to copy " + dbf_name + ".dbf"
WAIT "check the filesystem or use other one"
USE
RETURN .F.

ENDIF
COPY TO (dbf_name + ".bak")
USE
RETURN .T.

Classification:
system, file access

FUN 177

Compatibility:
C5 uses an optional numeric argument, which represents the drive number. On
UNIX, there is no equivalent for the drive letter of DOS file system is used instead.
FlagShip supports the DOS drive letters substituting them with an UNIX directory by
the environment variable x_FSDRIVE, see LNG.3.2 and LNG.9.5.

Related:
HEADER(), RECCOUNT(), RECSIZE(), FS2:DiskFree()

FUN 178

DISPBEGIN ()
Syntax:

NIL = DISPBEGIN ()
Purpose:

Begins buffering screen output.

Returns:
The function always returns NIL.

Description:
DISPBEGIN() is a screen function that starts buffering the subsequent screen
output instead of displaying it, until DISPEND() is executed. Applicable in Terminal
i/o, ignored otherwise.

The output buffering using DISPBEGIN() and DISPEND() can be used to prepare a
complex display in the "background". This is especially useful with a slow
communication line.

The REFRESH command or depressing of the ^K (abort key) or ^O (debugger) will
force the display of buffered data, but will not terminate buffering.

It is not recommended to output an user prompt (such as WAIT, READ, ACCEPT,
INPUT etc.) using DISPBEGIN(). Ensure DISPEND() is issued prior to issuing such
commands or functions.

Example:
DISPBEGIN() // Start screen buffering
CLS
@ 10,10 say "This is my output"
SETPOS(11, 10)
DISPOUT("An another text")
?? " continued"
? "or printed at a new line
DISPEND() // Display buffered screen data

Classification:
screen oriented output

Compatibility:
Available in FS4, VFS and C5 only. Nested calls of DISPBEGIN() are not supported
by FS4.

Related:
DISPEND(), REFRESH, SYS.2

FUN 179

DISPBOX ()
Syntax:

NIL = DISPBOX (expN1, expN2, expN3, [expN4],
[expCN5], [expC6], [expL7], [expL8],
[expCN9], [expN10], [expN11], [expL12])

Purpose:
Draws a customized box on the screen.

Arguments:
<expN1> to <expN4> are the screen coordinates, upper, left, lower, and right
respectively. The valid range is 0, 0, MAXROW(), MAXCOL().

Options:
<expCN5> specifies the box outfit and may be given as a character expression
<expC5> or as a numeric expression <expN5>. If not specified, a single-line box is
drawn.

<expC5> is a character string containing eight border characters and one fill
character. The first character is used for the upper left corner, the next for the upper
line, and so on, clockwise. The box is filled with the ninth character.

<expN5> is a numeric value of 1 which displays a single-line box or a value of 2
displays a double-line box. All other numeric values are assumed to be 1.

<expC6> is an optional color specification (according to SET COLOR). If not
specified, the box is drawn using the current color setting.

<expL7> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

<expL8> how to draw: .T. = draw only in GUI mode w/o considering SET
GUITRANSL *, .F. = draw only in Terminal mode, NIL = draw in Terminal mode
always, in GUI considering SET GUITRANSL BOX/LINES

<expCN9> color specification same as <expC5> but considered in GUI mode only

<expN10> is the frame type, considered in GUI mode only:

= 0: draw plain frame, same as @..BOX..PLAIN
= 1: draw sunken frame, same as @..BOX..SUNKEN
= 2: draw raised frame, same as @..BOX..RAISED

<expN11> is the line width, considered in GUI mode only, same as
@..BOX..LINEWIDTH nn. If not specified, the default width (usually 2) is used. If
specified 0, only the box inner area is filled.

<expL12> if specified .T., only the frame is drawn, the inner box area is not filled by
the specified of default color. If .F. or not specified, the <expCN9>, <expC6> or the

FUN 180

default background color is used to fill the inner box. Equivalent to
@..BOX..FRAMEONLY command. Considered in GUI mode only.

Returns:
The function always returns NIL.

Description:
DISPBOX() is equivalent to the @...BOX command and is used for drawing boxes
using a configurable border and filling it with a specified character.

After DISPBOX() executes, the cursor and ROW(), COL() are set into the boxed
region at <expN1> +1, <expN2> +1.

In GUI mode, you may:

•use sunken, raised or plain box frame, when <expN10>, <expN11> or <expL12>
are specified. The background color of <expCN9> is considered and overrides
<expC5>, filling character of <expC5> is ignored.

•use the semi-graphic characters in <expC5>, simulated via line drawing, when
SET GUITRANSL BOX is ON, and neither <expN10>, <expN11> nor <expL12>
are specified. The background color and filling character in <expC5> is ignored,
since almost unwanted results occurs with proportional fonts. This is the "old",
backward compatible syntax.

In Terminal i/o mode, the box is always drawn by the <expC5> chars. The optional
<expCN9> to <expL12> parameters are ignored. The color set by <expC6>, as well
as the fill character of <expC5> are considered.

Note that DispBox() does not create new widget (control) but draws a rectangle
filled by the specified color directly in the user window (or in current sub-window). It
frame may therefore be overwritten by subsequent @..SAY, ?, ?? or Qout() output.
If you wish to create new widget (sub-window) with protected frame, use either
Wopen() from the FS2 Toolbox, or it subset MDIopen() for MDI based GUI
application.

For more information, refer to the @...BOX command.

Example:
#include "box.fh"
DISPBOX (5, 5, 20,30, 2, "W+/B")
DISPBOX (10,15, MAXROW(),30, B_SINGLE_DOUBLE + "x", "R+/B")

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND()

Compatibility:
Available in FS4, VFS and C5. The physical output on the screen depends on the
chosen terminal description (environment variable TERM) and the ability of the
terminal to output mapping applied via FSchrmap.def. See also LNG.5.1.4, section
SYS, and FS_SET ("outmap"). All the 7th to 12th parameters are new in VFS and
n/a in Clipper.

FUN 181

Include:
The #include-able box constants are available in the "box.fh" file

Related:
@...BOX

FUN 182

DISPCOUNT ()
Syntax:

retN = DISPCOUNT ()
Purpose:

Returns the number of pending DISPEND() requests.

Returns:
<retN> is the number of DISPEND() calls required to restore the original display
context.

Description:
DISPCOUNT() returns 1 if the output buffering using DISPBEGIN() is active,
otherwise 0. Applicable in Terminal i/o, ignored otherwise.

Example:
IF DISPCOUNT() > 0 // output buffering active ?

DISPEND() // yes, terminate it
ENDIF
WAIT

Classification:
programming, screen oriented output

Compatibility:
Available in FS4, VFS and C5 only. Nested calls of DISPBEGIN() are not supported
by FS4.

Related:
DISPBEGIN(), DISPEND()

FUN 183

DISPEND ()
Syntax:

NIL = DISPEND ()
Purpose:

Displays buffered screen updates, terminate buffering.

Returns:
The function always returns NIL.

Description:
DISPEND() is a screen function that terminates the screen buffering of
DISPBEGIN() and writes the "background" data to the screen. If buffering is not
active, no action is performed. Applicable in Terminal i/o, ignored otherwise.

The output buffering using DISPBEGIN() and DISPEND() can be used to prepare a
complex display in the "background". This is especially useful with a slow
communication line.

The REFRESH command or depressing of the ^K (abort key) or ^O (debugger) will
force the display of buffered data too, but will not terminate the buffering.

It is not recommended, to output an user prompt (like WAIT, READ, ACCEPT,
INPUT etc.) using DISPBEGIN(). Ensure that DISPEND() is issued prior to such
commands or functions.

Example:
DISPBEGIN() // Start screen buffering
CLS
@ 10,10 say "This is my output"
SETPOS(11, 10)
REFRESH // see the intermediate state
DISPOUT("An another text")
?? " continued"
? "or printed at a new line
DISPEND() // Display buffered screen data

Classification:
screen oriented output

Compatibility:
Available in FS4, VFS and C5 only. Nested calls of DISPBEGIN() are not supported
by FS4.

Related:
DISPBEGIN(), REFRESH

FUN 184

DISPOUT ()
Syntax:

NIL = DISPOUT (exp1, [expC2], [expC3])
Purpose:

Outputs a value on the screen.

Arguments:
<exp1> is an expression of any data type to display.

Options:
<expC2> is an optional argument that defines the display color of <exp1>. If not
specified, the <exp1> is displayed using the current color setting. See SET COLOR
command or SETCOLOR() function for the format of <expC2> string. Considered
for Terminal i/o mode only. GUI mode check first for availability of <expC3> and if
not set, uses <expC2> only if SET GUICOLOR is ON.

<expC3> is an optional argument that defines the display color of <exp1> used in
GUI mode. This argument is considered in GUI mode only, otherwise <expC2> is
used.

Returns:
The function always returns NIL.

Description:
DISPOUT() is similar to DEVOUT() function or the @ ROW(),COL() SAY..
command performing a full-screen display at the current cursor position. Unlike
these, DISPOUT() ignores the SET DEVICE setting; output always goes to the
screen. To set the cursor to other coordinates, use SETPOS() function.

Example:
SET COLOR TO "W+/B"
CLS
@ 10,0 SAY "First part" COLOR "GR+/B"
DISPOUT(" second part")
SETPOS (ROW(), COL() +2)
DISPOUT("third part", "R+/B")

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND()

Compatibility:
Available in FS4, VFS and C5 only.

Related:
@..SAY, SETPOS(), DEVOUT(), DEVPOS(), COL(), ROW(), SET COLOR,
SETCOLOR()

FUN 185

DOSERROR ()
Syntax:

retN = DOSERROR ()
Purpose:

Determines the number of the last UNIX (or MS-Windows) operating system error.

Returns:
<retN> is a numeric value, representing the last error number.

Description:
DOSERROR () can be used to determine the exact cause of a file use error. For the
error message text, use DOSERROR2STR().

Example:
Dos_err = DOSERROR()
DO CASE

CASE Dos_err = 1
<statements...>

CASE Dos_err = 2
<statements...>

.

.

.
ENDCASE

Classification:
programming, system access

Compatibility:
DOS and UNIX operating systems may return different error numbers. FlagShip
also supports return codes from the RUN, COPY TO and RENAME commands.

Related:
DOSERROR2STR(), FERROR()

FUN 186

DOSERROR2STR ()
Syntax:

retC = DOSERROR2STR ()
Purpose:

Determines the number of the last UNIX (or MS-Windows) operating system error
and returns it textual description, if any.

Returns:
<retC> is a string, representing the description of last error number or "" if no error
occurred.

Description:
DOSERROR() and DOSERROR2STR() can be used to determine the exact cause
of a file use error.

Example:
COPY file1 TO file2
if DOSERROR() != 0 // on failure, display the reason

? "could not copy file1 to file2,"
? "error = " + ltrim(DOSERROR()) + ": " + DOSERROR2STR()

endif

Classification:
programming, system access

Compatibility:
Available in FlagShip 6 only. MS-DOS and UNIX operating systems may return
different error codes and/or descriptions. FlagShip also supports return codes from
the RUN, COPY TO and RENAME commands.

Related:
DOSERROR(), FERROR()

FUN 187

DOW ()
Syntax:

retN = DOW (expD)
Purpose:

Returns the ordinal number of the day of the week for a date value.

Arguments:
<expD> is the date value to convert.

Returns:
<retN> is a number between 0 and 7. The first day of the week is Sunday (one), the
last day is Saturday (seven). If the date value is empty or invalid, zero is returned.

Description:
DOW () can be used whenever the day of week is needed for calculations, or when
the name of a day of the week is needed in other languages.

Example:
See also example in CDOW() function

DECLARE Days[7]
german = .T.
Days[1] = if (german, "Sonntag", "Sunday")
Days[2] = if (german, "Montag", "Monday")
Days[3] = if (german, "Dienstag", "Tuesday")
Days[4] = if (german, "Mittwoch", "Wednesday")
Days[5] = if (german, "Donnerstag","Thursday")
Days[6] = if (german, "Freitag", "Friday")
Days[7] = if (german, "Samstag", "Saturday")
SET DATE GERMAN
? DATE() && 24.09.93
? DOW(DATE()) && 6
? Days[DOW(DATE())] && "Freitag"
? Days[DOW(DATE() -2)] && "Mittwoch"

Classification:
programming

Related:
CMONTH(), CTOD(), DATE(), DAY(), DOW(), DTOC(), DTOS(), MONTH(), YEAR()

FUN 188

DRAWLINE ()
Syntax:

NIL = DrawLine ([expN1], [expN2], expN3, expN4,
[expN5], [expC6], [expL7])

is fully equivalent to GuiDrawLine(), see description for

NIL = GuiDrawLine ([expN1], [expN2], expN3, expN4,
[expN5], [expC6], [expL7])

or for the command

@ <expN1>,<expN2> [GUI]
DRAW [TO] <expN3>,<expN4>
[COLOR <color>]
[PIXEL|NOPIXEL]
[WIDTH <wpix>]

See further details in above commands and function.

FUN 189

DTOC ()
Syntax:

retC = DTOC (expD)
Purpose:

Converts a date value to a character string.

Arguments:
<expD> is the date value to convert.

Returns:
<retC> is a character string, representing the date value. The form of the returned
string depends on the status of SET DATE, SET CENTURY and SET EPOCH. If a
empty date is specified, a string of eight or ten spaces is returned, depending on the
status of SET CENTURY.

Description:
DTOC () can be used when a date has to be displayed as a part of a character
expression.

For indexing purposes, where a date is a part of a complex key, use DTOS ()
instead of DTOC () to build a proper index order.

Example:
? DATE() && 09/20/93
? DTOC(DATE()) && "09/20/93"
? DTOS(DATE()) && "19930920"
mytext := "today is " + DTOC(DATE())

SET DATE GERMAN
? DATE() && 20.09.93
? DTOC(DATE()) && "20.09.93"
? DTOS(DATE()) && "19930920"
mytext := "heute ist der " + DTOC(DATE())

Classification:
programming

Related:
SET CENTURY, SET DATE, SET EPOCH, CDOW(), CTOD(), CMONTH(), DATE(),
DAY(), DOW(), DTOS(), MONTH(), YEAR()

FUN 190

DTOS ()
Syntax:

retC = DTOS (expD)
Purpose:

Converts a date value to a character string suitable for indexing.

Arguments:
<expD> is the date value to convert.

Returns:
<retC> is a character string, representing the date value. The form of the returned
string is "yyyymmdd". If a null date is specified, DTOS () returns SPACE(8).

Description:
Strings returned by DTOS () preserve the relations between date values, which
makes them suitable for use as parts of more complex indexing key expressions.
The returned string is always formatted to eight characters as "YYYYMMDD" and is
not affected by the current SET DATE and SET CENTURY format.

The complementary function is STOD().

Example:
? DATE() && 09/20/93
? DTOC(DATE()) && "09/20/93"
? DTOS(DATE()) && "19930920"
USE article
INDEX ON DTOS(publ_date) + STR(magazine) TO article

Classification:
programming

Related:
STOD(), SET CENTURY, SET DATE, SET EPOCH, CDOW(), CTOD(),
CMONTH(), DATE(), DAY(), DOW(), DTOC(), MONTH(), YEAR()

FUN 191

EMPTY ()
Syntax:

retL = EMPTY (exp)
Purpose:

Determines if the result of an expression is empty.

Arguments:
<exp> is an expression of any type.

Returns:
<retL> is a logical value, which is TRUE in case of:

Data Type Expression contents
Array A Zero-length { }
Character C "" or spaces and tabs only
Numeric N,I,F 0
Date D Null date, e.g. CTOD("")
Logical L False value (.F.)
Memo M Same as character
Screen S empty
Code block B not code block
NIL U NIL

Description:
The EMPTY() function can be used to determine if the variable or field is properly
filled, formal parameters passed or an array declared.

To determine if a PRIVATE, PUBLIC or FIELD variable is declared or visible,
TYPE("varname") can additionally be used.

Example:
? EMPTY (0) && .T.
? EMPTY (.F.) && .T.
? EMPTY (.T.) && .F.
? EMPTY ("") && .T.
? EMPTY (" ") && .T.
? EMPTY (CTOD("")) && .T.
? EMPTY ({}) && .T.

Classification:
programming

Related:
LEN(), TYPE(), VALTYPE(), ISFUNCTION()

FUN 192

EOF ()
Syntax:

retL = EOF ()
Purpose:

Reports an attempt to move past the end of the current database file.

Returns:
<retL> is a logical value returning TRUE when the record pointer was moved
beyond the last logical record, or when the database is empty or filtered out. In such
a case, the record pointer is positioned beyond the database on a "phantom" record
LASTREC() +1.

Description:
EOF() is used wherever a boundary condition test is needed when the record
pointer is moving forward through a database. Any command that can move the
record pointer can set EOF().

The EOF() condition check should be used to determine whether a SKIP, GOTO
BOTTOM, SEEK, FIND, or LOCATE command failed. You should check it also
before REPLACE-ing field values, since fields of not available records cannot be
changed - except SET EOFAPPEND is ON. Once EOF() is set to TRUE, it retains
its value until there is another attempt to move the record pointer.

On an empty or filtered out database, both EOF() and BOF() returns TRUE.

To examine the EOF() status in a working area other than the current one, use
alias->(EOF()).

Example:
USE article NEW
COPY STRUCTURE TO emptydb
USE empty NEW
SELECT article
? RECNO(), LASTREC() && 1 100
GOTO BOTTOM
? RECNO(), EOF() && 100 .F.
SKIP 5
? RECNO(), EOF() && 101 .T.
? emptydb->(RECNO()), emptydb->(EOF()) && 1 .T.

Classification:
database

Related:
BOF(), FOUND(), SKIP, GOTO, LASTREC(), SET EOFAPPEND, oRdd:Eof

FUN 193

ERRBOX ()
Syntax:

retN = ErrBox (expC1, [expC2], [expN3])
Purpose:

Display an error message box dialog, similar to Alert() or InfoBox()

Arguments:
<expC1> is a string containing the displayed text, the lines are separated by
semicolon ";". See additional details in Alert() and InfoBox() description.

<expC2> is an optional header text.

<expN3> is optional time-out in seconds. Zero or NIL specify to wait until user press
key or mouse selection. When the time-out expires without user action, the box is
closed and <retN> is set to 0.

Description:
The ErrBox() function is available for your convenience. It is equivalent to
ErrorBox{NIL,cMessage}:Show() described in section OBJ. In GUI mode, error icon
(red circle with cross) is displayed. In Terminal i/o mode, the color is specified in
global variable
_aGlobSetting[GSET_T_C_ERRBOXCOLOR] := "GR+/R,R/W" // default

and can be re-assigned according to your needs.

Compatibility:
New in VFS. The expN3 is supported since VFS7

Source:
The source code is available in <FlagShip_dir>/system/boxfunct.prg

Related:
Alert(), InfoBox(), WarnBox(), TextBox(), OBJ.MessageBox{}, InfoBox{}, ErrorBox{},
WarnBox{}, TextBox{}

FUN 194

ERRORBLOCK ()
Syntax:

retB = ERRORBLOCK ([expB])
Purpose:

Posts a code block to execute when a runtime error occurs.

Options:
<expB> is the code block to execute whenever a runtime error RTE occurs. When
evaluated, the <expB> block is passed an error object as an argument by the
system. If the argument is not specified, the default error handling block is
evaluated on RTE.

Returns:
<retB> is a pointer to the current error handling code block. If no error handling
block has been posted by the user, the pointer to the default error handling block is
returned. The code block returned can be re-assigned later using ERRORBLOCK(),
see example.

Description:
ERRORBLOCK() is an error function that defines an error handler to execute
whenever a runtime error (RTE) occurs. The error block has the syntax:

{|<expO>| <exp>, ... }

where <expO> is an error object (see section OBJ) containing information about the
error passed by the system. The <exp>, executed on RTE, is any single
expression, expression list or a UDF. The code block must return TRUE to retry the
failed operation or FALSE to terminate the process.

Within the UDF executed by the code block body, a BREAK can be invoked to pass
the program control to the RECOVER (or the END) statement of the next BEGIN
SEQUENCE ...END structure.

If the <expB> argument is not specified, the default error handling block is
evaluated. It displays a descriptive message to the screen, sets the
ERRORLEVEL() to 1, then QUITs the program.

FUN 195

Example:
LOCAL olderr
LOCAL newerr := {|errobj| my_error (errobj)}
olderr := ERRORBLOCK (newerr)

BEGIN SEQUENCE
USE nonexist // will fail
SKIP

RECOVER USING recovobj
? "sorry."
QUIT

END
ERRORBLOCK (olderr) // restore
RETURN

FUNCTION my_error (err)
? err:description
BREAK // jump to RECOVER
RETURN NIL

Classification:
programming

Compatibility:
Available in FS and C5 only.

FUN 196

ERRORBOXNEW ()
Syntax:

retO = ErrorBoxNew ([oOwner], [cText])
Description:

This is alternative syntax for creator of ErrorBox class, see details in section OBJ

Related:
ErrorBox Class, ErrBox()

FUN 197

ERRORLEVEL ()
Syntax:

retN = ERRORLEVEL ([expN])
Purpose:

Sets error level (exit code) on return to the UNIX or Windows shell.

Arguments:
<expN> is a numeric value between 0 and 255, specifying the code setting. The
default value for the normal exit is zero. Fatal or run-time error sets exit code 1 or 2,
other hard errors 3 to 9. The InitIoQuit() function (or your re-defined UDF) also sets
exit code on user abort, see details in <FlagShip_dir>/system/initiomenu.prg. If
<expN> is not specified, ERRORLEVEL() reports the current setting without
assigning a new value.

Returns:
<retN> is the current ERRORLEVEL() setting.

Description:
On program termination, the application can set a return code which is passed to
the UNIX shell variable "$?" or in Windows to %ERRORLEVEL% shell variable. If
the ERRORLEVEL() is not set, the $? or %ERRORLEVEL% examines 0.

Tuning:
Most of the default exit codes are re-definable by assigning
_aGlobSetting[GSET_N_RETURN_DEFAULT] := 0 // default exit
_aGlobSetting[GSET_N_RETURN_FATAL] := 1 // fatal error
_aGlobSetting[GSET_N_RETURN_RTE] := 2 // run-time error
_aGlobSetting[GSET_N_RETURN_CTRL_K] := 11 // closed via ^K
_aGlobSetting[GSET_N_RETURN_CLOSE_EV] := 12 // closed via event
_aGlobSetting[GSET_N_RETURN_MENU] := 13 // closed via menu
_aGlobSetting[GSET_N_RETURN_ABORT] := 14 // closed via abort

see also <FlagShip_dir>/system/initio.prg and initiomenu.prg

FUN 198

Example:
Application started by a simple shell script "run.sh":

#!/bin/bash
*** file "run.sh", make it executable using "chmod +x" ***
./a.out # or other executable
retcd = $? # return code from a.out
if [retcd -eq 0] ; then

echo Program terminated normally
elif [retcd -eq 1] ; then

echo Run-time error occurred, contact programmer
elif [retcd -eq 200] ; then

echo Backup required
echo Insert a backup tape, press any key when ready...
read
tar cvf /dev/tape *.dbf *.idx
echo Done. Remove tape.

fi
eof file "run.sh"

*** file test.prg ***
LOCAL answer := "n"
ACCEPT "backup required (y/n) ? " TO answer
IF UPPER(answer) == "Y"

ERRORLEVEL (200)
ENDIF
QUIT

Classification:
programming

Compatibility:
Available in FlagShip and Clipper5 only.

Related:
QUIT, CANCEL, RETURN

FUN 199

EVAL ()
Syntax:

ret = EVAL (expB1, [exp2 [, exp3...]])
Purpose:

Evaluates a code block.

Arguments:
<expB1> is the code block (see LNG.2.3.3) to evaluate.

Options:
<exp2...> is an optional list of arguments to be passed to the code block.

Returns:
<ret> is the returned code block value. If an expression list (see LNG.2.8) is
declared in the code block body, the value of the rightmost expression is returned.

Description:
Code blocks are functionally similar to UDFs. They are special unnamed inline
functions, and are compiled to native code or evaluated at run-time as a macro, see
LNG.2.3.3. The reference to the code block can be stored in usual the FlagShip
variables or passed as parameter to standard or user defined functions and
evaluated there.

Since the code block has no name, its execution cannot be invoked as a usual
(named) call of a procedure or function. Instead, the EVAL() or AEVAL(), DBEVAL()
invocation must be used to execute the code block body. The required parameters
for the code block, if any, are passed by the second, third, etc. parameter of
EVAL().

Example:
LOCAL txt := "my text"
LOCAL arr := {"elem 1", "elem 2"}
LOCAL blk := {|par| QOUT(par) }
LOCAL xxx := 0

EVAL (blk, txt) // "my text"
EVAL (blk, arr[2]) // "elem 2"
? EVAL ({|| xxx++, VALTYPE(txt)}), xxx // "C" 1
? EVAL ({|temp| temp := 5, --temp }) // 4
? EVAL ({|par, temp| temp := par + 5}, 2) // 7

Classification:
programming

Compatibility:
Available in FS and C5 only.

Related:
AEVAL(), DBEVAL(), ASCAN(), ASORT()

FUN 200

EXECNAME ()
Syntax:

retC = EXECNAME ([expL1], [expL2])
Purpose:

Retrieves the name of the currently running executable.

Options:
<expL1> specifies the kind of the return value. If TRUE, the returned executable
name includes the path, if it was given by the command line (or script) invocation. If
<expL1> is not given or specified FALSE, only the file name is returned, regardless
of the command line invocation.

<expL2> forces resolving symbolic links to return original destination. Considered in
Unix/Linux only with enabled <expL1> = .T.

Returns:
<retC> is the file name of the currently running executable (e.g. "a.out", "test.exe"),
optionally preceded by the path (e.g. "/usr/ data/myexe" or "/home/foo/a.out" or
"C:\my data\applic\test.exe"). If the executable was invoked w/o path, the PATH
environment is searched for, when <expL1> is TRUE. Relative paths are translated
to absolute.

Description:
The function determines the name of the current executable.

Note: a Unix executable may carry any valid name, the access attribute is "x". The
default name is "a.out", if the compiler option -o is not set. Windows executable
usually has .EXE extension.

Example:
? ExecName() // myapplic
? ExecName(.T.) // /usr/bin/myapplic (but can be symb.link)
? ExecName(.T., .T.) // /home/john/data/myapplic (original)

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
EXECPIDNUM(), section FSC

FUN 201

EXECPIDNUM ()
Syntax:

retN = EXECPIDNUM ()
Purpose:

Retrieves the PID (process id number) of the currently running executable.

Returns:
<retN> is the process identification number of the currently running executable.

Description:
Any process (including the running or sleeping executables) is automatically
identified by Unix (and Windows/32) with a unique PID. This PID number is also
used in FlagShip as the file name extension of the default spooler file; see also SET
PRINTER and fs_set("printfile").

Example:
? ExecName () // "a.out"
? ExecPIDnum () // 1753
? fs_set ("printfile") // "mytest.1753"

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
EXECNAME(), SET PRINTER, FS_SET()

FUN 202

EXP ()
Syntax:

retN = EXP (expN)
Purpose:

Calculates exponentiation expN (the base of natural logarithms).

Arguments:
<expN> is the numeric expression, specifying the natural logarithm value.

Returns:
<retN> is a numeric value, representing the result of exponentiation.

Description:
EXP() raises the base of natural logarithm, e by the given value <expN> (e =
2.7182818285...).

The inverse operation of EXP () is LOG ().

The default number of decimals displayed depends on the current SET DECIMALS
value.

Example:
? EXP (0) && 1.00
? EXP (1) && 2.72
SET DECIMALS TO 6
? EXP (1) && 2.718282
? EXP (50) && 5184705528587046900000.
? EXP (LOG(60)) && 60.000000

Classification:
programming

Related:
LOG(), SET DECIMALS, SET FIXED

FUN 203

FCLOSE ()
Syntax:

retL = FCLOSE (expN)
Purpose:

Closes an open binary file.

Arguments:
<expN> is the file handle number, previously returned by FOPEN () or FCREATE
().

Returns:
<retL> is logically FALSE if there was an error while writing the file buffers to disk,
otherwise, TRUE is returned.

Description:
FCLOSE() is a low-level file function that closes binary files and writes the
associated UNIX buffers to disk. If FCLOSE() fails, the function returns .F. and
FERROR() can then be used to determine the reason for the failure.

Warning: FCLOSE() allows a low-level access to the UNIX file system, similar to
the C function close(). Therefore it should be used with care and only when you are
familiar with the operating and file system.

Example:
art_handle = FCREATE("article.doc")
FWRITE (art_handle, "new text")
? FCLOSE(art_handle) && .T.

Classification:
programming

Related:
FCREATE(), FOPEN(), FERROR(), FREAD(), FREADSTR(), FSEEK(), FWRITE()

FUN 204

FATTRIB ()
Syntax:

retN = FATTRIB ([expN1])
Purpose:

Retrieves the access rights associated to an open file or the global creation rights
according to 'umask'.

Option:
<expN1> is the handle number, previously returned by FOPEN() or FCREATE(). If
not given or NIL, the global creation rights according to 'umask' are returned.

Returns:
<retN> are the access rights associated to the given file, or set for newly created
files, in a semi-octal notation. The semi-octal notation includes three digits (for the
owner, group, world), each in the range 0..7. 0 digit specifies no permission, 1 =
execute, 2 = write only, 4 = read only, 5 = read/ execute, 6 = read/write, 7 =
read/write/execute. For example 664 = "rw-rw-r--".

Description:
Every file and directory in Unix has its own access rights (see section LNG.3.3), set
during the file creation or via the 'chmod' Unix command.

FATTRIB() determines either the global rights, or specific access rights of an
already opened file. It may be used to transfer permissions while creating a new file
via FCREATE(). To determine the access rights of a file given by name, use the
DIRECTORY() function.

Example:
Transfer access rights to newly created file

iHandle := FOPEN ("myfile.bin", 0)
if iHandle > 0

? "transferring rights =", iAttrib := FATTRIB (iHandle)
FCLOSE (iHandle)

else
? "using default rights =", iAttrib := FATTRIB()

endif
iHandle := FCREATE ("newfile.bin", iAttrib)

Classification:
programming, file access

Compatibility:
Available in FlagShip only.

Related:
FOPEN(), FCREATE(), DIRECTORY(), Unix man pages 'umask' and 'chmod'

FUN 205

FCOUNT ()
Syntax:

retN = FCOUNT ()
Purpose:

Determines the number of fields in the current database file.

Returns:
<retN> is a numeric value, representing the number of database fields open in the
current working area. If a database is not in use, FCOUNT () returns zero.

Description:
FCOUNT () is useful where serial operations on the fields are needed, or to operate
data-independently on the database fields.

To execute the function in a different working area than the current one, use
alias->(FCOUNT()).

Example:
USE article
? FCOUNT() && 10
COPY STRUCTURE EXTENDED TO artstruc
USE artstruc NEW
? RECCOUNT() && 10
? article->(RECCOUNT()) && 10

Example:
LOCAL fldnum, fldarr, ii
USE address
fldnum := FCOUNT()
fldarr := ARRAY (fldnum) // create array
AFIELDS (fldarr)
FOR ii := 1 TO fldnum

? FIELDNAME(ii), fldarr[ii] // field name
? TYPE (FIELDNAME(ii)) // field type

NEXT

Classification:
database

Related:
FIELDNAME(), FIELDGETARR(), TYPE(), oRdd:Fcount

FUN 206

FCREATE ()
Syntax:

retN = FCREATE (expC1, [expN2])
Purpose:

Creates a new binary file, or truncates an existing file to zero length.

Arguments:
<expC1> is the name of the file to be created. If the file already exists, its length is
truncated to zero without warning. An optional path and extension can be specified.
The FS_SET() file and path translation is considered.

Options:
<expN2> are the resulting file access rights:

value #define FS access rights (DOS attr)
not given accord. to "umask" normal
0 FC_NORMAL rw- rw- --- normal
1 FC_READONLY r-- r-- --- read only
2 FC_HIDDEN rw- --- --- hidden
4 FC_SYSTEM r-- --- --- system
100..777 * accord.to value *
other rw- rw- rw-

(*) The semi-octal notation, if given, includes three digits (for the owner, group,
world), each in the range 0..7. 0 digit specifies no permission, 1 = execute, 2 = write
only, 4 = read only, 5 = read/ execute, 6 = read/write, 7 = read/write/execute. For
example 664 = "rw-rw-r--". See also LNG.3.3.

If <expN2> is not given, "rw-rw-rw-" (666) rights are used.

Returns:
<retN> is the file handle of the newly created and opened file, in the range from
zero to 65535. If an error occurs, -1 is returned. The new file is left opened in the
read/write mode with the selected access rights. For other open modes, see
FOPEN().

Description:
FCREATE () returns the opened file's handle, which should be assigned to a
variable, since it is needed to identify the file in other file functions. The new file is
open in the read/write mode with the access rights selected. An additional read
and/or write locking using FLOCKF() is then available.

If FCREATE() fails, -1 is returned, and FERROR() can then be used to determine
the reason for the failure.

Like other low-level file functions, FCREATE() does not consider either the SET
DEFAULT or SET PATH settings.

FUN 207

Warning: FCREATE() allows a low-level access to the UNIX file system, similar to
the C function open(). Therefore, it should be used with care and only when you are
familiar with the operating and file system.

Example:
#include "fileio.fh"
#include "error.fh"
art_handle = FCREATE("article.doc", FC_NORMAL)
IF art_handle = -1

? "The file cannot be created!"
DO CASE
CASE FERROR() = EX_EACCES

?? " (Permission denied)"
CASE FERROR() = EX_EROFS

?? " (Read-only file system)"
CASE FERROR() = EX_EMFILE

?? " (Too many files for process, adapt the kernel)"
ENDCASE
QUIT

ENDIF

Classification:
system, file access

Compatibility:
Note the UNIX access rights, not available in DOS. See also section SYS: tunable
UNIX parameters to set the number of simultaneously open files.

Include:
<FlagShip_dir>/include/fileio.fh #define's for <expN2> <FlagShip_dir>/include/
error.fh #define's of error codes

Related:
FATTRIB(), FCLOSE(), FERROR(), FERROR2STR(), FOPEN(), FREAD(),
FREADSTR(),FSEEK(), FWRITE(), FLOCKF()

FUN 208

FEOF ()
Syntax:

retL = FEOF (expN)
Purpose:

Determines if end-of-file was reached by file read operations.

Parameter:
<expN> is the handle number, previously returned by FOPEN() or FCREATE(). If
not given or is not numeric, the global status returned by FERROR() is used
instead, which may not implicitly signal end of file.

Returns:
<retL> is logical value, where .T. signals reaching end-of-file by low-level read
functions Fread(), FreadStr() or FreadTxt().

Description:
FEOF() is used to terminate read function after reaching end of the file. When the
file handler is not passed, the return value is equivalent to FERROR() != 0. When
the file handler is given, FEOF() returns .T. when the current file pointer is at or
behind last byte of the file.

Example:
#include "fileio.fh"
LOCAL handle, text
handle = FOPEN("myfile.txt", FO_READ)
DO WHILE !FEOF(handle)

? text := FREADTXT (handle)
ENDDO
FCLOSE (handle)

Classification:
system, file access

Compatibility:
Available in FlagShip only, compatible to FoxPro

Related:
FOPEN(), FCREATE(), FERROR(), FREAD(), FREADSTR(), FREADTXT()

FUN 209

FERASE ()
Syntax:

retN = FERASE (expC)
Purpose:

Delete a file from disk.

Arguments:
<expC> is the name of the file to be deleted from disk, including the extension. The
full path may be specified. If omitted, only the current directory is searched; the SET
PATH or SET DEFAULT setting is ignored. Standard UNIX wildcards using ?, *, [..]
are supported. The FS_SET() file and path translation is considered.

Returns:
<retN> is zero if the operation succeeds. If FCREATE() fails, the value returned is
equivalent to the return code of FERROR() or DOSERROR(). It can then be used to
determine the reason for the failure.

Description:
FERASE() is equivalent to the ERASE or DELETE FILE command but returns a
value and can be specified within an expression.

The file will be deleted without any warning. The consequences are not
recoverable. Only closed files can be deleted. The user must have at least the
access rights "w" to the file and "x" in the directory.

Example:
IF FILE("abc[r-z]*.tmp")

err := FERASE ("abc[r-z]*.tmp")
IF err = 0

? "all files 'abc...tmp'deleted"
ELSE

? "erase fails with return code",err
ENDIF

ENDIF

Example:
AEVAL (DIRECTORY ("abc*.tm*"),

{|file, x| x := FERASE(file[1]), ;
QOUT ("File", file, if(x==0,"","not"), "deleted")})

Classification:
system, file access

Compatibility:
Available in FS and C5 only. Use the #define identifiers EX_... in the error.fh file to
ensure compatibility to the MS-DOS system error codes.

Include:
<FlagShip_dir>/include/error.fh #define's of error codes

Related: DELETE FILE, ERASE, FERROR()

FUN 210

FERROR ()
Syntax:

retN = FERROR ()
Purpose:

Determines if an error occurred during file operations.

Returns:
<retN> is a numeric value, representing the error number. If there was no error,
zero is returned. See the file error.fh for error codes available. The most important
error code identifiers are:

EX_ENOENT File not found
EX_ENOTDIR Path/directory does not exist
EX_EMFILE Too many open files
EX_EROFS Read-only file system
EX_EACCES Access/permission denied
EX_EINVAL Invalid access code
EX_EIO I/O error

Note: the codes are system dependent. The above given EX_* values correspond
to the standard SVR4 codes for the system "errno" value. Refer to
/usr/include/errno.h and/or /usr/include/asm/errno.h for values corresponding to
your operating system. You may determine or print the error description in clear text
by FERROR2STR()

Description:
FERROR () returns the error code of the previous low-level function. The alternative
DOSERROR() invocation returns the same code of the last file access command or
function. To get the textual description, use FERROR2STR()

Example: open file and check for failure
#include "fileio.fh"
#include "error.fh"
handle = FOPEN ("mydata.bin", FO_READ)
IF handle = -1

err := FERROR()
? "Access error " + LTRIM(STR(err))
DO CASE
CASE err = EX_EACCES

?? " (Permission denied)"
CASE err = EX_ENOENT

?? " (File not available)"
CASE err = EX_EMFILE

?? " (Too many files for process, adapt kernel settings)"
OTHERWISE

?? " (" + FERROR2STR(err) + ")"
ENDCASE
QUIT

ENDIF

FUN 211

Example: read/write text file line-by-line and change the text
local fdIn, fdOut, iErr as intvar
local cIn, cOut, cTxt as char

cIn := "infile.txt" // input file
cOut := "outfile.txt" // output file
fdIn := fopen(cIn, 0) // read-only
fdOut := fcreate(cOut, 0) // truncate if exist
if fdIn <= 0 .or. fdOut <= 0

? "could not open " + cIn + " or " + cOut
wait
quit

endif
iErr := 0
while iErr == 0 .and. !feof(fdIn) // until EOF reached

cTxt := freadtxt(fdIn) // read one text line w/o LF
cTxt := strtran(cTxt, "#", "") // remove all # chars
fwrite(fdOut, cTxt + chr(13,10)) // add CR+LF to text line
if (iErr := ferror()) != 0 // write-error?

? "warning: write error", FERROR2STR(iErr), "in " + cOut
endif

enddo
fclose(fdIn) // close input
fclose(fdOut) // close output
wait "Done, " + cOut + " created from " + cIn + " - any key..."

Classification:
system, file access

Compatibility:
Available in FS and C5 only. Use the #define identifiers EX_... in the error.fh file to
ensure compatibility to the MS-DOS system error codes or use the textual
description via FERROR2STR().

Include:
<FlagShip_dir>/include/error.fh #define's of error codes

Related:
FEOF(), FERROR2STR(), FCLOSE(), FCREATE(), FOPEN(), FREAD(),
FREADSTR(), FSEEK(), FWRITE()

FUN 212

FERROR2STR ()
Syntax:

retC = FERROR2STR ([expN1])
Purpose:

Determines if an error occurred during file operations and if any, returns it textual
description.

Arguments:
<expN1> is an optional error-code value. If not specified, the last FERROR() or
errno value is used per default.

Returns:
<retC> is a string, representing the description of last error number or "" if no error
occurred.

Description:
FERROR2STR() is similar to DOSERROR2STR(). It is a counterpart of FERROR()
and determines the textual string of the error cause. You may store the error code
form FERROR() and display the message later using the stored value <expN1>
instead of determining the current error code at this time.

Example:
#include "fileio.fh"
handle = FOPEN ("mydata.bin", FO_READ)
IF handle == -1

alert("Access error for mydata.bin;error code =" + ;
ltrim(FERROR()) + " = " + FERROR2STR()

ENDIF

Classification:
programming, system access

Compatibility:
Available in VFS only. MS-DOS and UNIX operating systems may return different
error codes and/or descriptions. FlagShip also supports return codes from the RUN,
COPY TO and RENAME commands using DOSERROR2STR().

Related:
FERROR(), DOSERROR2STR()

FUN 213

FIELDBLOCK ()
Syntax:

retB = FIELDBLOCK (expC)
Purpose:

Returns a read/write code block for a given field.

Arguments:
<expC> is the name of the field to which the set-get block will refer.

The specified field variable need not exist when the code block is created but must
exist before the code block is executed.

Returns:
<retB> is a code block that, when evaluated, reads (retrieves) or writes (assigns)
values of the given field. If the <expC> field does not exist in the current working
area, FIELDBLOCK() returns NIL.

Description:
FIELDBLOCK() is a database function. The returned code block can read or write
the given database field and has the syntax (refer also to LNG.2.3.3):

retB := {|par| IF (par==NIL, expC, FIELD->expC := par) }

When the code block is later evaluated without an argument, i.e. EVAL(retB), the
current field value is returned. When evaluating it with an additional argument, i.e.
EVAL(retB, exp), it assigns (writes) the expression into the database field.

Multiuser:
Before the code block is evaluated with an additional argument (write access), at
least RLOCK() must be set for SHARED databases. See also LNG.4.8.

When performing operations on the SAME physical database (used concurrently in
different working areas), see chapter LNG.4.8.7.

Example:
LOCAL fblck := FIELDBLOCK ("name")
USE address NEW
? EVAL (fblck) // Miller
USE custom NEW
? EVAL (fblck) // Smith & Co

Classification:
programming, database

Compatibility:
Available in FS and C5 only.

Related:
FIELDWBLOCK(), MEMVARBLOCK()

FUN 214

FIELDDECI ()
Syntax:

retN = FIELDDECI (expN1|expC1, [expL2])
Purpose:

Determines the number of decimals in a numeric database field.

Arguments:
<expN1>|<expC1> is the ordinal field number, or the field name of the database in
the current work area.

Options:
<expL2> is optional logical value. If .T., the number of decimals in a character field
is reported exactly "as is", i.e. not corrected. Otherwise the output corresponds to
DbStruct().

Returns:
<retN> is the number of decimal places (0..17) of numeric field, or zero on non-
numeric fields. Equivalent to the DBS_DEC sub-array element of DBSTRUCT().

Description:
As opposed to DBSTRUCT(), which informs you about the database structure,
FIELDDECI() provides you with the specific information about the selected field.

For Numeric fields, FieldLen() reports the total size of digits including sign, deci
point (if any) and the deci fraction, and FieldDeci() reports the number of decimal
digits in the fraction.

On databases created by CREATE FROM, the character field length may be given
as FIELD_DEC *256 + FIELD_LEN. This is considered by FieldLen() and
FieldDeci() automatically same as in DbStruct(), where FieldLen() reports the total
length and FieldDeci() reports 0, except the <expL2> is .T. If specified so, the field
characteristics are reported exact as available in database header, see example 2.

For fields of type Date, Logical, Memo, Variable character and Binary, FieldDeci()
always reports 0 and FieldLen() the number of bytes used in the .dbf file, i.e. 1 for
Logical, 8 for Date, 10 for Memo and Variable data field, and 2,4,8 for these binary
fields.

FUN 215

Example:
USE mydbf
? FIELDNAME (2) // AMOUNT
? FIELDTYPE (2) // N
? FIELDLEN (2) // 14
? FIELDDECI (2) // 2

? FIELDTYPE ("Amount") // N
? FIELDLEN ("Amount") // 14
? FIELDDECI ("Amount") // 2

aDbf := DbStruct()
? aDbf[2,DBS_NAME] // AMOUNT
? aDbf[2,DBS_TYPE] // N
? aDbf[2,DBS_LEN] // 14
? aDbf[2,DBS_DEC] // 2

Example 2:
#include "dbstruct.fh"
USE otherDbf
? FieldName(1) // LONGFIELD
? FieldType(1) // C
? FieldLen (1) // 1025
? FieldDeci(1) // 0

? FieldLen (1, .T.) // 1 (1 + 4*256 = 1025)
? FieldDeci(1, .T.) // 4

aDbf := DbStruct()
? aDbf[1,DBS_NAME] // LONGFIELD
? aDbf[1,DBS_TYPE] // C
? aDbf[1,DBS_LEN] // 1025
? aDbf[1,DBS_DEC] // 0

Classification:
database

Compatibility:
This function is available in FlagShip only.

Related:
DBSTRUCT(), FIELDNAME(), FIELDLEN(), FIELDTYPE(), oRdd:FieldInfo()

FUN 216

FIELDGET ()
Syntax:

ret = FIELDGET (expN|expC)
Purpose:

Retrieves the value of a field using the ordinal position of the field in the database
structure.

Arguments:
<expN>|<expC> is the ordinal position of the field in the record structure for the
current working area, or the field name.

Returns:
<ret> is the value of the specified field. If <expN> is out of range of FCOUNT(), the
return value is NIL.

Description:
FIELDGET() is a database function that retrieves the value of field using its position
within the database file structure, similar to ret = &(FIELDNAME(expN)).

Multiuser:
When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Example:
LOCAL xname, value
USE address
xname := FIELDNAME (3)
value := &xname
? xname, value // NAME Smith

value := FIELDGET (3)
? value // Smith

Classification:
database

Compatibility:
Available in FS and C5 only. Clipper supports <expN> only.

Related:
FIELDPUT(), FIELDNAME(), FCOUNT(), oRdd:FieldGet()

FUN 217

FIELDGETARR ()
Syntax:

retA = FIELDGETARR ([expN1])
Purpose:

Creates an array containing values of all fields of the current or specified record.

Options:
<expN1> is the required record number. The current database pointer remains
unchanged after returning from the function. If not specified or zero, the current
record is used.

Returns:
<retA> is an one-dimensional array containing field values of all fields in the current
or specified record. On memo field, the array element is of character type.

Description:
FIELDGETARR() is a superset of the FIELDGET() function. After changing the
array content, you may use FIELDPUTARR() for a global field replacement.

Example:
LOCAL aFields AS ARRAY
FIELD Amount
USE mydbf
goto 5
aFields := FieldGetArr () // retrieve curr.record

? len(aFields) // 8
? Amount // 1234.56
? FieldName (2) // AMOUNT
? aFields[2] // 1234.56

aFields := FieldGetArr (2) // values of record 2
? recno() // 5
? aFields[2] // 8765.43
? Amount // 1234.56

goto 2
? Amount // 8765.43
aFields[2] := 5544.33
aFields[3] := "New Memo text"
aFields[1] := aFields[5] := NIL
while !rlock(); enddo
FieldPutArr (aFields) // global replacement
Unlock
? Amount // 5544.33

Classification: database
Compatibility: This function is available in FlagShip only.
Related: FIELDGET(), FIELDPUTARR(), oRDD:GetArrFields()

FUN 218

FIELDLEN ()
Syntax:

retN = FIELDLEN (expN1|expC1, [expL2])
Purpose:

Determines the size of a selected database field.

Arguments:
<expN1>|<expC1> is the ordinal field number, or the field name of the database in
the current work area.

Options:
<expL2> is optional logical value. If .T., the field length in a character field is
reported exactly "as is", i.e. not corrected. Otherwise the output corresponds to
DbStruct()

Returns:
<retN> is the length of the database field. Equivalent to the DBS_LEN sub-array
element of DBSTRUCT().

Description:
As opposed to DBSTRUCT(), which informs you about the database structure,
FIELDLEN() provides you with the specific information about the selected field.

For Numeric fields, FieldLen() reports the total size of digits including sign, deci
point (if any) and the deci fraction, and FieldDeci() reports the number of decimal
digits in the fraction.

On databases created by CREATE FROM, the character field length may be given
as FIELD_DEC *256 + FIELD_LEN. This is considered by FieldLen() and
FieldDeci() automatically same as in DbStruct(), where FieldLen() reports the total
length and FieldDeci() reports 0, except the <expL2> is .T. If specified so, the field
characteristics are reported exact as available in database header, see example 2.

For fields of type Date, Logical, Memo, Variable character and Binary, FieldDeci()
always reports 0 and FieldLen() the number of bytes used in the .dbf file, i.e. 1 for
Logical, 8 for Date, 10 for Memo and Variable data field, and 2,4,8 for these binary
fields.

Example:
USE mydbf
? FIELDNAME (2) // AMOUNT
? FIELDTYPE (2) // N
? FIELDLEN (2) // 14
? FIELDDECI (2) // 2

? FIELDTYPE ("Amount") // N
? FIELDLEN ("Amount") // 14
? FIELDDECI ("Amount") // 2

FUN 219

? FIELDNAME (3) // MYMEMO
? FIELDTYPE ("MyMemo") // M
? FIELDLEN ("MyMemo") // 10

aDbf := DbStruct()
? aDbf[2,DBS_NAME] // AMOUNT
? aDbf[2,DBS_TYPE] // N
? aDbf[2,DBS_LEN] // 14
? aDbf[2,DBS_DEC] // 2

Example 2:
#include "dbstruct.fh"
USE otherDbf
? FieldName(1) // LONGFIELD
? FieldType(1) // C
? FieldLen (1) // 1025
? FieldDeci(1) // 0

? FieldLen (1, .T.) // 1 (1 + 4*256 = 1025)
? FieldDeci(1, .T.) // 4

aDbf := DbStruct()
? aDbf[1,DBS_NAME] // LONGFIELD
? aDbf[1,DBS_TYPE] // C
? aDbf[1,DBS_LEN] // 1025
? aDbf[1,DBS_DEC] // 0

Classification:
database

Compatibility:
This function is available in FlagShip only.

Related:
DBSTRUCT(), FIELDNAME(), FIELDDECI(), FIELDTYPE(), oRdd:FieldInfo()

FUN 220

FIELDNAME ()
Syntax:

retC = FIELD (expN)
Syntax:

retC = FIELDNAME (expN)
Purpose:

Returns the name of the specified field in the current database file. The function
name can be abbreviated to FIELD.

Arguments:
<expN> is the field number as a position in the database structure. The valid range
is 1 to FCOUNT().

Returns:
<expC> is a character string returning the name of the specified field. If <expN> is
out of the valid range or no database is open in the current working area, null string
"" is returned. Otherwise, the field names are returned in uppercase.

Description:
FIELD() or FIELDNAME() can be used in conjunction with FCOUNT () to determine
a specific field name and for generic access to database fields. If detailed
information on the database structure is required, use the AFIELDS() or
DBSTRUCT() functions or COPY STRUCTURE EXTENDED command.

The inverse function of FIELDNAME() is FIELDPOS(). To execute the function in a
different working area from the current one, use alias->(FIELD(n)).

Example:
USE article
? FCOUNT() && 10
? FIELD(1), FIELD(2) && IDNUM NAME
? &(FIELD(1)), FIELDGET(1) && 1234 1234
x = FIELD(2)
? TYPE("x"), LEN(x) && C 25

Classification:
database

Related:
FIELDPOS(), AFIELDS(), DBSTRUCT(), COPY STRUCTURE EXTENDED,
FCOUNT(), FIELDGET(), FIELDPUT(), TYPE(). oRdd:FieldName()

FUN 221

FIELDPOS ()
Syntax:

retN = FIELDPOS (expC)
Purpose:

Returns the position of a field in a database structure.

Arguments:
<expC> is the name of a field in the current or specified working area.

Returns:
<retN> is the position of the specified field within the database structure of the
current working area. If the name <expC> is not found in the database structure or
no database is open, zero is returned.

Description:
FIELDPOS() can be used in conjunction with FIELDGET() and FIELDPUT() to
determine a specific field and for generic access to database fields. If full
information on the database structure is required, use the AFIELDS() or
DBSTRUCT() functions or COPY STRUCTURE EXTENDED command.

The reverse function to FIELDPOS() is FIELDNAME(). To execute the function in a
directory other than the current one, use alias->(FIELDPOS(c)).

Example:
USE custom NEW ALIAS cust
USE address NEW ALIAS adr
? FIELDPOS("name"), FIELDNAME(2) // 2 NAME
? FIELDGET(FIELDPOS("name")) // Smith
? cust->(FIELDGET(FIELDPOS("name"))) // Adams & Co

Classification:
database

Compatibility:
Available in FS and C5 only.

Related:
FIELDNAME(), AFIELDS(), DBSTRUCT(), COPY STRUCTURE EXTENDED,
FCOUNT(), FIELDGET(), FIELDPUT(). oRdd:FieldPos()

FUN 222

FIELDPUT ()
Syntax:

ret = FIELDPUT (expN1|expC1, exp2, [expC3])
Purpose:

Replaces a database field using the position of the field in the database structure.

Arguments:
<expN1> is the field number as a position in the database structure. The valid
range is 1 to FCOUNT(). <expC1> is the name of the field to replace.

<exp2> is the value to assign to the given field. The data type of <exp2> must
match the data type of the designated database field.

<expC3> is the field sub-type, apply for variable fields.

Returns:
If successful <ret> is equivalent to the assigned <exp2> value. If the function fails,
NIL is returned.

Description:
FIELDPUT() is a database function that replaces the specified field in the current
working area. The function is similar to the REPLACE command, but uses the
position within the database structure rather than the field name. To execute the
function in a working area other than the current one, use alias->(FIELDPUT(n,x)).

Multiuser:
If the database is open in SHARED mode, the RLOCK() (or FLOCK()) locking must
be performed first. See also LNG.4.8. Otherwise, AUTOxLOCK() is used, when
SET AUTOLOCK is enabled (the default).

When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Example:
USE custom NEW ALIAS cust
USE address NEW
? FIELDPOS ("name"), FIELDNAME(2) // 2 NAME
? FIELDGET (FIELDPOS("name")) // Smith
? FIELDPUT (FIELDPOS("name"), "Miller") // Miller

temp = "name" // the "old" style
? &temp // using macros
REPLACE &temp WITH "New name"
? FIELDGET (2) // New name
? cust->(FIELDPUT(2, "Other Comp.")) // Other Comp.

Classification:
database

FUN 223

Compatibility:
Available in FS and C5 only, whereby C5 does not support <expC1>. The AutoLock
feature is available in FlagShip only. The 3rd parameter is new in FS5

Related:
REPLACE, FIELDPUTARR(), FIELDGET(), FIELDNAME(), SET AUTOLOCK,
AUTOxLOCK(), oRdd:FieldPut()

FUN 224

FIELDPUTARR ()
Syntax:

retL = FIELDPUTARR (expA1, [expN2])
Purpose:

Stores the array content subsequently into fields of the current or specified
database record.

Arguments:
<expA1> is the one-dimensional array which content should be subsequently
stored in the database fields of the current or specified record. If the array size is
larger than the number of fields, only the first FCOUNT array elements are affected.
If the array size is smaller, the remaining fields will not be changed. In the array
element contains NIL, the corresponding field remains unchanged. Otherwise, the
type of the element and the corresponding field has to match, or a run-time error
occurs. Numeric and character/memo conversion is done automatically similar to
REPLACE.

Options:
<expN2> is the required record number. The current database pointer remains
unchanged after returning from the function. If not specified or zero, the current
record is used.

Returns:
<retL> signals the success.

Description:
FIELDPUTARR() is a superset of the FIELDPUT() function. You may e.g. retrieve
the record content via FIELDGETARR(), change the array elements, and perform
an global record replacement with the FIELDPUTARR() function. To execute the
function in a working area other than the current one, use
alias->(FIELDPUTARR(a,n)).

Multiuser:
If the database is open in SHARED mode, the RLOCK() (or FLOCK()) locking must
be performed first, or SET AUTOLOCK must be active for automatic record lock.
Otherwise, the replacement fails with a run-time error.

Example:
see example in FIELDGETARR()

Classification:
database

Compatibility:
This function is available in FlagShip only.

Related:
FIELDGET(), FIELDGETARR(), SET AUTOLOCK, oRDD:PutArrFields()

FUN 225

FIELDTYPE ()
Syntax:

retC = FIELDTYPE (expN1|expC1)
Purpose:

Determines the type of a selected database field.

Arguments:
<expN1>|<expC1> is the ordinal field number, or the field name of the database in
the current work area.

Returns:
<retC> is the type of the database field. Equivalent to the DBS_TYPE sub-array
element of DBSTRUCT():

C character field
D date field
F floating point field
L logical field
M memo field (.dbt)
N numeric field (integer or fixed decimal point)
V variable data field (.dbv)

Description:
As opposed to DBSTRUCT(), which informs you about the database structure,
FIELDTYPE() provides you with the specific information about the selected field.

Example:
USE mydbf
? FIELDNAME (2) // AMOUNT
? FIELDTYPE (2) // N
? FIELDLEN (2) // 14
? FIELDDECI (2) // 2

? FIELDTYPE ("Amount") // N
? FIELDLEN ("Amount") // 14
? FIELDDECI ("Amount") // 2

? FIELDNAME ("MyMemo") // MYMEMO
? FIELDTYPE ("MyMemo") // M
? FIELDLEN ("MyMemo") // 10
aDbf := DbStruct()
? aDbf[2,DBS_NAME] // AMOUNT
? aDbf[2,DBS_TYPE] // N
? aDbf[2,DBS_LEN] // 14
? aDbf[2,DBS_DEC] // 2

Classification:
database

FUN 226

Compatibility:
This function is available in FlagShip only. Field type 'F' and 'V' is not available in
C5.

Related:
DBSTRUCT(), FIELDNAME(), FIELDLEN(), FIELDDECI(), oRdd:FiledInfo()

FUN 227

FIELDWBLOCK ()
Syntax:

retB = FIELDWBLOCK (expC1, expN2)
Purpose:

Returns a read/write code block for a given field in the specified working area.

Arguments:
<expC1> is the name of the field to which the set-get block will refer. The specified
field variable need not exist when the code block is created but must exist before
the code block is executed.

<expN2> is the number of the working area number where the field resides.

Returns:
<retB> is a code block that, when evaluated, reads (retrieves) or writes (assigns)
values of the given field. If the <expC1> field does not exist in the working area
<expN2>, FIELDWBLOCK() returns NIL.

Description:
FIELDWBLOCK() is a database function, similar to FIELDBLOCK(). The returned
code block can read or write the given database field and has the general syntax
(refer also to LNG.2.3.3):

retB := {|par| IF(par==NIL, (expN)->expC, (expN)->expC := par)}

When the code block is later evaluated without an argument, i.e. EVAL(retB), the
current field value is returned. When evaluating it with an additional argument, i.e.
EVAL(retB, exp), it assigns (writes) the expression into the database field.

Multiuser:
Before the code block is evaluated with an additional argument (write access), at
least RLOCK() must be set for SHARED databases. See also LNG.4.8.

When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Example:
LOCAL fblck := FIELDWBLOCK ("name", 3)
SELECT 3
USE address
? EVAL (fblck) // Miller

Classification:
programming, database

Compatibility:
Available in FS and C5 only.

Related:
FIELDBLOCK(), MEMVARBLOCK()

FUN 228

FILE ()
Syntax:

retL = FILE (expC1, [expL2])
Purpose:

Determines whether a file exists in the defined path.

Arguments:
<expC1> is the name of the file, including extension, optionally preceded by a path.
Standard UNIX wildcards using ?, *, [..] to form the file name part are supported.
The FS_SET() file and path translation to lower/upper case are considered, same
as conversion of index extension and the substitution of DOS drive letter. See
FS_SET("lower"|"upper"|"path*"|"trans") or #include "fspreset.fh", as well as
x_FSDRIVE environment variable(s) in section FSC.3.3.

Options:
<expL2> is a logical value specifying whether the FS_SET("lower"| "upper" |
"pathlower" | "pathupper") setting and hence the file and path conversion should be
considered (.T.) or ignored (.F.). The default is .T. = the setting and auto translation
is considered.

Returns:
<retL> is a logical value returning TRUE, if the file exists, or FALSE if a file
matching the pattern <expC1> is not found.

Description:
FILE() determines whether any file matching a file specification pattern is found. If a
path is not specified, FILE () first searches the current directory or the SET
DEFAULT path when given. If the file is not found, the SET PATH is searched.
When <expL2> is .F., only the current or given directory in <expC1> is considered
as given.

The current user must have at least the "x" access right for the specified directory.
In MS-Windows, the directory may not be hidden by "S" or "H" attribute. If the
function fails, FILE() returns .F. and FERROR() returns the last system error code.

Example:
#ifdef FlagShip

FS_SET ("lower", .T.)
FS_SET ("pathlower", .T.)

#endif
? FILE("my.DBF") && .F.
? FILE("\usr\users/Joe/My.dbf") && .T.
SET PATH TO /usr/users/joe && or: \USR\users\Joe
? FILE("my.DBF") && .T.

Classification:
system, file access

FUN 229

Compatibility:
UNIX file names and paths are case sensitive, but FlagShip can convert the given
pattern to lower or upper case automatically. Refer to the section LNG.9.5. The
support of wildcards is new in FS4. Both forward "/" and backward "\" slashes are
supported for path delimiters in Unix and MS-Windows environment.

Related:
SET DEFAULT, SET PATH, FS_SET(), #include "fspreset.fh"

FUN 230

FINDEXEFILE()
Syntax:

retC = FindExeFile (expC)
Purpose:

Returns the complete path of an executable.

Arguments:
<expC> is the name of executable to be located. It is either the name self (like
"myExe"), or the exe name with relative path, e.g. "../../hallo/myExe"

Returns:
<retC> is absolute path with the executable or ""

Description:
This function searches the PATH environment variable for given executable
<expC>, similar to the shell "which" function. If found, returns the absolute path if
found and the file has execute permission. Relative paths are accepted and
converted to absolute. If not found, an empty string"" is returned.

Example:
? getenv("PATH") // /usr/bin:/bin:./usr/local
? FindExeFile("a.out") // /home/foo/a.out
? FindExeFile("FlagShip") // /usr/bin/FlagShip
? FindExeFile("../mayer/a.out") // /home/mayer/a.out

Classification:
programming

Compatibility:
New in FS5

Related:
File(), TruePath()

FUN 231

FKLABEL ()
Syntax:

retC = FKLABEL (expN)
Purpose:

Returns the name of the specified function key.

Arguments:
<expN> is the numeric value of the FN key in the range 1 to 40.

Returns:
<retC> is a character string in the format Fn or Fnn representing the name of the
function key specified by the argument <expN>. If the argument <expN> is out of
range, the function returns null string "".

Description:
FKLABEL() is a compatibility function to dBASE and is equivalent to retC = "F" +
LTRIM(STR(expN)).

Example:
? FKLABEL(1) // "F1"
? FKLABEL(20) // "F20"
? FKLABEL(99) // ""

Classification:
programming

Compatibility:
FKLABEL() in FS4 and C5 does not check the availability of the function key
specified. In FlagShip, up to 48 function keys may be defined in the FStinfo.src (or
other similar terminfo description).

Related:
SET FUNCTION, SET KEY

FUN 232

FKMAX ()
Syntax:

retN = FKMAX ()
Purpose:

Returns number of function keys as a constant.

Returns:
<retN> is constant 40.

Description:
FKMAX() is available only for compatibility purposes to dBASE.

Example:
? FKMAX() // 40

Classification:
programming

Compatibility:
FKMAX() in FS4 and C5 does not check the availability of the function key
specified. In FlagShip, up to 48 function keys may be defined in the FStinfo.src (or
other similar terminfo description).

Related:
SET FUNCTION, SET KEY

FUN 233

FLAGSHIP_DIR ()
Syntax:

retC = FlagShip_Dir ()
Purpose:

Returns the path of FlagShip installation directory.

Returns:
<retC> is the path where the FlagShip development package was installed, e.g.
"/usr/local/FlagShip7" in Unix/Linux or "C:\Program Files\FlagShip7" in MS-
Windows. Assigned only if the installation directory was found during the
compilation. If not so, empty string "" is returned otherwise.

Description:
The FlagShip installation directory is determined during the compilation phase and
is also displayed by using the -v switch.

Example:
? FlagShip_Dir() // /usr/local/FlagShip7

Example:
// set polish keyboard mapping in GUI
m->oApplic:Font:CharSet(FONT_ISO8859_2)
FS_SET("guikey", FlagShip_dir() + PATH_SLASH + "terminfo" +;

PATH_SLASH + "FSguikey.latin2_pl")

Classification:
programming

Compatibility:
Available in FlagShip6 and newer only.

Related:
-v compiler switch

FUN 234

FLOCK ()
Syntax:

retL = FLOCK ()
Purpose:

Locks the current database selected to allow global write access in multiuser mode.

Returns:
<retL> is a logical value, which signals success or error. If TRUE is returned, the
current database is successfully locked; otherwise the file cannot be locked.
FLOCK() will return FALSE when another user:

•has successfully locked the database using FLOCK() or RLOCK().
•has APPENDed new records without an additional UNLOCK being performed.

Description:
After a successful FLOCK(), any record may be changed using REPLACE,
DELETE, RECALL or @..GET../READ, including multi-record changes (e.g. with
ALL, NEXT, FOR or WHILE clause) or using the DBEVAL() function. If FLOCK() is
successful, the file lock remains in place until UNLOCK, CLOSE, or DBUNLOCK()
is executed.

FLOCK() may also be used to avoid database changes by other user executing
database wide commands like TOTAL, COUNT or INDEX ON.

For each invocation of FLOCK(), there is one attempt to lock the database, and the
result is returned as a logical value. If a record of the database is locked from the
current application by RLOCK() or APPEND BLANK, the previous record is
UNLOCKed before attempting to lock the whole file. If the user has locked the
database with FLOCK(), the file lock remains active and FLOCK() return TRUE. An
attempt to APPEND BLANK or RLOCK() a database already FLOCKed will
succeed, but leaves FLOCK unchanged.

FLOCK() is effective only on the database in the working area selected (and the
associated .dbt files) only, not on related databases. To execute the function in a
different working area from the current one, use alias->(FLOCK()).

To determine if the record or file is locked, without actually activating locking, use
ISDBRLOCK() or ISDBFLOCK() functions.

Multiuser:
In multiuser mode (SET EXCLUSIVE OFF or USE... ...SHARED), the record or file
must be locked to allow a write access to the record or the whole file. If not set by
the programmer and SET AUTOLOCK is ON, FlagShip locks the record or file
automatically by using the AUTOxLOCK() function.

Locking is not necessary for a read access such as var=field, SKIP, SEEK, GOTO,
LOCATE etc. Other users may also read the locked file or record, but they cannot
write it. Refer to section LNG.4.8 for more information.

FUN 235

FLOCK() provides a shared lock, allowing other users to read the locked databases,
but they cannot write in them.

When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Example:
SET EXCLUSIVE OFF && multiuser mode
USE address INDEX name && you should check it
APPEND BLANK && automatic RLOCK
replace NAME with "Smith" && on write access to one
UNLOCK && record only, use RLOCK

GOTO TOP
DO WHILE .not. FLOCK() && wait until FLOCK

INKEY (0.5) && come trough,
ENDDO && with small delay
DELETE ALL FOR EMPTY(name)
UNLOCK

Classification:
database

Compatibility:
FlagShip uses Unix and Windows compatible locking methods (via fcntl). The usage
of RLOCK(), FLOCK() and UNLOCK is nevertheless source- and logic-compatible
to other Xbase dialects. FlagShip, Clipper, dBase, and Foxbase/FoxPro locking is
incompatible to each other. The check using ISDBRLOCK() and the AutoLock
feature is available in FS only.

Refer to section SYS (tunable UNIX parameters) to set or increase the number of
maximal available locks.

Related:
USE...EXCLUSIVE|SHARED, SET EXCLUSIVE, UNLOCK, RLOCK(),
ISDBRLOCK(), ISDBFLOCK(), DBFLOCK(), DBRLOCK()

FUN 236

FLOCKF ()
Syntax:

retN = FLOCKF (expN1, [expN2], [expN3])
Purpose:

Locks or unlocks a part or the whole of a binary file, which has already been
opened, for a read and/or write access.

Arguments:
<expN1> is the file handle number previously returned by FOPEN() or FCREATE().

Options:
<expN2> is the required locking mode. If not specified, zero is assumed.

value #define Description
0 FF_UNLOCK Unlock the whole file
1 FF_READ Lock to read only by curr. user
2 FF_READWRITE Lock to read/write by curr. user

<expN3> is a positive byte count to be locked from the current position. If omitted,
or zero is specified, the rest of the file is locked until end-of-file.

Returns:
<retN> is set to zero, if the required locking is successful; non- zero otherwise.

Description:
FLOCKF() locks for low-level system calls Fxxx(). It has some similarity to high-level
database locking using RLOCK() or FLOCK(). Unlike these, FLOCKF() does not
protect the write access by another user, but merely signals that the other user may
or may not lock and therefore may access the same file.

It is the programmer's responsibility, to perform and check the required locking
using FLOCKF() before the read or write access. As opposed to the high-level
database write access using REPLACE, no error messages from FlagShip are
generated by low-level access when FLOCKF() fails.

FLOCKF() can be used to control multiuser access to text or binary files. Locking a
file does not protect the file from being read or written by any other user, but
another user cannot lock the same portion of the file.

Unlike the database FLOCK() function, FLOCKF() allows to either lock the file, or a
part of it, for reading or both reading and writing. A file locked for reading cannot be
locked for writing by another user, but all other users may lock the file for reading,
too. A file locked for reading and writing cannot be locked by another user, neither
for reading nor writing.

Locking and unlocking with FLOCKF() should always be done at the same byte
offset, preferably zero, representing begin-of-file. After executing FLOCKF(), the file

FUN 237

pointer remains unchanged. Note that unlike FLOCKF(), FLOCKF() allows to lock
different parts of a file at the same time.

When the binary file is closed using FCLOSE(), all FLOCKF() locks set by the
current user will be cleared.

Warning: FLOCKF() allows a low-level access to the UNIX file system, using the C
function fcntl(). Therefore, it should be used with care and only when you are
familiar with the operating and file system.

Multiuser:
On simultaneously used binary files, issue FLOCKF() and check the return code at
least before a write attempt.

Example:
#include "fileio.fh"
#define LINEFEED CHR(10)
LOCAL handle, ii := 0
handle := FOPEN ("myfile.txt", FO_READWRITE)
IF handle > 0

WHILE FLOCKF (handle, FF_READWRITE) # 0 .AND. ii <= 10
? "Waiting to access myfile.txt"
INKEY(1)
ii++

END
IF ii > 10

? "Sorry, cannot lock. Try later."
FCLOSE (handle)
RETURN

ENDIF
FWRITE (handle, "Line 1" + LINEFEED)
FWRITE (handle, "Line 2" + LINEFEED)
FSEEK (handle, 0) // go back to file begin
FLOCKF (handle, FF_UNLOCK)
? "Try now to read the file by other user or press..."
INKEY(0)
FCLOSE (handle)

ENDIF

Classification:
system, file access

Compatibility:
Available in FS only. Refer to section SYS: tunable UNIX parameters to set or
increase the number of maximal locks are available.

Include:
<FlagShip_dir>/include/fileio.fh #define's for <expN2> <FlagShip_dir>/include/
error.fh #define's of error codes

Related:
FCLOSE(), FERROR(), FOPEN(), FCREATE(), FREAD(), FREADSTR(), FSEEK(),
FWRITE(), UNIX: fcntl

FUN 238

FOPEN ()
Syntax:

retN = FOPEN (expC1, [expN2], [expNL3])
Purpose:

Opens the specified binary file.

Arguments:
<expC1> is the file name. An optional path and extension can be specified. The
FS_SET() file and path translation is considered. The SET DEFAULT or SET PATH
is not evaluated by the low-level function.

Option:
<expN2> is the open mode of the file. The open mode can be:

value #define in fileio.fh Description
0 FO_READ Open for read-only access
1 FO_WRITE Open for write-only access
2 FO_READWRITE Open for read/write access

If <expN2> is not specified or out of range, read-only access is assumed.

<expNL3> is optional logical or numeric value specifying creation of new file, if
<expC1> does not exist

value #define in fileio.fh Description
0 or .F. FO_NOCREATE Do not create new file
1 FO_CREATE Creates new file if not exist
2 or .T. FO_CREATEWRITE Creates new file if not exist but not in read-only

mode

If <expNL3> is not specified, the global setting
_aGlobSetting[GSET_N_FOPEN_CREATE] // default = 0 = FO_NOCREATE

is used. For backward compatibility to older FlagShip versions, set
_aGlobSetting[GSET_N_FOPEN_CREATE] := 2

Returns:
<retN> is the file handle of the opened file, in the range from zero to 65535. If an
error occurs, -1 is returned. The file is left opened in the requested mode until
FCLOSE() is executed.

Description:
FOPEN () opens the specified file in no-delay-mode and returns the opened file
handle. This should be assigned to a variable, since it is needed to identify the file
to the other file functions. On success, the additional read and/or write locking using
FLOCKF() is available.

If FOPEN() fails, -1 is returned, and FERROR() can then be used to determine the
reason for the failure.

FUN 239

Warning: FOPEN() allows a low-level access to the UNIX file system, similar to the
C function open(). Therefore, it should be used with care and only when you are
familiar with the UNIX operating and file system.

Example 1:
#include "fileio.fh"
#include "error.fh"
art_handle = Fopen("article.doc", FO_READWRITE, .T.)
IF art_handle = -1

? "The file cannot be created!"
DO CASE
CASE FERROR() = EX_EACCES

?? " (Permission denied)"
CASE FERROR() = EX_EROFS

?? " (Read-only file system)"
CASE FERROR() = EX_EMFILE

?? " (Too many files for process, adapt the kernel)"
ENDCASE
QUIT

ENDIF

Example 2:
Opens or create new file in mixed case (Linux/Unix) when the automatic conversion
to lowercase is on (e.g. in fspreset.fh)

#include "fileio.fh"
#include "fspreset.fh" /* note */
local fd, lConvPath, lConvFile, cFile

cFile := "/home/myName/Test/MyFile.txt"

/* this will fail, when /home/myname/test/myfile.txt
* does not exist, because of lower case translation of
* <cFile> (for path and file) in #include "fspreset.fh"
*/
fd := fopen(cFile, FO_READ, FO_NOCREATE) // may fail
? "fd=",fd // -1

/* this will fail only when /home/myName/Test/MyFile.txt
* does not exist (and could not be created)
*/
lConvPath := FS_SET("pathlower", .F.) // save status
lConvFile := FS_SET("lowerfile", .F.) // save status
fd := fopen(cFile, FO_READWRITE, FO_NOCREATE)
if fd < 0

? "File", cFile, "does not exist"
fd := fopen(cFile, FO_READWRITE, FO_CREATE)
if fd > 0

?? " but was created"
else

?? " and could not be created"
endif

endif
FS_SET("pathlower", lConvPath) // restore status
FS_SET("lowerfile", lConvFile) // restore status

FUN 240

Example 3:
Check the user permission prior open database or file

found := file(mysubdir + "myfile.dbf")
if !CHECK_ACCESS (mysubdir, "myfile.dbf", !found)

? "access denied to " + mysubdir + "myfile.dbf"
quit

else
USE (mysubdir + "myfile") // or MYUSE() from CMD.USE

endif

function CHECK_ACCESS (dir, file, create)
*--
* check the access rights to directory or file
* [dir] = the specified directory, or "./" as default
* [file] = any file name. If not specified,
* temp is crea/deleted.
* [create] = check r/w access if .T., otherwise r only

LOCAL handle
if empty(file)

file := FS_SET("print")
file := "$$temp$$" + substr(file,at(".",file))
create := .T.

endif
create := if (valtype(create) == "L", create, .F.)
dir := if (empty(dir), ".", trim(dir))
if !(SLASH == substr(dir, -1))

dir = trim(dir) + SLASH
endif

if !file(dir + file)
handle := fcreate(dir + file)

else
handle := fopen(dir + file, if (create, 2, 1))

endif
if handle < 1 .or. ferror() > 0

return .F.
endif
fclose (handle)
if create

ferase(dir + file)
endif
return ferror() == 0

Classification:
system, file access

Compatibility:
Note the UNIX access rights, not available in DOS. See also section SYS for
tunable UNIX parameters to set the number of simultaneously open files. The third
parameter is available in VFS6 (and newer) only. Clipper and VFS6 behaves like
<expNL3> = 0, FS4 and VFS5 like <expNL3> = 2

FUN 241

Include:
<FlagShip_dir>/include/fileio.fh #define's for <expN2> <FlagShip_dir>/include/
error.fh #define's of error codes

Related:
FCLOSE(), FERROR(), FCREATE(), FREAD(), FREADSTR(), FSEEK(), FWRITE(),
FLOCKF()

FUN 242

FOUND ()
Syntax:

retL = FOUND ()
Purpose:

Determines the success of a previous SEEK, FIND, LOCATE or CONTINUE.

Returns:
<retL> is TRUE if the last search operation was successful.

Description:
FOUND () can be used when the success of a search operation is important for
determining what to do next.

The value of FOUND() is retained until another record movement command (except
SKIP 0) is executed or the index order is changed. When performing another
search, FOUND() reflects the last status. On record movement, or when changing
the current index, FOUND() is set to FALSE. The init status is FALSE, and remain
so until a SEEK, FIND or LOCATE is executed in this working area.

Each working area (or the RDD object) has a FOUND() flag, so if you search in a
SET RELATION's child area, the results of the search can be queried in the child
area. To execute the function in a working area other than the current one, use
alias->(FOUND()).

Tuning:
You may achieve Clipper 5.x compatibility by assigning
_aGlobSetting[GSET_L_FOUND_SETORDER] := .T. // default is .F.

to let the Found() status unchanged during SET ORDER TO <n>

Example:
USE personal INDEX name
LOCATE FOR name = space(5)
? FOUND(), EOF() && .F. .T.
LOCATE FOR TRIM(name) = "Smith"
? FOUND(), EOF(), RECNO() && .T. .F. 25
SKIP
? FOUND(), EOF(), RECNO() && .F. .F. 26
CONTINUE
? FOUND(), EOF(), RECNO() && .T. .F. 39

SEEK "SMITH"
? FOUND(), EOF(), RECNO() && .T. .F. 25

Classification:
database

Related:
CONTINUE, FIND, LOCATE, SEEK, SET RELATION, SET SOFTSEEK, EOF(),
oRdd:Found

FUN 243

FREAD ()
Syntax:

retN = FREAD (expN1, @varC2, expN3, [expL4])
Purpose:

Reads any count of bytes from the specified file into a character buffer.

Arguments:
<expN1> is the file handle previously returned by FOPEN() or FCREATE().

<varC2> is an already existing and initialized memory variable of character type
used as a buffer. Its length must be at least <expN3>. This variable must be passed
by reference to FREAD().

<expN3> is the number of characters to be read into the buffer.

<expL4> is optional logical value. If true (.T.), FREAD() will retry the read on failure.
The default is .F. = no retry.

Returns:
<retN> represents the number of bytes that were read successfully. This value
should be equal to <expN3>. If the return value is smaller than <expN3> or equals
zero, it means that the end of file has been reached or an error has occurred,
FERROR() is set. Exception: when the passed <expN3> is <= 0 or the length of
<expC2> is 0, zero is returned and FERROR() is set to zero. When <expN1> is not
numeric or is < 0, or when <expC2> is not a string, or if the length of <expC2> is
less than <expN3>, -1 is returned and FERROR() remain unchanged.

Description:
FREAD () is a low-level file function that reads characters from any binary file or
device (in no-delay-mode) into an existing character buffer. It starts reading at the
current file pointer position, and reads the specified number of characters, or less, if
the end of file is encountered. FREAD() reads all characters, including CR, LF and
binary zero, regardless of the setting FS_SET("zerobyte").

For positioning the file pointer without reading, FSEEK () should be used.

Warning: FREAD() allows a low-level access to the UNIX file system, similar to the
C function read(). Therefore, it should be used with care and only if your are familiar
with the UNIX operating and file system.

Example:
#define BUFFSIZE 512
LOCAL buff, handle, text
buff = SPACE(BUFFSIZE) // the best performance
text = ""
handle = FOPEN("help.doc")

FUN 244

IF FERROR() == 0
DO WHILE FREAD(handle, @buff, BUFFSIZE) = BUFFSIZE

text = text + buff
ENDDO
FCLOSE (handle)

ENDIF

Example:
Uses FREAD() to read data from serial port:

LOCAL handle, out := "", device := "/dev/tty02"
if (handle := FOPEN(device, 2)) < 1

? "cannot open", device, "because", ferror()
quit

endif
* RUN ("stty 19600 -echo < " + device) // etc, on request
while inkey() != K_ESC

?? out := ReadWithDelay (handle, 80, 10.5)
if len(out) == 0 // there was no input

exit // within 10.5 sec
endif

enddo
FCLOSE (handle)
quit

FUNCTION ReadWithDelay (handle, nSize, maxDelay)
**
LOCAL start := secondscpu(), out := "", buff := " "
while .T.

while FREAD(handle, @buff, 1) < 1 // wait for char
if secondscpu() > (start + maxDelay)

return out
endif

enddo
out += buff
if len(out) >= nSize

exit
endif
start := secondscpu()

enddo
return out

Classification:
system, file access

Related:
FCLOSE(), FCREATE(), FEOF(), FERROR(), FOPEN(), FREADSTR(),
FREADTXT(), FSEEK(), FWRITE(), FLOCKF()

FUN 245

FREADSTDIN ()
Syntax:

retN = FREADSTDIN (@varC1, expN2, [expN3])
Purpose:

Reads data from stdin into character buffer and optionally performs additional
filtering and translation.

Arguments:
<varC1> is an already existing and initialized memory variable of character type
used as a buffer. Its length must be at least <expN2>. Note: FlagShip support
character variables up to 2 GB of size. This variable must be passed by reference
to FREADSTDIN().

<expN2> is the max. number of characters to be read into the buffer. <expN2>
must be <= len(expC1).

Options:
<expN3> is a optional filter and translation flag. The values below may be added
together for a multiple choice.

0 default, no filter
1 ignore all CR and LF at the end of input (or buffer)
2 ignore all CR (0x0D)
4 ignore all LF (0x0A)
8 ignore all ^Z (0x1A)
16 ignore chars < " " (0x20)
32 replace TAB (0x07) by space
64 replace all chars < " " (0x20) by space

Additional translations are possible in the application by e.g. STRTRAN().

Returns:
<retN> represents the number of bytes that were read successfully. This value
should be equal or less to <expN2>. If the return value is smaller than <expN2> or
equals zero, it means that the entered string / input stream was smaller than the
buffer size, the end of file has been reached or an error has occurred. A negative
value signals an error:

-1 less than 2 arguments passed
-2 wrong type of argument 1 or 2
-3 wrong type of argument 3 if given
-4 varC1 is not passed by reference
-5 len(varC1) < 1 or expN2 < 1

FUN 246

Description:
FREADSTDIN() is a low-level i/o function that reads characters from standard input
into an existing character buffer. It is a special case of FREAD(1, @varC1, expN2)
with additional functionality.

When reading data from the console, the system transmit it when the RETURN or
^D key is pressed. When the buffer size is too small for storing the received data,
the input stream is truncated to the size of <expN2>.

When reading data from a file (e.g. by an input redirection on the command line),
the data are read until EOF or the <expN2> size is reached - whichever comes first.

Note: since the input may include null-bytes \0, you may use STRLEN() or <retN> to
extract or print the significant part of the buffer in your application.

Note: since the Curses or IOCTL initialization is not required (see SYS.2.7), you
may freely use this function also for background or CGI processing. In fact,
WebGetFormData() uses it (with filter 1) for POST tags.

Example:
local buff := space(10000)
nread := FReadStdin(@buff, 10000, 63) // large filter
if nread >= 0

? "Data read: ", left(@buff,nread)
else

? "error", ltrim(nread)
endif

Compatibility:
Available in FS only

Related:
FREAD(), FREADSTR(), FREADTXT(), FEOF(), LEN(), STRLEN(),
WebGetFormData(), SYS.2.7

FUN 247

FREADSTR ()
Syntax:

retC = FREADSTR (expN1, expN2, [expL3])
Purpose:

Reads character strings from the specified file into a character variable.

Arguments:
<expN1> is the file handle previously returned by FOPEN() or FCREATE().

<expN2> is the maximum number of characters to read, beginning at the current
file pointer position.

<expL3> is optional logical value. If true (.T.), FREADSTR() will retry the read on
failure. The default is .F. = no retry.

Returns:
<retC> is the returned character string. If the end of file is encountered or an error
occurs, a null string is returned.

Description:
FREADSTR () is low-level function similar to FREAD(). It starts reading at the
current file pointer position and reads the number of characters specified. The string
returned may be shorter than <expN2>, if a null character (zero byte CHR (0)) was
encountered and FS_SET("zerobyte") is not set. The file pointer is moved forward
<expN2> bytes (or to end-of-file), regardless of the string length returned.

Example:
LOCAL handle, text
text = ""
handle = FOPEN("myfile.txt")
DO WHILE .not. FEOF(handle)

? text := FREADSTR (handle, 50), FERROR()
ENDDO
FCLOSE (handle)

Classification:
system, file access

Compatibility:
In C5, the FERROR() is not set reaching the end-of-file. Also, the returned string is
always shortened, if zero byte is encountered. FS supports zero bytes, if
FS_SET("zero") is set. Parameter 3 is new in FS6.

Related:
FCLOSE(), FCREATE(), FEOF(), FERROR(), FOPEN(), FREAD(), FREADTXT(),
FSEEK(), FWRITE(), FLOCKF()

FUN 248

FREADTXT ()
Syntax:

retC = FREADTXT (expN1, [expN2], [expL3])
Purpose:

Reads text lines from the specified ASCII file into a character variable.

Arguments:
<expN> is the file handle previously returned by FOPEN() or FCREATE().

<expN2> is optional maximum size of the text line. If not specified, 512 bytes is
assumed.

<expL3> is optional logical value. If true (.T.), FREADTXT() will retry the read on
failure. The default is .F. = no retry.

Returns:
<retC> is the returned character string containing the text line. If the end of file is
encountered or an error occurs, a null string "" is returned.

Description:
FREADTXT () is low-level function to read ASCII files, similar to MEMOREAD() and
MEMOLINE(), but it reads one text line only. It starts reading at the current file
pointer position until the end- of-line mark CR/LF or LF is encountered or the end-
of-file is reached.

The end-of-line mark is not stored in the returned string <retC>. The file pointer is
then positioned on the byte following the end- of-line mark. Upon reaching the end-
of-file, FERROR() is set.

If you wish to read the file at-once, use MemoRead() or Fread() or FreadStr().

Example:
#include "fileio.fh"
LOCAL handle, text
handle = FOPEN("myfile.txt", FO_READ)
DO WHILE ! FEOF (handle)

? text := FREADTXT (handle)
ENDDO
FCLOSE (handle)

Classification:
system, file access

Compatibility:
Available in FlagShip only. Zero bytes are supported, when FS_SET("zero") is set.
Parameter 2 and 3 are new in FS6.

Related:
FCLOSE(), FCREATE(), FEOF(), FERROR(), FOPEN(), FREAD(), FSEEK(),
FWRITE(), FLOCKF(), FS_SET()

FUN 249

FRENAME ()
Syntax:

retN = FRENAME (expC1, expC2, [expL3])
Purpose:

Changes the name of a file.

Arguments:
<expC1> is the old name of the file to rename. Standard UNIX wildcards are
supported.

<expC2> is the new name of the file. If only the directory (except the dot . alone) is
specified, the file(s) from <expC1> are moved to the directory given in <expC2>.

Both <expC1> and <expC1> file names have to include the extension and can
optionally be prefaced by a path designator. SET PATH and SET DEFAULT are not
considered.

Options:
<expL3> is a optional logical expression. If specified .T., the new file name
<expC2> is deleted (if existent) before moving / renaming the <expC1> file to
<expC2>. This avoids possible MS-Windows errors known from "RENAME
oldName newName". Considered only if the <expC2> is a valid file name without
wildcards. The default setting is .F.

Returns:
<retN> is zero if the operation succeeds, -1 in the case of failure. FERROR() can
be used to determine the nature of the error.

Description:
FRENAME() is an equivalent function to the RENAME command. When a database
file .dbf is renamed it is necessary to RENAME the associated memo file .dbt as
well.

Example:
IF FRENAME ("file1.txt", "/usr/peter/file2.txt") < 0

? "error", FERROR(), "occurred"
ENDIF

Classification:
system, file access

Compatibility:
The FRENAME() function and RENAME command are equivalent to the UNIX
command "mv" or the similar DOS command "RENAME". The usage of wildcards
and the destination directory is available in FlagShip only.

FRENAME() considers the automatic path and/or conversion using e.g.
FS_SET("pathlower") and FS_SET ("lower"), the extension replacement using

FUN 250

FS_SET ("translext") and the drive substitution using the environment variable
x_FSDRIVE.

The 3rd parameter is available in FlagShip6 and newer only.

Related:
RENAME, FERROR(), FILE(), ERASE, FERASE(), COPY TO, FCOPY(),
FS_SET(), UNIX: man mv, DOS: rename /?

FUN 251

FSEEK ()
Syntax:

retN = FSEEK (expN1, expN2 [,expN3])
Purpose:

Moves the file pointer to a new position.

Arguments:
<expN1> is the file handle previously returned by FOPEN () or FCREATE ().

<expN2> is the number of bytes to move the file pointer from the position specified
by <expN3>. The number of bytes specified can be positive or negative, depending
on the direction of movement through the file.

Options:
<expN3> specifies the method of moving the file pointer. If this argument is not
specified, zero is assumed.

value #define The file pointer is moved from
0 FS_START the beginning of file
1 FS_RELATIVE the current pointer position
2 FS_END the end of file

Returns:
<retN> is the position of the file pointer after the operation, counting from the
beginning of file, regardless of the moving mode <expN3>.

Description:
FSEEK () is low-level function to move the file pointer forward and backward in an
open binary file.

Warning: FSEEK() allows a low-level access to the UNIX file system, similar to the
C function lseek(). Therefore, it should be used with care and only when you have a
good degree of knowledge about the UNIX operating and file system.

Example:
LOCAL actpos, maxpos, handle, txt
handle := FOPEN("text.asc")
IF handle # 0

RETURN
ENDIF
maxpos := FSEEK (handle, 0, FS_END) // last available
FSEEK (handle, 0, FS_SET) // go to file begin
FREADTXT (handle) // skip the line 1
actpos := FSEEK(handle, 0, 1) // set actual posit.
txt := FREADTXT (handle) // read next line
FSEEK (handle, actpos) // go back
? FREADTXT (handle) // re-read again
FCLOSE (handle)

FUN 252

Classification:
system, file access

Compatibility:
In UNIX, it is legal to move the file pointer beyond the end-of- file. Be very careful
when doing this, since it is possible to write one byte, move one gigabyte forward
and write another byte. When finished, the file is two bytes long, but you can reach
the second byte only by issuing the gigabyte seek again.

Clipper defines FS_SET instead of FS_START for the 0 value.

Include:
<FlagShip_dir>/include/fileio.fh #define's for <expN3> <FlagShip_dir>/include/
error.fh #define's of error codes

Related:
FCLOSE(), FCREATE(), FERROR(), FOPEN(), FREAD(), FREADSTR(),
FWRITE(), FREADTXT()

FUN 253

FS_SET ()
The function FS_SET is an extension to the Clipper or dBASE settings (with the command
SET ...). We decided to use only one universal additional function instead of creating new
extended SET commands to ensure backwards compatibility to other DOS systems.
However, you may define shortcuts for your most frequently used settings using the user-
defined-commands, e.g.

#command SET LOWERFILE => FS_SET("lower", .T.)
#command SET LOWERPATH => FS_SET("pathlower", .T.)

etc. and use the alternative e.g. SET LOWERFILE instead. The typical use of this FS_SET()
function is:

public FlagShip, Clipper | // or using the FS preprocessor:
: |
if FlagShip | #ifdef FlagShip

ok = FS_SET (....) | ok = FS_SET (....)
endif | #endif
SET PATH | SET PATH

On the DOS system (e.g. Clipper'87), all you need is to create a dummy function FS_SET
(defined in the file <FlagShip_dir>/system/fstodos.prg) such as:

* File FSTODOS.PRG : DOS compatibility to FlagShip

function FS_SET
parameters p1,p2,p3
return .T.

which will be linked to your application by:

PLINK86|RTLINK|BLINKER fi myprog, fstodos [lib clipper, extend]

Using the alternative #ifdef FlagShip ... #endif syntax and Clipper 5.x, no additional changes
are necessary.

The required action is always passed to the FS_SET function as a string in the first
parameter. The second and third parameters specify the options. The action string may be
given either in upper or lowercase and may be shortened up to the first 3 characters. So all
the statements FS_SET("dev"), FS_SET('DEVEL') and FS_SET ("Developer") are identical,
but the statement FS_SET ("Develxxx") is wrong.

FUN 254

Reference of the FS_SET() functions in logical groups:

FS_SET ("devel") Sets/checks the developer/end-product running mode
FS_SET ("break") Sets the "break" key
FS_SET ("debug") Sets the "debug" activation key
FS_SET ("lower") Converts file names to lowercase
FS_SET ("upper") Converts file names to uppercase
FS_SET ("pathlow") Converts given path to lowercase
FS_SET ("pathupp") Converts given path to uppercase
FS_SET ("pathdeli") Sets additional SET PATH separators
FS_SET ("shortnam") Truncates file names to become compatible to DOS
FS_SET ("translext") Translates the file extension to another

FS_SET ("print") Determines the name of the printer spooler file
FS_SET ("prset") Determines or sets the printer behavior
FS_SET ("term") Determines the active terminal or mapping

FS_SET ("escdelay") Sets/checks the delay time of the ESC key
FS_SET ("typeah") Controls the type-ahead capability for curses
FS_SET ("inmap") Sets/checks the character mapping for keyboard input
FS_SET ("outmap") Sets/checks the character mapping for screen output
FS_SET ("loadlang") Loads a user defined sorting and language table
FS_SET ("setlang") Sets/checks the loaded sorting and language table
FS_SET ("speckeys") Translates special key esc-sequence to Inkey value
FS_SET ("ansi2oem") Sets new Ansi2oem() and Oem2Ansi() translation table
FS_SET ("guikeys") Sets/checks the loaded GUI keyboard table

FS_SET ("intvar") Enables the differentiating between "N" and "I" var
types

FS_SET ("memcomp") Sets full compatibility of the .mem files to Clipper
FS_SET ("zerobyte") Enables the usage of chr(0) within a string

Note: when using manifests (defines) from the <FlagShip_dir>/include/ fileio.fh file for the
low-level file access, it is recommended to specify the FS_SET() function in lower case to
avoid conflicts with the FS_SET manifest.

The following description of FS_SET() functions is given in alphabetical order.

FUN 255

FS_SET ("ansi2oem")
Syntax:

retC = FS_SET ("ansi2oem" [, expC2])
Purpose:

Redefines the used translation table for Ansi2oem() and Oem2Ansi(), i.e. for
translation from Ansi (ISO, Latin) to OEM (ASCII, PC8) and vice versa. These
functions are also used when SET GUITRANS ASCII and/or SET SOURCE
ASCII/ISO and/or SET GUITRANS TEXT ON and/or SET ASCII are set. See also
LNG.5.4 for discussion about national character set and internationalization.

Options:
<expC2> is a character expression specifying the file name with the translation
mapping (see section 5.4). If the path is not given, the search order is:

a. the current directory,
b. the path in environment var SCRMAP=/path/path
c. the path in envir. variable FSTERMINFO=/path/path
d. the path in envir. variable TERMINFO=/path/path
e. the FlagShip path according to SET PATH TO ...
f. the FlagShip_Dir()/terminfo directory

The default file is <FlagShip_dir>/terminfo/FSansi2oem.def which corresponds to
IBM PC-8 <-> ISO-8859-1 (Latin1) translation; those equivalence is used internally
if not explicitly redefined.

If no parameter <expC2> is given, or the file is not found, only the current status is
returned, errors are reported when FS_SET("devel") is active.

Returns:
<retC> is a character value specifying the file name previously set by
FS_SET("ansi2oem"). An empty string "" is returned, when the default build-in table
is used.

Classification:
programming, internationalization

Compatibility:
Available in FlagShip 5 (VFS) and newer only.

Related:
SET ANSI, SET GUITRANS ASCII, LNG.5.4

FUN 256

FS_SET ("break")
Syntax:

retN = FS_SET ("breakkey" [,expN])
Purpose:

Determines or changes the default FlagShip "break" hotkey (^K). Usable for
terminals with "hard coded" special keys.

Arguments:
<expN> is an optional numeric expression representing the new hotkey. The default
is 11, which is the decimal equivalent of the control-K key, or 0 in
FlagShip/Windows.

Returns:
<retN> is a numeric value, representing the current "break" hotkey (see also
section FSC). Before resetting with the <expN> argument, 11 will be returned.

Description:
Reset or determine the special interrupt key. All the other FlagShip special keys
(cursor movement, function keys etc.) are defined by the terminfo description and
can therefore be modified by the user. See also section SYS for description of
FStinfo.src and FSkeymap.def.

In FlagShip for Windows, the break key is disabled by default (for performance
reasons), you need to activate it by e.g. FS_SET("break", K_CTRL_K) or
FS_SET("break", K_ALT_C) The break key is then recognized at any input status.

At redefinition be careful in order to avoid conflicts with other keys. See Appendix
A3..A7 for the default control keys.

Example:
term = FS_SET ("terminal") && determine act.terminal
if terminal == "FSxyz" && is it a special one?

FS_SET ("break", 16) && yes, change break key
wait "Note: hotkey for break is now ctrl-P"

else
? "Program break is possible with ctrl-" + ;
chr(FS_SET("break") + 64)

endif

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
FS_SET("debugkey")

FUN 257

FS_SET ("debug")
Syntax:

retN = FS_SET ("debugkey" [,expN])
Purpose:

Determines or changes the default FlagShip "debug" activation key (^O). Usable for
terminals with "hard coded" special keys.

Options:
<expN> is an optional numeric expression representing the new activation key. The
default is 15, which is the decimal equivalent of the control-O key.

Returns:
<retN> is a numeric value, representing the current activation key for the FlagShip
debugger (see also section FSC). Before resetting with the <expN> argument, 15
(or 0) will be returned.

Description:
Reset or determine the special interrupt key. All the other FlagShip special keys
(cursor movement, function keys etc.) are defined by the terminfo description and
can therefore be modified by the user. See also section SYS for description of
FStinfo.src and FSkeymap.def.

In FlagShip for Windows, the debug key is disabled by default (for performance
reasons), you need to activate it by e.g. FS_SET("debug", K_CTRL_O) or
FS_SET("debug", K_ALT_D) The debug key is then recognized at any input status.

At redefinition, be careful to avoid conflicts with other keys. See Appendix A3..A7
for the default control keys.

Example:
term = FS_SET ("terminal") && determine act.terminal
if terminal == "FSxyz" && is it a special one?

FS_SET ("debug", 14) && yes, change debug key
wait "Note: debugger activation changed to ctrl-N"

endif

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
ALTD(), FS_SET("breakkey")

FUN 258

FS_SET ("develop")
Syntax:

retL = FS_SET ("developer" [,expL2])
Purpose:

Sets/decides if the FlagShip application runs in the "developer" or in the "final"
mode.

Options:
<expL2> logical TRUE for "test" mode, FALSE for the "final" mode. Default: FALSE
.F. (final mode).

Returns:
<retL> is a logical value, representing the current status of this mode when the
FS_SET() function is entered.

Description:
The FlagShip error system can decide whether the application is running for
debugging and testing or is "finished". In test mode FlagShip will also show minor
programming errors and warnings (like a wrong PICTURE clause etc.), but the user
will not receive any minor message errors in the "final" mode.

Errors
will be displayed only during "developer" mode. With wrong parameters, the return
code becomes FALSE.

Example:
* Program test
parameters cmd
public FlagShip, Clipper
if pcount() > 0

if "/TEST" $ upper(cmd)
FS_SET ("devel", .T.)

endif
endif
test_mode = FS_SET ("developer") .and. FlagShip

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
FlagShip error system

FUN 259

FS_SET ("escdelay")
Syntax:

retN = FS_SET ("escdelay" [, expN2])
Purpose:

Determines the delay between the moments the ESC key is pressed and
transmitted.

Options:
<expN2> is a numeric value representing the delay time in tenths of seconds (1/10
sec). The valid range is 1 to 100 (i.e. 0.1 to 10 seconds), the default value is
normally 10 (1 second). When the argument is omitted, the current delay value is
returned.

Returns:
<retN> is the current delay time in tenth of second prior to executing the FS_SET()
function.

Description:
On UNIX, the special keys (like cursor movement, function keys etc.) are
represented by an escape sequence string, see also terminfo and section SYS.

Therefore, when the keyboard driver detects the ESC character, it waits a while to
check if an additional sequence follows. If so, the whole sequence (string) is
compared with the terminfo entry to determine the special key. Otherwise, the
Escape key is returned.

The FS_SET("esc") function changes the delay which follows after the ESC key is
pressed. Be careful to set the value properly considering the current transmission
speed of the terminal (if below 300 baud).

Note: on some systems, a delay time of 10 == 1 second will disable the trapping of
the ESC key. On these systems, the delay is set to 9 = 0.9 seconds per default.

Refer also to the section REL for differences listed for your operating system and
hardware, if any.

Example:
? FS_SET ("esc") // 10
FS_SET ("esc", 3) // set delay to 0.3 sec.

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
terminfo

FUN 260

FS_SET ("guikeys")
Syntax:

retC = FS_SET ("guikeys" [, expC2])
Purpose:

Determines and/or sets the used keyboard translation table. Apply for GUI mode
only, ignored otherwise. See also LNG.5.4 for national character set and
internationalization.

Options:
<expC2> is a character expression specifying the file name with the GUI keyboard
mapping (see section 5.4). If the path is not given, the search order is:

a. the current directory,
b. the path in environment var SCRMAP=/path/path
c. the path in envir. variable FSTERMINFO=/path/path
d. the path in envir. variable TERMINFO=/path/path
e. the FlagShip path according to SET PATH TO ...
f. the FlagShip_Dir()/terminfo directory

The default file is <FlagShip_dir>/terminfo/FSguikeys.def

If no parameter <expC2> is given, or the file is not found, only the current status is
returned, errors are reported when FS_SET("devel") is active.

Returns:
<retC> is a character value specifying the file name previously set by FSGUIKEYS
environment variable or by FS_SET("guikeys",file). An empty string "" is returned,
when the default build-in table is used.

Description:
FlagShip supports a user defined character mapping for different keyboards both in
GUI and Terminal i/o mode.

On program beginning in GUI mode, the main module looks if the environment
variable FSGUIKEYS is set and if so, uses the keyboard mapping file specified with
it. If not defined, the build-in table corresponding to the FSguikeys.def file is used.

When the application is running in Terminal i/o mode, FSkeymap.def table is used
instead, see FS_SET("inmap") below and LNG.5.4.

Classification:
programming

Compatibility:
Available in FlagShip 5 (VFS) only.

Related:
FS_SET("inmap")

FUN 261

FS_SET ("inmap")
Syntax:

retL = FS_SET ("inmap" [, expC2 [, expC3]])
Purpose:

Determines, enables or disables an additional mapping for the keyboard input.
Apply for terminal i/o mode, see also LNG.5.4

Options:
<expC2> is a character expression specifying the file name for the character
mapping (see section SYS). Default: "FSkeymap.def". The search order, if no path
is given is:

a. the current directory,
b. the path in environment var SCRMAP=/path/path
c. the path in envir. variable TERMINFO=/path/path
d. the FlagShip path according to SET PATH TO ...
e. the default 'terminfo' path
f. the FlagShip_dir()/terminfo directory

If no parameter <expC2> is given, only the current status is returned. An empty
string "" disables the user defined character setting. A 1:1 mapping is then used.

<expC3> is a character expression specifying the terminal name. If the argument is
omitted, FS_SET looks for the terminal name as given in the UNIX environment
variable TERM.

Returns:
<retL> is a logical value. If argument <expC2> and <expC3> are not given, the
current status of this mode on entry of the FS_SET() function is returned. Otherwise
<retL> gives the current status after the setting. A TRUE value means that the
character mapping is currently active.

Description:
FlagShip supports a user defined character mapping for different keyboards, such
as ISO or 7-bit. For more information, refer to the section SYS and LNG.5.4.

On program beginning of Terminal i/o based application, the main module looks for
the file "FSkeymap.def" and an entry there for the current terminal (TERM). You can
change these defaults using the "inmap" option setting.

When the application is running in GUI i/o mode, the FSguikeys.def table is used
instead, see FS_SET("guikeys") above and LNG.5.4.

Additional information is available via SET(_SET_TERM_DATA)

FUN 262

Example:
act_out_file = ""
act_out_term = ""
act_in_file = ""
act_in_term = ""
IF FS_SET ("mapping")

FS_SET ("terminal", @act_out_file, @act_out_term, ;
@act_in_file, @act_in_term)

? "current mapping from", act_in_file, "with", act_in_term
IF FS_SET ("inmap")

? "input-mapping is set to ", act_term
ENDIF

ELSE
? "no character mapping active"

ENDIF

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
FS_SET("guikeys"), FS_SET("term"), FS_SET("outmap"),
SET(_SET_TERM_DATA)

FUN 263

FS_SET ("intvar")
Syntax:

retL = FS_SET ("intvar" [,expL2])
Purpose:

Enables or disables differentiating between "N", "F" and "I" variable types.

Options:
<expL2> is a logical expression. A TRUE value enables the TYPE() and
VALTYPE() functions to distinguish between a floating point "N" (NUMERIC type)
and integer "I" (INTVAR type), or "F" (float numeric field) variables. The default is
FALSE, which displays "N" for all three types.

Returns:
<retL> is a logical value, representing the current, or previously set displaying
status.

Description:
FlagShip internally distinguish between usual numeric (floating point) variables and
integer variables. To be compatible to former (and Clipper, VO) applications, the
TYPE() and VALTYPE() functions usually returns "N" for all the types "N", "F" and
"I".

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
TYPE(), VALTYPE(), LOCAL..AS, INT2NUM(), NUM2INT()

FUN 264

FS_SET ("loadLang")
Syntax:

retL = FS_SET ("loadlanguage", expN2, expC3)
Purpose:

Loads the sorting and names table specified from an ASCII file to select it later
using FS_SET("setlang").

Arguments:
<expN2> is a numeric expression specifying the ordinal number of the current
language to select it later. The valid range is 1 to 9.

<expC3> is a character expression specifying the name of the ASCII file, containing
the language sorting table (see section SYS). The search order for the file, if no
path is given, is:

a. the current directory,
b. the path in environment var SCRMAP=/path/path
c. the path in envir. variable TERMINFO=/path/path
d. the FlagShip path according to SET PATH TO ...
e. the default 'terminfo' path
f. the FlagShip_dir()/terminfo directory

During the FlagShip installation, you obtain at least one language description in
<FlagShip_dir>/terminfo/FSsortab.xxx; see GEN.3.2.

Returns:
<retL> contains TRUE if the table was found and read correctly.

Description:
FlagShip supports user defined sorting tables, including also the upper/lower
conversion and standard output messages, for any foreign human language. The
data is defined in an external ASCII file; see sections LNG.9.4 and SYS. On
program start, the default ASCII sorting order and English messages are active.

The programmer must specify which sorting file (or files) should be read into the
internal FlagShip buffer. Up to 9 different language tables may be read in the
memory and selected later by the function FS_SET("setLanguage").

Warning: Attempting to use the database with the language other than the one it
was filled with, may lead to unpredictable results.

The current, active sorting table is stored in the index header by executing the
INDEX ON command. Using this index later with another sorting table setting will
result in a run-time warning while the index file is open, since some of the index
keys may not be found using SEEK, SKIP, LOCATE or may not be found in the
expected order.

FUN 265

Example:
ok = FS_SET ("load", 1, "FSsortab.ger")
ok = FS_SET ("load", 2, "espan.dat")
if .not. FS_SET ("load", 3, "france.dat")

? "no french output possible"
endif
FS_SET ("setLang", 1) && german
IF pcount() > 0

IF "/ESP" $ upper(cmd_line) && spanish
FS_SET ("set", 2)

ELSEIF "/FR" $ upper(cmd_line) && french
FS_SET ("set", 3)

ELSEIF "/ENGL" $ upper(cmd_line) && default: english
FS_SET ("set", 0)

ENDIF
ENDIF
act_lang = FS_SET ("set")
? "current language = " + ltrim(str(act_lang))
? CDOW(DATE()) && Monday or Montag etc.

USE address
INDEX ON name TO name // setting in .idx header
USE custom NEW
FS_SET ("setlang", 0)
INDEX ON name TO custom // setting in .idx header

Classification:
programming

Compatibility:
Available in FlagShip only. Storing the sorting table in the index header is available
in FS for the default "dbfidx" driver only.

Related:
FS_SET ("setlang"), INDEX ON, SEEK, ISALPHA(), ISLOWER(), ISUPPER(),
DESCEND(), LOWER(), UPPER(), ASORT(), ASCAN()

FUN 266

FS_SET ("lower")
FS_SET ("upper")
Syntax:

retL = FS_SET ("lowerfiles" [, expL2])
retL = FS_SET ("upperfiles" [, expL2])

Purpose:
Translates the given file names to lower or upper case during the create, open or
search file access.

Options:
<expL2> is TRUE (.T.) to enable automatic conversion of file names to lower or
uppercase, FALSE (.F.) to disable it. The switch FS_SET("upper",.T.) disables the
current setting of FS_SET("lower",.T.) and vice versa. At program start the <expL2>
is set to FALSE.

Returns:
<retL> is a logical value, representing the current status of this mode when the
FS_SET() function is entered.

Errors
will be displayed only during "developer" mode. With wrong parameters, the return
code becomes FALSE.

Description:
Because of the upper/lowercase sensitivity of the file names on the UNIX system,
there is big difference in coding "use address" and "use ADDRESS". On UNIX, the
file names are generally given in lowercase. DOS, however, converts all file names
to uppercase.

To create programs, which are fully portable between DOS and UNIX, FlagShip can
be directed to automatically convert file names to upper or lower letters, regardless
of how they are written in the program. If you enter FS_SET ("lower", .T.), FlagShip
automatically converts the <file> names given in your program to lowercase during
the file open processes for the statements

USE <file> ...
SET INDEX TO <file>
INDEX ON ... TO <file>
COPY TO <file>
APPEND FROM <file>
PRINT TO <file>
FCREATE (<file>)
FOPEN (<file>)
DIR [<files>]
FILE (<file>)
ADIR (<files>)
DIRECTORY ([<files>])

FUN 267

The extensions (.dbf, .dbt, .dbv, .idx) will be automatically added in lowercase and
also in uppercase. The conversion of "\" to "/" (see LNG.9.4) and path names is not
affected by the setting of FS_SET("lower"| "upper").

Note, that the conversion affects the file names and extension only, but not the path
which may have be given. To translate the given path, use FS_SET ("pathlower").

The translation is omitted for files starting with the /dev/* path

Example:
old_status = FS_SET ("lower", .T.)
stat_check = FS_SET ("lower")
? "The lower file name conversion was", old_status
? "is now set to", stat_check

FS_SET ("pathlower", .F.)
file_name = "\Data\Addresses\ADDRESS"
USE &file_name && opens "/Data/Addresses/address.dbf"
set path to \xxx\Data && per default: case sensitive
if FlagShip

subdir = "/usr/Data/"
else

subdir = "C:\globdata\DATA\"
endif
USE &subdir.ADRESS && opens /usr/data/address.dbf
FS_SET ("lower", .T.)
? FILE("Abcd.EFG") && looks for "abcd.efg" in

&& act. directory or SET PATH
FS_SET ("low", old_status)

Classification:
programming

Compatibility:
Available in FlagShip only.

Include:
<FlagShip_dir>/include/fspreset.fh mostly used settings

Related:
FS_SET ("pathlower") and section LNG.9.4, 9.5

FUN 268

FS_SET ("memcomp")
Syntax:

retL = FS_SET ("memcompat" [,expL2])
Purpose:

Enables or disables the full compatibility of the .mem files to other dialects.

Options:
<expL2> is a logical expression. A TRUE value enables the full .mem file
compatibility, FALSE disables it. If <expL2> is not specified, the current status is
returned. The default setting on startup is FALSE.

Returns:
<retL> is a logical value, representing the current .mem file compatibility.

Description:
In addition to the standard variables of the type character, numeric, logical and
date, FlagShip can also store and restore the array contents and screen variables
into .mem files.

Normally, the additional variable types are stored at the end of the .mem file and
are therefore ignored by most of the xBase dialects (like Clipper or dBASE). If
problems occur or you need to avoid the storing/ restoring of PRIVATE and PUBLIC
arrays or screen variables using SAVE TO, RESTORE FROM commands, set
<expL2> to TRUE.

Example:
PRIVATE varC, varN, varS, varA
varC := "any string"
varN := 1234.567
varS := SAVESCREEN (1,2, 20,30)
varA := {1,2, {"text", DATE()}}

* FS_SET ("memcomp", .T.) // avoid SAVE varS, varA
SAVE TO mymem ALL LIKE var*

CLEAR MEMORY
* FS_SET ("memcomp", .T.) // avoid RESTORE varS, varA
RESTORE FROM mymem

Classification:
programming

Compatibility:
Available in FlagShip only. Note, that the setting has no affect on the incompatibility
between FS and C5 of the screen contents from SAVE SCREEN, REST SCREEN.

Related:
SAVE TO, RESTORE FROM, SAVESCREEN(), SAVE SCREEN

FUN 269

FS_SET ("outmap")
FS_SET ("mapping")
Syntax:

retL = FS_SET ("mapping" | "outmap" , [expC2] ,
[expC3])

Purpose:
Determines, enables or disables additional mapping for the screen output. Apply for
terminal i/o mode, ignored otherwise. See also LNg.5.4 for internationalization.

Options:
<expC2> is a character expression specifying the file name for the character
mapping (see section SYS). Default: "FSchrmap.def". The search order, if no path
is given is:

a. the current directory,
b. the path in environment var SCRMAP=/path/path
c. the path in envir. variable TERMINFO=/path/path
d. the FlagShip path according to SET PATH TO ...
e. the default 'terminfo' path
f. the FlagShip_dir()/terminfo directory

If no parameter <expC2> is given, only the current status is returned. An empty
string "" disables the user defined character setting. 1:1 mapping is then used.

<expC3> is a character expression specifying the terminal name. If the argument is
omitted, FS_SET looks for the terminal name as given in the UNIX environment
variable TERM.

Returns:
<retL> is a logical value. If argument <expC2> and <expC3> are not given, the
current status of this mode on entry of the FS_SET() function is returned; otherwise
<retL> gives the current status after the setting. A TRUE value means that the
character mapping is currently active.

Description:
FlagShip supports user-defined character mapping for different terminals. For more
information, refer to the section SYS. When the program starts up, the main module
looks for the file "FSchrmap.def" and an entry there for the current terminal (TERM).
You can change these defaults using this option setting.

Additional information is available via SET(_SET_TERM_DATA)

FUN 270

Example:
* Program test.prg
act_out_file = ""
act_out_term = ""
act_in_file = ""
act_in_term = ""
IF FS_SET ("mapping")

FS_SET ("terminal", @act_out_file, @act_out_term, ;
@act_in_file, @act_in_term)

if FS_SET ("mapping")
FS_SET ("terminal", @act_out_file, @act_out_term)
? "current mapping from", act_out_file, "with", act_out_term

endif
if FS_SET ("map", "mymap.dat")

FS_SET ("term", @act_out_file, @act_out_term, ;
@act_in_file, @act_in_term)

? "new mapping from", act_out_file, "with", act_out_term
else

act_term = FS_SET ("term")
? "Terminal", act_term, "not in 'mymap.dat'"
if FS_SET ("map", "mymap.dat", "ansi")

FS_SET ("term", @act_out_file, @act_out_term, ;
@act_in_file, @act_in_term)

? "new mapping from", act_out_file, "with", act_outterm
else

? "no character mapping active"
endif

endif

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
FS_SET ("term"), FS_SET ("inmap") SET(_SET_TERM_DATA), section SYS.

FUN 271

FS_SET ("pathdelim")
Syntax:

retC = FS_SET ("pathdelim" [, expC2])
Purpose:

Determines or enables user-defined path separators for use when deleting multiple
path names in the SET PATH command.

Options:
<expC2> is a character expression up to four characters specifying the new path
separator. The default settings are the DOS separator characters, comma and
semicolon ",;". If the <expC2> string exceeds four characters, only the first four are
used.

Returns:
<retC> is a string specifying the current path separators. On program start or upon
redefinition ",;" is returned.

Description:
In the SET PATH command, multiple path names to search for can be specified.
The default separators between the path list are usually comma or semicolon.

If a UNIX path list should be included in the path list, using e.g. the GETE("PATH")
function, an additional colon (":") and/or space (" ") separator is to be specified.

Example:
#include "set.fh"
LOCAL path1 := "\data;\address\data,\mydata", path2
FS_SET ("pathdel", ",; :") && add space and colon
path2 := GETENV ("PATH")
SET PATH TO (path1 + "," + path2)
IF .not. FILE("address.dbf")

? "install the full package,"
? "data not available in directories " + SET(_SET_PATH)
QUIT

ENDIF

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
SET PATH, FS_SET ("pathlow"), section LNG.9.3.

FUN 272

FS_SET ("pathlower")
FS_SET ("pathupper")
Syntax:

retL = FS_SET ("pathlower" [, expL2])
retL = FS_SET ("pathupper" [, expL2])

Purpose:
Translates the given paths to lower or upper case during the create, open or search
file access.

Options:
set <expL2> to TRUE (.T.) to enable the automatic conversion of the path names to
lower or uppercase, or to FALSE (.F.) to disable it. The switch
FS_SET("pathupper",.T.) disables the current setting of FS_SET("pathlower",.T.)
and vice versa. The <expL2> on program beginning is set to FALSE.

Returns:
<retL> is a logical value, representing the current status of this mode on entry of
FS_SET() function.

Description:
Because of the upper/lowercase sensitivity of the file and path names in UNIX,
coding "use \xyz\ address" means something completely different from "use
\XYZ\ADDRESS". In UNIX, the file and path names are generally given in
lowercase. DOS, however, converts all file names to uppercase.

To create fully compatible programs for DOS and UNIX, FlagShip can be directed to
automatically convert path names to upper or lower letters, regardless of how they
appear in the program. If you enter FS_SET ("pathlower", .T.), FlagShip
automatically converts the path names given in your program to lowercase during
the file open processes.

The conversion of a backslash "\" to a slash "/" is not affected by the setting of
FS_SET ("pathlower" | "pathupper"), since FlagShip automatically converts it to the
UNIX convention (refer also to LNG.9.4).

Note, that this conversion affects the path names only, but not the file names given.
To translate the file names and extensions given, use FS_SET("lower").

The translation is omitted for files starting with the /dev/* path

Example:
See example in FS_SET ("lower")

FUN 273

Example:
Using the predefined settings from the include file:

#ifdef FlagShip
#include "fspreset.fh"
#endif
USE C:\XYZ\abc\DAta && .../xyz/abc/data

Classification:
programming

Compatibility:
Available in FlagShip only.

Include:
<FlagShip_dir>/include/fspreset.fh most used settings

Related:
FS_SET("lower"), FS_SET("pathdelim"), x_FSDRIVE and section LNG.9.4

FUN 274

FS_SET ("print")
Syntax:

retC = FS_SET ("printfile", [expLC1])
Purpose:

Determines the current name of the printer-spooler file.

Options:
<expLC1> is optional logical or string value, controlling the SET PRINTER
behavior.

If <expLC1> is a string, it specifies the name of default spooler file (used by SET
PRINTER ON without SET PRINTER TO..), i.e. it re- defines the default "name.pid"
spool file. The previously used file is deleted, if yet empty. The file name <expLC1>
may contain absolute or relative path, and is used "as is", i.e. without appending
".prn" extension. The directory path, if given, must exist and must be read/write,
otherwise RTE occurs.

If <expLC1> is .F., the default spooler file name will be disabled and deleted if yet
empty. Subsequent SET PRINTER ON will raise RTE, but you may freely print to
file or device specified by SET PRINTER TO <fileOrDevice>. To enable the default
spooler file again, use FS_SET("printfile","yourFileName"), where the file name can
include path (and Windows drive) as well.

Returns:
<retC> is a string containing the current printer output file including path (and drive),
e.g. "/usr/data/address.2345" in Linux, or "D:\mydata\address.2345" in MS-
Windows.

Description:
For printer output, FlagShip is designed to support the UNIX and Windows spooling
mechanism, refer to LNG.3.4 and the SET PRINTER command.

On program start, FlagShip creates a file "name.pid" in the current directory (or in
the directory specified by the environment variable FSOUTPUT). The "name" part
reflects the main program module, and "pid" gives the current process ID number. If
the resulting file name is longer than 14 characters, the program name will be
shortened. You may redefine this standard spooler file at any time later by
FS_SET("printfile","yourFileName"), see above.

Using SET PRINTER ON and/or SET DEVICE TO PRINT, the output is written to
the output file instead of printing it directly to the printer device, unless SET
PRINTER TO <device> is specified. To omit garbage being printed by several users
printing simultaneously, the output should be done later using e.g.

$ lp -dmatrix test.1234 ## or
$ lpr -dlaser1 test.1234

or in Windows
C:> copy test.1234 PRN:

FUN 275

or directly from the application using the RUN command. Refer to SET PRINTER
command for a detailed description.

To create the spooler file in other than local directory at program start, use
FSOUTPUT environment variable, see FSC.3.3, or re-define it later by
FS_SET("printfile","yourFileName").

There is also Printer class available in FlagShip, which allows you to select printer
via _oPrinter:Setup() and sent the output directly to it via _oPrinter:Exec() or
_oPrinter:ExecFormatted(), see also <FlagShip_dir>/examples/printer.prg. Another
alternative to print to GDI printer same as on screen is SET GUIPRINT ON or
PrintGui(.T.) see <FlagShip_dir>/examples/printergui.prg.

Example:
SET PRINT ON
? "Text 1"
? "Text 2"
SET PRINT OFF
? "text to screen only"

SET PRINT ON
? "Text 3"
? "being in directory", CURDIR() // e.g. /home/joe
SET DIRECTORY TO /tmp
? "and now changed to", CURDIR() // now in: /tmp
SET PRINT OFF // print file unchanged

prnfile = FS_SET ("printfile") // /home/joe/test.1234"
? "printing/spooling the file", prnfile
#ifdef FS_WIN32

RUN ("copy " + prnfile + " PRN:") // = Windows
#else

RUN ("lp -dlaser2 -m -s " + prnfile) // = Linux
* RUN cp &prnfile /dev/lp1 // alternative
* RUN ("cat " + prnfile + " > /dev/lp0") // alternative
#endif

SET PRINT ON NEW // deletes old file
? "the next output" // and writes new data
SET PRINT OFF // to home/joe/test.1234

Example:
// re-define the standard spooler file to "/tmp/applic.ext.1234"
// and delete old file, if yet empty
oldFile := FS_SET("print")
FS_SET("print", "/tmp/" + ExecName() + "." + ltrim(ExecPidNum()))
? "default spooler file", oldFile, "is now", FS_SET("print")

Classification: programming
Compatibility: Available in FlagShip only.
Related: SET PRINTER, SET GUIPRINT, PrintGui(), _oPrinter:Exec(), Exec*(), UNIX: man

lp or man lpr, ls /dev/lp*

FUN 276

FS_SET ("prset")
Syntax:

retA = FS_SET ("prset", [aData])
Purpose:

Determines and/or sets the printer sequences for a fine output tuning.

Options:
<aData> is an optional array containing zero to nine elements with strings of printer
sequences.

All settings apply for device printer output (@...SAY, devpos() and SET DEVICE TO
PRINT), some of them also the sequential output (?, qout(), eject and SET
PRINTER ON, SET ALTERNATE, SET EXTRA). Does not affect the SET
CONSOLE, SET DEVICE TO SCREEN.

Each element may contain up to 50 characters or escape-sequences, oversized
strings will be truncated. To reset the corresponding element, pass null-string.
Elements of other than char type are ignored.

aData[1] = cNewLine: printer sequence for movement to new line. Used for
movement to the next line (row). The default sequence is chr(10) = LineFeed in
Unix/Linux and chr(13)+chr(10) in MS-Windows. When the printer or lp filter does
not accept the LF alone but requires CR+LF as in DOS, set it to chr(13) + chr(10).
Affects both the sequential and device printer driver. For SET ALTERNATE and
SET EXTRA new-line sequence, see element 8 and 9 below.

aData[2] = cNewPage: printer sequence for movement to new page. Used to feed
the next page. The default sequence is chr(12) = Form- Feed. Affects the
sequential and device printer driver.

aData[3] = cLineMove: printer sequence executed before moving to the specified
column. When set (default is unset, i.e. null string ""), the driver sets pcol() to zero
and executes the given sequence before each column movement. Used e.g. to
move the printer "head" to the leftmost position and subsequently nMarg-times
nMargin + nCol-times the <cSpace> sequence to reach the specified column
according to the optional SET MARGIN TO <nMarg> and the current @
<nRow>,<nCol> SAY commands. Usable when the SAY string contains also ESC
sequences e.g. for char set or font switching, which will confuse the pcol() and
would require correction by setprc() otherwise or when using proportional character
set. If the <cLineMove> is set, aData[4] = <cLineHome> and aData[5] = <cPos2left>
are ignored. Affects only the device printer driver.

aData[4] = cLineHome: printer sequence to move the print "head" to the leftmost
column. As opposite to <cLineMove>, this sequence is executed only for
"backward" moving in the same row i.e. the new <nColumn> is lower than the
current pcol() value and the aData[3] = <cLineMove> is not specified. You may set
the value to e.g. chr(13) when the <cPos2Left> sequence is not applicable for your

FUN 277

printer. If set (default is unset = null string "") and the printer head should move to
left, the driver resets pcol() to 0, executes this <cLineHome> sequence and moves
the head to the right by <nMarg> * <cMargin> plus <nCol> * <cPos2right>
sequences. Affects only the device printer driver.

aData[5] = cPos2left: printer sequence to move one char to left. The default is set
to chr(8) = Backspace. This sequence is executed by default for backward
movement in the same row, but only when both aData[3] and aData[4] are not
specified. Affects only the device printer driver.

aData[6] = cPos2right: printer sequence to move one char to the right. The default
is chr(32) = Space, but you may set it e.g. to Esc sequence corresponding to a
movement of a fix number of points when a proportional font is used. Affects only
the device printer driver.

aData[7] = cMargin: sequence for printing one margin column, if such is set in the
application by SET MARGIN TO <nMarg>. Default is chr(32) = Space. Affects both
the sequential and device printer driver.

aData[8] = cNewLineAltern: sequence for new-line with SET ALTERNATE TO..
and SET ALTERNATE ON. The default is chr(10) = LineFeed; you may set it upon
request e.g. to chr(13,10) for DOS/Windows CR+LF.

aData[9] = cNewLineExtra: sequence for new-line with SET EXTRA TO.. and SET
EXTRA ON. The default is chr(10) = LineFeed; you may set it upon request e.g. to
chr(13,10) for DOS/Windows CR+LF.

Returns:
<retA> is an array containing the current printer settings at the time the FS_SET()
function is entered. The array elements corresponds to above described aData[].

Description:
For printer output, FlagShip usually uses default settings, i.e. spaces or backspaces
for column positioning, LineFeed for new line movement etc. These are in the most
cases sufficient for both the sequential and direct positioned output and are
acceptable for any kind of printers.

However, when you use special escape sequences (e.g. for "bold" or "italics", font
selection etc.), these sequences of course also counts as "usual characters" for
PCOL() and therefore for the subsequent @...SAY output to printer. To synchronize
the driver with the printer, you will need to reset the column by SETPRC() to the
"real" printed characters in such a case.

Also when you use proportional fonts, the column setting by @..SAY or DISPOUT()
will most probably produce insufficient results, especially for tables, since the
column movement is done per default by space (or backspace) where the character
width of space is very different e.g. to the "X" or "M" letter.

With FS_SET("prset") you can modify the behavior of your printer so, that no
additional corrections in the source are required.

FUN 278

Example:
// #define PCL6
#define ESC chr(27)

SET DEVICE TO PRINT
SET PRINTER ON
SET CONSOLE OFF
cSeqBold := ESC + "(s3B" // here sequences for HL LJ III+
cSeqNorm := ESC + "(s0B"
cSeqItal := ESC + "(s1S"
#ifdef PCL6 // e.g. HPLJ2100
cSeqCour := ESC + "(10U" + ESC + "(s0p12h0s0b24579T"
cSeqTime := ESC + "(10U" + ESC + "(s1p12v0s0b25093T"
cSeqUprg := cSeqCour

#else
cSeqCour := ESC + "(s3T" // e.g. HPLJ3
cSeqTime := ESC + "(s1T"
cSeqUprg := ESC + "(s0S"

#endif

printme(1, "Default setting") // print by default settings

aDefPrint := FS_SET("prset", { chr(13)+chr(10) })
printme(10, "Using CR+LF for newline")

FS_SET("prset", {NIL, NIL, "", chr(13) })
printme(20, "Using CR+LF and CR before backwise movement")

FS_SET("prset", {NIL, NIL, chr(13) + cSeqCour, "" })
printme(30, "Using CR+LF and CR + " + ;

"Courier10 before any column movement")

SET CONSOLE ON
SET PRINTER OFF
SET DEVICE TO SCREEN

? "printing file " + fs_set("print") + " via 'lpr'"
* RUN ("lpr -Php3 " + fs_set("print")) // run spooler
wait "Done, any key..."
quit

FUNCT printme(line, text)
local ii, nPcol
@ line,0 say text
@ line +1, 0 say cSeqCour + ;
"AaBb......BBB.......XXX.......fghi......|"

for ii := 2 to 7
@ line+ii, 0 say cSeqCour + "AaBb"
@ line+ii,10 say cSeqTime + repli("B",ii) + cSeqCour
@ line+ii,20 say cSeqTime + cSeqItal + repli(chr(71+ii), ii+2)
@ line+ii,30 say cSeqTime + cSeqBold + "fghijklm" + cSeqCour
@ line+ii,40 say cSeqNorm + cSeqUprg + cSeqCour // reset
nPcol := pcol()
?? "|<- assumed=40, pcol()=" + ltrim(str(nPcol))

next
return

FUN 279

Classification:
programming

Compatibility:
Available in FlagShip only

Related:
SET PRINTER, SET DEVICE, @..SAY, ?, QOUT(), EJECT

FUN 280

FS_SET ("setenvir")
Syntax:

retC = FS_SET ("setenvir", expC2, [expC3], [expL4])
Purpose:

Determines or sets an UNIX environment variable for the current process, and
optionally, reinitializes the screen.

Arguments:
<expC2> is the name of the UNIX shell environment variable and is case-sensitive.

Options:
<expC3> is the new value, to be assigned to the environment variable <expC2>. If
the argument is not given or NIL is specified, the contents of the environment
variable remain unchanged. Otherwise, if the variable <expC2> does not exist, a
new one is created.

<expL4> specifies if the curses (and the screen, character mapping) are to be
reinitialized. Any value other than TRUE leaves the initialization unchanged.

Returns:
<retC> is the current contents of the specified UNIX environment variable after
executing the function.

Description:
If only the argument <expC2> is specified, the function determines the current
environment setting, as the GETENV() function.

Otherwise, this FS_SET() function sets a new value for a specific UNIX
environment variable, creating this variable if it does not exist. The new setting is
active during the execution of the current process (application) and its recently
activated child processes (e.g. using the RUN command).

If a new terminal variable TERM, COLUMNS or LINES is set or changed, the
curses and the screen should be reinitialized using the fourth argument. This will
automatically reset the input/output mapping and clear the screen. Refer also to
MAXCOL(), MAXROW() and GETENV() functions for more information.

Example:
LOCAL choice := 0
LOCAL old_term := new_term := GETE ("TERM")
LOCAL term_file := "", term_map := ""
LOCAL terms := {"FSansi", "FSansi-50", "FSVT100", ;

"FSvt100-50", "FSAT386"}
IF EMPTY(old_term) .or. SUBSTR(old_term,1,2) != "FS"

? "Select the correct terminal:"
? "1: ANSI"
? "2: ANSI, 50 lines" // The alternative ACHOICE()
? "3: VT100, 200" // may yet cause a screen
? "4: VT100/50 emulation" // garbage for wrong terminals
? "5: PC console"

FUN 281

INPUT "Your choice (1..5 or ESC): " TO choice
IF choice > 0 .and. choice <= 5

new_term = FS_SET ("sete","TERM", terms[choice], .T.)
ENDIF

ENDIF
IF FS_SET ("terminal", @term_file, @term_map) != new_term

? "error on terminal setting, check TERMINFO environ"
QUIT

ENDIF
? "The current terminal set is : " + new_term
? "The current mapping file is : "
IF empty(term_file) .or. ! FS_SET("inmap")

?? "inactive"
ELSE

?? term_file, "using", term_map
ENDIF

Example:
LOCAL newdrive := GETE ("D_FSDRIVE")
WHILE .T.

IF EMPTY(newdrive)
ACCEPT "Enter UNIX path for substituting the " + ;

"DOS drive D:" to newdrive
ENDIF
IF !EMPTY(newdrive) .and. FILE(newdrive)

EXIT
ENDIF
IF LASTKEY() == 27

QUIT
ENDIF
? "Error, try again" ; newdrive := ""

ENDDO
FS_SET ("sete", "D_FSDRIVE", newdrive)

Classification:
programming

Compatibility:
Available in FlagShip only. On DOS, SETMODE() may be used to redefine the
terminal.

Related:
GETENV(), FS_SET("term"), FS_SET("outmap"), FS_SET("inmap"), GETE(),
MAXROW(), MAXCOL(), environment variables in section FSC and SYS, section
REF: predefined terminals, UNIX: env, printenv, putenv, man term, man terminfo

FUN 282

FS_SET ("setLang")
Syntax:

retN = FS_SET ("setlanguage" [,expN2])
Purpose:

Enables, disables or determines the specific, already read language sorting and
names table; see FS_SET("load").

Options:
<expN2> is a numeric expression specifying the ordinal number of the language
table read by FS_SET ("load"). Valid values range from 1 to 9. If 0 (zero) is entered,
the current sorting translation will be disabled. If the parameter <expN2> is not
specified or is NIL, the current sorting status is returned.

Returns:
<retN> is the number of the current language currently set. If zero is returned, no
language sorting is currently set, the sorting is ASCII and the messages in English.

Description:
FS_SET("setlang") is used to activate one of the required sorting tables, already
read by FS_SET("load"). The function is also used to determine or disable the
current sorting table.

Warning: Attempting to use the database with a language other than the one it was
filled with, may lead to unpredictable results. When a new index file is opened (SET
INDEX or USE..INDEX) with other sorting criteria than the current ones, a run-time
warning occurs

Example:
LOCAL names := {"Myname", "Müller", "Muller"}
? FS_SET ("setl") // 0
ASORT (names)
AEVAL(names, {|x| QOUT(x)}) // Muller, Myname, Müller
? FS_SET ("load", 1, "FSsortab.ger") // .T.
? FS_SET ("setl", 1) // 1
ASORT (names)
AEVAL(names, {|x| QOUT(x)}) // Muller, Müller, Myname
? FS_SET ("load", 3, "france.dat") // .T.
? FS_SET ("setl", 3) // 3

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
FS_SET ("load"), INDEX ON, SEEK, ISALPHA(), ISLOWER(), ISUPPER(),
DESCEND(), LOWER(), UPPER(), ASORT(), ASCAN()

FUN 283

FS_SET ("shortname")
Syntax:

retL = FS_SET ("shortname" [, expL2])
Purpose:

Translates long UNIX file and path names to the DOS naming convention during the
create, open or file search access.

Options:
<expL2> logical TRUE to enable the DOS naming translation, FALSE to disable it.
The default value is FALSE.

Returns:
<retL> is a logical value, representing the current status of this mode on entry of
FS_SET() function.

Description:
On DOS, the full file name consists of four parts: the optional directory path, the
main part of the file name (one to eight characters), a period (.) and an optional file
extension (one to three characters). In UNIX, no special parts of the file name are
used; the file name can include any number of periods. The file name can contain at
least 14 characters, but may be longer on some UNIX systems. For more
information refer to LNG.3.1.

Note: To maintain compatibility with DOS programs, FlagShip supports the DOS
naming convention by default on access to databases, indices and text files.

When a FlagShip programmer creates long file names, the application may lose
portability to other systems.

If the FS_SET("short") conversion is active, FlagShip abbreviates the given file
name during the create, open or file search access to the minimal base, using the
DOS naming convention, e.g.:

•All embedded spaces and special characters (other than A-Z, a- z, 0-9, # @ ! %
~ __ - . ? *) are removed.

•The main part of the file name (up to the first period ".") is abbreviated to eight
characters, if necessary.

•When the extension consists of characters other than digits only (used e.g. for
printer files), the extension is abbreviated up to three characters.

•Additional "extensions" (beyond the second period) are removed.

If the additional lower/upper translation is required, use also FS_SET("lower")
and/or FS_SET("pathlower").

Note: The file names given are automatically left and right trimmed, regardless of
the FS_SET("short") setting. Also with some database or file access commands,
where the default extension may be omitted, FlagShip TRIMs the given filename on

FUN 284

the left and on the right first, prior to adding the default ".dbf", ".idx", ".txt" or ".prn"
extension.

Example:
file1 := this_is.unixfile"
file2 := "This Is A Valid UNIX Filename. On Some Systems"
file3 := "abc,defg=hij.1234"
SET PRINTER TO (file1) // creates long name
FS_SET ("short", .T.)
SET PRINTER TO (file1) // creates "this_is.uni"
FCREATE (file2) // creates "ThisIsAV.OnS"
FS_SET ("lower", .T.)
? FILE (file2) // search "thisisav.ons"

SET EXTRA TO (file3) // creates "abcdefgh.1234"

Example:
Note that only the leading and trailing spaces are trimmed automatically. Both
"mydata.dbf" and "mydata .dbf" are valid names of two different files:

LOCAL dbf_file := " mydata "
USE (dbf_file) // "mydata.dbf"
USE (dbf_file + ".dbf ") // "mydata .dbf"

FS_SET ("short", .T.)
USE (dbf_file + ".dbf ") // "mydata.dbf"

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
FS_SET("lower"), FS_SET("transl")

FUN 285

FS_SET ("speckeys")
Syntax 1:

retL = FS_SET ("speckeys", expC2, [expL3])
Syntax 2:

retC = FS_SET ("speckeys")
Purpose:

Determines and/or sets translation of special Esc-sequences to Inkey value. Apply
for Terminal i/o mode in Unix/Linux, ignored otherwise.

Arguments:
<expC2> is a character expression specifying the file name with the Esc mapping
table. If a path is not given, the search order is:

a. the current directory,
b. the path in environment var SCRMAP=/path/path
c. the path in envir. variable FSTERMINFO=/path/path
d. the path in envir. variable TERMINFO=/path/path
e. the FlagShip path according to SET PATH TO ...
f. the FlagShip_Dir()/terminfo directory

The default file is <FlagShip_dir>/terminfo/FSspeckeys.def

If the parameter <expC2> is not given (syntax 2), only the currently used file name
is returned. If the parameter <expC2> is empty (""), the mapping is reset to default,
corresponding to FSspeckeys.def.

Options:
<expL3> is logical value specifying optional protocol printout. If .T., the new setting
(and possible errors) are printed to default SET PRINTER file. If <expL3> is .F., the
output goes to stderr. If the argument is not given or is not logical, no protocol is
printed.

Returns:
<retL> in syntax 1 reports success or failure. In development mode, i.e. with
FS_SET("devel", .T.), errors are also reported as warning.

<retC> in syntax 2 reports the currently used file with translation table. Empty string
("") signals default setting.

Description:
In Terminal i/o mode, FlagShip uses [n]curses which handles keyboard input.
Unfortunately is the curses capability limited for handling special keystrokes like Alt-
key, Alt-Cursor etc. This FS_SET() table extends the [n]curses capability to
handling any special key. For syntax, see the file <FlagShip_dir>/terminfo/
FSspeckeys.def

FUN 286

This keyboard translation apply for Terminal i/o mode in Unix/Linux and is ignored
otherwise. FlagShip port for MS-Windows uses pdcurses library which has
predefined, fix keyboard translation.

Technical note:
For non-Unix gurus, here a rough description how the key-press comes to
FlagShip's Inkey() and it related commands/functions such as READ, WAIT,
ACCEPT, MENU TO etc. (in Terminal i/o mode):

 With active X11 (Gnome, KDE etc), keypress generates event stored in event
queue; w/o X11, the scan code is stored in kernel buffer.

 X11 looks in xrdb table if the key should be translated to Escape sequence,
and/or kernel looks in similar table set by loadkeys. This system translation
table is set per default, or by loadkeys command, and/or by FSXTerm.xrdb.*
script called during invocation of newfswin script.

 [n]curses calls X11 (or kernel) input function to get one input character, or the
translated esc-sequence.

 If the key is Escape character, curses waits specified amount of time (usually 1
sec, see FS_SET("escdelay") for it setting), if another character(s) follows. If
so, it looks in own translation table (aka terminfo "database", corresponding to
current [FS]TERM and [FS]TERMINFO setting), to find matching special key.

 If curses knows the esc sequence, it returns the corresponding special
character to Inkey(). If not, FlagShip checks the table specified by this
FS_SET("speckey") function, and if the sequence is found, returns back the
defined Inkey value.

 Otherwise when the delay time is not expired yet, curses waits for the next
(translated) character of the sequence, to repeat above translation. If the delay
time is expired, Inkey() returns the Esc value (27) and fills keyboard-ahead-
buffer with the rest, if any.

Example:
? "'" + FS_SET("speckeys") + "'" // '' = default
? FS_SET("speckeys", "FSspeckeys.def") // .T.
? "'" + FS_SET("speckeys") + "'" // '.../FSspeckeys.def'

Classification:
programming, input/output

Compatibility:
Available in FlagShip 6 (VFS) only.

Related:
Inkey(), READ, <FlagShip_dir>/terminfo/FSspeckeys.def

FUN 287

FS_SET ("terminal")
Syntax 1:

retC = FS_SET ("terminal")
Syntax 2:

retC = FS_SET ("terminal", @varC2, @varC3)
Syntax 3:

retC = FS_SET ("terminal", @varC2, @varC3, @varC4,
@varC5)

Purpose:
This function is used to determine

• the current terminal
• the current output character mapping, see FS_SET("outmap")
• the current output mapped terminal, see FS_SET("outmap")
• the current input character mapping, see FS_SET("inmap")
• the current input mapped terminal, see FS_SET("inmap")

Options:
<varC2> is a declared and initialized character variable (called by reference) to
store the current file name with the character output mapping, default is
<FlagShip_dir>/terminfo/FSchrmap.def. See section SYS and FS_SET("mapping").
The full name, including the path is returned, e.g. "/usr/local/FlagShip7/
terminfo/FSchrmap.def" An empty returned value means the file was not found.

<varC3> is a declared and initialized character variable (called by reference),
specified together with <varC2>. This is used to report the current terminal entry
within the mapping file. See section SYS and FS_SET("mapping"). An empty
returned value means the terminal entry <retC> was not found within the <varC2>
file.

<varC4> is a declared and initialized character variable (called by reference) to
store the current file name with the character input mapping, default is
<FlagShip_dir>/terminfo/FSkeymap.def. See section SYS and FS_SET("inmap").
The full name, including the path is returned, e.g. "/usr/local/FlagShip7/terminfo/
FSkeymap.def" An empty returned value means the file was not found.

<varC5> is a declared and initialized character variable (called by reference),
specified together with <varC4>. This is used to report the current terminal entry
within the mapping file. See section SYS and FS_SET("inmap"). An empty returned
value means the terminal entry <retC> was not found within the <varC4> file.

Returns:
<retC> is a character value, representing the character string with the current
setting of the environment variable TERM.

FUN 288

Description:
With FS_SET("term"), you can check the currently assigned terminal and optionally
the used output and input mapping. The function is accepted in GUI mode too, but
returns meaningful data in Terminal i/o mode only. In GUI mode, another translation
tables are used, see FS_SET("guikeys").

Example:
local cTerm
local cFileOut := "", cTermOut := "", cFileIn := "", cTermIn := ""

cTerm := FS_SET ("term", @cFileOut, @cTermOut, @cFileIn, @cTermIn)
if AppIoMode() == "T" // apply for terminal i/o mode only

if empty(cTerm)
alert("Environment TERM or FSTERM is not set")
quit

endif
if empty(cFileOut)

alert("Output mapping file (FSchrmap.def) not found")
elseif empty(cTermOut)

alert("Terminal '" + cTerm + "' not available in;" + ;
cFileOut + ";incorrect screen output is possible")

endif
if empty(cFileIn)

alert("Input/keyboard mapping file (FSkeymap.def) not found")
elseif empty(cTermIn)

alert("Terminal '" + cTerm + "' not available in;" + ;
cFileIn + ";incorrect keyboard input is possible")

endif
endif

Example:
see example in FS_SET ("outmap") and FS_SET ("inmap")

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
FS_SET("outmap"), FS_SET("inmap"), GETE(), environment variable TERM in
section FSC and SYS, UNIX: man term, man terminfo

FUN 289

FS_SET ("translext")
Syntax:

retC = FS_SET ("translext", expC2 [, expC3])
Purpose:

Translates hard-coded file extensions during the create, open or file search access.

Arguments:
<expC2> is the hard coded extension to be replaced, e.g. "NTX". Do not enter the
period.

Options:
<expC3> is the new file extension, which will replace the <expC2>, e.g. "idx". To
delete the previous setting of <expC2>, enter null- string "". If the argument is not
given, the previous setting for the same <expC2> is returned if required, NIL
otherwise.

Returns:
<retC> is on success the new (or the current) extension substitution <expC3>, NIL
otherwise.

Description:
The file extension is a part of the full file name. On DOS, the full file name consists
of three parts: the main part of the file name (one to eight characters), a period (.)
and an optional file extension (one to three characters). On UNIX, no special parts
of the file name are used, the file name can include any number of periods. For
more information refer to LNG.3.1.

To maintain compatibility with DOS programs, FlagShip supports the DOS naming
convention by default on access to databases, indices and text files.

Many programs written for the DOS system have hard-coded file extensions, like
FILE("ABC.NTX"). To convert all such occurrences to the recommended
FILE("ABC" + INDEXEXT()) in a large application requires much valuable
programmers' time. Therefore, FlagShip can translate them during the file access
time automatically.

Additionally, use of the lower/upper file and path translation using FS_SET("lower")
and FS_SET ("pathlower") is recommended, which also influences the translated
extension.

For portability, usage of INDEXEXT() is recommended instead of hard coded
extensions.

Up to five different translation rules may be given.

FUN 290

Example:
FS_SET ("transl", "ntx", "idx") // xxx.NTX --> xxx.idx
FS_SET ("transl", "PRN", "Spool") // xxx.PRN --> xxx.spool
FS_SET ("lower", .T.)
IF FILE("AbC.NtX")

? "index file abc found as " + TRUEPATH("aBc.nTx")
ENDIF
IF FILE("EfG" + INDEXEXT())

? "file efg found as " + TRUEPATH("eFg" + INDEXEXT())
ENDIF

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
INDEXEXT(), FS_SET("lower"), FS_SET("pathlow"), TRUEPATH()

FUN 291

FS_SET ("typeahead")
Syntax:

retL = FS_SET ("typeahead" [,expL2])
Purpose:

Determines or sets the look-ahead capability of the current terminal in use.

Options:
<expL2> is a logical expression. If the value is TRUE value enables the look ahead
capability, if it is FALSE, it disables it. If <expL2> is not specified, the current status
is returned. The default setting on program begin is FALSE.

Returns:
<retN> is a logical value, representing the current look ahead status. TRUE signals
the currently enabled look ahead terminal status.

Description:
To interface your terminal, FlagShip uses the UNIX library "curses". This supports
the required terminal settings and optimizes the current screen output.

Because the terminals are often connected using a slow serial interface, only the
characters changed will be transmitted. Side effects may occur, if any key is
entered during the terminal output: the output is terminated and the program seems
to "hang", because the current message you are waiting for will not be displayed.

FlagShip therefore works by default without the "look type ahead" option, so curses
will transmit all characters. If you are working on very slow connection (such as
modem), you may enable the "look ahead" and transmit only changed characters.

Example:
? FS_SET ("type") // .F.
IF modem_is_online

ok = FS_SET ("type", .T.) // .T.
? "Don't touch keyboard during the screen output !"

ENDIF

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
section SYS, UNIX: man curses

FUN 292

FS_SET ("zerobyte")
Syntax:

retL = FS_SET ("zerobyte" [,expL2])
Purpose:

Enables or disables the support of embedded zero bytes CHR(0) in string
expression and operations.

Options:
<expL2> is a logical expression. TRUE value enables the support of embedded
zero bytes, FALSE disables it. If <expL2> is not specified, the current status is
returned. The default setting at program begin is FALSE.

Returns:
<retL> is a logical value, representing the current zero byte support. TRUE signals
the support is enabled.

Description:
In the C language, binary zero bytes, represented by CHR(0), terminate the
character string by default. For special purposes, when an embedded zero byte is
required (e.g. to send special escape sequences to the printer), FlagShip supports
the zero byte on request. Refer to LNG.2.6.5 for more information.

The automatic support of embedded zero byte is built in, and therefore not affected
by FS_SET("zero"):

•all assignment operators := = += -=
•all comparison operators = == != <> # $ > < >= <=
•following string handling commands and functions: ?, ??, ALLTRIM(), ASC(),

AT(), BIN2I(), BIN2L(), BIN2W(), CTOD(), DESCEND(), EMPTY(), FREAD(),
I2BIN(), L2BIN(), LEFT(), LEN(), LOWER(), LTRIM(), OUTSTD(), PADx(),
QOUT(), QQOUT(), RAT(), REPLICATE(), RIGHT(), RTRIM(), STRPEEK(),
STUFF(), SUBSTR(), TRIM(), UPPER()

The following standard functions optionally support the embedded zero byte
according to FS_SET("zero") setting: FREADSTR(), FREADTEXT(), STRLEN(),
STRPOKE(), STRTRAN(), STRZERO(), TRANSFORM(), _parclen(), _retclen(),
_storclen()

Other commands and standard functions do not support the embedded zero byte,
i.e.: @..SAY, @..GET, DEVOUT(), DEVOUTPICT(), OUTERR(), STOD() - except
for printer output where supported automatically.

FUN 293

Example:
str1 := "abc" ; str2 := "efg"
str3 := str1 + CHR(0) + str2
str4 := STRTRAN(str3, chr(0), "\0") // note: not replaced
? str1, str2, str3, "=" // abc efg abc?efg =
for ii := 1 to len(str3)

?? " " + ltrim(asc(substr(str3,ii,1))) // 97 98 99 0 101 102 103
next
? LEN(str1), LEN(str3), "=", str3 // 3 7 = abc?efg
? STRLEN(str1), STRLEN(str3), " devout(): "
devout(str3) // 3 3 devout(): abc
?? " strtran():", str4 // strtran(): abc?efg
@ row()+1,0 SAY "@..Say : " + str3
@ row(),col()+1 SAY str4 // @..say: abc abc
? "?, Qout():",str3, str4 // Qout(): abc?efg abc?efg

? '--- with FS_SET("zero",.T.) ---'
SET ZEROBYTEOUT TO "#"
FS_SET ("zero", .T.)
str4 := STRTRAN(str3, chr(0), "\0") // note: replaced
? LEN(str1), LEN(str3), "=", str3 // 3 7 = abc#efg
? STRLEN(str1), STRLEN(str3), " devout(): "
devout(str3) // 3 7 devout(): abc
?? " strtran():", str4 // strtran(): abc\0efg
@ row()+1,0 SAY "@..Say : " + str3
@ row(),col()+1 SAY str4 // @..say: abc abc\0efg
? "?, Qout():",str3, str4 // Qout(): abc#efg abc\0efg
WAIT

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
see above operators, commands and functions

FUN 294

FWRITE ()
Syntax:

retN = FWRITE (expN1, expC2, [expN3], [expL4])
Purpose:

Writes the contents of a character variable to a binary file.

Arguments:
<expN1> is the file handle previously returned by FOPEN() or FCREATE().

<expC2> is the character variable to write to the specified file.

Options:
<expN3> is the number of bytes to write to the file, starting from the current file
pointer position. If this argument is not specified, the entire contents of the character
variable are written to the file. If the <expN3> value is greater then the declared
variable length, only the length of the variable contents is written. If the value is less
than one, nothing is written.

<expL4> is optional logical value. If true (.T.), FWRITE() will retry the write on
failure. The default is .F. = no retry.

Returns:
<retN> is a numeric value, representing the number of bytes currently written to the
file. If the return value is zero or less than <expN3>, then either the disk is full, the
variable contents have been truncated, or an error has occurred. The error
FERROR() function will return the last corresponding error code or zero if FWRITE()
succeeds. Exception: when the passed <expN3> is <= 0, or the length of <expC2>
is 0, zero is returned and FERROR() is set to zero. When <expN1> is not numeric
or is < 0, or when <expC2> is not a string, -1 is returned and FERROR() remain
unchanged.

Description:
FWRITE() is a low-level file function that writes data to an open binary file from a
character string buffer. You can either write all or a portion of the variable contents.

FWRITE() writes the embedded zero bytes in <expC2> into the file, independently
of the current FS_SET ("zerobyte") setting. However, manipulating such a variable
requires the zero-byte setting. If the binary zero support is inactive, only the
FREAD() data can be written back. All other string manipulations return the
shortened string part only.

Warning: FWRITE() allows a low-level access to the UNIX file system, similar to
the C function write(). Therefore, it should be used with care and only when you
have a good knowledge of the UNIX operating and file system.

FUN 295

Example:
LOCAL buff := SPACE(20)
handle = FCREATE("test.txt")
? FWRITE(handle, "John gets in") // 12

FS_SET ("zerobyte", .T.)
STRPUSH (buff, 10, CHR(0))
? FWRITE(handle, buff) // 20
? LEN (buff) // 20

FS_SET ("zerobyte", .F.)
? FWRITE(handle, buff) // 20
? LEN (buff) // 10
? FSEEK (handle, 0, 1) // 53
? FWRITE(handle, buff, 500) // 20
? FSEEK (handle, 0, 1) // 73
FCLOSE (handle)

Classification:
system, file access

Related:
FCLOSE(), FCREATE(), FERROR(), FOPEN(), FREAD(), FREADSTR(),
FREADTXT(), FSEEK(), FS_SET("zero")

FUN 296

GETACTIVE ()
Syntax:

retO = GETACTIVE ()
Purpose:

Determines the active GET object.

Returns:
<retO> is the currently active GET object within the current READ. If no READ is
active, NIL is returned.

Description:
GETACTIVE() provides access to the active GET object during a READ. The
current active GET object is the one with input focus at the time GETACTIVE() is
called.

Example:
SET KEY -2 TO test
@ 1,0 GET var1 VALID test()
@ 2,0 GET var2 WHEN test()
@ 3,0 GET var3
READ
FUNCTION test (p1, p2, p3)
LOCAL obj := GETACTIVE()
IF obj != NIL

@ obj:ROW +10 SAY obj:NAME
?? " buff=", obj:BUFFER
?? " changed=", obj:CHANGED

ENDIF
RETURN .T.

Classification:
programming

Compatibility:
Available in FS and C5 only.

Source:
The source code is available in the file <FlagShip_dir>/system/ getsys.prg

Related:
@..GET, READ, GET objects

FUN 297

GETALIGN ()
Syntax:

NIL = GetAlign ([expA1])
Purpose:

Align all @..GET columns in a passed or default GetList{} array according to the
@..SAY..GET.. caption

Arguments:
<expA1> is an array containing Get objects. If not given, the current "GetList"
variable is used.

Description:
In GUI with proportional character set, the width of a text may differ even for the
same string length. This would produce unpleasant formatting of the attached
READ field. For example,

@ 2,0 SAY "Hello world" GET var1
@ 3,0 SAY "my entry " GET var2
@ 4,0 SAY "your entry " GET var3
READ

assumes to display the entry fields in column 13. It will be so displayed in Terminal
i/o or in GUI mode with fixed font type (like Courier), but not in GUI with proportional
font (like Helvetica or Times). To avoid heavy rework and calculating of the real
width via Strlen2col(), this function aligns all GET fields to the same relative column,
corresponding to the screen design.

This function is called automatically from ReadModal() == READ when SET
GUIALIGN is set ON (the default). Apply for GUI mode only.

Classification:
programming

Compatibility:
New in FS5.

Source:
Source code is available in <FlagShip_dir>/system/getsys.prg

Related:
@..GET, READ, GET objects

FUN 298

GETAPPLYKEY ()
Syntax:

NIL = GETAPPLYKEY (expO1, expN2)
Purpose:

Applies a key to a GET object from within a GET reader.

Arguments:
<expO1> is the active GET object.

<expN2> is the INKEY() value to apply to the GET object.

Returns:
The function always returns NIL.

Description:
GETAPPLYKE() is a GET system function that applies an INKEY() value to the
active GET object. It simulates the key press by the user, including the cursor,
function or alphanumeric keys. If the given key is assigned by SET KEY or SET
FUNCTION, the key- procedure is executed in the usual way.

The FOCUS of the <expO1> object must be active (TRUE). Refer to the section
OBJ.GET (GET:SETFOCUS) for more information.

Example:
Any F2 key press in the field "var2" stores A,B,C... in the entry field:

SET KEY -2 TO filldata
@ 1,1 GET var1
@ 2,1 GET var2
READ

PROCEDURE filldata (p1, p2, p3)
LOCAL getobj := GETACTIVE()
STATIC key := ASC("A")
IF getobj # NIL

IF getobj:NAME == "VAR2" .and. getobj:HASFOCUS
GETAPPLYKEY (getobj, key++)

ENDIF
ENDIF
RETURN

Classification:
programming

Compatibility:
Available in FS and C5 only.

Source:
The source code is available in the file <FlagShip_dir>/system/ getsys.prg

Related:
@..GET, READ, GET objects, KEYBOARD

FUN 299

GETDOSETKEY ()
Syntax:

NIL = GETDOSETKEY (expO1)
Purpose:

Processes SET KEY during GET editing.

Arguments:
<expO1> is a reference to the current GET object.

Returns:
The function always returns NIL.

Description:
GETDOSETKE() is a GET system function that executes a SET KEY code block,
preserving the context of the GET object passed. The procedure name and line
number are passed to the SET KEY procedure based on the most recent call to
READMODAL().

Example:
see getsys.prg

Classification:
programming

Compatibility:
Available in FS and C5 only.

Source:
The source code is available in the file <FlagShip_dir>/system/ getsys.prg

Related:
@..GET, READ, GET objects, SET KEY, READMODAL()

FUN 300

GETENV ()
Syntax:

retC = GETENV (expC)
Purpose:

Returns the contents of an exported environmental variable.

Arguments:
<expC> is the name of the UNIX (or Windows) environment variable. Note that
UNIX is case sensitive and that most exported variables are given in uppercase. In
Windows, the environment is set by SET command, or by Start->Control
Panel->System->Advanced->Environment Variables

Returns:
<retC> is the contents of the specified UNIX (or Windows) environmental shell
variable. If the environment variable does not exists, (or in Linux/Unix: was not
exported), a null string "" is returned.

Description:
GETE() or GETENV() can be used to pass environmental information from
Unix/Windows into the current running executable. Typically, the current terminal,
user, the environment, DOS-drive substitution etc. are retrieved. Other program
configuration information, like the path names specifying the data or index
directories, can be used by any user-defined (in Unix/Linux: exported) shell
variable.

FlagShip for Linux/Unix requires that certain default environment variables be set:

PATH Standard UNIX path (required)
TZ Time zone conversion (required)
TERM Name of the current terminal (required)
TERMINFO Directory including the compiled terminfo description, see section

FSC, SYS (optional)
LINES, Overrides the terminfo lines# and/or cols# setting during
COLUMNS the curses initialization at start-up or using the FS_SET("setenv")

function (optional setting)
FSOUTPUT Directory for the standard printer output (optional)
x_FSDRIVE Substitution of a DOS drive (x:) to a UNIX directory (optional)
SCRMAP Directory containing the language dependent sorting tables, see

FS_SET("load") function (optional)

FlagShip for MS-Windows does not need environment variables, except PATH for
searching of the exe file.

The program can check the proper setting of these variables using the GETENV()
function. Note also the FlagShip support of the current terminal and path
translations using the FS_SET() functions.

FUN 301

The current environment variables may be changed using FS_SET ("setenv").

Example:
Determines the terminal type, checks the substitution of DOS drive C: and picks up
the color settings from a file:

term_type = GETE("TERM") // case sensitive
* term_type := FS_SET ("terminal") // equivalent
IF EMPTY(term_type)

? "Please set your terminal first"
QUIT

ENDIF
IF SUBSTR(term_type,1,2) != "FS"

? "Your terminal is " + term_type
? "If you get difficulties with the screen output, " + ;
"set your terminal to FS" + term_type

? "using TERM=FS" + term_type + "; EXPORT TERM"
WAIT

ENDIF
IF EMPTY(GETENV("C_FSDRIVE"))

? "Set the directory for C: substitution first !"
QUIT

ENDIF
IF FILE(term_type + ".mem")

RESTORE FROM (term_type + ".mem") ADDITIVE
ELSE

? "saved screens for the terminal", ;
term_type, "not available"

ENDIF

Classification:
programming

Compatibility:
Note the case sensitivity of environment variable names.

Related:
FS_SET("setenv"), GetEnvArr(), section SYS and FSC

FUN 302

GETENVARR ()
Syntax:

retA = GetEnvArr ()
Purpose:

Returns an array of all environment variables.

Returns:
<retA> is 2-dimensional array containing

retA[n,1] = name of the environment variable

retA[n,2] = content of the environment variable

Description:
The functionality is similar to GetEnv() but you will retrieve all set environment
variables at once.

Compatibility:
New in FS5

Related:
GETENV(), ASCAN(), FS_SET("setenv")

FUN 303

GETFUNCTION ()
Syntax:

retC = GetFunction (expN1)
Purpose:

Returns a string set by SET FUNCTION <expN1> TO ... or ""

Arguments:
<expN1> negative or 28: corresponds to Inkey() value F1 to alt-F12, i.e. K_F1 to
K_ALT_F12 values in inkey.fh

<expN1> positive except 28: function key 1..48 same as specified in SET
FUNCTION <expN> TO <string>. Note that GetFunction(28) will return assignment
for F1 key, so to get assignment for Crtl-F8 key (28 in SET FUNCTION), use
GetFunction(K_CTRL_F8) instead.

Returns:
<retC> is the returned string or ""

Compatibility:
New in FS5

Related:
SET FUNCTION, InkeyTrap()

FUN 304

GETPOSTVALID ()
Syntax:

retL = GETPOSTVALID (expO1)
Purpose:

Executes the post-validating expression or function.

Arguments:
<expO1> refers to the current GET object.

Returns:
<retL> is a logical value indicating whether the current GET object has been
validated successfully.

Description:
GETPOSTVAL() is a GET system function that validates a GET object after editing,
including evaluating get:POSTBLOCK (the VALID clause) if present.

The function is similar to the action of the VALID clause in @..GET command.

Example:
see getsys.prg

Classification:
programming

Compatibility:
Available in FS and C5 only.

Source:
The source code is available in the file <FlagShip_dir>/system/ getsys.prg

Related:
@..GET, READ, GET objects

FUN 305

GETPREVALID ()
Syntax:

retL = GETPREVALID (expO1)
Purpose:

Executes the pre-validating expression or function.

Arguments:
<expO1> refers to the current GET object.

Returns:
<retL> is a logical value indicating whether the current GET object has been
validated successfully.

Description:
GETPREVALI() is a GET system function that validates a GET object for editing,
including an evaluating get:PREBLOCK (the WHEN clause), if present.

get:EXITSTATE is also set to reflect the outcome of the pre-validation:

Code getexit.fh Description
0 GE_NOEXIT pre-validation success, can be edited
8 GE_WHEN pre-validation failure
7 GE_ESCAPE CLEAR GETS was issued

The function is similar to the action of the WHEN clause in @..GET command.

Example:
see getsys.prg

Classification:
programming

Compatibility:
Available in FS and C5 only.

Source:
The source code is available in the file <FlagShip_dir>/system/ getsys.prg

Related:
@..GET, READ, GET objects

FUN 306

GETREADER ()
Syntax:

retN = GETREADER (expO1, [expA2], [expL3])
Purpose:

Executes standard READ behavior for one GET object.

Arguments:
<expO1> refers to a GET object.

<expA2> is GetList array containing GET objects. If not specified, the PUBLIC or
PRIVATE GetList variable is used.

<expL3> is equivalent to CYCLE clause of READ. If not specified, .F. is the default
value.

Returns:
This function returns 0 on standard processing of GET field in READ, or value
1...len(GetList) when another GET field was selected by mouse click. Other than
numeric return values are interpreted as 0.

Description:
GETREADER() is normally a sub-function of the standard READ command or its
READMODAL() equivalent to process editing for one GET object (field).

If the get:READER instance variable contains a code block, READMODAL() will
evaluate that block instead of calling the GETREADER() function.

Example:
see getsys.prg

Classification:
programming

Compatibility:
Available in FS and C5 only.

Source:
The source code is available in the file <FlagShip_dir>/system/ getsys.prg

Related:
@..GET, READ, GET objects

FUN 307

GUIDRAWLINE ()
Syntax:

NIL = GuiDrawLine ([expN1], [expN2], expN3, expN4,
[expN5], [expC6], [expL7])

Purpose:
Draws a line in GUI mode (ignored in Terminal i/o) of specified width.

Arguments:
<expN1...expN4> are the start and end coordinates of the drawn line in the order of
row, column, row, column. When <expN1> and <expN2> are NIL, the line drawing
is continued from the current position to the <expN3>,expN4> position.

<expN5> is the width of the line in pixels.

<expC6> is optional color specification. Only the foreground color is considered.

<expL7> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

Description:
The functionality is equivalent to the command
@ <expN1>,<expN2> [GUI] DRAW [TO] <expN3>,<expN4> [WIDTH <wpix>]

[PIXEL|NOPIXEL] [COLOR <color>]

Compatibility:
New in FS5

Related:
@ ... DRAW ...

FUN 308

HARDCR ()
Syntax:

retC = HARDCR (expC)
Purpose:

Replaces all soft-return characters used in MEMOEDIT() with a hard return.

Arguments:
<expC> is a character string or memo field, which should be converted.

Returns:
<retC> is the converted character string.

Description:
Replaces all soft carriage returns CHR(141)+chr(10) within a string with hard
carriage returns CHR(13)+chr(10), for the purpose of displaying strings edited with
MEMOEDIT(). Soft carriage returns are inserted in the string by MEMOEDIT() when
lines wrap.

If you don't need to archive soft carriage returns in the string, remove them by cText
:= strtran(cText, chr(141,10), ""), or set the global switch described in MemoEdit()

Example:
USE address
? HARDCR (notes)
x = MEMOEDIT (" ", 5,1, 20,79, .T.) // edit the data
? HARDCR (x) // display w/o Soft-CR

x := strtran(cText, chr(141,10), "") // remove all Soft-CR
x := strtran(cText, chr(13,10), "") // remove all Hard-CR
? x

Classification:
programming

Related:
MEMOEDIT(), MEMOLINE(), MEMOREAD(), MEMOTRAN(), MEMOWRIT(),
MLCOUNT(), STRTRAN(), STRPOKE()

FUN 309

HEADER ()
Syntax:

retN = HEADER ()
Purpose:

Retrieves the size of the header of a database file.

Returns:
<retN> is a numeric value, representing the size of the current database file's
header in bytes. If no database is open in the current working area, zero is returned.

Description:
HEADER() can be used to determine the size of the database open in the current
working area, along with RECSIZE() and RECCOUNT() or LASTREC(). Using
DISKSPACE(), the available disk space can be checked before copying a
database.

To execute the function in a working area different from the current one, use
alias->(HEADER()).

Example:
USE article
file_size = HEADER() + RECCOUNT() * RECSIZE() +1
IF (file_size + 512) > DISKSPACE()

? "sorry, cannot copy, not enough disk space"
ELSE

COPY FILE article.dbf TO article.sav
ENDIF

Classification:
database

Related:
DISKSPACE(), RECCOUNT(), RECSIZE(), oRdd:Header

FUN 310

HELP ()
Syntax:

NIL = HELP (expC1, expN2, expC3, expN4)
Purpose:

Display user defined help when the F1 key was depressed. The HELP procedure /
function is a special case of UDF invoked by SET KEY.

Arguments:
<expC1> is a string representing the called procedure/function, similar to
ProcName(1). Note, that some procedures and all code blocks, available by
ProcName() or ProcStack(), may be filtered out, so <expC1> may not be always
equivalent to ProcName(1). The filter is specified globally in
_aGlobSetting[GSET_C_SETKEYFILT], see <FlagShip_dir>/system/initio.prg, and
can of course be re-defined according to your needs.

<expN2> is a numeric value representing the line number of the called
procedure/function, similar to ProcLine(1), or 0 when the line number is not
available (compiler switch -nl).

<expC3> is a string representing the variable name, when called from GET/READ
or MENU TO, or an empty string otherwise. Corresponds to ReadVar() value.

<expN4> is a numeric value representing the pressed key, similar to LastKey(), or 0
or NIL if not available.

Description:
The default HELP procedure/function is triggered automatically by already assigned
SET KEY K_F1 TO HELP. This allows you to override it by your own HELP
procedure or function, displaying context sensitive help of your application,
accessed by the default F1 key. You of course may also use any other name, when
assigning it to the function key by SET KEY command.

The default HELP do nothing, except displaying standard help in MemoEdit().

Example:
FUNCTION HELP (cProcName, nLine, cVarName, nKey) // user help
local cText, cStack := ProcStack()
DO CASE
CASE cProcName == "MYPROC1" .and. cVarName == "NAME"

InfoBox("Help for editing variable NAME in procedure MyProc1")
CASE cVarName == "COUNTRY"

InfoBox("Help for editing variable COUNTRY in any procedure")
CASE cProcName == "MYEDIT"

InfoBox("Help for editing within procedure MyEdit")
CASE ProcName(2) == "ANYPROC"

InfoBox("Help for editor called from procedure AnyProc")

FUN 311

CASE "_TMEMOEDIT" $ cStack .or. "_GMEMOEDIT" $ cStack .or. ;
"MEMOEDITHA" $ cStack
/* this is the default call from standard HELP, where
* the _MemoEdHelp() is available in FlagShip library and
* in source of <FlagShip_dir>/system/memoedithand.prg
*/
_MemoEdHelp(cProcName, nLine, cVarName, nKey)

OTHERWISE
cText := "sorry, no help available for this entry;in " + ;

cProcName + if(nLine > 0, "/" + ltrim(nLine), "")
if !empty(cVarName)

cText += ";for entry name " + cVarName
endif
if FS_SET("devel")

cText += "; ;Call-Stack: " + cStack
endif
InfoBox(cText)

ENDCASE
return

Compatibility:
Compatible to Clipper, which supports 3 arguments only and does not provide
default MemoEdit help, nor ProcStack().

Related:
SET KEY, ON KEY, ProcName(), ProcLine(), ProcStack(), LastKey()

FUN 312

HEX2NUM ()
Syntax:

retN = Hex2Num (expC1)
Purpose:

Convert a string containing hexadecimal value to numeric integer.

Arguments:
<expC1> is a string containing the hex representation, e.g. "A5C0FF05" or
"0x5f07De". Only characters 0..9,A..F,a..f are allowed in the string (up to 8) plus an
optional prefix "0x", "0X" or "#".

Description:
Hex2num() return a numeric value corresponding to the hex string. See Num2Hex()
for reverse conversion.

Example:
? Hex2num("4d2") // 1234
? Hex2num("0004d2") // 1234
? Hex2num("0x004D2") // 1234
? Hex2num("#4D2") // 1234

Compatibility:
New in FS5

Related:
Num2Hex(), FS2:Hex2Str(), FS2:StrToHex()

FUN 313

I2BIN ()
Syntax:

retC = I2BIN (expN)
Purpose:

Transforms a numeric expression or variable to a 16-bit binary integer (Intel
convention).

Arguments:
<expN> is a positive numeric value to be transformed. Decimal digits are truncated
(if any). The valid range is -32768 to 32767.

Returns:
<expC> is a two-byte character string containing a 16-bit binary integer in Intel
convention (high/low byte). On error, null-string "" is returned.

Description:
I2BIN () is used when you want to FWRITE () a short integer to a binary file in Intel
format, the least significant byte first.

The inverse function of I2BIN() is BIN2I(). To convert long integers, use L2BIN().

Example:
#define NEWLINE CHR(10)
act_year = YEAR (date()) && 1993
act_month = MONTH(date()) && 05
act_day = DAY (date()) && 15

handle = FCREATE("mytext.txt")
IF FERROR() = 0

FWRITE (handle, "File created on:")
FWRITE (handle, I2BIN(act_year), 1)
FWRITE (handle, I2BIN(act_month), 1)
FWRITE (handle, I2BIN(act_day), 1)
FWRITE (handle, NEWLINE + "any text..." + NEWLINE)
FCLOSE (handle)

ENDIF

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
BIN2I(), BIN2W(), BIN2L(), L2BIN(), FWRITE()

FUN 314

IF () | IIF ()
Syntax:

ret = IF (expL1, exp2, exp3)
or:

ret = IIF (expL1, exp2, exp3)
Purpose:

Returns one of the expressions given, dependant on the status of the logical
condition.

Arguments:
<expL1> is the logical expression to be evaluated.

<exp2> is the returned expression of any type, when the <expL1> is TRUE.

<exp3> is the returned expression of any type, when the <expL1> is FALSE. This
argument need not be the same data type as <exp2>.

Returns:
<ret> is the value of <exp2> or <exp3>, depending on the evaluation of the
condition <expL1>.

Description:
IF () can be used to evaluate a condition within an expression or to convert a logical
expression to another data type. Also, IF () can be used instead of the
IF...ELSE...ENDIF structure, in cases where the clauses are short, to make the
code more compact.

It can also be used as a part of an INDEX expression: if a field is empty, another
field or expression can be used.

IF() or IIF() is the only function in FlagShip where the parameters are not evaluated
first. Rather they are inferred from the context, depending on the result of <expL>.

Example:
x = IF (EMPTY(name), 2, 3) | IF empty(name)

| x = 2
| ELSE
| x = 3
| ENDIF

Example:
FUNCTION myfn (par1) && opt.param.
par1 = IF (VALTYPE(par1) != "N", 1, par1) && set defaults
RETURN (par1 +1)

Classification:
programming

Related:
IF, DO CASE

FUN 315

INDEXCHECK ()
Syntax:

retN = INDEXCHECK ([expN1])
Purpose:

Checks whether the database is consistent with its associated indices.

Options:
<expN1> specifies the ordinal position of the index in the list of indices currently
open in the current working area. Zero specifies the current controlling index. If the
argument is not specified, zero is assumed.

Returns:
<retN> is a numeric value indicating the integrity status of the index file:

retN Description
-1 No database or index file open
0 The integrity is correct
1 The integrity may be corrupted
2 The integrity is corrupted

Description:
In FlagShip, a unique index integrity checking is available for the standard .idx files.
For more information, refer to LNG.4.5.

The INDEXCHECK() function is valuable to check the index integrity after opening a
index file, and restoring the violated integrity by re-indexing the index file.

A correct database index always matches the number of key expressions stored
with the database records. The only exception is a index created with the UNIQUE
or FOR... clause, which usually contains fewer records than the database.

The violation of the index integrity will occur when appending new records or
PACKing the database without assigning the index file by USE...INDEX or SET
INDEX ON. The index integrity can be violated when replacing the contents of
database fields without having activated an index file.

When INDEXCHECK() returns 1, the database update/ modification count does not
match the modification count of the index file. It indicates that the index file was not
assigned (opened) during database modification. The index need not be corrupted,
if the modified database field is not included in the index key. When in development
mode, the first database movement will produce a warning message. Upon closing
the index file, the modification count will be updated to confirm the count of the
database.

When INDEXCHECK() returns 2, the key count in the index file does not match the
record count of the database. This appears only if the database is indexed without
the UNIQUE and FOR... clause. The only allowed database operations thereafter
are INDEX ON, REINDEX, PACK and ZAP, which restores index integrity. Moving

FUN 316

the database pointer or accessing the records by any other commands will
inevitably result in an unrecoverable run-time error.

To preserve index integrity, always ensure all related index files are assigned to the
open database, at least during database modification. FlagShip automatically
updates all assigned indices on every record modification, even if the natural index
order is selected using SET ORDER TO 0.

To execute the function in a different working area from the current one, use
alias->(INDEXCHECK()).

Multiuser:
Integrity violation may also occur at run-time, if the current application has opened
the database with indices, while at the same time another application modifies the
same database without indices having been assigned beforehand.

When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Note: when the database and indices are accessed remotely via NFS or SAMBA,
this may cause IndexCheck() to report failure when SET NFS is OFF. In such a
case, invoke SET NFS ON, see further details there.

Example:
if getenv("ON_SERVER")

SET NFS ON
endif
USE mydbf NEW SHARED
IF NETERR()

? "cannot open database"
QUIT

ENDIF

SET INDEX TO index1, index2
IF NETERR()

? "cannot open index files"
QUIT

ENDIF

IF INDEXCHECK(1) > 0 .or. INDEXCHECK(2) > 0
USE mydbf EXCLUSIVE
INDEX ON UPPER(name) TO index1
INDEX ON idnumber TO index2
USE mydbf SHARED
SET INDEX TO index1, index2

ENDIF

FUN 317

Example:
/* check for and display cause of IndexCheck() error
* (or run-time-error RTE 331) and fix corrupted indices
*/
set font "courier",10
USE mydbf INDEX myidx1, myidx2 // your .dbf and .idx
errCnt := myIndexCheck(.F.) // or (.T.) for unconditional check

FUNCTION myIndexCheck(lMustCheck)
/*
* this function is available in source in
* <FlagShip_dir>/examples/checkindex.prg
*/
....
return iError

Classification:
database

Compatibility:
Available in FlagShip only.

Related:
INDEX ON, REINDEX, USE, SET INDEX, oRdd:OrderInfo(DBOI_INDEXCHECK),
oRdd:IndexCheck(), <FlagShip_dir>/examples/checkindex.prg

FUN 318

INDEXCOUNT ()
Syntax:

retN = INDEXCOUNT ()
Purpose:

Determines the number of indices being used in the current working area.

Returns:
<retN> is the number of currently used index files in the current working area. If no
database or indices are open, zero is returned.

Description:
INDEXCOUNT() is a database function that determines the number of associated
index files in the current working area.

To execute the function in a different working area from the current one, use
alias->(INDEXCOUNT()).

Example:
USE customer ALIAS cust NEW
USE address NEW
SET INDEX TO adr1, adr2
? INDEXCOUNT() // 2
? cust->(INDEXCOUNT()) // 0

Classification:
database

Compatibility:
Available in FS only.

Related:
SET INDEX TO, DBSETINDEX(), USE...INDEX, oRdd:IndexCount

FUN 319

INDEXDBF ()
Syntax:

retC = INDEXDBF ([expN1])
Purpose:

Determines the name of the associated database, which was used to create a index
file.

Options:
<expN1> specifies the ordinal position of the index in the list of indices currently
open in the current working area. Zero specifies the current controlling index. If no
argument is given, zero is assumed.

Returns:
<retC> is the name of the database file which was active during the indexing using
the INDEX ON command or the DBCREATEINDEX() function. The returned file
name (up to 19 characters) includes the extension but not the path.

Description:
INDEXDBF() is a database function that reads the data from the index header of
associated index file in the current working area. The header data is stored by the
INDEX ON command.

To execute the function in a different working area than the current one, use
alias->(INDEXDBF()).

Example:
USE address NEW EXCLUSIVE
INDEX ON UPPER(name) TO adr1
USE
//
USE mydbf NEW
SET INDEX TO adr1, adr2
? INDEXCOUNT() // 2
? INDEXDBF(1) // address.dbf
IF .not. (INDEXDBF() $ DBF())

? "wrong index file used !"
QUIT

ENDIF

Classification:
database

Compatibility:
Available in FS only.

Related:
INDEX ON, SET INDEX TO, DBSETINDEX(), INDEXNAMES(), USE

FUN 320

INDEXEXT ()
Syntax:

retC = INDEXEXT ()
Purpose:

Returns the default index extension based on the database driver currently used.

Returns:
<retC> is in FlagShip always ".idx" to indicate the default "DBFIDX" database
driver, unless another RDD is loaded.

Description:
Using INDEXEXT() instead of the hard coded index extension allows you to write
fully portable programs for DOS and UNIX.

In a well-designed application, it is usual to check the ability of index files to create
the indices automatically. To determine the existence of the index file, use FILE()
function, see example.

Note: FlagShip supports the conversion of "hard coded" extensions to other ones
using the FS_SET ("translext") function.

Example:
USE article
IF .NOT. FILE("adrname" + INDEXEXT())

INDEX ON UPPER(name) TO adrname
ENDIF

FS_SET ("transl", "ntx", "idx")
IF FILE ("address.ntx")

? "index for address database is available"
ENDIF

Classification:
database

Compatibility:
FlagShip returns ".idx" with the default "DbfIdx" driver. In Clipper, ".NTX" is normally
returned instead.

Related:
INDEXORD(), INDEXKEY(), FILE(), FS_SET(), oRdd:Info(), oRdd:OrderInfo()

FUN 321

INDEXKEY ()
Syntax:

retC = INDEXKEY (expN)
Purpose:

Returns the key expression of a specified index.

Arguments:
<expN> specifies the ordinal position of the index in the list of indices currently
open in the current working area starting at one. Zero specifies the current
controlling index.

Returns:
<retC> is the stored key expression string in the index header. If the <expN>
argument is out of range, a null string "" is returned.

Description:
INDEXKEY() is a database function that determines the key expression of a
specified index in the current working area and returns it as a character string. The
returned expression can be evaluated as a macro (see example).

To execute the function in a different working area from the current one, use
alias->(INDEXKEY(n)).

INDEXKEY() reads the key expression from the header of current or specified index
file. With &(INDEXKEY()) or &(INDEXKEY(n)), you will get the key value,
determined from current database record. The real index key value, stored in the
index file, is available via DbObject():OrderInfo(DBOI_KEYVAL), and it should be
equivalent to &(INDEXKEY()), otherwise the index is corrupted, and run-time-error
RTE 331 is reported at access by SEEK, GOTO n + SKIP etc.

Example:
USE article INDEX name, idnum
? INDEXKEY(0) && "UPPER(Name)"
? &(INDEXKEY(0)) && "SMITH "
SET ORDER TO 2
? INDEXKEY(0) && "Id_Numb"
? INDEXKEY(1) && "UPPER(Name)"
? INDEXKEY(2) && "Id_Numb"
? INDEXKEY(3) && ""
? &(INDEXKEY(0)) && 254

#include "rddsys.fh"
? DbObject():OrderInfo(DBOI_KEYVAL) && 254

Classification:
database

Related:
SET INDEX, SET ORDER, USE, INDEXORD(), INDEXCHECK(), oRdd:IndexKey,
oRdd:OrderInfo

FUN 322

INDEXNAMES ()
Syntax:

retA = INDEXNAMES ()
Purpose:

Determines the file names of all currently assigned indices in the current working
area.

Returns:
<retA> is a one-dimensional array. Each character element contains the full index
name, including path and extension. If no database or index is open, an empty
array { } is returned.

Description:
INDEXNAMES() is a database function that determines the file names of all
associated indices in the current working area. The name is returned as an array
element in the order of the index assignments by SET INDEX TO.

To execute the function in a working area other than the current one, use
alias->(INDEXNAMES()).

Example:
SET PATH TO /usr/data;../peter
USE adres NEW SHARED
SET INDEX TO adr1
USE mydbf NEW INDEX aa1, bb2

? adres->(INDEXNAMES())[1] && /users/adr1.idx
xx = adres->(INDEXNAMES()); ? xx[1] && /users/adr1.idx
AEVAL (INDEXNAMES(), {|x| QOUT(x)}) && /usr/data/aa1.idx

&& /users/peter/bb2.idx

Classification:
database

Compatibility:
Available in FS only.

Related:
SET INDEX TO, DBSETINDEX(), oRdd:OrderInfo()

FUN 323

INDEXORD ()
Syntax:

retN = INDEXORD ()
Purpose:

Determines the ordinal number of the controlling index in the list of indices currently
open in the selected working area.

Returns:
<retN> is the numeric value representing the position of the controlling index in the
list of open indices in the current working area. A zero value indicates that the
current database file is treated in the natural order.

Description:
INDEXORD() is a database function that determines the position of the controlling
index in the list of index files opened by the last USE...INDEX or SET INDEX TO in
the current working area.

This function allows a procedure to save the current index number, use a different
open index and later re-use the original index.

To execute the function in a different working area from the current one, use
alias->(INDEXORD()).

Example:
USE article INDEX name, idnumb
old_ord = INDEXORD() && store current order
? INDEXORD() && 1
SET ORDER TO 2
? INDEXORD() && 2
LIST name, address
SET ORDER TO (old_ord) && restore old order

Classification:
database

Related:
SET INDEX, SET ORDER, USE, INDEXKEY(), oRdd:IndexOrd()

FUN 324

INFOBOX ()
Syntax:

retN = InfoBox (expC1, [expC2], [expN3])
Purpose:

Display an InfoBox dialog, similar to Alert()

Arguments:
<expC1> is a string containing the displayed text, the lines are separated by
semicolon ";" or "\n". See additional details below and in Alert() description.

<expC2> is an optional header text.

<expN3> is optional time-out in seconds. Zero or NIL specify to wait until user press
key or mouse selection. When the time-out expires without user action, the box is
closed and <retN> is set to 0.

Description:
The InfoBox() function is available for your convenience. It uses, and is equivalent
to InfoBox{NIL,cHeader,cMessage}:Show().

Alignment and Tuning:
The default alignment is left justified in GUI and centered in Terminal i/o mode. You
may override these defaults by assigning
_aGlobSetting[GSET_G_N_ALERT_ALIGN] := numValue // default = 0

where <numValue> = 0: default alignment, 1: left justify, 2: center, 3: right justify. In
addition to, every single line can be individually aligned by three special characters
at the line begin (i.e. after the ";" or "\n" line separator): "<<!" align left, ">>!" align
right, "><!" or "<>!" to center this line, e.g.
InfoBox("><!centered;<<!left;>>!right;default alignment")

Of course, these special marker are filtered out from the text. See example in
<FlagShip_dir>/system/memoedithand.prg

If the line is too long, it is automatically wrapped. In GUI mode, you may specify the
maximal text width and height (in pixel) by assigning
_aGlobSetting[GSET_G_N_ALERT_WIDTH] := nPix // default = 0
_aGlobSetting[GSET_G_N_ALERT_HEIGHT] := nPix // default = 0

or <nPix> = 0: adjust/fit box to current window size, or <nPix> = -1: adjust/fit box to
desktop size. In GUI mode, the default font oApplic:FontWindow is used, except
you specify your own font object by assigning
_aGlobSetting[GSET_G_O_ALERT_FONT] := oFont|NIL // def = NIL

In Terminal i/o mode, the displayed box and wrapping is adjusted automatically
according to MaxCol() and MaxRow().

In Terminal i/o mode, the color is specified in global variable
_aGlobSetting[GSET_T_C_INFBOXCOLOR] := "W+/BG,BG+/GR" // default

and can be re-assigned according to your needs.

FUN 325

In GUI mode, the box is displayed as pop-up dialog and can be moved by mouse.
In Terminal i/o, the screen area beneath the box is saved, the box displayed, and
after user input the original screen area is restored. You may use pop-up dialog box
in Terminal i/o mode instead, when assigning
_aGlobSetting[GSET_L_BOXES_POPUP] := .T. // default = .F.

and move the pop-up box by cursor/special keys assigned to
_aGlobSetting[GSET_A_BOXES_KEYS] := {{keyValue,orientation},..}}

where <keyValue> is the Inkey() value and <orientation> is one char from
"L,R,U,D,T,B" (Left, Right, Up, Down, TopLeft,BottomRight). Do not use K_LEFT,
K_UP etc. for <keyValue>, since these keys are used for the button-selection, use
Ctrl- or Alt-keys instead. Assigning an empty array to this global setting will disable
InfoBox() movement. Upon needs, you may re-define the vertical and horizontal
movement stepping by _aGlobSetting[GSET_N_BOXES_ROWS|COLS], see
defaults in initio.prg

Example:
InfoBox("Hello World", "Greetings")

Compatibility:
New in VFS. The expN3 is supported since VFS7

Source:
The source code is available in <FlagShip_dir>/system/boxfunct.prg, and default
settings in <FlagShip_dir>/system/initio.prg

Related:
Alert(), ErrBox(), WarnBox(), TextBox(), OBJ.InfoBox{}, ErrorBox{}, MessageBox{},
WarnBox{}, TextBox{}

FUN 326

INKEY ()
Syntax:

retN = INKEY ([expN1], [expN2], [expL3], [expL4])
Purpose:

General input function. Reads a character from the keyboard buffer, optionally
waiting for key to be pressed. In GUI mode, Inkey() may report also mouse
movement, press/release mouse buttons and mouse wheel action.

Options:
<expN1> specifies the number of seconds INKEY() will wait for a character to be
typed in. The lowest valid wait value is 0.1 seconds. If zero is specified, INKEY()
waits until a character has been entered.

If the argument is not specified, INKEY() does not wait for a key press.

<expN2> is an input mask, filtering only specified events from the buffer. See
INKEY_* constants in include/inkey.fh, default is a value returned from
Set(_SET_EVENTMASK)

<expL3> is a logical value, .T. specifies that the input should be echoed. Default is
.F., no echo

<expL4> is a logical value considered in GUI mode only and specifying the
translation mode. Passing .F. will use SET CHARSET ISO, .T. will use SET
CHARSET ASCII, and NIL or undefined will use current setting.

Returns:
<retN> is a numeric value in the range -47 to 1035, representing the ASCII value of
the key or mouse fetched from the ahead buffer. If the buffer is empty, zero is
returned.

Description:
INKEY() is a keyboard function that extracts the next key pending in the keyboard
type-ahead buffer and returns a value representing that key. The last nine retrieved
keyboard values are also saved internally and can be accessed using LASTKEY().

The INKEY() function with <expN> argument can be used to pause program
execution, to check a termination key pressed in LIST, REPORT or other
commands using the WHILE clause etc. If you wish to automatically abort waiting
Inkey(n) after some time, use KeySec() or KeyTime() functions from FS2 Toolbox.

Procedures which have been assigned to keys using SET KEY...TO will not be
evaluated within INKEY(), the key value is returned instead. If necessary, use DO
<procname> to call these procedures.

INKEY() is similar to the NEXTKEY() function, but the NEXTKEY() does not remove
the key from the keyboard buffer and does not store the value in LASTKEY().

For a list of INKEY() codes and "inkey.fh" constants, refer to the Appendix APX.

FUN 327

Inkey() is the central function for managing user input. It is used also by associated
commands or functions like InkeyTrap(), ACCEPT, INPUT, WAIT, READ etc. The
keyboard input is in Terminal and GUI mode asynchronous, which means the user
key press (or string passed by KEYBOARD command) is stored in the keyboard or
event buffer and can be retrieved by the application later via Inkey() and associated
commands or functions. The same is valid for mouse movement or button press in
GUI mode, whereby many of the mouse (and keyboard) actions may be handled by
the GUI subsystem automatically. In Basic i/o mode, the input is handled
synchronously by the standard i/o system at the time of invoking Inkey(). See
additional details in chapter Compatibility below, and in section LNG.5.4.4

For unconditional waiting w/o CPU load and w/o key trap, e.g. in background or
CGI/Web applications, as well as for simple waiting or pause, use Sleep() or
SleepMs() functions instead of Inkey(n).

Mouse:
Mouse movements, buttons and wheel are reported in GUI mode only.

Mouse movements are reported only when you enable the INKEY_MOVE or
INKEY_MOUSE mask by SET EVENTMASK and/or by <expN2> of Inkey(), and are
disabled by default with the INKEY_ALL_BUT_MOVE mask.

Mouse buttons and mouse wheel are enabled by default. The left, mid and right
mouse buttons are reported in pressed and released status. Mouse buttons and
mouse wheel status can be modified by simultaneous pressing the Shift, Control or
Alt keyboard key. The current mouse coordinate on the screen is reported by
MRow() and MCol() functions.

Performance:
You should avoid polling, i.e. the construct

while .T. // an endless loop
key := Inkey() // get/check key without waiting (polling)
if key != 0 // if any key is pressed/available,

exit // exit the endless loop
endif

enddo
but use

key := INKEY(0) // wait (sleep) until key press
instead. This is because the waiting INKEY(n) does not affect CPU load, whilst the
first construct (non-waiting mode) heavy loads CPU through repeating the empty
loop.

Tuning:
In GUI, Inkey() reacts per default on key press. You may change the behavior to
consider a key at the time of releasing, by assigning
_aGlobSetting[GSET_G_N_KEYEVENT] := 2 // default = 1

The system-own mouse wheel driver often reports multiple up/down movements at
single wheel action, depending on the mouse resolution. Inkey() will filter the
subsequently reported movements by setting
_aGlobSetting[GSET_N_WHEEL_STEPS] := 4 // default

FUN 328

so here only the first of each 4 reported wheel up/down movements returns
K_MOUSEWHEELUP or K_MOUSEWHEELDN, the subsequent three movements
are returned as K_MOUSEWHEEL. You may check it by e.g. the <FlagShip_dir>/
examples/keyboard.prg program. You may disable reporting mouse wheel by
Inkey() at all by
_aGlobSetting[GSET_L_ACCEPT_WHEEL] := .F. // default = .T.

or by setting the corresponding filter mask.

Example:
ESC terminates the listing, any other key pauses the output:

USE authors
LIST lastname, firstname WHILE myPause()
USE
RETURN

FUNCTION myPause
LOCAL key := INKEY ()
IF key = 0

RETURN .T.
ELSEIF key = K_ESC // 27

? "*** aborted by user ***"
RETURN .F.

ENDIF
? "press any key..."; INKEY(0) // or simply: WAIT
RETURN .T.

Classification:
system request, keyboard and mouse input driver

Compatibility:
In Terminal i/o mode, the INKEY() functionality is only properly supported, if either
fgsInitCurses() or fgsloctl2() is initialized (which is the default with activated Curses,
see the <FlagShip_dir>/ system/cursinit.prg file). If both are disabled, the driver is in
raw, waiting mode awaiting a key press and <return>.

In GUI mode, INKEY() functionality is always properly initialized at startup of the
application, mouse is supported.

In Basic mode, INKEY(n) is simulated by standard C functions ioctl() and
read(stdin) in Unix/Linux and _kbhit() + _getch() in Windows. If SET INPUT is OFF,
input is ignored and only the _SET_NOINPUTCAHR value is returned.

The 2nd and 3rd parameters are new in FS5, same as mouse events

Include:
The #include-able key manifests and constants are available in "inkey.fh", located in
<FlagShip_dir>/include directory.

Related:
InkeyStatus(), InkeyTrap(), Inkey2str(), KEYBOARD, LASTKEY(), NEXTKEY(), SET
KEY, SET TYPEAHEAD, inkey.fh, SLEEP(), SLEEPMS(), SYS.2.7

FUN 329

INKEYSTATUS ()

Syntax 1:
retL = InkeyStatus (expN1, [expL2])

Syntax 2:
retN = InkeyStatus ([expL2])

Purpose:
Returns status of toggled and special keys

Arguments:
<expN1> is the requested status flag, as defined in inkey.fh

status <expN1> Description Type at start set()
STATUS_NUMLOCK NumLock status toggle on/off -
STATUS_CAPSLOCK CapsLock status toggle on/off -
STATUS_SCROLL ScrollLock status toggle on/off -
STATUS_INSERT Insert status toggle off yes
STATUS_SHIFT Shift key status on/off off -
STATUS_CTRL CTRL key pressed on/off off -
STATUS_ALT ALT key pressed on/off off -
STATUS_ALTGR CTRL + ALT pressed on/off off -
STATUS_MENU Menu key status on/off off -
STATUS_LWINDOW Left window key on/off off -
STATUS_RWINDOW Right window key on/off off -
STATUS_META Meta key on/off off -
STATUS_ANYKEY all/any of above keys
STATUS_LEFTDOWN Mouse: Left button on/off off -
STATUS_MIDDOWN Mouse: Mid button on/off off -
STATUS_RIGHTDOWN Mouse: Right button on/off off -
STATUS_WHEEL Mouse: Wheel on/off off -
STATUS_MOUSESHIFT Mouse: Shift + button on/off off -
STATUS_MOUSEALT Mouse: Alt + button on/off off -
STATUS_MOUSECTRL Mouse: Ctrl + button on/off off -
STATUS_MOUSEDOUBLE Mouse: Double click on/off off -
STATUS_ANYMOUSE all/any of above mouse

The status flags may be binary or-ed or added to each other.

Option:
<expL2> .T. value triggers to re-read LED status keys

Returns:
<retL> is .T. if the requested flag (or all given flags) is/are set

<retN> are all current flags or-ed (or added) to each other

FUN 330

Description:
With InkeyStatus() you may determine press of special keyboard keys or mouse
button status, reported at the time of last invocation of Inkey(), InkeyTrap(), READ,
WAIT etc. Some of these flags are available also by evaluating the returned Inkey()
value, some are not available otherwise.

The LED lighted toggle keys (NumLock, CapsLock, ScrollLock) are determined at
program start and are toggled on/off at key or mouse button press - but not when
Inkey() returns 0, since the detection may be slightly time expensive (approx 1ms in
X11). If you wish to determine these LED flags also without waiting for a key, invoke
InkeyStatus(.T.) or InkeyStatus(STATUS_*, .T.)

All other switches reports the status of last Inkey() key press within current
application. The flags are set by corresponding key press and reset by other keys
within Inkey() or InkeyTrap() or other input functions. Neither KEYBOARD nor
LastKey() or NextKey() affect the status.

Changing of the STATUS_INSERT flag by key press outside of GET/READ and
MemoEdit() is allowed only when SET(_SET_INSERT_INKEY) is .T., the default is
.F. You may set/clear the Insert mode in program by using SET(_SET_INSERT) or
ReadInsert() functions.

The mouse button flags are set in GUI mode only. Similar to the status of keyboard
flags, the flag is set when the left or mid or right mouse button is pressed and
remain set until another mouse button was pressed. When also the Shift or Ctrl or
Alt key was pressed, the corresponding modifier flag is set as well.

Implementation Note:
Determining the LED status keys in Terminal i/o mode in Unix/Linux depends on
the used environment (X11 or plain console). To avoid linking the X11 library (which
is sometimes not installed on servers or on basic systems), the default behavior of
InkeyStatus() available in the FlagShip library considers plain console only, i.e. it
returns .F. in application compiled and/or executed by -io=t switch in X11
environment (like KDE or Gnome console) - even if the LED lights; this is because
these keys needs to be determined via X11 in such a case.

To enable this feature also for non-GUI applications running in X11 environment,
simply compile the <FlagShip_dir>/system/inkeystatapi.c and add the object to your
application, see details in header of the source file.

The LED status keys/lights are available per default in the FlagShip library (w/o
recompiling) for application running in GUI mode, or for Terminal i/o applications
running on plain textual console w/o X11, or in FlagShip for MS-Windows.

Example:
? "any key : "
key := inkey(0) // wait for key
? "key pressed =", ltrim(key), "=", inkey2str(key)

? "Insert status is " + if(InkeyStatus(STATUS_INSERT), "ON","OFF")
SET(_SET_INSERT, .T.) // or ReadInsert(.T.)
? "Insert status is " + if(InkeyStatus(STATUS_INSERT), "ON","OFF")

FUN 331

if InkeyStatus(STATUS_CAPSLOCK, .T.)
? "CapsLock is ON"

endif

if InkeyStatus(STATUS_CTRL + STATUS_ALT)
? "Ctrl and Alt key (or AltGr) pressed"

endif
if BinAnd(InkeyStatus(), STATUS_CTRL + STATUS_ALT) > 0

? "Either Ctrl or Alt or both or AltGr pressed"
endif

Example:
key := 0
while key != K_ESC

? "Press any key (or ESC) : "
key := inkey(2)
?? ltrim(key), "=", inkey2str(key)
? "- Status:", GetInkeyFlags()

enddo
wait

FUNCTION GetInkeyFlags()
local cTxt := ""
if InkeyStatus(.T.) > 0
cTxt += if(InkeyStatus(STATUS_INSERT), "Insert ", "")
cTxt += if(InkeyStatus(STATUS_CAPSLOCK), "CapsLock ", "")
cTxt += if(InkeyStatus(STATUS_NUMLOCK), "NumLock ", "")
cTxt += if(InkeyStatus(STATUS_SCROLL), "ScrollLock ","")
cTxt += if(InkeyStatus(STATUS_SHIFT), "Shift ", "")
cTxt += if(InkeyStatus(STATUS_CTRL), "Ctrl ", "")
cTxt += if(InkeyStatus(STATUS_ALT), "Alt ", "")
cTxt += if(InkeyStatus(STATUS_LWINDOW), "LeftWin ", "")
cTxt += if(InkeyStatus(STATUS_RWINDOW), "RightWin ", "")
cTxt += if(InkeyStatus(STATUS_MENU), "Menu ", "")
cTxt += if(InkeyStatus(STATUS_META), "Meta ", "")

endif
if BinAnd(InkeyStatus(), STATUS_ANYMOUSE) > 0
cTxt += if(InkeyStatus(STATUS_MOUSEDOUBLE),"Double-", "")
cTxt += if(InkeyStatus(STATUS_LEFTDOWN), "MouseLeft", "")
cTxt += if(InkeyStatus(STATUS_MIDDOWN), "MouseMid", "")
cTxt += if(InkeyStatus(STATUS_RIGHTDOWN), "MouseRight", "")
cTxt += if(InkeyStatus(STATUS_WHEEL), "MouseWheel", "")
cTxt += if(InkeyStatus(STATUS_MOUSESHIFT), "+Shift", "")
cTxt += if(InkeyStatus(STATUS_MOUSECTRL), "+Ctrl", "")
cTxt += if(InkeyStatus(STATUS_MOUSEALT), "+Alt", "")

endif
return trim(cTxt)

Compatibility:
New in FS6

Related:
Inkey(), InkeyTrap(), Inkey2str(), SET(_SET_INSERT), inkey.fh, inkeystatapi.c

FUN 332

INKEYTRAP ()
Syntax:

retN = InkeyTrap ([expN1], [expN2], [expL3],
[expL4], [expL5])

Purpose:
Reads a character from the keyboard buffer, optionally waiting for key to be
pressed. Consider the SET KEY, SET FILTER and ON KEY trapping.

Options:
<expN1> specifies the number of seconds INKEY() will wait for a character to be
typed in. The lowest valid wait value is 0.1 seconds. If zero is specified, InkeyTrap()
waits until a character has been entered. If the argument is not specified,
InkeyTrap() does not wait for a key press.

<expN2> is an input mask, filtering only specified events from the buffer. See
INKEY_* constants in include/inkey.fh, default is a value returned from
Set(_SET_EVENTMASK)

<expL3> is a logical value, .T. specifies that the input should be echoed. Default is
.F., no echo

<expL4> is optional logical value or NIL, specifying how to continue after
processing of keys assigned by SET KEY or ON KEY:

•when true (.T.), InkeyTrap() executes the SET KEY or ON KEY function or
codeblock and waits for the next key press, when <expN1> is present. This is
similar to RETRY statement in FoxPro. An UDF assigned by ON ANY KEY is
processed by the same way, but InkeyTrap() terminates thereafter returning the
pressed key, to avoid an infinite loop.

•when false (.F.), InkeyTrap() executes the SET KEY, ON KEY or ON ANY KEY
function or codeblock and terminates, returning the pressed key.

•Otherwise, when a key assigned via SET KEY is pressed, the UDF is executed
and InkeyTrap() waits for the next key input when <expN1> was specified. When
a key assigned by ON KEY or ON ANY KEY is pressed, the assigned UDF or
code block is executed and InkeyTrap() terminates, returning the pressed key.
This is similar to the behavior of WAIT command.

<expL5> is optional logical value or NIL, specifying how to handle a key assigned
by SET FUNCTION. If .T. or NIL, it fills the keyboard buffer and returns its first
character. Note that the same key assigned by SET KEY, ON KEY or ON ANY KEY
has higher preference than the SET FUNCTION key.

FUN 333

Returns:
<retN> is a numeric value in the range -47 to 1035, representing the ASCII value of
the key or mouse fetched from the ahead buffer. If the buffer is empty, zero is
returned.

Description:
InkeyTrap() is equivalent to Inkey() but it automatically executes SET KEY, SET
FUNCTION or ON KEY actions, not processed by Inkey().

Compatibility:
New in FS5

Related:
Inkey(), Inkey2str(), inkey.fh

FUN 334

INKEY2READ ()
Syntax:

retL = Inkey2Read (expC1)
Purpose:

Provides own Inkey2str() text values

Arguments:
<expC1> is the file name containing the Inkey2str() text

Returns:
<retL> is .T. on success, .F. on failure

Description:
With Inkey2Read(), you may provide your own text for Inkey2str()

Compatibility:
New in FS5

Related:
Inkey(), InkeyTrap(), Inkey2str(), inkey.fh

FUN 335

INKEY2STR ()
Syntax:

retC = Inkey2str (expN1)
Purpose:

Translates inkey value to human readable string

Arguments:
<expN1> is the INKEY() return value to be converted.

Returns:
<retC> is a character string explaining the passed inkey number.

Description:
Inkey2str() tries to translate the passed number to human readable text. If no
equivalence was found, empty string "" is returned. You may provide your own text
by Inkey2read()

Compatibility:
New in FS5

Related:
Inkey(), InkeyTrap(), Inkey2read(), inkey.fh

FUN 336

INSTDCHAR ()
Syntax:

retC = InStdChar ([expN1], [expL2])
Purpose:

Wait for one char (w/o RETURN) from stdin, same as non-canonic read(0) in C

Arguments:
<expN1> waiting period in seconds. If NIL, non-waiting read

<expL2> output echo if .T., default is .F. w/o echo

Returns:
<retC> is a single character entered or "" if none.

Description:
InStdChar() read directly from the device and is designed mainly for basic mode (-
io=b) and Web/CGI applications.

Compatibility:
New in FS5

Related:
InStdString(), Inkey(), InkeyTrap(), Fread()

FUN 337

INSTDSTRING ()
Syntax:

retC = InStdString ([expN1])
Purpose:

Wait for string + RETURN from stdin, same as fgets(stdin) in C canonic with LF &
echo.

Arguments:
<expN1> max number of characters to read. If not given, the whole string is
returned.

Returns:
<retC> is the entered string.

Description:
InStdString() read directly from the device and is designed mainly for basic mode (-
io=b) and Web/CGI applications. See also FreadStdIn() for alternative input

Compatibility:
New in FS5

Related:
InStdChar(), FreadStdIn(), Inkey(), InkeyTrap()

FUN 338

INT ()
Syntax:

retN = INT (expN)
Purpose:

Chops decimal digits off the result of a numeric expression, thus converting it to an
integer value.

Arguments:
<expN> is the numeric expression to convert.

Returns:
<retN> is a numeric value, representing the integer part of the argument.

Description:
INT () is used when a number containing decimals has to be used as an integer by
truncating (not rounding) all digits to the right of the decimal point. To round a
decimal number up and down, use ROUND() instead.

When the <expN> exceeds the integer range of +-2*10**9, this Int() function
automatically switches to double and returns numeric value with truncated decimals
(precision >= +-9*10**14). Alternatively, you may use Round(num,0) to round
instead of truncate the decimals.

Note that all mathematical operations are performed using floating point arithmetic
(and coprocessor, if available). Due to internal HW storage and rounding of (double)
floating numbers, you may get different results when truncating the integer part of a
complex expression from e.g. simple numeric constants. See also section LNG.2.9.

Example:
Centers the displayed message on the screen:

center (10, "my text"
center (11, "this is a long text")

FUNCTION center (line, text)
LOCAL col := INT((MAXCOL() - LEN(text)) / 2)
@ line, col SAY text
RETURN NIL

Classification:
programming

Related:
ROUND(), STR(), ASC(), INT2NUM(), NUM2INT(), FS2:Ceiling(), FS2:Floor(),
FS2:Sign(), FS2:IntPos(), FS2:IntNeg()

FUN 339

INT2NUM ()
NUM2INT ()
Syntax 1:

retN = INT2NUM (expN1|expI1)
Syntax 2:

retI = NUM2INT (expN1)
Purpose:

Converts a typed INTVAR variable to NUMERIC type (syntax 1) or a NUMERIC
type to typed INTVAR variable (syntax 2).

Arguments:
<expN1> is a typed NUMERIC or a usual untyped numeric variable, containing a
floating point value.

<expI1> is a typed INTVAR variable, containing a (long) integer (whole number)
value.

Returns:
<retN> is the value of <exp1>, converted to a usual NUMERIC (floating) type.

<retI> is the value of <expN1>, rounded to a (long) integer value (the result is of
INTVAR type).

Description:
INT2NUM() directly converts an INTVAR variable to the NUMERIC type. It is
equivalent to an assignment varNUM := varINT

NUM2INT() directly converts and rounds a NUMERIC variable to the NUMERIC
type. It is equivalent to calling ROUND(expN1,0), but avoids the double type
conversion (since ROUND() returns a numeric type). An assignment varINT :=
varNUM is very similar, but does not perform the rounding.

Example:
Local iVar := 987654321, iTest AS INTVAR
Local nVar := 1234.6578, nTest AS NUMERIC

? iTest := nVar // 1234
? iTest := NUM2INT(nVar) // 1235
? nTest := iVar // 987654320.999999999 (*)
? iTest := NUM2INT(iTest) // 987654321

Classification: programming
Compatibility: Available in FS4 and newer only.
Related: LOCAL...AS, FS_SET("intvar"), FS2:Ceiling(), FS2:Floor(), FS2:Sign(),

FS2:Exponent()

FUN 340

ISALPHA ()
Syntax:

retL = ISALPHA (expC1, [expL2])
Purpose:

Determines if the specified character string begins with an alphabetic character.

Arguments:
<expC1> is the character string to test.

Options:
<expL2> specifies, if the standard ASCII character set or the loadable language
specification (e.g. via fs_set("load", 1, "FSsortab.jap") should be checked.

If specified TRUE, and a language table is loaded via fs_set("load"...) +
fs_set("setlang"...), the function returns TRUE for all Alpha characters specified
there, e.g. upper/lowercase A..Z, Ž, ™, Ü etc.

Otherwise, or if not given or specified FALSE, the function returns TRUE only if the
first character of <expC1> is [A...Z] or [a...z].

Returns:
<retL> is TRUE if the first character of <expC> is alphabetic, or FALSE if it is not.
An alphabetic character is a lowercase or an uppercase character from A to Z, or
according to user defined character set, specified e.g. in FSsortab.xxx (see
SYS.2.6).

Example:
? ISALPHA("A12") && .T.
? ISALPHA("1AB") && .F.
? ISALPHA("...") && .F.

Classification:
programming

Compatibility:
International languages are supported through FS_SET("load") and FS_SET("set")
functions. This, and the second parameter is available in FlagShip only.

Related:
ISLOWER(), ISUPPER(), LOWER(), FS_SET(), UPPER(), FS_SET()

FUN 341

ISBEGSEQ ()
Syntax:

retL = ISBEGSEQ ()
Purpose:

Determines if a safe BREAK to the next END SEQUENCE or RECOVER may be
executed, i.e. if BEGIN SEQUENCE ... END is currently active.

Returns:
<retL> is TRUE if the BREAK statement can be executed and will jump to the next
RECOVER or END SEQUENCE statement. FALSE signals, that the BEGIN
SEQUENCE ... END is not active, and the BREAK statement will cause a run-time
error.

Example:
openData ("first")
do while lastkey() != 27

BEGIN SEQUENCE
iKey := achoice (5,10,7,20,;

{"List", "Create", "Modify"})
DO CASE
CASE iKey == 1

openData ("second")
listData ()

ENDCASE
USE

RECOVER
?? " (press any key or ESC)"
inkey (0)
@ 20,0

END SEQUENCE
enddo

FUNCTION openData(inFile)
USE (inFile) NEW
if !used()

@ 20,0 "Cannot open database " + inFile + ".dbf"
if ISBEGSEQ()

?? " ... try later"
BREAK

else
?? " ... sorry"
QUIT

endif
endif
return NIL

Classification: programming
Compatibility: Available in FlagShip only.
Related: BEGIN SEQUENCE, BREAK, RECOVER, BREAK()

FUN 342

ISCOLOR ()
Syntax:

retL = ISCOLOR ()
or:

retL = ISCOLOUR ()
Purpose:

Determines if the program is using a color monitor (and the color terminfo
description).

Returns:
<retL> is TRUE if a color monitor and the associated terminfo description is used,
or FALSE if it is not.

Description:
Using ISCOLOR (), you can decide which color settings to use, those for a
monochrome monitor, or those for a color monitor.

Example:
color1 = "BG/B,W/N"
color2 = "W/N,N+/W"
actcolor = IF (ISCOLOR(), color1, color2)
SET COLOR TO &actcolor // or: ...TO (actcolor)

Classification:
system, terminfo and environment vars

Compatibility:
On UNIX, the color capability will be determined from the terminfo entry "colors" and
"pairs" of the current terminal (environment variable) TERM.

Related:
SET COLOR, SETCOLOR()

FUN 343

ISDBEXCL ()
Syntax:

retL = ISDBEXCL ()
Purpose:

Determines if the database is open in exclusive mode.

Returns:
<retL> is TRUE if the database in the current working area is open in exclusive
mode, FALSE if it is not.

Description:
ISDBEXCL() is a database function that determines how the database in the current
working area was opened. A TRUE return value signals that the USE...EXCLUSIVE
or SET EXCLUSIVE ON (the default) command was used.

The function is useful to determine, if subsequent global database or index changes
have been successful.

To execute the function in a different working area from the current one, use
alias->(ISDBEXCL()).

Multiuser:
To open a database and its associated files in a multiuser and multitasking mode,
use the SHARED clause of the USE command or set the global status SET
EXCLUSIVE OFF. Once the database is open, the state cannot be changed until
the database is closed. For more information refer to LNG.4.8.

Example:
LOCAL share := .F. // default: exclusive
PARAMETERS cmdpar // get command line
IF PCOUNT() > 0

share := "/NET" $ UPPER(cmdpar)
ENDIF
IF share

USE address NEW SHARED
ELSE

ELSE address NEW EXCLUSIVE
ENDIF
IF NETERR()

? "cannot open address.dbf"
QUIT

ENDIF

FUN 344

DO indexadr
PROCEDURE indexadr
SELECT address
IF !FILE("adr1" + INDEXEXT()) // index file exists ?

IF ! ISDBEXCL() // no, create index
WHILE ! FLOCK() // at least FLOCK()
ENDDO() // required

ENDIF
INDEX ON UPPER(name) TO adr1
IF ! ISDBEXCL()

UNLOCK
ENDIF

ENDIF
SET INDEX TO adr1
RETURN

Classification:
database

Compatibility:
Available in FS only.

Related:
ISDBFLOCK(), ISDBRLOCK(), USE, SET EXCLUSIVE, oRdd:Shared

FUN 345

ISDBFLOCK ()
Syntax:

retL = ISDBFLOCK ()
Purpose:

Determines if the entire database in the current working area is locked using
FLOCK().

Returns:
<retL> is TRUE if the current database is already locked using file lock FLOCK(),
FALSE if it is not.

Description:
ISDBFLOCK() is a database function that determines the locking state of the
database in the current working area. A TRUE return value signals that the entire
database is already locked by the current user and the subsequent REPLACE has
been successful. In contrast to FLOCK(), ISDBFLOCK() will not lock the database
itself.

To execute the function in a different working area than the current one, use
alias->(ISDBFLOCK()).

Multiuser:
The file locking may be activated in shareable mode only. If the database has
already been EXCLUSIVE-ly opened by the current user, ISDBFLOCK() returns
TRUE.

Example:
USE address NEW SHARED
IF NETERR()

? "cannot open address.dbf"
QUIT

ENDIF
IF ! ISDBFLOCK() // check status

IF ! FLOCK() // try to lock
? "cannot lock a file, try later..."
RETURN

ENDIF
ENDIF
RECALL ALL

Classification:
database

Compatibility:
Available in FS only.

Related:
FLOCK(), ISDBRLOCK(), ISDBEXCL(), USE, SET EXCLUSIVE, oRdd:Info()

FUN 346

ISDBRLOCK ()
Syntax:

retL = ISDBRLOCK ([expN1])
Purpose:

Determines if the database record in the current working area is locked.

Options:
<expN1> specifies the record number, of which only the RLOCK() should be
determined. If omitted, the general lock state of the current record is returned.

Returns:
<retL> is TRUE if the current database record is already locked by RLOCK(),
FLOCK(), DBAPPEND() OR APPEND BLANK, FALSE if it is not.

Description:
ISDBRLOCK() is a database function that determines the locking state of the
database in the current working area. A TRUE return value signals that the
database record has been already locked by the current user and the subsequent
REPLACE has been successful. As opposed to RLOCK(), ISDBRLOCK() does not
lock the database itself.

To execute the function in a different working area than the current one, use
alias->(ISDBRLOCK()).

Multiuser:
The record locking may be activated in shareable mode only. If the database has
been EXCLUSIVE-ly opened by the current user, ISDBRLOCK() returns TRUE.

Example:
USE address NEW SHARED
IF NETERR()

? "cannot open address.dbf"
QUIT

ENDIF
IF ! ISDBRLOCK() // check status

IF ! RLOCK() // try to lock
? "cannot lock the record, try later..."
RETURN

ENDIF
ENDIF
REPLACE name WITH "Smith"

Classification:
database

Compatibility:
Available in FS only.

Related:
RLOCK(), ISDBFLOCK(), ISDBEXCL(), USE, SET MULTILOCKS, oRdd:RlockList

FUN 347

ISDBMULTIPLE ()
Syntax:

retL = ISDBMULTIPleopen ()
Purpose:

Determines if the database in the current working area is multiple (concurrently)
open within the same application.

Returns:
<retL> is TRUE if the current database is concurrently open in another work area
within the same application, see also LNG.4.3.

Description:
IsDbMultip() is a database function that determines the concurrent use of the same
database in different work areas at a time. To determine whether the current
database is open by another user or process, use the UsersDbf() function instead.

Example:
USE address ALIAS adr1 NEW SHARED
? used(), select(), IsDbMultiple(), RecNo() // .T. 1 .F. 1

USE address ALIAS adr2 NEW SHARED
GO BOTTOM
? used(), select(), IsDbMultiple(), RecNo() // .T. 2 .T. 54321

SELECT adr1
? used(), select(), IsDbMultiple(), RecNo() // .T. 1 .T. 1
USE
? used(), select(), IsDbMultiple(), RecNo() // .F. 1 .F. 0

SELECT adr2
? used(), select(), IsDbMultiple(), RecNo() // .T. 2 .F. 54321

Classification:
database

Compatibility:
Available in FS6 only.

Related:
USERSDBF(), DBFINFO()

FUN 348

ISDIGIT ()
Syntax:

retL = ISDIGIT (expC)
Purpose:

Determines if leftmost character in a character string is a digit.

Arguments:
<expC> is the character string to test.

Returns:
<retL> is TRUE if the first character of <expC> is a digit between zero and nine.

Example:
? ISDIGIT("a12") && .F.
? ISDIGIT("12a") && .T.
? ISDIGIT(".123") && .F.

Classification:
programming

Related:
ISALPHA(), ISUPPER(), ISLOWER(), LOWER(), UPPER()

FUN 349

ISFUNCTION ()
Syntax:

retL = ISFUNCTION (expC1)
Purpose:

Determines if a standard or user defined function is available (i.e. linked to the
application).

Arguments:
<expC1> specifies the name of the required standard function or the name of a
user defined procedure/ function.

Returns:
<retL> is TRUE if the specified procedure or function is available to the current
application.

Description:
ISFUNCTION() determines, if the specified public procedure/function was linked to
the current application. It is similar to the TYPE() function, but unlike these
ISFUNCTION() does not evaluate (execute) the UDF. Since STATIC UDFs and
UDPs are already resolved at compile-time, their names cannot be determined by
ISFUNCTION() at run-time.

If a standard or user defined function or procedure is to be invoked by a macro
evaluation only, and not called by name elsewhere in the program, use the
EXTERNAL or REQUEST command to ensure that it will be linked. Otherwise, a
run-time error may occur. Note, both a UDF used in an index key and the user
defined procedures and functions for ACHOICE(), MEMOEDIT(), DBEDIT() are
invoked by macro evaluation.

Example:
EXTERNAL myudf2 // ensure to link it
IF ISFUNCTION("myudf1") // is other one linked ?

name = "myudf1" // yes, use it
ELSE

name = "myudf2"
ENDIF
DO &name WITH 1, "text"

Classification:
programming

Compatibility:
Available in FS only.

Related:
TYPE(), ISOBJPROPERTY(), ISOBJCLASS()

FUN 350

ISGUIMODE ()
Syntax:

retL = IsGuiMode ()
Purpose:

Check if GUI mode is generally available

Returns:
<retL> is .T. if X11 (or MS-Windows) is available and running. This is generally the
case except when X11 was yet not started (startx), where IsGuiMode() will return
.F. in such a case.

Description:
This function determines the mode of X11 server. To test whether the application is
really running in GUI mode (which depends on the compiler and/or command-line -
io=? switch), use AppIoMode() instead.

Example:
static aMode := {{"G","GUI"},{"T","Terminal"},{"B","Basic"}}
local cMode := aMode[ascan(aMode, {|x| x[1] == AppIoMode()}), 2]
if IsGuiMode()

? "The application is able to run in GUI mode"
if AppIoMode() == "G"

?? " and runs so"
else

? "but is compiled/was invoked in " + cMode + " i/o mode"
endif

else
? "X11 server is not active, using " + cMode + " i/o mode"

endif

Compatibility:
New in FS5

Related:
AppIoMode(), FSC -io=? switch

FUN 351

ISLOWER ()
Syntax:

retL = ISLOWER (expC)
Purpose:

Determines if the first character of the specified string is lowercase.

Arguments:
<expC> is the character string to test.

Returns:
<retL> is TRUE if the first character of <expC> is lowercase, or FALSE if it is not. If
the first character is not alphabetic (A-Z, a-z), FALSE is returned.

Example:
? ISLOWER("a12") && .T.
? ISLOWER("A12") && .F.

Classification:
programming

Compatibility:
International languages are supported through FS_SET("load") and FS_SET("set")
functions.

Related:
ISUPPER(), ISALPHA(), ISDIGIT(), LOWER(), UPPER(), FS_SET()

FUN 352

ISOBJCLASS ()
Syntax 1:

retA = ISOBJCLASS (expO1)
Syntax 2:

retL = ISOBJCLASS (expO1, expC2)
Purpose:

Determines the class name of an object variable, as well as names of its super
classes, if any.

Arguments:
<expO1> is an already instantiated object variable.

<expC2> class name (or alias) to be tested. The case is not significant.

Returns:
<retA> is an array containing name(s) of the current and all inherited classes. The
element retA[1] contains the name of SELF. If the class is inherited from other
classes, the element retA[2] contains the name of the SUPER class. Elements
following contain names of inherited classes above the SUPER class, if available.
On error, i.e. if the <expO1> was not instantiated yet, an empty (zero length) array
is returned.

<retL> is .T. if the object <expO1> is of class <expC2> or is inherited from class
<expC2>, or the class of <expO1> is aliased by <expC2>. Otherwise .F. is returned.

Description:
ISOBJCLASS() in syntax 1 determines the class hierarchy at run- time. It returns
the current SELF class name and all inheritances, if any.

ISOBJCLASS() in syntax 2 checks if the object is of class name <expC2> or is
inherited from class <expC2>.

Example:
CLASS myClass1 ALIAS test1
EXPORT var1

CLASS myClass2 INHERIT myClass1 ALIAS test2
EXPORT var3

oMyObj1 := myClass1 {} // instantiate basic class
aeval (IsObjClass(oMyObj1), {|x| qout(x)}) // MYCLASS1

oMyObj2 := myClass2 {} // instantiate derivated class
aClassName := IsObjClass(oMyObj2)
aeval (aClassName, {|x| qout(x)}) // MYCLASS2 MYCLASS1

FUN 353

@ 5,1 GET myVar // instant. in GETLIST[n]
aClassName := IsObjClass(GetList[1])
? len(aClassName), aClassName[1], ;

IsObjClass(GetList[1],"get") // 1 _GGET .T.

? IsObjClass(oMyObj1, "myclass1") // .T. (self)
? IsObjClass(oMyObj1, "myclass2") // .F.
? IsObjClass(oMyObj1, "test1") // .T. (alias of self)
? IsObjClass(oMyObj1, "test2") // .F.

? IsObjClass(oMyObj2, "myclass1") // .T. (super, inherited)
? IsObjClass(oMyObj2, "myclass2") // .T. (self)
? IsObjClass(oMyObj2, "test1") // .F. (not alias of self)
? IsObjClass(oMyObj2, "test2") // .T. (alias if self)

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
CLASS, ISOBJPROPERTY(), DBOBJECT(), ISFUNCTION()

FUN 354

ISOBJEQUIV ()
Syntax:

retL = IsObjEquiv (expO1, expO2)
Purpose:

Check if two objects are equivalent

Arguments:
<expO1 and expO2> are the object variables to test.

Returns:
<retL> is .T. if both objects are equivalent, i.e. the object data are the same,
otherwise F.

Description:
Two objects are equivalent, when assigning an object to another, i.e. if <expO1> :=
<expO2> or <expO2> := <expO1>. When both the objects <expO1> and <expO2>
are instantiated by themselves, the IsObjEquiv() will never return .T. although the
object data may be currently the same - but they will differ at any change of the first
or second object instances.

Compatibility:
New in FS5

Related:
AppIoMode()

FUN 355

ISOBJPROPERTY ()
Syntax 1:

retA = ISOBJPROPErty (expO1)
Syntax 2:

retL = ISOBJPROPErty (expO1, expN2, expC3, [expN4])
Purpose:

Syntax 1 determines all visible instances and available methods. Syntax 2
determines whether an exported instance, assign, access or method is specified
within the object class.

Arguments:
<expO1> is an already instantiated object variable.

<expN2> specifies the type of required information:

1: <expC3> is an exported variable
2: <expC3> is an access method
3: <expC3> is an assign method
4: <expC3> is an usual method
5: is <expC3> a name of self or super class?
6: is <expC3> a name of class alias?

<expC3> specifies the name of the required instance or method.

Options:
<expN4> specifies the source of the property:

0: is the property generally available ?
1: is the property declared in the SELF class ?
2: is the property declared in the SUPER class ?

If the parameter is omitted, 0 is assumed.

Returns:
<retA> is a two-dimensional array of available properties. The first element of the
sub-array contains the instance or method name (similar to <expC3>), the second
the property type (similar to <expN2>). Note, that the array sorting sequence must
not match the sequence of the class declaration.

<retL> is TRUE if the specified instance or method is available in the given
object/class.

For classes inherited from DataServer or other predefined classes, TRUE may also
signal that the method is available, but this may point only to "NoMethod()",
"NoiVarGet()" or "NoiVarPut()", see also sect. LNG.2.11.3. In such a case, check
the real availability with expN4=1.

FUN 356

Description:
ISOBJPROPER() determines at run-time, if the specified export instance or assign,
access or usual method was declared within the class. It determines the currently
linked SELF: or SUPER: property of the given object.

The simplified invocation according to syntax 1 returns an array containing
information about the SELF class.

Example:
CLASS myGet INHERIT get
METHOD left CLASS myGet

return SUPER:left()
METHOD other CLASS myGet

return NIL
local oGet := myGet{ }
? IsProperty (oGet, 4, "left") // visible: .T.
? IsProperty (oGet, 4, "left", 1) // self : .T.
? IsProperty (oGet, 4, "left", 2) // super : .T.

? IsProperty (oGet, 4, "right") // visible: .T.
? IsProperty (oGet, 4, "right", 1) // self : .F.
? IsProperty (oGet, 4, "right", 2) // super : .T.
? IsProperty (oGet, 4, "other", 0) // visible: .T.
? IsProperty (oGet, 4, "other", 1) // self : .T.
? IsProperty (oGet, 4, "other", 2) // super : .F.

Example:
CLASS myClass
EXPORT var1
PROTECT var2

METHOD meth1 CLASS myClass
return "something"

ACCESS var2 CLASS myClass
return var2

ASSIGN var2(value) CLASS myClass
return var2 := value

Function MyFunct()
LOCAL oMyObj // AS myClass
oMyObj := myClass {} // instantiate
** := myClassNew () // - alternative

? ISOBJPROPER (oMyObj, 1, "var1") // .T.
? ISOBJPROPER (oMyObj, 1, "var2") // .F.
? ISOBJPROPER (oMyObj, 2, "var2") // .T.
? ISOBJPROPER (oMyObj, 2, "var2", 2) // .F.
? ISOBJPROPER (oMyObj, 3, "var2") // .F.
? ISOBJPROPER (oMyObj, 4, "meth1") // .T.
? ISOBJPROPER (oMyObj, 4, "init") // .F.

FUN 357

aeval (ISOBJCLASS (oMyObj), {|x| qout("**", x, "**")})
aeval (ISOBJPROPER(oMyObj), {|x| qout(x[1], x[2])})

// ** MYCLASS **
// METH1 4
// VAR1 1
// VAR2 2
// VAR2 3

return NIL

Classification:
programming

Compatibility:
Available in FS only. It is a superset of VO functions IsInstanceOf() and IsMethod()

Related:
CLASS, METHOD, ISOBJCLASS(), ISFUNCTION()

FUN 358

ISPRINTER ()
Syntax:

retL = ISPRINTER ()
Purpose:

Ensures compatibility with other dialects. FlagShip stores all printer output to the
printer file, so, logically, the printer is always "ON LINE".

Returns:
<retL> is always TRUE.

Classification:
programming

Compatibility:
In other xBase dialects like Clipper, ISPRINTER() determines (using the IBM BIOS
call) if the LPT1 port is available and ready.

Related:
SET DEVICE, SET PRINT

FUN 359

ISUPPER ()
Syntax:

retL = ISUPPER (expC)
Purpose:

Determines if the first character of the specified string is uppercase.

Arguments:
<expC> is the character string to test.

Returns:
<retL> is TRUE if the first character of <expC> is an uppercase letter, or FALSE if it
is not. If the first character is not alphabetic (A-Z, a-z), FALSE is returned.

Example:
? ISUPPER("a12") && .F.
? ISUPPER("A12") && .T.
? ISUPPER("1A2") && .F.

Classification:
programming

Compatibility:
International languages are supported through FS_SET("load") and FS_SET("set")
functions.

Related:
ISLOWER(), ISALPHA(), ISDIGIT(), LOWER(), UPPER(), FS_SET()

FUN 360

L2BIN ()
Syntax:

retC = L2BIN (expN)
Purpose:

Transforms a numeric expression to a character string consisting of four bytes,
formatted as a binary long integer. The least significant byte comes first.

Arguments:
<expN> is a positive numeric value to be transformed. Decimal digits are truncated
(if any). The valid range is -2,147,483,647 to 2,147,483,646.

Returns:
<retC> is a four-byte character string containing a 32-bit binary integer in Intel
convention (least significant byte comes first). On error, null-string "" is returned.

Description:
L2BIN() is used to FWRITE() a long integer (32 bits) in a Intel format to a binary file.
This function is like I2BIN() which formats a short (16 bit) binary value. The inverse
function of L2BIN() is BIN2L().

Example:
handle = FCREATE("data.bin")
FWRITE (handle, L2BIN(123456), 4)
FCLOSE (handle)

Example:
outl2bin (10) // 10 0 0 0
outl2bin (1) // 1 0 0 0
outl2bin (12345) // 57 48 0 0
outl2bin (-1) // 255 255 255 255

FUNCTION outl2bin (x)
LOCAL out, ii
out := L2BIN (x)
? x,"="
FOR ii := 1 to LEN(out)

?? ASC(SUBSTR(out,ii,1))
NEXT
RETURN NIL

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
BIN2I(), BIN2L(), BIN2W(), I2BIN(), FREAD(), FREADSTR()

FUN 361

LASTKEY ()
Syntax:

retN = LASTKEY ([expNL1], [expN2], [expNL3])
Syntax 2:

retN = LASTKEY (.T.)
Purpose:

Finds out which key was previously fetched from the keyboard buffer or clears the
lastkey buffer.

Arguments:
<expN1> is the optional depth of the LASTKEY stack (0..9). If no argument is given,
default 0 is assumed.

<expL1> if the parameter is specified .T. according to syntax 2, the whole lastkey
buffer is cleared. Hence, LASTKEY(.T.) is a shortcut for a loop

FOR i := 0 to SET(_SET_LASTKEYBUFFSIZE)-1 ; LASTKEY(i,,.T.) ; NEXT

<expN2> is an input mask, filtering only specified events from the buffer. See
INKEY_* constants in include/inkey.fh, default value is INKEY_ALL

<expNL3> is an optional logical or numeric value. If set .T., the <expN1> buffer
position (or the default LastKey() value if <expN1> is not given) is cleared, and the
next LASTKEY([expN1]) invocation returns 0 - unless other key was stored there by
Inkey() etc. If the <expNL3> is numeric, this Inkey() value is stored in the buffer, and
is returned by the next LASTKEY([expN1]) invocation.

Returns:
<retN> is a numeric value in the range -47 to 255, representing the ASCII value of
the last (or previous) key fetched. LASTKEY(0) and LASTKEY() returns the last key
pressed, LASTKEY(1) one key before it, and so on, up to LASTKEY(9). When the
lastkey buffer is cleared, LASTKEY() returns a value available on the stack before it
clearing.

Description:
LASTKEY() is a keyboard function that reports the INKEY() value of a key fetched
from the keyboard buffer by the INKEY() function, or a wait state such as ACCEPT,
INPUT, READ, WAIT, ACHOICE(), DBEDIT(), or MEMOEDIT().

LASTKEY(n) is useful for trapping previous user actions or to report errors.

The lastkey() buffer size can be increased by Set(_SET_LASTKEYBUFFSIZE,
nSize) where the default is 10, and cleared using the 3rd LastKey() parameter.

See appendix table for INKEY() return codes, which are identical with the
LASTKEY() codes.

FUN 362

Example 1:
memo = MEMOEDIT (memofld, 0,0,24,79, .T.)
IF LASTKEY() <> 27

REPLACE memofld WITH memo
ENDIF

Example 2:
INKEY() && fetch last key press
IF FlagShip && call by macro to

FOR i = 0 TO 9 && suppress Clipper errors
x = "LASTKEY(" + LTRIM(STR(i)) + ")"
? "Key pressed (depth " + LTRIM(STR(i)) + ") : "
?? &x

NEXT
ELSE

? LASTKEY()
ENDIF

Example 3:
#ifdef FlagShip // alternative

FOR i = 0 TO 9
? "Key pressed (depth " + LTRIM(STR(i)) + ") : "
?? LASTKEY(i)

NEXT
#else

? LASTKEY()
#endif

Example 4:
key := Inkey(0) // wait for key
? "Last key =", ltrim(LastKey())
CLEAR TYPEAHEAD // clear typeahead buffer
last := LastKey(,,.T.) // clear current LastKey()
? "Last key =", ltrim(LastKey())

Classification:
programming

Compatibility:
Clipper does not support the optional argument and the LASTKEY() stack. For
Clipper'87 compatible programs, use the macro call in example 2 above. For C5
compatibility, the #ifdef alternative in example 3 is more comfortable.

The 2nd and 3rd parameter is new in FS5, same as mouse events

Include:
The #include-able key manifests and constants are available in "inkey.fh", located in
<FlagShip_dir>/include directory.

Related:
KEYBOARD, INKEY(), NEXTKEY()

FUN 363

LASTREC ()
Syntax:

retN = LASTREC ()
or:

retN = RECCOUNT ()
Purpose:

Retrieves the number of physical records in the current database file.

Returns:
<retN> is a numeric value, representing the number of records which are physically
present in the current database file. SET FILTER and SET DELETED ON have no
effect on the return value of LASTREC() and RECCOUNT().

If there is no database in use in the current working area, zero is returned.

Description:
LASTREC() is a database function that determines the number of physical records
in the current database.

To execute the function in a different working area from the current one, use
alias->(LASTREC()).

Example:
USE article
? LASTREC() && 100
SET FILTER TO Theme <> "Computers"
COUNT TO Others
? Others, LASTREC() && 77 100

Classification:
database

Compatibility:
LASTREC() is identical to RECCOUNT() in other xBase dialects.

Related:
SET FILTER, SET DELETED, EOF(), oRdd:LastRec, oRdd:RecCount

FUN 364

LEFT ()
Syntax:

retC = LEFT (expC1, expN2)
Purpose:

Extracts the specified number of characters from the left of the specified character
string.

Arguments:
<expC1> is the character string to extract the characters from.

<expN2> is the number of characters to extract from the left side.

Returns:
<retC> is a character string which consists of <expN2> leftmost characters of
<expC1>. If <expN2> is less than 1, a null string is returned. If <expN2> is greater
than the length of <expC1>, the entire string is returned.

Description:
LEFT() is equivalent to SUBSTR(expC1, 1, expN2). The inverse operation of
LEFT() is RIGHT().

Example:
LOCAL name := "Smith, Paul W."
? LEFT ("a12b34", 2) && a1
? LEFT (name, AT(",", name) -1) && Smith

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
AT(), LTRIM(), RAT(), RIGHT(), RTRIM(), STUFF(), SUBSTR(), TRIM(), FS_SET(),
FS2:ReplLeft(), FS2:RemLeft(), FS2:RemAll(), FS2:PosRepl()

FUN 365

LEN ()
Syntax:

retN = LEN (expC | expA)
Purpose:

Reports the length of a character string, the number of elements of an array or the
length of a character database field.

Arguments:
<expC> is the character expression for which the length should be returned.

<expA> is the array for which number of elements should be returned.

Returns:
<retN> is a numeric value representing the length of a character expression, or the
number of elements of the specified array. For a null-string "" or an empty array,
zero is returned.

Description:
With a character string <expC>, each byte counts as one, including an embedded
null byte CHR(0). The similar function STRLEN() reports the string length up to, or
including zero bytes, in dependence of the FS_SET("zero", .T.) setting.

For an array, LEN() returns the number of elements. If the array is multidimensional,
sub-arrays count as one element; LEN() simply returns the length of the first
dimension. To determine the number of elements in another dimension, use LEN()
on the (dimension -1), see LNG.2.6.4.

Example:
LOCAL test1:= {1, {2,3}, {4,5,6,7}}}, str1 := "abcd"
DECLARE test2[99], test3[10,20]
test2[55] := "aaa"
? LEN(test1), LEN(test2) && 3 99
? LEN(test1[2]), LEN(test1[3]) && 2 4
? LEN(test3), LEN(test3[1]) && 10 20
? LEN(str1), LEN(test2[55]) && 4 3
? LEN(""), LEN("Peter") && 0 5

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
STRLEN(), FIELDLEN(), FS_SET()

FUN 366

LISTBOX ()
Syntax:

retO = ListBox ([expN1], [expN2], [expN3], [expN4],
[expL5], [expL6])

Purpose:
Instantiate ListBox or ComboBox class, equivalent to ListBox{...}

Arguments:
<expN1 ... expN4> are top, left, bottom, right coordinates in that order. If not given
0,0 is assumed for top,left and maxrow/maxcol() is assumed for bottom,right
coordinates.

<expL5> if .T., ComboBox class will be created, otherwise ListBox is created (the
default)

<expL6> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

Description:
This ListBox() function is available mainly for your convenience and for compatibility
to Clipper. It is equivalent to instantiating of the Listbox{...} or ComboBox{...} class.

The ListBox class is used in GUI based application automatically for e.g. Achoice()

Compatibility:
New in FS5, available in CL53

Related:
ComboBox{}, ListBox{} classes, Achoice()

FUN 367

LOCK ()
Syntax:

retL = LOCK ()
or:

retL = RLOCK ()
Purpose:

Locks the current record in the selected working area to allow write access in
multiuser mode.

See more:
RLOCK () function.

FUN 368

LOG ()
Syntax:

retN = LOG (expN)
Purpose:

Calculates the natural logarithm of a numeric value.

Arguments:
<expN> is the numeric expression greater than zero to be calculated.

Returns:
<retN> is the resulting logarithm. In case of an illegal argument, zero is returned.

Description:
LOG() returns the natural logarithm as a numeric value. The natural logarithm has a
base of e which is approximately 2.7183. To calculate the decimal logarithm, use
LOG(expN) / LOG(10).

The inverse operation of LOG () is EXP ().

Example:
? LOG (2.71) && 1.00
? EXP (LOG(23)) && 23.00

Classification:
programming

Related:
SET DECIMALS, EXP()

FUN 369

LOWER ()
Syntax:

retC = LOWER (expC)
Purpose:

Converts all alphabetic characters of a string to lowercase.

Arguments:
<expC> is a character string to be converted to lowercase.

Returns:
<retC> is a character string with all uppercase alphabetic characters converted to
lowercase according to their ASCII values. If the FS_SET ("loadlang") language
table is used, another conversion may be specified.

Description:
LOWER() is generally used to format character strings for display purposes or to
normalize strings for case-independent comparison or indexing.

For proper Lower() conversion of extended character set > chr(127), the
FSsortab.def - or other table assigned by FS_SET("Setl"/"Load") is used.

The inverse operation of LOWER() is UPPER().

Example:
? LOWER("ABCDE") && abcde
? LOWER("1266 Maple St.") && 1266 maple st.
? UPPER("1266 Maple St.") && 1266 MAPLE ST.
FS_SET ("loadlang", 1, "FSsortab.ger")
FS_SET ("setlang", 1)
? LOWER("MÜLLER") && müller

Classification:
programming

Compatibility:
The user defined lower and upper translation using tables loaded by
FS_SET("load") and FS_SET("setlang") is available in FlagShip only. FS supports
embedded zero bytes by default.

Related:
ISLOWER(), UPPER(), ISUPPER(), ISALPHA(), ISDIGIT(), FS_SET()

FUN 370

LTRIM ()
Syntax:

retC = LTRIM (expC|expN)
Purpose:

Removes all leading spaces from a string.

Arguments:
<expC> is the character string to be trimmed.

<expN> is a numeric value which is converted to string first and then trimmed.

Returns:
<retC> is a copy of the <expC> string with all the leading blanks removed. In case
of a null string "" or all spaces, LTRIM() returns null string "".

Description:
LTRIM() can be used to remove leading blanks when numbers are converted to
strings by means of STR (), and generally for formatting strings with leading blanks.

LTRIM() is related to RTRIM() which removes trailing spaces, and ALLTRIM() which
removes both leading and trailing spaces.

The inverse operation of LTRIM() is PADL().

Example:
LOCAL yrs := 23
? STR(yrs)+ " years old." && " 23 years old."
? LTRIM(STR(yrs)) + " years old." && "23 years old."

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default. FS5 accept numeric parameter as
well.

Related:
ALLTRIM(), STR(), SUBSTR(), TRIM(), RTRIM(), PADL(), PADR(), PADC(),
FS_SET(), FS2:RemLeft()

FUN 371

LUPDATE ()
Syntax:

retD = LUPDATE ()
Purpose:

Returns the last modification date of the current database file.

Returns:
<retD> is a date value, reflecting the date of the last update. If there is no database
file in use, an empty date is returned.

Description:
LUPDATE() is a database function that determines when the database in the
current working area was last modified. This date is updated whenever the number
of records is changed, the database is closed or when COMMIT or DBCOMMIT() is
called.

To execute the function in a different working area from the current one, use
alias->(LUPDATE()).

Example:
USE article
? LUPDATE(), DATE() && 06/25/93 06/28/93
DELETE
PACK
? LUPDATE(), DATE() && 06/28/93 06/28/93
USE
USE article
? LUPDATE(), DATE() && 06/28/93 06/28/93

Classification:
database

Related:
CLOSE, SELECT, USE, oRdd:Lupdate

FUN 372

MACROEVAL ()
Syntax:

ret = MacroEval (expC1)
Purpose:

Evaluate macro, similar to &(expC1) but works on any variable type as well as on
fields

Arguments:
<expC1> is the macro string to be evaluated.

Returns:
<ret> is the result of macro evaluation.

Description:
This MacroEval() function is similar to run-time macro evaluation by the assignment
ret := &(expC1) but it accept also fields or any character expression as parameter.

Example:
cMacro := "date()"
? &(cMacro) // 01/31/2002
? MacroEval(cMacro) // 01/31/2002

Classification:
programming

Compatibility:
New in FS5

Related:
Macro evaluation in LNG.2.10, MacroSubst()

FUN 373

MACROSUBST ()
Syntax:

retC = MacroSubst (expC1)
Purpose:

Evaluate/substitute macro, similar to "...¯o ..." in text, but works on variables,
expression and on fields, not only on string constant as with the usual Text-
Substitution (see LNG.2.10)

Arguments:
<expC1> is a string containing optionally macro(s) to be evaluated.

Returns:
<retC> is the result of macro evaluation. On error (e.g. with non character
parameter), NIL is returned.

Description:
This function is similar to run-time macro substitution by the assignment cRet :=
"any text &cMacroVar any text" but it accept also fields, or any character expression
as parameter.

As opposite to the assignment where the macro must be visible at the time of
constant assignment, the MacroSubst() evaluates the whole parameter string. You
may see it as a "late" substitution as opposite to the assignment where the
substitution is initiated at compile time.

The same rules as with Text-Substitution apply to be evaluated:

•The macro operator & is immediately followed by character(s) without blanks, and

•The characters behind the macro operator (up to space or .) are assumed to be a
name of (auto)PRIVATE or PUBLIC variable and if such is available and of type
character, it is macro- evaluated/substituted. This means, the corresponding part
of <expC1> is replaced by the content of the macro variable.

•The substitution may be nested, i.e. the macro variable can contain another
macro. The nesting depth is limited to 100 to avoid unintentional endless
recursion.

If the macro variable specified within the <expC1> is not available or is not of
character type, no substitution is taken and <expC1> is returned "as is".

FUN 374

Example:
PRIVATE cMacro := "Hello", cMacro2
LOCAL cText
cText := "&cMacro world" // substituted at constant assignment
? cText // "Hello world"
? MacroSubst(cText) // "Hello world"

cText := "&cMac" + "ro world" // no substitution in these constants
? cText // "&cMacro world"
? MacroSubst(cText) // "Hello world"
? MacroSubst("&" + "cMac" + "ro world") // "Hello world"

cMacro2 := "Hi and &" + "cMacro" // nested macro
? MacroSubst("&" + "cMacro2 world") // "Hi and Hello world"

Classification:
programming

Compatibility:
New in FS5

Related:
Macro evaluation and Text substitution in LNG.2.10, MacroEval()

FUN 375

MAX ()
Syntax:

retN = MAX (expN1, expN2, [... expNn])
retD = MAX (expD1, expD2, [... expDn])

Purpose:
Returns the larger of two or more numeric or date values.

Arguments:
<expN1> ... <expNn> are the numeric expressions to be compared.

<expD1> ... <expDn> are the date expressions to be compared.

Returns:
<retN> or <retD> is the largest of the two or more arguments.

Description:
MAX() can be used when the result of an expression has to be kept greater than a
minimum value.

The inverse operation of MAX() is MIN().

Example:
? MAX (100, 88) && 100
? MAX (88, 100) && 100
? MAX (-88, -100) && -88
? DATE(), MAX (DATE(), DATE()+40) && 09/05/93 10/15/93

Classification:
programming

Compatibility:
The support of more than two arguments is new in FS5

Related:
MIN()

FUN 376

MAXCOL ()
MAX_COL ()
Syntax:

retN = MAXCOL ([expLN1], [expN2])
retN = MAX_COL ()

Purpose:
Determines the actual size of the output screen or the GUI window or of the FS2
sub-window.

Arguments:
<expLN1> is a pixel specification. If .T., the returned value is assumed in pixel, if .F.
in row/col. You may specify <expLN1> also numeric as UNIT_ROWCOL,
UNIT_PIXEL, UNIT_MM, UNIT_CM or INIT_INCH. If not given, the current SET
PIXEL or SET COORD UNIT is used, the default is UNIT_ROWCOL (screen
columns).

<expN2> is new MaxCol setting in either cols or pixel, depending on <expLN1>. If
only one parameter is supplied and is numeric > 6, it is accepted as new MaxCol
setting too. Note that MaxCol() is updated automatically in GUI mode, when you
display any character via @..SAY or ?, ??, Qout() or Qqout() etc. at a line
exceeding the current MaxCol() value.

Returns:
<retN> is the rightmost available screen column (0.. ..retN), according to the
terminfo entry for the current terminal TERM in Terminal i/o or from the current
window size in GUI. The coordinate return value is rounded to integer by default,
but the behavior may be changed by assignment to
_aGlobSetting[GSET_L_ROUNDMAXROWCOL], see details in initio.prg.

Description:
MAXCOL() and MAX_COL() are equivalent functions that determine the maximum
visible column of the screen and allows you to write full terminal independent
programs. They differ in MDI applications or when using FS2 windowing:
MAX_COL() always report the size of main screen, i.e. of window ID# 0, whilst
MAXCOL() the size of currently selected sub-window.

Terminal i/o: Changing or setting the environment variable COLUMNS will override
the terminfo entry cols#. This is automatically detected at program start-up. While
the application is running, the curses and the MAXCOL() setting may be reinitialized
using the FS_SET("setenv","COLUMNS","80",.T.) function, which will set
MAXCOL() to 79. If the terminal cannot display the number of columns set, garbage
may be output.

GUI i/o: the visible window size may by changed/resized by a mouse, except you
specify fixed size by oApplic:DefSize(). The used drawing area (pane) is not
affected by the window resizing, the whole user window is scrollable by the

FUN 377

horizontal and vertical bars. The MaxCol() function return the current size of the
user area, not of the visible window size. Use oApplic:DefSize() method if you want
to determine size of the application window. For resizing the application window,
see oApplic:Resize()

Basic i/o: MaxCol() return constant 79 simulating 80 cols display

If you are using sub-windows via standard MDIopen() or the Wopen() from FS2
Toolbox, MaxRow() and MaxCol() reports the size of the current sub-window. You
may also use WmaxRow() and WmaxCol() from the FS2 package which allows you
to specify the window ID# without changing the selection.

Example:
CLEAR
@ 0,0 to MAXROW(),MAXCOL() && box full screen

IF MAXCOL() < 79
? "Cannot execute this application with your terminal "
?? FS_SET ("term")
? "because 80 columns needed, available are " + ;

ltrim(str(MAXCOL() +1)) + " only."
? "please check other settings for TERM and start again"
QUIT

ENDIF

Classification:
system, terminfo, environment vars

Compatibility:
MAXCOL() is available in C5. MAX_COL() is supported for backward compatibility
to FS3. See also terminfo settings and the environment variable TERM and
COLUMNS, if such is set. The GUI mode and oApplic object is new in FS5

Related:
MAXROW(), COL(), ROW(), FS_SET(), SYS.2, FSC.3.3

FUN 378

MAXROW ()
MAX_ROW ()
Syntax:

retN = MAXROW ([expLN1], [expN2])
retN = MAX_ROW ()

Purpose:
Determines the actual size of the output screen or the GUI window or of the FS2
sub-window.

Arguments:
<expLN1> is a pixel specification. If .T., the returned value is assumed in pixel, if .F.
in row/col. You may specify <expLN1> also numeric as UNIT_ROWCOL,
UNIT_PIXEL, UNIT_MM, UNIT_CM or INIT_INCH. If not given, the current SET
PIXEL or SET COORD UNIT is used, the default is UNIT_ROWCOL (screen rows).

<expN2> is new MaxRow setting in either rows or pixel, depending on <expLN1>. If
only one parameter is supplied and is numeric > 6, it is accepted as new MaxRow
setting too. Note that MaxRow() is updated automatically in GUI mode, when you
display any character via @..SAY or ? or Qout() etc. at a line exceeding the current
MaxRow() value.

Returns:
<retN> is the last available screen row (0..retN), according to the terminfo entry for
the current terminal TERM in Terminal i/o or from the current window size in GUI.
The coordinate return value is rounded to integer by default, but the behavior may
be changed by assignment to _aGlobSetting[GSET_L_ROUNDMAXROWCOL], see
details in initio.prg.

Description:
MAXROW() and MAX_ROW() are equivalent functions that determine the maximum
visible row of the screen and enables you to write full terminal independent
programs. They differ in MDI applications or when using FS2 windowing:
MAX_ROW() always report the size of main screen, i.e. of window ID# 0, whilst
MAXROW() the size of currently selected sub-window.

Terminal i/o: Changing or setting the environment variable LINES will override the
terminfo entry lines#. This is automatically detected at program start-up. While the
application is running, the curses and the MAXROW() setting may be reinitialized
using the FS_SET("setenv", "LINES", "43", .T.) function, which will also set
MAXROW() to 42. If the current terminal cannot display the number of lines set,
garbage may be output.

GUI i/o: the visible window size may by changed/resized by a mouse, except you
specify fixed size by oApplic:DefSize(). The used drawing area (pane) is not
affected by the window resizing, the whole user window is scrollable by the
horizontal and vertical bars. The MaxRow() function return the current size of the

FUN 379

user area, not of the visible window size. Use oApplic:DefSize() method if you want
to determine size of the application window. For resizing the application window,
see oApplic:Resize() To determine the currently visible rows (instead of max.
available rows), use RowVisible() instead of MaxRow().

Basic i/o: MaxRow() return constant 24 simulating 25 line display

If you are using sub-windows via standard MDIopen() or the Wopen() from FS2
Toolbox, MaxRow() and MaxCol() reports the size of the current sub-window. You
may also use WmaxRow() and WmaxCol() from the FS2 package which allows you
to specify the window ID# without changing the selection and which corresponds to
the CT3 MaxRow() and MaxCol()

Example:
CLEAR
@ 0,0 to MAXROW(),MAXCOL() && box full screen
@ MAXROW(),0 say "this is the last line"

Classification:
system, terminfo, environment vars

Compatibility:
MAXROW() is available in Clip5. MAX_ROW() is supported for backward
compatibility to FS3. See also terminfo settings and the environment variable TERM
and LINES, if such is set and RowVisible() for GUI.

The GUI mode and oApplic object is new in FS5

Note, some UNIX terminals support 24 instead of 25 lines only. It is wise for
portable programs to use e.g. @ MAXROW(),0 SAY "msg" instead of @ 24,0 SAY
"msg" in order to use the last available screen line.

The GUI mode and oApplic object is new in FS5

Related:
MAXCOL(), COL(), ROW(), RowVisible(), FS_SET(), SYS.2, FSC.3.3

FUN 380

MCOL ()
Syntax:

retN = Mcol ([expL1], [expL2])
Purpose:

Determine the mouse cursor's user-screen column position

Arguments:
<expL1> is a pixel specification. If .T., the returned value is assumed in pixel, if .F.
in row/col,otherwise the current SET PIXEL status is used.

<expL2> apply for row/col coordinates only. If .F., the return value as integer
(default), .T. returns decimal fraction.

Returns:
<retN> is the current mouse cursor column position

Description:
The mouse support is available in GUI mode only. In the Terminal and Basic i/o
mode, 0 is returned.

Compatibility:
New in FS5, available in CL53

Related:
Mpresent(), Mrow(), MsetCursor(), MsetPos(), Mhide(), Mshow(), MsetCursor(),
MsaveState(), MrestState(), MleftDown(), MrightDown(), Mstate(), Col(), MaxCol()

FUN 381

MDBLCK ()
Syntax:

retN = MdbLck ([expN1])
Purpose:

Determine or set the double-click speed threshold of the mouse

Arguments:
<expN1> is the maximum allowable amount of time between mouse key presses for
a double-click to be detected. This is measured in milliseconds.

Returns:
<retN> is the current double-click speed threshold

Description:
This function is used to set or retrieve the current mouse's double-click speed
threshold. It is useful when the mouse's double-click sensitivity needs to be
adjusted.

Compatibility:
New in FS5, available in CL53

Related:
Mrow(), Mcol(), MSetCursor()

FUN 382

MDICLOSE ()
Syntax:

retN = MDIclose ([expN1])
Purpose:

Close the current or specified MDI sub-window open by MDIopen() or by Wopen()
in GUI mode.

Arguments:
<expN1> is the window ID# for which this function apply. If not specified, the
currently selected sub-window is closed, except it is the main screen with ID#0.

Returns:
<retN> is the ID# number of the currently selected sub-window, or -1 if the call fails.

Description:
MDIclose() closes the currently selected MDI sub-window and select a sub-window
with the highest ID#. MDIclose(expN1) closes the specified sub-window and does
not change the selection.

The ID# (handle) of the closed sub-window may be re-used by the next Wopen()
call. Using <expN1> = 0 or invoking Wclose() without parameter from the main
screen is ignored.

MDIclose() is fully equivalent to the FS2 function Wclose(expN1) call, but does not
require FS2 license. To use sub-windows in SDI mode or in Terminal i/o, refer to
Wopen() and Wclose() functions from FS2 Toolbox.

Note: the close icon [X] displayed in the sub-window title frame is created by the
window manager, not by FlagShip self. An user click on this button (in sub-window)
is simply ignored, as opposite to the same button of the whole application which is
handled by the InitIoQuit() function, see details in the initiomenu.prg source. To
close the sub-window programmatically, use this MdiClose().

Example:
w1 := MDIopen(10,10, 20,50)
w2 := MDIopen(20,20, 25,60, "Second sub-window")
w3 := MDIopen(5,39, 15,60, "Third sub-window")

w := MDIselect(w1)
w := MDIclose() // closes w1, w3 is selected thereafter
w := MDIclose(w2) // closes w2, w3 remain selected
w := MDIclose() // closes w3, main screen ID#0 is selected

Classification: programming, windowing
Compatibility: New in FS5, compatible to Wclose() of FS2-Toolbox.
Related: MDIopen(), MDIselect(), FS2:Wopen(), FS2:Wclose(), FS2:WaClose()

FUN 383

MDIOPEN ()
Syntax:

retN = MDIopen (expN1, expN2, expN3, expN4,
[expC5], [expL6])

Purpose:
Open a new MDI sub-window. Applicable for GUI mode only for MDI applications
(e.g. compiled with the -mdi switch).

Arguments:
<expN1>...<expN4> are the top, left, bottom, right coordinates of the new sub-
window, either in row/col or in pixel. Accepted values are between 0..MaxRow() and
0..MaxCol()

Options:
<expC5> is an optional string, specifying the sub-window caption. If not empty(),
Wopen() calls Wcaption(<expC6>). If not specified, the sub-window caption in GUI
mode is "Window #nn" where nn is the window ID# returned by Wopen(). In
Terminal i/o mode, when <expC6> is not specified or is an empty string, no action is
taken.

<expL6> is an optional pixel specification. If .T., the coordinates are in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used. Apply
for GUI mode only, ignored otherwise.

Returns:
<retN> is the ID# number of the new and selected sub-window, or -1 if the call fails.
You will need to store the return value to a variable, to be able to access/select it
later by MDIselect() or to close the sub-window via MDIclose().

Warnings and errors are reported in Developer's mode, i.e. when
FS_SET("devel",.T.) is set. Otherwise check the <retN> for value <= 0.

Description:
MDIopen() creates and opens a new MDI sub-window. If successful, it returns a
number (handle) for this window and select it. If the coordinates are invalid, the
application does not run in MDI mode, or the call fails for other reason, MDIopen()
returns -1 and the window that was active at the time of the function call (usually the
main screen) is still active. There is no limit of used sub- windows in FlagShip.

A MDI sub-window is a separate widget (control) in GUI. From programmer's view,
it differs from the main screen only in size. In MDI mode (i.e. when compiled with
the -mdi switch), the first sub-window is created automatically and becomes ID# 0.
After you open new sub-window, all screen output is redirected to the window and
this sub-window receives input focus.

The sub-window behaves same as the main screen. All the standard settings,
including SET PIXEL ON|OFF apply also for the selected sub-window, same as the
row/column status like Col(), Row(), MaxCol() and MaxRow().

FUN 384

MDIopen() is fully equivalent to a call of FS2 function
Wopen(expN1, expN2, expN3, expN4, .F., expC5, 0, expL6)

but MDIopen() does not require FS2 license. In fact, MDIopen() is a subset of
Wopen(). To use sub-windows in SDI mode or in Terminal i/o, refer to Wopen()
function from FS2 Toolbox. You also may use all other W*() windowing functions
from FS2, like Wmove(), WmoveUser(), Wclose(), WaClose(), Wselect() and so on
with the returned ID# from MDIopen() in GUI mode.

You can retrieve the active window ID# by calling MDIselect() with no parameters.
The active window is marked by [*] sign in the header and with "checked" mark in
the Menu->Windows->Sub-Windows list. You may select and view an inactive
window (read-only) by Menu->Windows->Sub-Windows (user modifiable), see
also initiomenu.prg for details.

Note: the close icon [X] displayed in the sub-window title frame is created by the
window manager, not by FlagShip self. An user click on this button (in sub-window)
is simply ignored, as opposite to the same button of the whole application which is
handled by the InitIoQuit() function, see details in the initiomenu.prg source. To
close the sub-window programmatically, use MdiClose().

Example:
w1 := MDIopen(10,10, 20,50)
if w1 <= 0

alert("Not compiled by the -mdi switch, so no MDI sub-windows")
else

? "hello first sub-window!"
@ 3,5 SAY "The ID# of this window is " + ltrim(w1)
@ 4,5 SAY "MaxRow() * MaxCol() =" + ltrim(MaxRow()) + " x " + ;

ltrim(MaxRow())

w2 := MDIopen(5,5, 15,45, "Second")
? "hello second sub-window!"
@ 3,5 SAY "The ID# of this window is " + ltrim(w2)
@ 4,5 SAY "MaxRow() * MaxCol() =" + ltrim(MaxRow()) + " x " + ;

ltrim(MaxRow())

MDIselect(0)
? "hello on main screen"
@ 3,5 SAY "MaxRow() * MaxCol() =" + ltrim(MaxRow()) + " x " + ;

ltrim(MaxRow())

MDIselect(w1)
? "continuing text in first window"
wait "press any key to close second window..."
MDIclose(w2)
wait "any key to close this sub-window..."
MDIclose()

endif
wait

Classification: programming, windowing
Compatibility: New in FS5, compatible to Wopen() of FS2-Toolbox.
Related: MDIselect(), MDIclose(), FS2:Wopen(), .../examples/mdi.prg

FUN 385

MDISELECT ()
Syntax:

retN = MDIselect ([expN1], [expL2])
Purpose:

Activates one of the open MDI sub-windows or the main screen.

Options:
<expN1> is the window ID# that is selected. The ID# is returned from MDIopen() or
Wopen(). Specifying 0 (zero) selects the main screen. When <expN1> is not
specified, MDIselect() only returns the ID# of the currently selected sub-window.

<expL2> is an optional logical value, specifying if the newly selected sub-window
should receive input focus. The default is .T.

Returns:
<retN> is the ID# number of the currently selected sub-window, or -1 if the call fails.

Description:
MDIselect() allows you to take an already open but inactive MDI sub-window and
reactivate it. Window ID# 0 corresponds to the main window. By omitting the first
parameter you can determine the ID# (handle) of the window currently selected.

MDIselect() is fully equivalent to FS2 function Wselect() call, but MDIselect() does
not require FS2 license. To use sub-windows in SDI mode or in Terminal i/o, refer
to Wopen() and Wclose() functions from FS2 Toolbox.

Example:
See MDIopen()

Classification:
programming, windowing

Compatibility:
New in FS5, compatible to Wselect() of FS2-Toolbox.

Related:
MDIopen(), MDIclose(), FS2:Wopen(), FS2:Wclose(), FS2:Wselect()

FUN 386

MEMOCODE ()
MEMOENCODE ()
Syntax:

retC = MemoCode (expC1 , [expL2])
or

retC = MemoEncode (expC1, [expL2])
Purpose:

Encodes the passed string so that the result does not contain CHR(0) nor CHR(26).

Arguments:
<expC1> is the character string that is processed. This string may contain any byte
sequence, also embedded zero bytes CHR(0) and CHR(26).

Option:
<expL2> is optional logical expression which controls whether extended translation
may be used. Value of .F. prohibits it, i.e. when <expC1> contains all available 255
bytes no translation is taken and a Developer Warning (if enabled) will arise.
Otherwise, if <expL2> is .T. or NIL or not specified, extended translation is taken in
such a case, resulting in larger string <retC>.

Returns:
<retC> is the encoded string. It is always 8 bytes longer than the length of <exC1>,
except when extended translation is required, see <expL2>. The result does not
contain CHR(0) nor CHR(26) and can be safely stored in database memo fields. On
error, "" is returned.

Description:
MemoEncode() encodes the passed <expC1> string so that the <retC> does not
contain zero byte nor CHR(26) and can hence be safely stored in memo fields of a
database. To read the memo field into variable and by decoding it to clear text, use
MemoDecode().

An already coded string by MemoEncode() cannot be passed to MemoEncode()
anew, a run-time error is displayed in such a case. You should avoid any string
manipulation like concatenation, substr() etc. on the resulting <retC> string,
otherwise unpredictable results may occur by decoding via MemoDecode().

When CHR(0) and/or CHR(26) is found in <expC1>, MemoEncode() replaces these
character by an unique character not available otherwise in the text, e.g. ^X and ^Y,
or CHR(1) and CHR(2) etc. Only when the <expC1> already includes all available
character values (1..255) and the extended translation via <expL2> is disabled, the
coding fails and run-time error is displayed. The resulting string <retC> is prefixed
by an unique byte sequence which includes also the replacement characters and is
hence 8 bytes longer than <expC1> (or even longer when extended translation is
required).

FUN 387

Example:
// incorrect results
cMemoText := "Abcd" + chr(26) + "efg" + chr(0) + "ijk"
APPEND BLANK
REPLACE FIELD->Memo WITH cMemoText
...
cStr := FIELD->Memo
? len(cStr) // 4 since CHR(26) terminates it in .dbt
? cStr // "Abcd"
? len(FIELD->Memo) // 4

// incorrect results
cMemoText := "Abcdefg" + chr(0) + "ijk"
REPLACE FIELD->Memo WITH cMemoText
...
cStr := FIELD->Memo
? len(cStr) // 7 since CHR(0) terminates it in .dbt
? cStr // "Abcdefg"
? len(FIELD->Memo) // 7

// correct results
cMemoText := "Abcd" + chr(26) + "efg" + chr(0) + "ijk"
REPLACE FIELD->Memo WITH MemoEncode(cMemoText)
...
cStr := MemoDecode(FIELD->Memo)
? len(cStr) // 12 = ok
? cStr // "Abcd\032efg\000ijk"
? len(FIELD->Memo) // 20

Example:
If you need to encode memo data in Clipper to use cross-platform .dbt files coded
by this way, add this simplified code somewhere in your Clipper or multi-platform
source:

#ifndef FlagShip
FUNCTION MemoEncode(str)
static cMagic := chr(1) + chr(239) + chr(254) // don't change
local ii, cRepl1, cRepl2, cRet
if len(str) >= 8 .and. left(str,3) == cMagic .and. ;

substr(str,6,3) == cMagic
alert("MemoEncode(): string already coded by MemoEncode()")
return ""

endif
cRepl1 := cRepl2 := chr(0)
for ii := 1 to 255

if ii != 26 .and. !(chr(ii) $ str)
cRepl1 := chr(ii)
exit

endif
next
for ii := asc(cRepl1) +1 to 255

if ii != 26 .and. !(chr(ii) $ str)
cRepl2 := chr(ii)
exit

endif
next

FUN 388

if cRepl2 == chr(0)
alert("MemoEncode() cannot convert,;all 253 char values used")
return ""

endif
cRet := strtran(str, chr(0), cRepl1)
cRet := strtran(cRet, chr(26), cRepl2)
return cMagic + cRepl1 + cRepl2 + cMagic + cRet

FUNCTION MemoCode(str)
return MemoEncode(str)

#endif

Classification:
programming, database handling

Compatibility:
Available in FS5. See above example for Clipper.

Related:
MemoDecode(), Strtran(), FS2:CharPack(), FS2:CharRepl()

FUN 389

MEMODECODE ()
Syntax:

retC = MemoDecode (expC1)
Purpose:

Decodes the string previously coded by MemoEncode().

Arguments:
<expC1> is the character string that is processed. This is usually a memo field of a
database.

Returns:
<retC> is the decoded string. It is always 8 bytes shorter than the length of <exC1>.

Description:
MemoDecode() decodes the string previously encoded by MemoEncode() or by
MemoCode().

The returned value may contain embedded zero byte CHR(0) and CHR(26).

When the <expC1> string was not coded by MemoEncode(), run-time error is
displayed.

Example:
see MemoEncode()

Example:
If you need to read FlagShip data coded by MemoEncode() in Clipper, and to use
cross-platform .dbt files coded by this way, add this simplified code somewhere in
your Clipper or multi-platform source:

#ifndef FlagShip
FUNCTION MemoDecode(str)
static cMagic := chr(1) + chr(239) + chr(254) // don't change
local cRepl1, cRepl2, cRet
if len(str) < 8 .or. !(left(str,3) == cMagic) .or. ;

!(substr(str,6,3) == cMagic)
alert("MemoDecode(): string not created by MemoEncode()")
return ""

endif
cRepl1 := substr(str,4,1)
cRepl2 := substr(str,5,1)
cRet := substr(str,9)
cRet := strtran(cRet, cRepl1, chr(0))
cRet := strtran(cRet, cRepl2, chr(26))
return cRet

#endif

Classification: programming, database .dbt handling
Compatibility: Available in FS5. See above example for Clipper.
Related: MemoCode(), MemoEncode(), Strtran(), FS2:CharUnpack(), FS2:CharRepl()

FUN 390

MEMOEDIT ()
Syntax:

retC = MEMOEDIT ([expC1], [expN2], [expN3],
[expN4], [expN5], [expL6], [expC7],
[expN8], [expN9], [expN10], [expN11],
[expN12], [expN13],[expL14], [expO15],
[expL16])

Purpose:
Displays and edits a text from a character string or a memo field using a window
area or the screen.

Options:
<expC1> is the character string or memo field to display and edit.

<expN2...expN5> defines the top, left, bottom and right window coordinates. If they
are all omitted, the entire screen is used.

<expL6> determines whether a memo is edited (.T.) or simply displayed (.F.). The
default is TRUE.

<expC7>|<expL7> is a string specifying the name of a user-defined function to
control the editing process. The function name must be specified without
parentheses or arguments. Refer to the discussion below for more information. If a
logical FALSE is specified, MEMOEDIT() exits immediately after displaying the text;
the state of <expL6> is ignored in such a case. Logical TRUE is equivalent to NIL.

<expN8> determines the line length, which defaults to <expN5> - <expN3>. If
<expN8> is greater that the default, the window scrolls horizontally.

<expN9> determines the tabulator size to be expanded by spaces. The default
value is 4. If tab characters CHR(9) are included in the <expC1> string or the TAB
key is pressed, MEMOEDIT() expands them by spaces.

<expN10> is the initial memo line where the cursor is placed. The default is 1.

<expN11> is the initial memo column where the cursor is placed. The default is 0.

<expN12> is the initial row for placing the cursor relative to the window position.
The default is 0.

<expN13> is the initial column for placing the cursor relative to the window position.
The default is 0.

<expL14> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

<expO15> is an optional Font object, used for the MemoEdit(). Applicable for GUI
mode only, ignored otherwise.

FUN 391

<expL16> is a logical value specifying if the MemoEdit() widget should be deleted
at exit from MemoEdit(). A .T. value clears the widget on exit, .F. (the default)
remains the widget visible. Applicable for GUI mode only, ignored otherwise.

Returns:
<retC> is a character string. When terminated with Ctrl-W, MEMOEDIT() returns
the modified string. The original string is returned and the changes are discarded if
ESC is entered.

Description:
MEMOEDIT() is a general purpose text browsing and editing function that edits
memo fields and long character strings. It supports a number of different modes and
a user-defined function to allow key reconfiguration and other activities that enable
the design of flexible user interfaces and programs.

MEMOEDIT() supports the following keys and actions, and their configuration in the
UDF specified (Table 1):

Key Action Brow config
Cursor up ctrl-E Move up one line * no
Cursor down ctrl-X Move down one line * no
Cursor left <- ctrl-S Move left one character * no
Cursor right -> ctrl-D Move right one char * no
ctrl-Cursor <- ctrl-Z Move left one word no
ctrl-Cursor -> ctrl-B Move right one word no
Home ctrl-A Beginning of current line * no
End ctrl-F End of current line * no
ctrl-Home ctrl-] Begin of current window * no

ctrl-L End of current window * no
PgUp ctrl-R Previous window * no
PgDn ctrl-C Next window * no
ctrl-PgUp ctrl-- Beginning of text * no
ctrl-PgDn ctrl-^ End of text * no
Insert ctrl-V Toggle insert on/off yes
Delete ctrl-G Delete current char no
Backspace ctrl-H Delete left character no

ctrl-Y Delete current line yes
ctrl-T Delete word right yes

Tab ctrl-I Insert spaces to next tab no
Enter ctrl-M Next line, new paragraph no

ctrl-U Reformat paragraph yes
ctrl-End ctrl-W Finish edit, save * yes
Esc ctrl-[Abort edit, don't save * yes

other key CHR(-47..31) Pass config key to UDF yes
other key CHR(32..255) Insert char in text * (yes)
Left-Mouse-Down Mark text for copy-and-paste **
Mid-Mouse-Button Alt-C Copy marked text to clipboard **
Shift+Mid-Mouse-But Alt-V Paste clipboard to curr.field **

FUN 392

* Browse (read-only) mode only supported keys

** GUI mode only. See description in "cut-and-paste" below.

Modes:
MEMOEDIT() supports two display modes depending on the value of <expL6>:

•In the edit and update mode (<expL6> is TRUE, the default), all the above listed
navigation and editing keys are active and the user can change the contents of
the text buffer. Some of the navigation keys are configurable within the user-
defined function <expC7>, if such are specified. If ESC or ^W are pressed,
MEMOEDIT() exits and the text buffer or the original text is returned. To avoid
unintended loosing of text changes, MemoEdit() prompts you on ESC considering
the state of Set(_SET_MEMOEDITWARN), see details in FUN:Set().

•In the browse mode (<expL6> is FALSE), all navigation keys are active and
have the same functionality as in the update mode except that the default scroll
state is on. Uparrow and Downarrow scroll the contents of the MEMOEDIT()
window up or down one line. The user can only navigate about the text buffer but
cannot edit or insert new text. If ESC or ^W are pressed, MEMOEDIT() exits,
returning the original text.

Scrolling mode: when 35 is returned from the UDF, or when in browse mode, the
default cursor up and down movement toggles to the movement of the whole text
window relative to the current cursor position.

Text buffer:
The specified string or memo field <expC1> is first copied to an internal text buffer,
which is edited or browsed by the user. Exiting MEMOEDIT() with ^W, the contents
of the text buffer are copied to the return variable <retC>. Upon pressing ESC, the
contents of <expC1> are copied to <retC>. This return value can then be assigned
to a variable or memo field, or passed as an argument to another function.

Insert/overstrike:
When the user enters text in the edit mode, he can choose the insert or overstrike
entry, toggling them by pressing the INSERT or ^V key. The application can set the
mode using READINSERT() function or returning 22 from the UDF.

In insert mode, characters are entered into the text buffer at the current cursor
position and the remainder of the text moves to the right. Insert mode is indicated in
the status area. In overstrike mode, characters are entered at the current cursor
position overwriting existing characters while the rest of the text buffer remains in its
current position. The default mode is overstrike.

Tab characters: When the TAB key (09hex) is pressed, FlagShip's MEMOEDIT()
inserts space characters up to the next tab position. The indent size of tabs is global
for the entire memo editing; the default is four. MEMOEDIT() also converts tab
characters to spaces in the entered string <expC1>.

FUN 393

Wrapping:
As the user enters text and the cursor reaches the edge of the MEMOEDIT()
window, the current line wraps to the next line in the text buffer and a soft carriage
return CHR(141)+CHR(10) is inserted into the text. If the <expN8> argument is
specified, text wraps when the cursor position is the same as the argument value.
To explicitly start a new line or paragraph, the user must press the ENTER or
RETURN key, which generates a newline mark CHR(13)+CHR(10).

The word wrapping state can be changed by UDF returning 34. When word-wrap
is on (the default), MEMOEDIT() inserts the soft carriage return at the closest word
break (= space) to the window border or line length, whichever occurs first. When
word-wrap is off, MEMOEDIT() scrolls text entry beyond the window definition until
the end-of-line is reached.

Note that soft carriage returns may interfere with the result of display commands
such as ? and REPORT FORM or processing with another word processor, like "vi".
Using HARDCR(), MEMOTRAN() or STRTRAN() functions, the soft carriage return
can be translated to the usual NEWLINE (or CR/LF) characters.

Paragraph reform: Pressing Ctrl-U or returning a 2 from the UDF reformats the
memo text until a hard carriage (end-of-paragraph) or the end-of-memo is
encountered. This happens regardless of whether word-wrap is on or off.

Cut and Paste:
In GUI mode, FlagShip supports the global X11 or Windows clipboard for
exchanging/transfer keyboard data. You may copy and paste text via clipboard
from/to other windows or applications on the screen, or from/to other/current GET
field or MemoEdit() text.

To copy part of the MemoEdit text into clipboard, issue:

• mark the text by depressed left mouse button, then
• press the Alt-C or middle mouse button (both user modifiable)

To copy text from another application on screen to clipboard, use the corresponding
key sequence of this application.

To paste clipboard at current text position, issue:

• press Alt-V or Shift + middle mouse button (both user modifiable)

When INSERT state is on, the pasted text from clipboard is inserted, otherwise the
MemoEdit() text is partially overwritten by the text from clipboard (same as you
would type it).

The copy and paste buttons or keys are user modifiable by assigning corresponding
INKEY() value (see inkey.fh for manifests) to:

_aGlobSetting[GSET_G_N_MEMO_COPY1] := K_MBUTTONDOWN // copy
_aGlobSetting[GSET_G_N_MEMO_COPY2] := K_ALT_C // copy
_aGlobSetting[GSET_G_N_MEMO_PASTE1] := K_SH_MBUTTONDN // paste
_aGlobSetting[GSET_G_N_MEMO_PASTE2] := K_ALT_V // paste

FUN 394

When you assign NIL (which is the default setting in initio.prg), the corresponding
_aGlobSetting[GSET_G_N_GET_*] value will be used (see the READ command) to
behave same as in GET/READ. Assigning 0 (zero) will disable this setting and the
default behavior is used.

Note that the common Ctrl-C and Ctrl-V keys are already assigned otherwise (PgDn
and Insert), therefore Alt-C and Alt-V are pre- defined instead. You may need to
assign other keys when these conflicts with Topbar menu or with your SET KEY
redirection. In MS-Windows, you may probably prefer K_RBUTTONDOWN for
paste; it is not set by default to avoid unintentional copying from the clipboard.

In Terminal i/o mode, similar functionality is provided (in Unix) via the "gpm" cut-
and-paste console utility/daemon and FlagShip keyboard buffer by using it pre-
defined keys and/or mouse buttons. To copy large strings, you probably may need
to extend the buffer size by SET TYPEAHEAD.

UDF usage:
The user defined function specified by <expC7> handles key exceptions and
reconfigures special keys. The UDF is called at various times by MEMOEDIT(),
generally in response to keys it does not recognize. In the user function, the
program performs various actions, depending on the current MEMOEDIT() mode,
then RETURNs a value telling MEMOEDIT() what to do next.

When the UDF argument is specified, MEMOEDIT() defines two classes of keys:
non-configurable and key exceptions. When a non-configurable key is pressed,
MEMOEDIT() executes it; otherwise a key exception is generated and UDF is
called. When there are no keys left in the keyboard buffer for MEMOEDIT() to
process, the user function is called once again with the state 0.

When MEMOEDIT() calls the UDF, it automatically passes three arguments:

•the "mode" of MEMOEDIT(), indicating the status depending on the last key
pressed or the last action taken prior to executing the UDF,

•the current text buffer "line" (starting with 1), and

•the current text buffer "column" (starting with 0).

The following status values (modes) passed to the UDF are possible (Table 2):

Mode memoedit.fh Description
0 ME_IDLE Idle, no more key pressed
1 ME_UNKEY Unknown key, text unaltered
2 ME_UNKEYX Unknown key, text altered
3 ME_INIT Initialization mode

Immediately after MEMOEDIT() is invoked, the UDF is entered with mode 3. At this
point, the UDF can set the required insert or wrap mode returning the relevant
value. MEMOEDIT() then calls the UDF repeatedly with mode 3 until 0 is returned.

FUN 395

The idle state with mode 0 is reported once there is no pending key to process. It
may generally be needed to update line and column number displays. Return codes
from the UDF other than ME_DEFAULT (zero) are ignored.

MEMOEDIT() calls the user defined function whenever a key exception occurs. The
exception keys are all the configurable keys (see Table 1) and other function keys.
The UDF is entered with mode 1 or 2. Configurable keys are processed by returning
0 to execute the MEMOEDIT() default action. Returning a different value executes
another key action, thereby redefining the key. The following table summarizes the
possible return values from the UDF and their consequences (Table 3):

RETURN memoedit.fh Description
0 ME_DEFAULT Perform default action
1..31 (K_xxx in inkey.fh) Perform requested action cor-

responding to key value, see
INKEY() values in appendix

32 ME_IGNORE Ignore the current key
33 ME_DATA Treat unknown key as data
34 ME_TOGGLEWRAP Toggle word wrap mode
35 ME_TOGGLESCROLL Toggle scroll mode
100 ME_WORDRIGHT Perform word-right operation
101 ME_BOTTOMRIGHT Perform bottom-right operat.
2001..2255 (2000+K_xxx Insert character CHR(1..255)

defined in inkey.fh) into the text

Tuning:
At start of MemoEdit(), all soft-carriage-return characters chr(141) + chr(10), used
to mark word-wraps in previous editing session, are removed by default. You may
replace them by hard-CR (e.g. to ensure same line wraps in different MemoEdit
sizes) by assigning
_aGlobSetting[GSET_L_MEMOE_SOFTHARD] := .T. // default = .F.

When MemoEdit() ends, and the text was modified, all RETURNs in the text are
transformed to CR+LF = chr(13)+chr(10). You may leave LF only by assigning
_aGlobSetting[GSET_L_MEMOE_HARDCRLF] := .F. // default = .T.

Note that most printers will need CR+LF for new line.

Similarly, all word-wraps in changed text are marked by soft- carriage-return's
chr(141)+chr(10) used e.g. in MemoLine(). You may remove all these soft-carriage-
return characters from text by assigning
_aGlobSetting[GSET_T_L_MEMOE_SOFTCR] := .F. // default = .T.

for Terminal i/o mode, and/or by
_aGlobSetting[GSET_G_L_MEMOE_SOFTCR] := .F. // default = .T.

for application running in GUI mode. Alternatively, you may use HardCr() to convert
them to CR+LF after finishing MemoEdit()

In Terminal i/o mode, you may display status marks for each visible text line by
assigning
_aGlobSetting[GSET_T_A_MEMOE_SHOW] := array // default = {}

where the <array> is either empty, or contain 4 to 5 elements:

FUN 396

array[1] is numeric column displacement to <expN5>
array[2..4] are strings displayed for std.line, splitted text, and hard-CR lines
array[5] is optional color specification, otherwise SetColor()

for example
_aGlobSetting[GSET_T_A_MEMOE_SHOW] := {1," ","+","<","G+"}

With SET MULTIBYTE ON, additional tunings are described in section CMD.SET
MULTIBYTE

Example:
To display current memo field without editing:

USE my_dbf
SET CURSOR OFF
MEMOEDIT (my_memo, 6, 6, 14, 54, .F.)
SET CURSOR ON

Example:
To edit and save the memo field in database (.dbt):

USE my_dbf
@ 5,5 to 15, 55 double
@ 16,0 say "modify text end save by ^W or abort with ESC"
Set(_SET_MEMOEDITWARN, 1) // warnings only on text change
REPLACE my_memo WITH MEMOEDIT (my_memo, 6, 6, 14, 54)

Example:
Edit an UNIX text file (see also Tuning section above):

LOCAL text
text := MEMOREAD ("mytext.asc")
text := MEMOEDIT (text) // edit text
IF LASTKEY() == 23 // saved by ^W
text := STRTRAN (text,CHR(141)+CHR(10),"") // remove wrap
text := STRTRAN (text, CHR(13), "") // UNIX convention
MEMOWRITE ("mytext.asc", text)

ENDIF

Example:
General purpose edit function, using an UDF:

USE mydbf NEW SHARED
mytext = myedit (5,1, MAXROW(), MAXCOL()-1, memo, DBF())
WHILE !RLOCK(); END
REPLACE memo WITH mytext
UNLOCK

#include "memoedit.fh"
#include "inkey.fh"
#ifdef FlagShip
define K_REFORMAT 21
#else
define K_REFORMAT 2
#endif

FUN 397

FUNCTION myedit (ytop, xtop, ybot, xbot, text, title)

LOCAL actscreen := SAVESCREEN (ytop, xtop, ybot, xbot)
PRIVATE msgcol := xbot-1, msgrow := ybot
@ ytop, xtop CLEAR TO ybot, xbot
@ ytop, xtop TO ybot, xbot DOUBLE
@ ytop, xtop +1 SAY "[" + title + "]"
@ ybot, xtop +1 SAY "ESC=abort ^W=F10=save,exit" +;

" F2=word+ F3=bottom F4=wrap F5=scrl F6=key"
text := MEMOEDIT (text, ytop+1, xtop+1, ybot-1, xbot-1, ;

.T., "myedit_udf")
RESTSCREEN (ytop, xtop, ybot, xbot, actscreen)
RETURN text

FUNCTION myedit_udf (mode, line, column)
**
LOCAL key := LASTKEY(), retval := ME_DEFAULT
LOCAL getlist := {}, screen, num := 0
STATIC init := 0, wrap := .T., scrl := .F.
@ msgrow,msgcol-11 TO msgrow,msgcol DOUBLE

DO CASE
CASE mode == ME_IDLE

@ msgrow, msgcol-7 SAY "waiting"
CASE mode == ME_UNKEY .or. mode == ME_UNKEYX

DO CASE
CASE key == K_ESC

* IF .not. MemoScoreEsc() // see scor_mem.prg
IF ALERT("Abort edit ?", {"No", "Yes"}) == 1

retval = ME_IGNORE
ENDIF

CASE key == K_F2
retval := ME_WORDRIGHT

CASE key == K_F3
retval := ME_BOTTOMRIGHT

CASE key == K_F4
wrap := !wrap
retval := ME_TOGGLEWRAP
@ 0,51 say IF (wrap, " <wrap> ", "<nowrap>")

CASE key == K_F5
scrl := !scrl
retval := ME_TOGGLESCROLL
@ 0,44 say IF (scrl, "<scrl>", SPACE(6))

CASE key == K_F6
screen := SAVESCREEN (ybot, 0, ybot, 50)
@ ybot, 0 CLEAR TO ybot,50
@ ybot,0 SAY "Enter the ASCII value 1..255" ;

GET num PICT "999" RANGE 0,255
READ
RESTSCREEN (ybot, 0, ybot, 50, screen)
retval := IF (num > 0, 2000 + num, retval)

CASE key == K_REFORMAT
retval := 2

CASE key == K_CTRL_W .or. key == K_F10
retval := K_CTRL_W

OTHERWISE

FUN 398

@ msgrow,msgcol-11 SAY "CHR("+STR(key,3)+") ??"
ENDCASE

CASE mode == ME_INIT
IF init == 0

init := 1
wrap := .F.; retval := ME_TOGGLEWRAP // word wrap off
@ 0,51 say IF (wrap, " <wrap> ", "<nowrap>")

ELSEIF init == 1
init := 2
scrl := .T.; retval := ME_TOGGLESCROLL // scroll on
@ 0,44 say IF (scrl, "<scrl>", SPACE(6))

ELSEIF init == 2
init := 3; retval := K_INS // insert mode

ENDIF
ENDCASE
RETURN retval

Compatibility:
Unlike Clipper, the cursor movement keys in FlagShip always have the same
corresponding control keys. There is a difference to Clipper in the handling of
control character input, cf. table 1 above and INKEY() table in the appendix. To
reformat the paragraph, both return codes 2 or 21 are supported. The handling of
the TAB key pressed differs in VFS and C5, since the tab indent is variable in UNIX.

The user modifiable MEMOEDIT() messages are available in the file
<FlagShip_dir>/system/scor_mem.prg, and in memedithand.prg keyboard handler.

VFS supports soft carriage-return in the way C5 handles it. When the text is
reformatted, the CHR(141) + CHR(10) is replaced by one space character or
removed, see also Tuning above.

For paragraph reformatting, FlagShip supports both the UNIX newline CHR(10) and
the DOS CR+LF. On output, CR+LF (CHR(13)+CHR(10)) is produced. To convert
ASCII text to the UNIX convention, use additionally STRTRAN(string, CHR(13,10),
CHR(10)) before storing it to the file, or the global tuning assignment.

Classification:
programming (and database access, if memo field is used)

Include:
<FlagShip_dir>/include/memoedit.fh <FlagShip_dir>/include/inkey.fh

Related:
ACHOICE(), DBEDIT(), HARDCR(), MEMOLINE(), MEMOREAD(), MEMOTRAN(),
MEMOWRIT(), MLCOUNT(), Set(_SET_MEMOEDITWARN), memedithand.prg

FUN 399

MEMOLINE ()
Syntax:

retC = MEMOLINE (expC1, [expN2], [expN3], [expN4],
[expL5])

Purpose:
Extracts a formatted line of text from a character string or a memo field.

Arguments:
<expC1> is the source string or memo field.

Options:
<expN2> is the number of characters per line. The default is 79, the valid range is 4
to 254.

<expN3> is the line number which should be extracted. The default is 1.

<expN4> is tabulator stop width. The default is 4.

<expL5> switches the word wrapping on/off. TRUE enables word wrapping, FALSE
disables it. The default value is TRUE. If the wrap is on and the line length indicated
breaks the line in the middle of a word, that word is not included as part of the
return value <retC>.

If the wrapping <expL5> is on, and the line has fewer characters than the indicated
length <expN2>, the return value is padded with blanks. If the wrapping is off, only
the shorter value of the line length or the number of characters specified by
<expN2> is re- turned; the next extracted line begins behind the next newline (LF or
CR/LF).

Returns:
<retC> is a character string with a copy of the specified line. If the line number
<expN3> is greater than the total number of lines in <expC1>, null string "" is
returned.

Description:
MEMOLINE() is often used with MLCOUNT() to extract lines of text from character
strings and memo fields based on the number of characters per line. Normally, the
line length, tab width and wrapping correspond to the setting of MEMOEDIT().

MEMOLINE() also handles strings and memos formatted by MEMOEDIT() as plain
ASCII text in the UNIX and DOS convention.

FUN 400

Example:
// To put all the text on the same page, the required number of
// lines is determined using MLCOUNT() before printing.

LOCAL width := 120, maxrow := 75, lines, count
FIELD note
USE address
SET PRINTER ON
lines = MLCOUNT (note, width)
FOR count = 1 TO lines

? MEMOLINE (note, width, count)
IF PROW() >= maxrow

EJECT
ENDIF

NEXT
SET PRINTER OFF

Classification:
programming

Related:
HARDCR(), MEMOEDIT(), MEMOTRAN(), MEMOWRIT(), MLCOUNT(), MLPOS()

FUN 401

MEMOREAD ()
Syntax:

retC = MEMOREAD (expC1, [expL2])
Purpose:

Reads a text file from the disk into a character memory variable or a memo field.

Arguments:
<expC> is the name of the text file including the extension and optionally a path. If
no path is specified, the file is searched in the current directory. If not found, the
UNIX environment PATH will be examined. MEMOREAD() does not use the SET
DEFAULT or SET PATH to search for the file.

<expL2> is optional logical value. If true (.T.), MEMOREAD() will retry the read on
failure. The default is .F. = no retry.

Returns:
<retC> is a character string with a copy of the contents of the specified text file. In
FlagShip, there is no size limit to the file read. If the file cannot be found, a null
string "" is returned and FERROR() is set.

Description:
MEMOREAD() reads an ASCII file into memory where it can be manipulated as a
character string (e.g. using MEMOEDIT()) or stored to a memo field. The user must
have at least the "r" (read) access right to the file.

The inverse function of MEMOREAD() is MEMOWRIT(). To read the text file line-
by-line, you may preferably use FreadTxt().

Multiuser:
To read strings or memo fields in a multiuser environment, use FLOCKF() together
with FREAD() or FREADSTR(). Note that MEMOREAD() cannot be influenced by
FLOCKF().

Example:
LOCAL note := MEMOREAD("mynote.txt")
IF FERROR() == 0 // success?

USE mydbf
REPLACE memofld WITH MEMOEDIT(note)
MEMOWRIT ("note.txt", memofld)

ENDIF

Classification:
system, file access

Related:
MEMOWRIT(), FERROR(), FREADTXT(), MEMOEDIT(), MEMOLINE(),
MEMOTRAN(), MLCOUNT(), MLPOS(), HARDCR(), FLOCKF(), FS_SET()

FUN 402

MEMORY ()
Syntax:

retN = MEMORY (expN)
Syntax 2:

retN = MEMORY (1, expN2)
Purpose:

Determines total, used or free memory space, largest assignable string,
swap/paging space, and buffering.

Arguments:
<expN> is a numeric value specifying the required action:

expN Description/Action Clipper Windows Linux
NIL: same as expN = 0
0: Free Variable Space (heap) retN retN retN
1: Largest String (*see <expN2>) 64 retN retN
2: Available RUN Memory retN retN retN
3: Available Virtual Memory retN retN retN
4: Free Expanded Memory retN 99999 99999
101: Total physical memory retN retN retN
102: Segments in Fixed Memory/Heap retN 1 1
103: Free Swap Memory retN retN retN
104: Free Conventional Memory retN retN retN
105: Used Expanded Memory 0 0 0
106: Total Swap Memory 0 -1 retN
107: Buffers 0 -1 retN

<expN2> in Syntax 2 is the string size (in bytes, up to 2000000000) to be checked
for sufficient space on heap.

Returns:
<retN> is a numeric value representing the requested status in KB (kilobytes), see
above table. If the requested mode is not available, the above displayed default
value is returned instead. On error, -1 is returned.

With Syntax 2, <retN> is either <expN2> +1 which signals success, i.e. that the
requested string size of <expN2> bytes (note: not kilobytes as otherwise) can be
assigned, or is zero when not enough free continuous heap space is available. In
case of zero return, an subsequent assignment of string size <expN2> would raise
RTE 301 = no memory available.

Description:
MEMORY() is a compatibility function to the xBase DOS derivate. As opposite to
limited DOS memory, all 32 and 64bit operating systems (like Windows, Linux or
commercial Unix) uses virtual memory = real RAM plus paging/swapping, which
results in 2GB or more space.

FUN 403

All FlagShip variables are stored on dynamic heap. With Syntax 1, you may
determine the total or available memory (heap) size, returned by system (or kernel).
On Linux, these values are similar to external invocation of free, top or cat
/proc/meminfo. On Windows, system call returns the corresponding value.

With MEMORY(1), the returned value reports total available space, which however
can be fragmented. Therefore assignment of large string may fail even if the
returned value is large enough. Syntax 2 allows you to check unfragmented heap
to fit requested string size.

Note, the FlagShip variable can contains strings up to 2 Gigabytes long, but only up
to 64 Kilobytes can be stored in the database memo or character field.

Caution: since this function is expensive, use it with care and only if required. Heavy
use within a loop like in the example below may slow down the execution speed.

Example:
? "Free memory at program start:", ltrim(memory()), "KB =", ;
ltrim(memory() / 1024), "MB of total",ltrim(memory(3) /1024),"MB"

wait
size := 1024 * 1024 // 1 MB
str := replicate("x", size) // 1 MB string
for ii := 1 to 30000 // try to allocate 30000 * 1MB =30 GB

idx := strzero(ii,5)
var&idx := str // ea1MB string in var00001..var30000
alloc := ii * size / 1024 // in KB
avail := memory() // in KB
/*
* You will detect that the available memory may temporar. grow
* when swapping/paging starts. To check swapping, run 'top' in
* separate Linux console, or Task Manager in Windows.
*/
? "Allocated:", ltrim(alloc), "KB =", ltrim(alloc / 1024), ;
"MB -- free:", ltrim(avail), "KB =", ltrim(avail / 1024), "MB"

if memory(106) > 0
?? ", swap used=",ltrim((memory(106)-memory(103)) /1024),"MB"

elseif memory(103) > 0
?? ", avail.swap=",ltrim(memory(103) / 1024),"MB"

endif
/*
* check for availability of 1MB continuous heap space to
* avoid RTE = not enough memory.
*/
if memory(1, size) < size // note: in bytes, not in KB

? "-- not enough continuous heap space, exiting loop"
exit

endif
next
wait "done ..."
quit // at program end, all used memory is freed

Classification:
programming

FUN 404

Compatibility:
Syntax 2 is FlagShip extension. Functionality extended in VFS7, previous FlagShip
versions returned 640KB with Memory(2), and 64KB otherwise. In Clipper, only
values 0,1,2 are documented, Memory(1) returns max 64 KB, Memory(0) usually
max 345 KB. FoxPro/VFP always returns 640 KB for Memory() or SYS(12), VFS7
returns correct value which us usually more than 1 GB (i.e. more than 1048576 KB)
at the program begin.

Related:
LEN()

FUN 405

MEMOTRAN ()
Syntax:

retC = MEMOTRAN (expC1, [expC2], [expC3])
Purpose:

Replaces the line terminating characters LF, CR/LF and soft-CR/LF in a memo field
or a string with user defined characters.

Arguments:
<expC1> is the source string or memo field.

Options:
<expC2> is the character or string which should replace the CR/LF
(CHR(13)+CHR(10) e.g. in DOS file, memo field) or LF only (CHR(10) in a UNIX
file) within <expC1>. If not specified, the default is semicolon ";".

<expC3> is the character or string, which should replace the soft- CR/LF
CHR(141)+CHR(10) in <expC1>. If not specified, a space " " will be used as
default.

Returns:
<retC> is the translated string.

Description:
MEMOTRAN() transforms the paragraph mark (CR/LF) or the word-wrap mark
(soft-CR/LF) used in MEMOEDIT() to other, user defined characters. Also, the
NEWLINE mark of DOS (CR/LF) or UNIX (LF) ASCII files can be translated.

To translate the soft-CR/LF only, HARDCR() or STRTRAN() may be used instead.

Example:
LOCAL notetext, handle
USE address
notetext = MEMOTRAN (notefield, " ", chr(10))
handle = FCREATE ("notes.data")
IF handle = 0

FWRITE (handle, notetext)
FCLOSE (handle)

ENDIF

Classification:
programming

Compatibility:
The LF translation is supported by FlagShip only.

Related:
HARDCR(), STRTRAN(), MEMOEDIT(), MEMOLINE()

FUN 406

MEMOWRIT ()
Syntax:

retL = MEMOWRIT (expC1, expC2, [expL3])
Purpose:

Writes a character string to the specified text file.

Arguments:
<expC1> is the name of the text file including the extension and optionally a path, if
required. If a path is not specified, the file is written to the current directory and the
current SET DEFAULT does not apply for MEMOWRIT().

<expC2> is the character string, the contents of which are to be written to the
specified file.

<expL3> is optional logical value. If true (.T.), MEMOWRIT() will retry the write on
failure. The default is .F. = no retry.

Returns:
<retL> is logical TRUE if the operation was successful.

Description:
MEMOWRIT() writes a character string or memo field to an ASCII file. The user
must have at least the "rw" access right to the file and the "wx" right to the directory.
If the write operation was not successful, <retL> returns FALSE and FERROR() is
set.

The inverse function of MEMOWRIT() is MEMOREAD().

Multiuser:
To write strings or memo fields in a multiuser environment, use FLOCKF() together
with FWRITE(). Note that MEMOWRITE() cannot be influenced by FLOCKF().

Example:
helptext = MEMOREAD ("help.txt")
helptext = MEMOEDIT (helptext)
IF LASTKEY() # 27

IF .not. MEMOWRIT ("help.txt", helptext)
? "The file help.txt cannot be saved, error", ;
LTRIM(STR(FERROR())), "occurred."

WAIT
ENDIF

ENDIF

Classification:
system, file access

Related:
MEMOREAD(), FERROR(), MEMOEDIT(), MEMOLINE(), MEMOTRAN(),
HARDCR(), MLCOUNT(), MLPOS(), FLOCKF(), FS_SET()

FUN 407

MEMVARBLOCK ()
Syntax:

retB = MEMVARBLOCK (expC)
Purpose:

Returns a set/retrieve code block for a given memory variable.

Arguments:
<expC> is the name of the PRIVATE or PUBLIC variable referred to by the
set/retrieve block, specified as a character string. LOCAL, STATIC or typed
variables cannot be used, since they cannot be determined using the macro
evaluation of <expC>.

Returns:
<retB> is a code block that when evaluated sets (assigns) or gets (retrieves) the
value of the given memory variable. If the <expC> variable does not exist or is not
visible, MEMVARBLOCK() returns NIL.

Description:
The code block created by MEMVARBLOCK() has two operations depending on
whether an argument is passed to the code block when it is evaluated. If evaluated
with an argument, it assigns the value of the argument to the <expC> variable.
Otherwise, the evaluated code block returns the value of <expC>.

Using the code block instead of a similar macro evaluation will increase process
speed.

Example:
LOCAL block1, block2
PRIVATE myvar := "any text"
block1 := {|par| IF (par==NIL, myvar, myvar := par)}
block2 := MEMVARBLOCK ("myvar") // equivalent to block1

? EVAL (block2) // any text
? EVAL (block2, "new text") // new text
? myvar // new text

Classification:
programming

Compatibility:
Available in FS and C5 only.

Related:
FIELDBLOCK(), FIELDWBLOCK()

FUN 408

MHIDE ()
Syntax:

NIL = Mhide ()
Purpose:

Hide the mouse pointer/cursor

Returns:
Mhide() always returns NIL

Description:
Mhide() hides the mouse pointer. This function can be used together with Mshow()
when updating the screen or signaling the user not to use mouse at this time.

Compatibility:
New in FS5, available in CL53

Related:
Mshow(), Mrow(), Mcol(), MSetCursor()

FUN 409

MIN ()
Syntax:

retN = MIN (expN1, expN2, [... expNn])
retD = MIN (expD1, expD2, [... expDn])

Purpose:
Returns the smaller of two numeric or date values.

Arguments:
<expN1> ... <expNn> are the numeric expressions to be compared.

<expD1> ... <expDn> are the date expressions to be compared.

Returns:
<retN> or <retD> is the smaller of the two or more arguments.

Description:
MIN() can be used when the result of an expression has to be kept below a
maximum value.

The inverse operation of MIN() is MAX().

Example:
? MIN (100, 88) && 88
? MIN (88, 100) && 88
? MIN (-88, -100) && -100
? DATE(), MIN (DATE(), DATE()-40) && 09/05/93 07/27/93

Classification:
programming

Compatibility:
The support of more than two arguments is new in FS5

Related:
MAX(), MinMax()

FUN 410

MINMAX ()
Syntax:

retND = MinMax (expND1, expND2, expND3)
Purpose:

Checks and if required set the return value to the lower or upper boundary, testing
expND1 <= expND2 <= expND3

Arguments:
<expND1> is numeric or date expression with the lower boundary
<expND1> is numeric or date expression the checked value
<expND3> is numeric or date expression with the upper boundary

Returns:
<retND> is the result of this comparison

Description:
This function is equivalent to Max(expND1, Min(expND2, expND3))

Compatibility:
New in FS5

Related:
Min(), Max(), Between()

FUN 411

MLCOUNT ()
Syntax:

retN = MLCOUNT (expC1, [expN2], [expN3], [expL4])
Purpose:

Counts the number of lines to be printed from a character string or a memo field.

Arguments:
<expC1> is the source string or memo field to count.

Options:
<expN2> is the number of characters per line. The valid range is 4 to 254. If not
given, the default is 79.

<expN3> is the tabulator stop width, the default is 4.

<expL4> toggles word wrapping on and off. TRUE (the default) enables word wrap,
FALSE disables it.

If the wrapping <expL4> is on, and the line width breaks a word, it will be word
wrapped to the next line and the next line will begin with that word. If the wrapping
is off, the line ends with the newline mark or the line width; the next line begins
behind the newline (LF or CR/LF).

Returns:
<retN> is the number of lines in <expC1> depending on the line length, the
tabulator stop width and the word wrapping.

Description:
MLCOUNT() is often used with MEMOLINE() to print character strings and memo
fields based on the number of characters per line. MLCOUNT() returns the final line
count used as the end criteria for the line extracting and printing. Normally, the line
length, tab width and wrapping corresponds to the setting of MEMOEDIT().

MLCOUNT() also handles strings and memos formatted by MEMOEDIT(), as a
plain ASCII text in the UNIX and DOS convention.

Example:
lines = MLCOUNT (note, 80)
FOR i = 1 TO lines

? MEMOLINE (note, 80)
NEXT

Example:
see also example in MEMOLINE() and MLCTOPOS().

Classification: programming

Related: MEMOLINE(), MLPOS(), MEMOTRAN(), HARDCR(), MEMOEDIT(),
MEMOREAD(), MEMOWRIT()

FUN 412

MLCTOPOS ()
Syntax:

retN = MLCTOPOS (expC1, expN2, expN3, expN4,
[expN5], [expL6])

Purpose:
Returns byte position of a formatted string based on line and column position.

Arguments:
<expC1> is the text string to scan.

<expN2> is the number of characters per line. The valid range is 4 to 254.

<expN3> is the line number counting from 1.

<expN4> is the column number counting from 0.

Options:
<expN5> is the tabulator stop width. The default is 4.

<expL6> is the word wrap flag. If not specified, the default is TRUE.

Returns:
<retN> is the byte position within <expC1> counting from 1 up. If the byte is out of
range, 0 is returned.

Description:
MLCTOPOS() determines the byte position that corresponds to a particular line and
column within the formatted text. Normally, the line length, tab width and wrapping
correspond to the setting of MEMOEDIT(). The returned value may be used as a
argument in SUBSTR() or other string functions. MLCTOPOS() for the column 0 is
equivalent to MLPOS().

Example:
*5....0....5....0....5....0
LOCAL text := "This is a long text containing several " + ;

"lines in MEMOEDIT or MEMOLINE using a " +;
"width of 25characters."

? MLCOUNT (text, 20) // 5
? MLCTOPOS (text, 20, 3, 2) // 23
? SUBSTR (text, MLCTOPOS (text,25,2,0), 12) // containing s
? SUBSTR (text, MLCTOPOS (text,25,2,2), 12) // containing sev
? SUBSTR (text, MLPOS (text,25,3), 12) // in MEMOEDIT

Classification: programming

Compatibility: Available in FlagShip and C5 only.

Related: MPOSTOLC(), MLPOS(), MLCOUNT(), MEMOLINE(), MEMOEDIT()

FUN 413

MLEFTDOWN ()
Syntax:

retL = MlefttDown ()
Purpose:

Determine the status of the left mouse button

Returns:
<retL> is .T. if the mouse's left button is currently pressed, otherwise .F.

Description:
MlefttDown() determines the button press status of the left mouse button.

Note: you may determine the mouse click also from
key := Inkey(n, INKEY_ALL_BUT_MOVE)

where the <key> returns more information e.g. double click, up or down press of the
left, middle or right button etc.

Compatibility:
New in FS5, available in CL53

Related:
Mpresent(), MrightDown(), Mrow(), Mcol(), MSetCursor(), Inkey()

FUN 414

MLPOS ()
Syntax:

retN = MLPOS (expC1, expN2, expN3, [expN4],
[expL5]))

Purpose:
Determines the position of a line inside a string or a memo field.

Arguments:
<expC1> is the source string or memo field.

<expN2> is the number of characters per line. The valid range is 4 to 254.

<expN3> is the required line number counting from 1.

Options:
<expN4> is the tabulator stop width. The default is 4.

<expL5> is the word wrap flag. If not specified, the default is TRUE.

Returns:
<retN> is a number representing the byte position of the required line beginning. If
the line does not exist in <expC1>, the total length of the source string will be
returned.

Description:
MLPOS() determines the byte position that corresponds to a particular line within
the formatted text. Normally, the line length, tab width and wrapping correspond to
the setting of MEMOEDIT(). The returned value may be used as a argument in
SUBSTR() or other string functions. MLPOS() is equivalent to MLCTOPOS() for the
column 0.

Example:
*5....0....5....0....5....0
LOCAL text := "This is a long text containing several " + ;

"lines in MEMOEDIT or MEMOLINE using a " +;
"width of 25characters."

? MLCOUNT (text, 20) // 5
? MLPOS (text, 20, 3) // 21
? SUBSTR (text, MLCTOPOS (text,25,2,0), 12) // containing s
? SUBSTR (text, MLPOS (text,25,2), 12) // containing s

Classification:
programming

Compatibility:
The arguments 4 and 5 are new in FS4 and C5.

Related:
MLCTOPOS(), MLCOUNT(), MEMOLINE(), MEMOEDIT()

FUN 415

MOD ()
Syntax:

retN = MOD (expN1, expN2)
Purpose:

Returns dBASE III+ modulus of two numbers.

Arguments:
<expN1> is the dividend of the division operation.

<expN2> is the divisor of the division operation.

Returns:
<retN> represents the remainder of <expN1> divided by <expN2>.

Description:
The result values of MOD() correspond to dBASE, but differs slightly from the
default % modulus operator (and the equivalent mathematical operation):

expN1 expN2 % MOD()
3 0 Error 3
3 -2 1 -1
-3 2 -1 1
-3 0 Error -3
-1 3 -1 2
-2 3 -2 1
2 -3 2 -1
1 -3 1 -2

Example:
? 10 % 3, MOD (10, 3) // 1 1.00
? 0 % 3, MOD (0, 5) // 0 0.00
? 5 % 2, MOD (5, 2) // 1 1.00
? -5 % 2, MOD (-5, 2) // -1 1.00
? 5.5 % 2, MOD (5.5, 2) // 1.50 1.50
? 5.5 % 2.2, MOD (5.5, 2.2) // 1.10 1.10

Classification:
programming

Related:
The % operator

FUN 416

MONTH ()
Syntax:

retN = MONTH ([expD])
Purpose:

Extracts the month of the year from a date value.

Arguments:
<expD> is the date value. If not specified, the current system date() is used.

Returns:
<retN> is a numeric value in the range from 1 to 12. If a null or invalid date is
specified, zero is returned.

Description:
MONTH() is used where the numeric month value is needed as a part of some
calculation. Other date extracting functions are DAY() and YEAR(). The related
CMONTH() function returns the name of the month as a character string (in English
or other human languages according to the FS_SET("load") setting).

Example:
? dd := DATE() // 08/15/93
? MONTH() // 8
? MONTH(DATE()) // 8
? MONTH(DATE()) + 20 // 9
? DAY(dd), MONTH(dd), YEAR(dd) // 15 8 1993
? CMONTH(DATE() -30) // July
FS_SET ("load", 1, "FSsortab.ger")
FS_SET ("setl", 1)
? CMONTH(DATE() -30) // Juli

Classification:
programming

Compatibility:
Clipper requires the <expD> value, it does not use current date() when <expD1>
parameter is empty.

Related:
CDOW(), CMONTH(), CTOD(), DATE(), DATEVALID(), DAY(), DOW(), DTOC(),
DTOS(), YEAR(), FS2:AddMonth(), FS2:Cmonth2(), FS2:CtoMonth(),
FS2:NtoCmonth(), FS2:IsLeap(), FS2:BoM(), FS2:LastDayOfM(), FS2:Week(),
FS2:WoM(), FS2:Quarter()

FUN 417

MPOSTOLC ()
Syntax:

retA = MPOSTOLC (expC1, expN2, expN3, [expN4],
[expL5])

Purpose:
Returns line and column position of a formatted string based on a specified byte
position.

Arguments:
<expC1> is the text string to scan.

<expN2> is the number of characters per line. The valid range is 4 to 254.

<expN3> is the byte position counting from 1.

Options:
<expN4> is the tabulator stop width. The default is 4.

<expL5> is the word wrap flag. If not specified, the default is TRUE.

Returns:
<retA> is a two-element array containing the line and the column values for the
specified byte position <expN3>:

retA[1] contains the line number counting from 1, retA[2] is the column of the line,
counting from 0.

Description:
MPOSTOLC() determines the formatted line and column corresponding to a
particular byte position within a string <expC1>. Normally, the line length, tab width
and wrapping correspond to the setting of MEMOEDIT(). The inverse function of
MPOSTOLC() is MLCTOPOS().

Example:
*5....0....5....0....5....0
LOCAL text := "This is a long text containing several " + ;

"lines in MEMOEDIT or MEMOLINE"
? MLCTOPOS (text, 20, 3, 2) // 42
? SUBSTR (text, MLCTOPOS (text,25,2,1), 12) // ontaining se
currpos := MPOSTOLC (text,20,22)
? currpos[1], currpos[2] // 2 1

Classification:
programming

Compatibility:
Available in FS and C5 only.

Related:
MLCTOPOS(), MLPOS(), MLCOUNT(), MEMOLINE(), MEMOEDIT()

FUN 418

MPRESENT ()
Syntax:

retL = Mpresent ()
Purpose:

Determine if a mouse is present

Returns:
<retL> is .T. if mouse is present, otherwise .F.

Description:
This function is used to determine whether a mouse is available or not. Applicable
in GUI mode only.

Compatibility:
New in FS5, available in CL53

Related:
Mcol(), Mrow(), MsetCursor(), MsetPos(), Mhide(), Mshow(), Mstate(),
MsetCursor(), MsaveState(), MrestState(), MleftDown(), MrightDown()

FUN 419

MRESTSTATE ()
Syntax:

NIL = MrestState ()
Purpose:

Re-establish the previous state of a mouse

Arguments:
<expC1> is the saved mouse cursor state from MsaveState().

Returns:
This function always returns NIL

Description:
MrestState() is used for re-establishing a previously saved mouse state by
MsaveState(). This includes the mouse's screen position, visibility, and boundaries

Compatibility:
New in FS5, available in CL53

Related:
MsaveState(), Mpresent(), Mhide(), Mrow(), Mcol(), MSetCursor()

FUN 420

MRIGHTDOWN ()
Syntax:

retL = MrightDown ()
Purpose:

Determine the status of the right mouse button

Returns:
<retL> is .T. if the mouse's right button is currently pressed, otherwise .F.

Description:
MlefttDown() determines the button press status of the left mouse button.

Note: you may determine the mouse click also from
key := Inkey(n, INKEY_ALL_BUT_MOVE)

where the <key> returns more information e.g. double click, up or down press of the
left, middle or right button etc.

Compatibility:
New in FS5, available in CL53

Related:
Mpresent(), MleftDown(), Mrow(), Mcol(), MSetCursor(), Mstate(), Inkey()

FUN 421

MROW ()
Syntax:

retN = Mrow ([expL1], [expL2])
Purpose:

Determine the mouse cursor's user-screen row position

Arguments:
<expL1> is a pixel specification. If .T., the returned value is assumed in pixel, if .F.
in row/col,otherwise the current SET PIXEL status is used.

<expL2> apply for row/col coordinates only. If .F., the return value as integer
(default), .T. returns decimal fraction.

Returns:
<retN> is the current mouse cursor row position

Description:
The mouse support is available in GUI mode only. In the Terminal and Basic i/o
mode, 0 is returned.

Compatibility:
New in FS5, available in CL53

Related:
Mpresent(), Mcol(), MsetCursor(), MsetPos(), Mhide(), Mshow(), MsetCursor(),
MsaveState(), MrestState(), MleftDown(), MrightDown(), Mstate(), Row(), MaxRow()

FUN 422

MSAVESTATE ()
Syntax:

retC = MsaveState ()
Purpose:

Save the current state of a mouse

Returns:
<retC> is a character string that describes the mouse's current state. This string
can be passed later to MresrState().

Description:
MsaveState() is a function that is used for storing the mouse's current state. This
includes the mouse's screen position, visibility, and boundaries.

Compatibility:
New in FS5, available in CL53

Related:
Mpresent(), MrestState(), Mrow(), Mcol(), MSetCursor(), Mstate()

FUN 423

MSETCURSOR ()
Syntax:

retL = MsetCursor ([expNL1])
Purpose:

Determine or set mouse visibility and/or shape.

Arguments:
<expL1> if .T., the mouse visibility is enabled (when mouse is present). If specified
.F., the mouse cursor is hidden.

<expN1> is the required mouse shape. The CURSOR_* constants are defined in
mouse.fh

mouse.fh constant value Description
CURSOR_ARROW -1 standard arrow cursor
CURSOR_UPARROW -12 upwards arrow
CURSOR_CROSS -8 crosshair
CURSOR_WAIT -9 hourglass/watch
CURSOR_IBEAM -11 i-beam (I)
CURSOR_SIZE_VER -2 vertical resize
CURSOR_SIZE_HOR -3 horizontal resize
CURSOR_SIZE_RDIAG -5 diagonal resize (/)
CURSOR_SIZE_LDIAG -4 diagonal resize (\)
CURSOR_SIZE_ALL -13 all directions resize
CURSOR_INVISIBLE -17 blank/invisible cursor
CURSOR_SPLITVER -14 vertical splitting
CURSOR_SPLITHOR -3 horizontal splitting
CURSOR_HAND -6 a pointing hand
CURSOR_FORBIDDEN -16 forbidden action cursor
CURSOR_DEFAULT -1 default = CURSOR_ARROW

If no argument is passed, only the current state is returned.

Returns:
<retL> reports the current mouse cursor visibility

Description:
MsetCursor() either determines the current mouse cursor visibility, enables or
disables the visibility, or set new cursor shape.

To set the shape of text cursor in GUI mode, use SetGuiCursor() and/or SET
GUICURSOR ON/TO.

Example:
an example is available in .../examples/guicursor.prg

Compatibility: New in FS5, available in CL53 which supports <expL1> only
Related: Mpresent(), Mrow(), Mcol(), Mstate(), MsetPos(), Mshow(), SetGuiCursor()

FUN 424

MSETPOS ()
Syntax:

NIL = MsetPos (expN1, expN2, [expL3])
Purpose:

Set a new position for the mouse cursor

Arguments:
<expN1> is the row/y coordinate

<expN2> is the column/x coordinate

<expL3> is a pixel specification. If .T., the <expN1> and <expN2> are given in
pixel, if .F. in row/col, otherwise the current SET PIXEL status is used.

Returns:
This function always returns NIL

Description:
MsetPos() moves the mouse cursor to a new position on the screen. After the
mouse cursor is positioned, Mrow() and Mcol() are updated accordingly. To control
the visibility or shape of the mouse cursor, use MsetCursor()

Compatibility:
New in FS5, available in CL53 which supports the first 2 params

Related:
Mpresent(), Mcol(), Mrow(), MsetCursor(), Mstate()

FUN 425

MSHOW ()
Syntax 1:

retN = Mshow ()
Syntax 2:

retN = Mshow (expN1, expN2, expN3)
Syntax 3:

retN = Mshow (expN3)
Purpose:

Display the mouse pointer

Arguments:
<expN1> is the new mouse row coordinate according to SET PIXEL

<expN2> is the new mouse column coordinate according to SET PIXEL

<expN3> is the required mouse shape. The CURSOR_* and LLM_* constants are
defined in mouse.fh

mouse.fh constant Clipper constant Description
CURSOR_ARROW LLM_CURSOR_ARROW standard arrow cursor
CURSOR_UPARROW upwards arrow
CURSOR_CROSS LLM_CURSOR_CROSS crosshair
CURSOR_WAIT LLM_CURSOR_WAIT hourglass/watch
CURSOR_IBEA ibeam/text entry
CURSOR_SIZE_VER vertical resize
CURSOR_SIZE_HOR horizontal resize
CURSOR_SIZE_RDIAG diagonal resize (/)
CURSOR_SIZE_LDIAG diagonal resize (\)
CURSOR_SIZE_ALL all directions resize
CURSOR_INVISIBLE blank/invisible cursor
CURSOR_SPLITVER vertical splitting
CURSOR_SPLITHOR horizontal splitting
CURSOR_HAND LLM_CURSOR_HAND a pointing hand
CURSOR_FORBIDDEN forbidden action cursor

Returns:
<retN> is the current mouse shape at the time of this call

Description:
Mshow() is a combination of MsetCursor() and MsetPos()

The mouse support is available in GUI mode only. In the Terminal and Basic i/o
mode, the call is ignored and 0 is returned.

Compatibility: New in FS5, available in CL53

Related: Mpresent(), MsetCursor(), MsetPos(), Mcol(), Mrow(), Mstate()

FUN 426

MSTATE ()
Syntax:

retA = Mstate ()
Purpose:

Return the current mouse state

Returns:
<retA> is one-dimensional array containing:

mouse.fh constant Clipper constant Description Note
CURSOR_MSTATE_X LLM_STATE_X X position (1)
CURSOR_MSTATE_Y LLM_STATE_Y Y position (1)
CURSOR_MSTATE_ROW LLM_STATE_ROW row position (2)
CURSOR_MSTATE_COL LLM_STATE_COL column posit. (2)
CURSOR_MSTATE_LEFT LLM_STATE_LEFT left button (3)
CURSOR_MSTATE_RIGHT LLM_STATE_RIGHT right button (3)
CURSOR_MSTATE_VISIBLE LLM_STATE_VISIBLE visible (4)
CURSOR_MSTATE_SHAPE LLM_STATE_SHAPE shape (5)

Note (1) data in pixel
(2) data in row/col coordinates
(3) CURSOR_MSTATE_BUTDOWN or LLM_BUTTON_DOWN = button

down
CURSOR_MSTATE_BUTUP or LLM_BUTTON_UP = button up

(4) .T. = mouse cursor visible, .F. = hidden
(5) mouse cursor shape, see MsetCursor(), Mshow()

Description:
Mstate() returns information on the mouse state, i.e., the current screen position of
the pointer, the state of the left and right mouse buttons, the visibility status of the
mouse pointer ant the current shape.

Note: you may determine the mouse click also from
key := Inkey(n, INKEY_ALL_BUT_MOVE)

where the <key> returns more information e.g. double click, up or down press of the
left, middle or right button etc.

Compatibility:
New in FS5, available in CL53

Related:
Mpresent(), Mcol(), Mrow(), MsetCursor(), MLeftDown(), MrightDown()

FUN 427

NETERR ()
Syntax:

retL = NETERR ([expL])
Purpose:

Checks the status of the USE, SET INDEX and APPEND BLANK commands in a
multiuser environment for success or not. Optionally, sets/resets the value of
NETERR().

Options:
<expL> is an optional new logical value set to the NETERR(). Setting the new
NETERR() value allows the runtime error handler to control the way certain file
errors are handled.

Returns:
<retL> is a logical value where TRUE signals an error when the command could
not be executed. Possible causes of error:

Command NETERR() = .T. when
APPEND BLANK FLOCK() set by other user
USE...SHARED USE..EXCL (or USE.. without SET EXCLUSIVE OFF)

by other user
USE...EXCLUSIVE USE..SHARED or ..EXCL executed by other user
SET INDEX TO... Index is exclusive locked by other user

When the NETERR() value was set by <expL>, <retL> returns the previous set
value.

Description:
After executing the commands above, the success should be checked to make sure
the required action was executed. If NETERR() returns TRUE, the command should
be tried again or the process terminated using BREAK or RETURN.

Multiuser:
In multiuser mode (SET EXCLUSIVE OFF or USE.. ..SHARED), the commands
above do not generate a run-time error if they were not executed correctly. This
allows the programmer to take appropriate action.

Example:
SET EXCLUSIVE OFF && = multiuser mode
USE address && see also the more
DO while NETERR() && comfortable check

USE address && using "use_check"
ENDDO && in USE example
SET INDEX TO name, id_no
IF NETERR() && check success of

? "Indices being used by other user" && index opening
QUIT

ENDIF

FUN 428

APPEND BLANK && =automat. RLOCK()
DO WHILE NETERR() && if not successful

APPEND BLANK && try again...
ENDDO && until success
REPLACE name WITH "Smith"
UNLOCK && free RLOCK()

Classification:
database

Compatibility:
The optional argument is new in FS4 and C5.

Related:
USE, SET EXCLUSIVE, SET INDEX, APPEND BLANK, FLOCK(), RLOCK()

FUN 429

NETNAME ()
Syntax:

retC = NETNAME ()
Purpose:

Retrieves the current workstation name and user login identification.

Returns:
<retC> is a character string containing the user identification (LOGNAME) and the
current node name (same as $ uname -n). If the node name is unknown, a null
string is returned.

On MS-Windows, NetName() returns the login name and the network or if such is
not available, the local machine name in the syntax user@network or
user@machine.

Example:
PUBLIC FlagShip
fullname = NETNAME()
if FlagShip

username = SUBSTR (fullname, 1, AT("@",fullname) -1)
? fullname && JohnMiller@SUN1
? username && JohnMiller

else
username = fullname

endif
if EMPTY(username)

username = "unknown user"
endif
? "Good morning, " + username

Classification:
system access

Compatibility:
FlagShip returns the usual UNIX login name such as "John@server". On MS-
Windows, similar string is returned. With Clipper, this function returns the
identification, but only on some networks.

Related:
Environment variable LOGNAME, UNIX: uname -n

FUN 430

NEXTKEY ()
Syntax:

retN = NEXTKEY ([expN1], [expN2])
Purpose:

Determines the next pending key or character in the keyboard buffer.

Options:
<expN1> specifies to return n-th occurrence (starting at 1) of a key fitting to the
<expN2> filter mask. If not given, or <expN1> is less than 1, next key in buffer (or 0)
is returned, i.e. NextKey(1) is equivalent to NextKey() and is the key returned by
next Inkey(). Similarly, NextKey(2) is a key returned by over-next Inkey(), and so
forth.

<expN2> is an input mask, filtering only specified events from the buffer. See
INKEY_* constants in include/inkey.fh, default value is the value of
Set(_SET_EVENTMASK), usually INKEY_ALL

Returns:
<retN> is a numeric value representing the ASCII value of the next key to be
fetched. The value is equivalent to the INKEY() code, see <FlagShip_dir>/
include/inkey.fh. If there are no key presses in the buffer or SET TYPEAHEAD is
zero, zero is returned.

Description:
NEXTKEY() reads the next pending key without removing it from the keyboard
buffer. NEXTKEY() can be used to check if any key has been pressed, before
removing it by INKEY() or other keyboard commands, e.g. during the process of a
loop or to check the next requested user action. This can be useful in cases where
the user enters several keys in advance to avoid an additional overhead.

NEXTKEY() is similar to INKEY() function, but does not remove the pending key
from the keyboard buffer and does not update the LASTKEY() value.

Example:
#include "inkey.fh"
USE mydbf
display_data()

WHILE !EOF()
key := INKEY (0) // fetch the next input
IF key == K_PGDN

SKIP
IF NEXTKEY() == K_PGDN // do not display conti-

LOOP // gnuous screen output
ENDIF

ENDIF
display_data() // display the data

ENDDO

FUN 431

Classification:
programming, keyboard buffer access

Compatibility:
Both the optional parameters are new in FS5, same as mouse events, and not
available in Clipper.

Related:
CLEAR TYPEAHEAD, SET TYPEAHEAD, KEYBOARD, INKEY(), LASTKEY()

FUN 432

NUM2HEX ()
Syntax:

retN = Num2hex (expN1, [expN2], [expL3])
Purpose:

Convert numeric (integer) value to a string representing it hexadecimal equivalence.

Arguments:
<expN1> is a numeric value to be converted to hex string The available decimals, if
any, are truncated. Supported range is +/- 2147483647, i.e. approx. +/- 2
Giga/billions.

<expN2> specifies the requested output length. If specified and the resulting string
is shorter than <expN2>, it is filled left with "0" zeroes.

<expL3> if this modifier is .T., the hex string is prefaced by "Ox".

Description:
Num2hex() return a string representing the hexadecimal equivalence of the input
value. See Hex2num() for reverse conversion.

Example:
? Num2Hex(1234) // "4D2"
? Num2Hex(1234.95) // "4D2"
? Num2Hex(1234, , .T.) // "0x4D2"
? Num2Hex(1234, 6) // "0004D2"
? Num2Hex(1234, 6, .T.) // "0x0004D2"

Compatibility:
New in FS5

Related:
Hex2num()

FUN 433

OBJCLONE ()
Syntax:

retL = OBJCLONE (expO1, expO2)
Purpose:

Duplicates an object, instead of make reference. Dangerous!

Arguments:
<expO1> is the source object to duplicate, it properties remain unchanged.

<expO2> is the destination object whose properties will be changed using those of
<expO1>. Both <expO1> and <expO2> must be objects of the same class.

Returns:
<retL> is .T. on success, or .F. on failure. Additional messages are available in
developer mode, i.e. when FS_SET("devel",.T.) is set.

Description:
OBJCLONE() is similar to ACLONE() for arrays. It duplicates the properties of
<expO1> source object into the <expO2> destination. After executing ObjClone(),
you may change any property in the <expO2> object without influencing the original
<expO1> object, as opposite to an assignment, which creates a link (reference)
only and hence the change in one object will influence both.

Since an object is often very complex and includes several internal data as well as
local memory pointers, ObjClone() will copy only these data from <expO1> to
<expO2>:

•all instances of type C,N,I,D,L but not of type A,O,S,U,special
•by ASSIGN property of the <expO2> object using the same named ACCESS of

<expO1> or EXPORTed instance of <expO1> if such is available.

Other data in <expO2> object remain unchanged; methods are not executed.

WARNING, DANGER: The internal object/class data controls often the class
behavior. Sometimes also the order of assignments is important. Copying the class
internal properties from otherwise initialized object may influence the destination
class or cause unexpected behavior. Be very careful to use OBJCLONE() on
standard FlagShip classes, many of them holds internal pointers to e.g. GUI
widgets - destroying the object copy may then cause segmentation violation.
FlagShip internally does NOT use OBJCLONE() at all. You therefore should use
OBJCLONE() only if explicitly required, and on well known (own) classes, checking
the results thereafter. Better and always secure is to initialize the second object by
the usual way, using instantiation and documented, public class properties.

FUN 434

Example:
LOCAL oFont1, oFont2, oFont3

oFont1 := Font{"Courier", 12}
oFont1:Bold := .T. // font1 = Courier, 12, bold

oFont2 := Font{} // instantiate new font object
? oFont1:Name, oFont2:Name // = Courier Helvetica
? oFont1:Size, oFont2:Size // = 12 10
? oFont1:Bold, oFont2:Bold // = .T. .F.

ObjClone(oFont1, oFont2) // copy instances of font1 to font2
oFont2:Name := "Arial" // change property of font2
? oFont1:Name, oFont2:Name // = Courier Arial
? oFont1:Size, oFont2:Size // = 12 12
? oFont1:Bold, oFont2:Bold // = .T. .T.

oFont3 := oFont1 // assignment (reference), not copy
oFont3:Name := "Times" // changes property of font3 and font1
? oFont1:Name, oFont3:Name // = Times Times

Classification:
programming

Compatibility:
New in FS5

Related:
ACLONE(), ISOBJCLASS(), ISOBJPROPERTY(), _DISPLOBJ()

FUN 435

OEM2ANSI ()
Syntax:

retC = Oem2ansi (<expC1>, [<expL2>], [<expC3>])
Syntax 2:

retC = OemToAnsi (<expC1>, [<expL2>], [<expC3>])
Purpose:

convert <expC1> string from PC8/ASCII/OEM character set to ISO/ANSI character
set, including embedded \0 bytes

Arguments:
<expC1> is the character string to be converted.

<expL2> if .F. or not given, the translation should be "as close as possible" for PC8
characters not in ANSI charset. If .T., all unknown characters are replaced by
<expC3>

<expC3> replacement for unknown/untranslatable chars, default is '?'

Returns:
<retC> is the resulting, translated string

Description:
The PC8/ASCII/OEM character set differs to ISO/ANSI for nearly all character
values > 127. So is e.g. a-umlaut chr(132) in ASCII/PC8 set, but chr(228) in
ISO/ANSI.

The used character set depends on the TERM setting (in Terminal i/o) or is per
default ANSI/ISO in GUI mode. The PC8 char set is used in DOS and in Terminal
i/o FS applications, the ANSI us used by X11 and Windows.

The inverse of Oem2ansi() is Ansi2oem(). Both functions are used in automatic
database access/assign with SET ANSI ON.

Classification:
programming

Example:
see <FlagShip_dir>/examples/umlauts.prg for complete examples

Compatibility:
New in FS5

Related:
Ansi2oem(), SET ANSI

FUN 436

ONKEY ()
Syntax:

retB = OnKey ([expN1], [expB2])
Purpose:

Set/clear/return action performed on any key press

Options:
<expN1> is the Inkey() value of the key. If not specified or is 0, the action "on any
key" is assumed.

<expB2> specifies a code block that will be automatically executed whenever the
specified key is pressed during a wait status.

If <expN1> is numeric and <expB2> is not given, the currently assigned code block
for <expN1> is returned.

If <expN1> is numeric and <expB2> is NIL, the corresponding key action of
<expN1> is cleared, same as ON KEY <expN1>.

If both <expN1> and <expB2> are given and NIL, all ON KEY actions are cleared,
same as ON KEY CLEAR

Returns:
<retB> is the action block currently associated with the specified key, or NIL if the
specified key is not currently associated with a block.

Description:
This function is equivalent to ON KEY nKey [EVAL cBlock]. OnKey() with <expN1>
is equivalent to SetKey() or to SET KEY command. It sets or retrieves the automatic
action associated with a particular key during a wait status. A wait status is any
mode that extracts keys from the keyboard except for INKEY(), but including
ACHOICE(), INKEYTRAP(), DBEDIT(), MEMOEDIT(), ACCEPT, INPUT, READ and
WAIT. Any number of keys may be assigned at any one time.

SETKEY() or ONKEY() is usually used to assign a UDP or UDF to a specific key.

ONKEY(0, [expB2]) is equivalent to ON ANY KEY ... and evaluates the assigned
code block on any key which is not explicitly assigned by itself. Upon starting up,
the F1 key is automatically assigned to a UDF or UDP named HELP, if such exist.

When an assigned key is pressed during a wait state, the EVAL() function evaluates
the associated action block, passing the parameters PROCNAME(), PROCLINE(),
and READVAR().

For more information, refer to the ON KEY or SET KEY command.

Classification: programming
Compatibility: New in FS5
Related: ON KEY, SET FUNCTION, SET KEY, SetKey(), Eval(), Inkey(), InkeyTrap(),

GetKey(), IsFunction()

FUN 437

ORD*()
The Clipper's ORD*() functions are supported for backward compatibility purposes only,
since FlagShip's oRdd:Ord*() methods provides more information and functionality. The
<oRdd> object is available via DbObject() function.

OrdBagExt()
Return the default order bag RDD extension equivalent to IndexExt() or
oRdd:OrderInfo(DBOI_EXPRESSION)

OrdBagName()
Return the order bag name of a specific order extracts the information from
IndexNames()

OrdCond()
Specify conditions for ordering unsupported because of the weird syntax

OrdCondSet()
Set the condition and scope for an order supported, you also may use INDEX ON...
TO...

OrdCreate()
Create an order in an order bag supported, you also may use INDEX ON... TO...

OrdDestroy()
Remove a specified order from an order bag supported, you also may use SET
INDEX ...

OrdDescend()
Return and optionally change the descending flag of an order equivalent to
oRdd:OrderInfo(DBOI_ISDESC, ...)

FUN 438

OrdFor()
Return the FOR expression of an order equivalent to
oRdd:OrderInfo(DBOI_CONDITION, ...)

OrdIsunique()
Return the status of the unique flag for a given order equivalent to
oRdd:OrderInfo(DBOI_UNIQUE, ...)

OrdKey()
Return the key expression of an order equivalent to
oRdd:OrderInfo(DBOI_EXPRESSION, ...)

OrdKeyAdd()
Add a key to a custom built order the DBFIDX driver always return .F.

OrdKeyCount()
Return the number of keys in an order equivalent to
oRdd:OrderInfo(DBOI_KEYCOUNT, ...)

OrdKeyDel()
Delete a key from a custom built order the DBFIDX driver always return .F.

OrdKeyGoto()
Move to a record specified by its logical record number equivalent to
oRdd:OrderKeyGoto()

OrdKeyNo()
Get the logical record number of the current record equivalent to
oRdd:OrderInfo(DBOI_POSITION, ...)

FUN 439

OrdKeyVal()
Get key value of the current record from controlling order equivalent to
&(IndexKey(0))

OrdListAdd()
Add orders to the order list supported, you also may use SET INDEX ...

OrdListClear()
Clear the current order list supported, you also may use SET INDEX ...

OrdListRebui()
Rebuild all orders in the order list of the current work area supported, you also may
use REINDEX

OrdName()
Return the name of an order in the order list equivalent to OrdBagName()

OrdNumber()
Return the position of an order in the current order list extracts the information from
IndexNames()

OrdScope()
Set or clear the boundaries for scoping key values equivalent to oRdd:OrderInfo(...)

OrdSetFocu()
Set focus to an order in an order list supported, you also may use SET ORDER ...

OrdSetRelat()
Relate a specified work equivalent to DbSetRelation()

FUN 440

OrdSkipUnique()
Move record pointer to the next or previous unique key skips directly +/- records on
UNIQUE index, or simulates unique by comparing the index key

FUN 441

OS ()
Syntax:

retC = OS ()
Purpose:

Returns the operating system name and its release.

Returns:
<retC> is a character string containing the name of the current used UNIX system
and the OS release. On MS-Windows, OS() returns the Windows name and
release, e.g. "Windows XP (Build 1234) Release 5.0" or "Windows 95 OSR2
Release 4.1" and so on.

Description:
OS() returns the name of the system currently used. The return value <retC>
consists of two parts:

•the FlagShip OS system used (see FSC section) and

•the current UNIX or Windows release, preceded by the verb " Release ", see
example below.

Example:
myos = OS()
release = SUBSTR(myos, AT("Release ", myos) + 9)
fssyst = SUBSTR(myos, 1, AT(" Release ",myos))

? myos // SCO UNIX V/386 3.2 Release 3.4 5.6
? fssyst // SCO UNIX V/386 3.2
? release // 3.4 5.6

Classification:
system call

Compatibility:
The return value differs from Clipper, which return e.g. "DOS 5.0". The release is
OS dependent and need not contain digits only.

Related:
NETNAME(), VERSION(), UNIX: man uname

FUN 442

OUTERR ()
Syntax:

NIL = OUTERR (expList)
Purpose:

Writes a list of values to the standard error device.

Arguments:
<expList> is a list of values or expression of any type to display.

Returns:
The function always returns NIL.

Description:
OUTERR() is identical to OUTSTD() and similar to the ? command or QOUT()
function, except that it writes to the stderr device rather than the stdout device. It
uses the low-level fprintf(stderr,...) function. The output may be rerouted to any
other device or file by >, >> or | , e.g.

$./a.out par1 par2 2>>err.log // Unix, Linux
$ my.exe par1 par2 2>>err.log // MS-Windows

Program internal rerouting, using SET PRINTER or SET ALTERNATE commands
is not supported by OUTERR().

The OUTERR() is similar to the C output printf() or the RUN ("echo" + " " + exp)
command. Since OUTERR() by-passes the curses, the subsequent screen output
may produce unpredictable results, if no UNIX redirection is used. Issue the
REFRESH command to restore the standard screen output in a such case.

Example:
? "Cannot open database..."
OUTERR ("Database open failure:", ;

PROCNAME(), PROCLINE(), NETNAME(), DATE(), TIME())
REFRESH // to be sure

Classification:
system call, output

Compatibility:
Available in FS and C5 only. Note the differences in rerouting the output using the
DOS and UNIX redirections. Embedded zero bytes are not supported.

Related:
OUTSTD(), ?, ??, QOUT(), QQOUT(), DISPOUT(), REFRESH

FUN 443

OUTSTD ()
Syntax:

NIL = OUTSTD (expList)
Purpose:

Writes a list of values to the standard output device, exactly same as
fprintf(stdout,...) in C

Arguments:
<expList> is a list of values or expression of any type to display.

Returns:
The function always returns NIL.

Description:
OUTSTD() is similar to the ? command or QOUT() function, except that it ignores
the SET PRINTER or SET ALTERNATE setting. Using the header file "simpleio.fh"
will redefine some console output commands to OUTSTD().

The direct rerouting of the standard output to any other device or file using the UNIX
commands >, >> or | is possible, e.g.

$./a.out par1 par2 > myfile.txt // Unix, Linux
$ my.exe par1 par2 > myfile.txt // MS-Windows

but is not recommended, since the terminal control escape sequences will also be
written to the redirected file. OUTSTD() uses the stdout stream, as the UNIX curses
do. Therefore all the console and screen output including @..SAY, @..GET, ?,
QOUT(), WAIT etc. is rerouted. To redirect only a specific message to another
device or file, use the OUTERR() function (or the usual ?, ?? commands with SET
ALTERNATE, SET EXTRA or SET PRINTER) instead. In special cases, if the
screen oriented output is not required at all, you may disable the Curses according
to section SYS.2.7.

Example:
SET PRINTER ON
? "output appears to screen and printer"
OUTSTD ("screen output only")
SET PRINTER OFF

Classification:
sequential output

Compatibility:
Available in FS and C5 only. The rerouting on the OS command line differs in DOS
from that in UNIX. Embedded zero bytes are supported in FS by default.

Include:
<FlagShip_dir>/include/simpleio.fh

Related: OUTERR(), ?, ??, QOUT(), QQOUT(), DISPOUT()

FUN 444

PADC ()
PADL ()
PADR ()
Syntax:

retC = PADC (exp1, expN2, [expC3])
retC = PADL (exp1, expN2, [expC3])
retC = PADR (exp1, expN2, [expC3])

Purpose:
Pads character, date, and numeric values with a fill character.

Arguments:
<exp1> is a character, numeric, or date value to pad with a fill character.

<expN2> is the length of the character string to return.

Options:
<expC3> is the character to pad <exp1> with. If not specified, the default is a space
character.

Returns:
<retC> is the padded string to a total length of <expN2>.

Description:
PADC(), PADL(), and PADR() are character functions that pad character, date, and
numeric values with a fill character to create a new character string of a specified,
fixed length. They can be used for alignment in ?? commands, complex index keys
etc.

PADC() centers the expression <exp1> within <expN2> adding fill characters to the
left and right sides,

PADL() adds fill characters on the left side,

PADR() adds fill characters on the right side, up to the <expN2> total length.

If the length of <exp1> exceeds <expN2>, the resulting <retC> string is truncated to
<expN2> characters.

The inverse functions are ALLTRIM(), LTRIM() and RTRIM() which removes leading
and trailing spaces from the string.

FUN 445

Example:
USE address
INDEX ON PADR(UPPER(TRIM(name) + ", " + first), 25)
DO WHILE ! EOF()

? PADR (TRIM(name) + ", " + first), 40)
?? PADL (country, 5), city
?? PADC (turnover, 20, "*")
SKIP

ENDDO

Classification:
programming

Compatibility:
Available in FS and C5 only. Embedded zero bytes are supported in FS by default.

Related:
ALLTRIM(), LTRIM(), RTRIM(), STR(), SUBSTR(), FS2:PadLeft(), FS2:PadRight()

FUN 446

PARAM ()
Syntax:

ret = Param (expN1)
Purpose:

Returns the by number specified parameter

Arguments:
<expN1> is the ordinal number of the function parameter. Valid values are 1 to
pcount()

Returns:
<ret> is the received parameter value or NIL if invalid

Description:
Usually, you will receive parameters passed to an UDF (Procedure or Function) by
name. In special cases, it is more convenient to use loops and receive the
parameter value by its ordinal number.

Example:
x := myUdf (1, "hello", NIL, .F.)
:
FUNCTION myUdf(nParam, cString, anyVal, myLogic)
? nParam // 1
? cString // "hello"
? anyVal // NIL
? myLogic // .F.
for pos := 1 to Pcount()

? Param(pos) // 1, "hello", NIL, .F.
next
return Pcount()

Classification:
programming

Compatibility:
New in FS5

Related:
PARAMETERS, local parameters of FUNCTION or PROCEDURE

FUN 447

PARAMETERS ()
Syntax:

retN = Parameters ()
Purpose:

Equivalent to PCOUNT()

Returns:
<retN> is a numeric value, representing the number of parameters passed. If no
parameters are passed, zero is returned.

Description:
For FoxPro compatibility purposes, available when compiled with the -foxpro switch.
Equivalent to the standard function Pcount()

Classification:
programming

Compatibility:
New in FS5

Related:
Pcount(), Param(), PARAMETERS

FUN 448

PCALLS ()
Syntax:

retN = PCALLS ()
Purpose:

Outputs the current callstack.

Returns:
<retN> is the calling depth of the current UDP or UDF, starting with 1 in the main
program.

Description:
PCALLS() is mainly used for debugging purposes. It outputs the current callstack
trace including the source file, UDF or UDP name and the line number.

For more information, refer to PROCFILE(), PROCNAME() and PROCLINE().

Example:
*** File testmain.prg
SET PROCEDURE TO testproc
// call another file and UDP
DO mytest
*** eof
*** File testproc.prg
PROCEDURE mytest
x = PCALLS() // TESTPROC: Fn/Line MYTEST/3

// TESTMAIN: Fn/Line TESTMAIN/4
? x // 2
*** eof

Classification:
programming

Compatibility:
Available in FS only.

Related:
PROCNAME(), PROCLINE(), PROCFILE(), PROCSTACK()

FUN 449

PCOL ()
Syntax:

retN = PCOL ()
Purpose:

Reports the current printer column position.

Returns:
<retN> is a numeric value representing the current printer head column. This value,
beginning with zero, indicates where the next character will be printed. If the last
character was printed at column 36, for example, PCOL() returns 37.

Description:
PCOL() can be used to print a line of text relative to the previous column. PCOL()
also counts the control codes. However, these are not actually printed, so that after
sending such characters to the printer, PCOL() will not return the correct column of
the printer head, but the size of the sent characters at this line. For adjusting in such
cases, SETPRC() should be used.

PCOL() is updated only if either SET DEVICE TO PRINTER or SET PRINTER ON
is in effect. PCOL() is the same as COL() except that it relates to the printer rather
than the screen.

EJECT, besides advancing the paper, resets PCOL () and PROW() to zero.
SETPRC() sets PROW() and PCOL() to any value without causing the paper to
move.

When printing with @...SAY, the current SET MARGIN value is always added to the
specified column position before output is sent to the printer.

Example:
SET DEVICE TO PRINT
EJECT
@ PROW(), 10 SAY "Conti"
@ PROW(), PCOL() SAY "nuing output"
SET DEVICE TO SCREEN

Classification:
programming

Compatibility:
Note the standard spooled output used by FlagShip, see LNG.5.1.6, LNG.3.6 and
SET PRINTER command. Regardless of printer redirection, the PCOL() is set the
same way as for a direct printer output.

Related:
PROW(), COL(), SETPRC(), EJECT, SET DEVICE, SET PRINT

FUN 450

PCOUNT ()
Syntax:

retN = PCOUNT ()
Purpose:

Retrieves the number of parameters which have been passed to a program,
procedure, user defined function or a class method.

Returns:
<retN> is a numeric value, representing the number of parameters passed. If no
parameters are passed, zero is returned.

Description:
PCOUNT() reports the position of the last argument passed to the UDP or UDF
using a procedure or function call, or to the main program passed from the UNIX
command line.

This information is useful when determining whether arguments were left off the end
of the argument list. Arguments skipped in the middle of he list are still included in
the value returned. Such skipped parameters can be determined using a NIL
comparison or checking them by TYPE() or VALTYPE().

Example:
*** Program "test.prg"
PARAMETERS input1, input2 // passed from UNIX
param = PCOUNT()
input1 = IF (param < 1, "", input1)
input2 = IF (param < 2, "", input2)

DO myproc WITH input1, input2, 20
DO myproc WITH input1, , "test"

PROCEDURE myproc (par1, par2, par3)
// parameters 2 and 3 are optional
IF PCOUNT() < 1

? "error, no param 1 given"
RETURN

ENDIF
// set defaults
par1 := IF (VALTYPE(par1) != "C", "default", par1)
par2 := IF (par2 == NIL, 0, par2)
par3 := IF (par3 == NIL, .T., par3)
? par1, par2, par3 // process the UDP...
RETURN

Classification:
programming

Related:
PARAMETERS, PROCEDURE, FUNCTION, METHOD, PARAM()

FUN 451

PIXEL2COL ()
Syntax:

retN = Pixel2col (expN1)
Purpose:

calculates the column in col/row coordinates from the given pixel value
corresponding to the current i/o Font.

Arguments:
<expN1> is a numeric constant or variable specifying the x-pixel position which
should be recalculated to column.

Returns:
<retN> is numeric value (fraction of columns) corresponding to the given pixel value
and the selected font.

Description:
The function is equivalent to oApplic:Pixel2col(expN1)

Classification:
programming

Compatibility:
New in FS5

Related:
Pixel2row(), Col2pixel(), Row2pixel(), oApplic:Pixel2col()

FUN 452

PIXEL2ROW ()
Syntax:

retN = Pixel2row (expN1)
Purpose:

calculates the row in col/row coordinates from the given pixel value corresponding
to the current i/o Font.

Arguments:
<expN1> is a numeric constant or variable specifying the y-pixel position which
should be recalculated to row.

Returns:
<retN> is numeric value (fraction of rows) corresponding to the given pixel value
and the selected font.

Description:
The function is equivalent to oApplic:Pixel2row(expN1)

Classification:
programming

Compatibility:
New in FS5

Related:
Pixel2col(), Col2pixel(), Row2pixel(), oApplic:Pixel2row()

FUN 453

PRINTGUI ()
Syntax:

retL = PrintGui ([exp1])
Purpose:

Starts, continues, terminates or invokes GUI/GDI printer output. Applicable for GUI
mode only, ignored otherwise (with developer warning).

Arguments:
<exp1> = .T. starts or continues GUI printer output, same as invoking SET
GUIPRINT ON or SET PRINTER GUI ON <exp1> = .F. stops or temporary
terminates GUI printer output, same as invoking SET GUIPRINT OFF or SET
PRINTER GUI OFF <exp1> = NIL or not specified: stops GUI printer output, and
prints the output to selected driver via _oPrinter:GUIexec()

Returns:
<retL> is a logical value signaling success or failure.

Description:
PrintGui() is used to control GUI/GDI printer output to selected system driver. It is a
shortcut for start/stop rendering the output by SET GUIPRINT, and to process
printout by oPrinter:GUIexec().

You will create GUI printer output by the same way as a screen output by common
?, ??, qout(), @..SAY, @..DRAW etc. commands and functions. When SET
CONSOLE is ON and/or SET DEVICE is SCREEN, the output goes (parallel to
screen. When SET GUIPRINT is ON or PrintGui(.T.) was invoked, the output is
(parallel) rendered for printer output.

The first invocation of PrintGui(.T.) or the same SET GUIPRINT ON calls
_oPrinter:Setup() dialog to select installed printer driver, if the _oPrinter:Setup() was
not yet invoked manually. This setting remains active also after printing by
PrintGui() but can also be changed by _oPrinter:Setup(), it however cleans the
current print buffer, if any. It then starts rendering of printer output.

Invoking PrintGui(.F.) or the same SET GUIPRINT OFF stops rendering of printer
output. The next invocation of PrintGui(.T.) or the same SET GUIPRINT ON
continues output redirection to rendering buffer.

PrintGui() without parameter or the same _oPrinter:GUIexec() stops rendering, and
prints the buffer by using already selected printer driver, then clears the buffer. Next
PrintGui(.T.) will start new rendering for printer.

Supported commands and functions:
Following commands and functions are (parallel) processed for printing (see details
in corresponding manual page) when PrintGui(.T.) or SET GUIPRINT ON is active:

FUN 454

?.., ??.. std. text output (opt. with color and font)
@.. BOX .. draw box (with SET GUITRANSL BOX ON)
@.. DRAW .. draw line, circle, arc, pie, polygon etc.
@.. TO .. draw lines (with SET GUITRANSL LINES ON)
@.. SAY .. coordinates oriented text output
@.. SAY IMAGE .. draw bitmap images
.. PRINTCOLOR .. command clause for printout color, or
.. GUICOLOR .. printout color if PRINTCOLOR clause is n/a
.. FONT .. command clause for screen & printout font
EJECT execute Formfeed (new page)
SET FONT .. assign default font, same as _oPrinter:Font
SET GUIPRINT OFF/ON same as PrintGui(.F.) and PrintGui(.T.)
Devpos() set (screen and) printer cursor position
Devout() std. text output
PrintGui(.F./.T.) stop/continue printer buffering
PrintGui() stop buffering, print = oPrinter:GUIexec()
Qout(), Qqout() std. text output
Setpos() set cursor position

You additionally may set, check or execute at any time:

SET GUITRANSL .. (dis)allow semi-graphic, lines, boxes
SET FONT BASELINE .. enable/disable font alignment to base line
SET SOURCE .. translate from/to ASCII/OEM or ISO/ANSI
SET ... most of standard settings
Set(...) corresponds to SET command
oPrinter:Driver*() driver data
oPrinter:Font printer default font
oPrinter:Margn*() margins
oPrinter:Page*() page settings
oPrinter:Setup() dialog to select printer driver
oPrinter:SetupAborted was printer select dialog aborted?
oPrinter:GUIabort() abort rendering, clear buffer w/o printing
oPrinter:GUIcol() get/set printer column
oPrinter:GUIdraw*() draw lines, box, arc, circle, pie etc.
oPrinter:GUIexec() same as PrintGui() = print buffer
oPrinter:GUIfixPage() adjust page size
oPrinter:GUImaxCol() max printer column
oPrinter:GUImaxRow() max printer row
oPrinter:GUInewLine() same as ? command, linefeed = new line
oPrinter:GUInewPage() same as EJECT command, formfeed = new page
oPrinter:GUIpageNum get/set current page (1..n or 0 on failure)
oPrinter:GUIrow() get/set printer row
oPrinter:GUIsetColor() set default printer color
oPrinter:GUIsetFont() set default printer font
oPrinter:GUIsetPos() set printer's cursor position
oPrinter:GUItestPage() print test page
oPrinter:GUItextOut() same as ?? command, print text

FUN 455

Tuning:
FlagShip uses standard printer drivers, assigned by CUPS in Linux or by "Printers
and Faxes" in MS-Windows. Some of these drivers does not return exact
measurements, or the top/bottom/left/right margins differs for first and next pages. If
you need exact page output, you may tune/override the driver settings by your own
data (determined e.g. by the oPrinter:GUItestPage() method, see example below),
and assigned to oPrinter:GuiFixPage() method. These page data are passed in an
array of 5 or 6 elements:

aPrintData [1] =
[2] =
[3] =
[4] =
[5] =
[6] =

printer driver name (char, optional) paper size (char, same as
oPrinter:PageSize) orientation (char, 1st char = "P" or "L") units
of element data [5,6] (numeric = UNIT_ROWCOL, UNIT_MM,
UNIT_CM, UNIT_INCH, UNIT_PIXEL, UNIT_DOTS) sub-array
of 4 numeric elements with paper size and margins for the 1st
(and next pages) in above units: [1] = non-printable left margin
[2] = printable width [3] = non-printable top margin [4] = printable
height sub-array of 4 numeric elements with paper size and
margins for 2nd and next pages in above units, with the same
structure as element [5]. When element [6] is omitted, data of
element [5] are taken for the 1st and all following pages.

For example, set page data of LAN printer for Windows and/or Linux:

#ifdef FS_WIN32 /* compiled by VFS for MS-Windows */
aPrintSetup := {"Canon MX850 series Printer", "a4", "portr", ;

UNIT_MM, {3.4, 203.1, 5, 286.8}, ;
{0, 203.1, 0, 286.8} }

#else /* compiled by VFS for Linux */
aPrintSetup := {"i865", "A4", "Portrait", ;

UNIT_MM, {13, 188, 8, 271} }
#endif
// oPrinter:Setup() // optional
oPrinter:GuiFixPage(aPrintSetup)
PrintGui(.T.) // start buffering for printer output
// ?, ??, @..SAY, @..DRAW etc.
PrintGui() // end buffering, print it

Another alternative is to specify array of all used or all expected printers assigning it
to the _aGlobSetting[GSET_A_GUIPRINT_SIZE] global variable. The first
PrintGui() invocation (or explicit call to oPrinter:GUIstart() method) checks if
oPrinter:GuiFixPage() was assigned and if not so, compares all printer driver names
(in any) in the _aGlobSetting[GSET_A_GUIPRINT_SIZE] with currently selected
printer (case insensitive). The structure of each array element is equivalent to
above aPrintData{...}, for example:

#ifdef FS_LINUX /* compiled by VFS for Linux */
_aGlobSetting[GSET_A_GUIPRINT_SIZE] := ;

{{"printer", "A4", "Portrait", UNIT_MM, {13, 188, 8, 271}}, ;
{"i865", "A4", "Portrait", UNIT_MM, {13, 188, 8, 271}} }

#else /* compiled by VFS for MS-Windows */

FUN 456

_aGlobSetting[GSET_A_GUIPRINT_SIZE] := ;
{{"HP LaserJet 2100 PCL6", "A4", "Portrait", ;

UNIT_MM, {5.5, 198, 6.4, 283.5}, {0, 198, 0, 283.5}}, ;
{"Canon MX850 series Printer", "a4", "portr", ;

UNIT_MM, {3.4, 203.1, 5, 286.8}, {0, 203.1, 0, 286.8}} }
#endif

Example:
set source ANSI // convert national characters
set font "courier", 10 // set default font = courier
local oFont := Font{} // new font object
oApplic:Font:CloneTo(oFont) // save current applic. font = courier
oPrinter:Setup() // select printer in dialog
if oPrinter:SetupAborted // check for user abort

wait "sorry ..."
quit

endif

PrintGui(.T.) // start buffering for GUI printer
// SET CONSOLE OFF // if console output is not required
// SET DEVICE TO PRINT // if screen output is not required
oPrinter:GUItestPage() // optional: print test page
EJECT // optional: formfeed after test page
@ 5,10 SAY "Text at row/col 5,10"
SET FONT "Arial",11 // set new default font
? "Hello from München" // umlauts are here in ANSI/ISO
SET FONT BASELINE ON // align font on base line
@ 8,3 SAY "Text in Arial 11, green" ;

GUICOLOR "G+" PRINTCOLOR "G+"
?? " and in Times 20, bold red" ;

FONT FontNew("Times",20,"B") ;
GUICOLOR "R+" PRINTCOLOR "#FF0000"

?? " continuing with current font"
SET FONT BASELINE OFF // align font on top (default)
@ 7,5,12,9 SAY IMAGE ;

FILE "mypicture.jpg" SCALE UNIT=CM
PrintGui() // print to selected printer

// SET CONSOLE ON // enable console output
// SET DEVICE TO SCREEN // enable screen output
oFont:CloneTo(oApplic:Font) // restore application font
wait // now using courier 10

Example:
see complete example in <FlagShip_dir>/examples/printergui.prg

Classification:
printer output in GUI mode

Compatibility:
New in VFS7, n/a in Clipper nor in FoxPro.

Related:
SET GUIPRINTER, SET PRINTER, set(_SET_GUIPRINTER), OBJ:Printer class

FUN 457

PRINTSTATUS ()
Syntax:

retL = PrintStatus ()
Purpose:

Equivalent to ISPRINTER()

Ensures compatibility with other dialects. FlagShip stores all printer output to the
printer file, so, logically, the printer is always "ON LINE".

Returns:
<retL> is always TRUE.

Classification:
programming

Compatibility:
New in FS5

Related:
IsPrinter()

FUN 458

PROCFILE ()
Syntax:

retC = PROCFILE ([expN1], [expL2])
Purpose:

Retrieves the name of the current or previous source file being executed.

Options:
<expN1> is a numeric value representing the depth in the calling sequence of the
required file name . Zero (the default) returns the name of the source file in which
the currently executed procedure, function or program is contained; 1 is the source
file of the sequence which called the present one, and so on.

<expL2> is an optional logical value. If not specified or is .F., up to 128 significant
chars of the source name (w/o extension) are returned. The source name is stored
"as is" during the compilation but without the file extension (.prg), and without
translating it to lower or upper case. If <expL2> is .T., only the first 10 characters of
the file name, translated to upper case, are returned. This is compatible to FlagShip
4.4x releases.

Returns:
<retC> is a character string in uppercase, representing the name of the source file
(without extension) where the current (or required) procedure, function or code
block is included. When <expN> is greater than the caller calling stack depth, a null
string "" is returned.

Description:
PROCFILE() is used for debugging purposes or for implementing context sensitive
help.

If the action being queried is a code block evaluation, PROCNAME() returns the file
name where the code block is declared.

Example:
see also the example in PROCLINE(), PROCNAME().

** file "test.prg"
? PROCFILE(), PROCNAME(), PROCLINE() // test TEST 2
DO myudf1

PROCEDURE myudf
? PROCFILE(,.T.), PROCNAME(), PROCLINE() // TEST MYUDF 6
RETURN

Classification:
programming

Compatibility:
Available in FlagShip only. The 2nd parameter is available in FS5 only.

Related:
PROCNAME(), PROCLINE(), PCALLS()

FUN 459

PROCLINE ()
Syntax:

retN = PROCLINE ([expN])
Purpose:

Retrieves the source line number of the current or a previous program, UDP or
UDF.

Options:
<expN> is a numeric value representing the depth in the calling sequence. Zero
(the default) means the current program, procedure or function, 1 the procedures
and functions which called this one and so on.

Returns:
<retN> is a numeric value, representing the current source code line number within
the .prg file. If the program was compiled with the "-nl" option, PROCLINE() always
returns 0. When <expN> is greater than the caller calling stack depth, zero is
returned.

Description:
PROCLINE() is used for debugging purposes or for implementing context sensitive
help.

A line number is relative to the beginning of the original source file, including all
comments, directives and empty lines. A multi-statement line is counted as a single
line.

On a statement which continues throughout several lines, the line number with
which the statement starts is returned. If the action being queried is a code block
evaluation, PROCLINE() returns the line number of the procedure in which the code
block was originally defined.

Example:
// see also the example in PROCNAME(), PROCFILE().

IF NETERR()
? "Error in procedure ", PROCNAME()
?? ", at the line ", PROCLINE()

ENDIF

Classification:
programming

Related:
PROCNAME(), PROCFILE(), PCALLS()

FUN 460

PROCNAME ()
Syntax:

retC = PROCNAME ([expN])
Purpose:

Retrieves the name of the current or previous program, UDP or UDF being
executed.

Options:
<expN> is a numeric value representing the depth in the calling sequence. Zero
(the default) means the current UDP/UDF name, 1 the procedure and function
which called the present one and so on.

Returns:
<retC> is a character string in uppercase, representing the name of the current (or
required) procedure, function or code block. When <expN> is greater than the caller
calling stack depth, a null string "" is returned.

Description:
PROCLINE() is used for debugging purposes or for implementing context sensitive
help.

For the default action, PROCLINE() reports the name of the current procedure or
UDF. If <expN> is one (or two etc.), the name of the UDF or UDP that invoked the
current (or previous) procedure is returned.

If the activation being queried is a code block evaluation, PROCNAME() returns the
internal name of the code block, like "CB_1_234". The first number in the name
(here 1) is the ordinal number of the code block in the line 234. The second number
(here 234) specifies the line number in which the block is declared.

Example:
1: *** Program "test.prg"
2: LOCAL bl := {|x| abc(x) }
3: ? PROCNAME(), PROCLINE() && TEST 3
4: ? show_calls() && TEST/4
5: DO proc1 && TEST/5-->PROC1/10
6: EVAL (bl, "test") && TEST/6-->CB_1_2/2-->ABC/15
7: QUIT
8:
9: PROCEDURE proc1
10: ? show_calls() && TEST/5-->PROC1/10
11: abc () && TEST/5-->PROC1/11-->ABC/15
12: RETURN
13: *
14: FUNCTION abc (par)
15: ? show_calls()
16: RETURN .T.

FUN 461

FUNCTION show_calls && display callstack trace
LOCAL ii, output := "", temp
FOR ii = 1 to 20 && up to depth 20

temp = PROCNAME (ii)
IF EMPTY(temp)

EXIT
ENDIF

#ifdef CLIPPER_COMPATIBLE_OUTPUT
IF SUBSTR(temp,1,3) == "CB_"

temp = "(b)" + PROCNAME(ii+1)
ENDIF

#endif
temp = temp + if (PROCLINE(ii) > 0, ;

"/" + LTRIM(STR(PROCLINE(ii))), "")
output = temp + IF (!EMPTY(output),"-->","") + output

NEXT
RETURN output

Classification:
programming

Compatibility:
The optional argument is not available in C87. The returned value of a code block
evaluation differs from C5, see example above.

Related:
PROCLINE(), PROCFILE(), PCALLS()

FUN 462

PROCSTACK ()
Syntax:

retC = ProcStack ([expN1], [expC2], [expL3])
Purpose:

Returns a string corresponding to the current callstack.

Options:
<expN1> is a numeric value representing the depth in the calling sequence. Zero
(the default) means the current UDP/UDF name, 1 the procedure and function
which called the present one and so on.

<expC2> is a string used as separator. If not specified, the default is "->" or "<-"
depending on the selected stack direction

<expL3> is a logical value specifying the stack direction. A true value .T. is the
default and means "forward" and return "MAIN/111->SUB1/222->SUB2/333",
whilst .F. return the backward direction "SUB2/333<-SUB1/222<-MAIN/111" starting
in the current UDF Sub2()

Returns:
Description:

ProcStack() is mainly used for debugging purposes. It returns the current callstack
trace including the source file, UDF or UDP name and the line number.

For more information, refer to PCALLS(), PROCFILE(), PROCNAME(),
PROCLINE().

Classification:
programming

Compatibility:
New in FS5.

Related:
PROCNAME(), PROCLINE(), PROCSTACK(), PCALLS()

FUN 463

PROPER ()
Syntax:

retC = Proper (expC1, [expC2], [expA3])
Purpose:

Set the first character to upper case for all words in <expC1>, except words in
<expA3> and all other chars in <expC1> to lower case

Arguments:
<expC1> is the string to be converted

<expC2> is a string of delimiters; default delimiters are ".,:;'- "

<expA3> is a 1-dimensional array of character elements, containing words which
should not be converted. It also may contain a specific conversion mask:

• if the element is "sTr*" converts " strNext" to " sTrnext"
• if the element is "sTr+" converts " strnext" to " sTrNext"

The default is {"von","Mc+"}, which may be disabled by assigning {} or {""} or {NIL}
as 3rd parameter.

Returns:
<retc> is the translated string.

Classification:
programming

Compatibility:
New in FS5

Related:
Upper(), Lower()

FUN 464

PROW ()
Syntax:

retN = PROW ()
Purpose:

Reports the current printer row position.

Returns:
<retN> is a numeric value representing the current printer head line, starting from
zero.

Description:
PROW() reports the row position of the printhead after the last print operation.
PROW() is updated only if either SET DEVICE TO PRINTER or SET PRINTER ON
is in effect. PROW() is the same as ROW() except that it relates to the printer rather
than the screen.

EJECT, besides advancing the paper, resets PCOL () and PROW() to zero.
SETPRC() sets PROW() and PCOL() to any value without causing the paper to
move.

Example:
SET DEVICE TO PRINT
EJECT
@ PROW(), 10 SAY "First line"
@ PROW()+1, 10 SAY "Next line"
SET DEVICE TO SCREEN

Classification:
programming

Compatibility:
Note the standard spooled output used by FlagShip, see LNG.5.1.6, LNG.3.6 and
SET PRINTER command. Regardless of printer redirection, the PROW() is set the
same way as for a direct printer output.

Related:
PCOL(), ROW(), SETPRC(), EJECT, SET DEVICE, SET PRINT

FUN 465

QOUT ()
QOUT2()
QQOUT ()
QQOUT2()
Syntax:

NIL = QOUT (expList)
NIL = QOUT2 ([expC1], [expC2], expList)

Syntax:
NIL = QQOUT (expList)
NIL = QOUTT2([expC1], [expC2], expList)

Purpose:
Displays a list of expressions to the console.

Arguments:
<expList> is a comma separated list of values or expressions to evaluate and
display. The expressions can be of any data type, including memos.

If no argument is specified, QOUT() sends a NEW LINE code to the console,
QQOUT() does nothing.

Options:
<expC1> specifies the color for displaying the <expList> data. Only the first color
pair (standard) is significant. This argument is always considered in Terminal mode.
If this argument is not given, the current color setting is used. In GUI mode, first the
<expC2> argument is checked. If <expC2> is not set or is empty, the <expC1>
value or the current color is used - but only when SET GUICOLOR is ON.
Specifying COLOR and GUICOLOR allows you to handle different colors for GUI
and Terminal mode without switching the SET GUICOLOR and SET COLOR
setting.

<expC2> specifies the color for displaying the <expList> data considered in GUI
mode. Only the first color pair (standard) is significant. If <expC2> is not empty, it is
used regardless the current SET GUICOLOR on/off setting. If omitted and SET
GUICOLOR is ON, either the <expC1> is used if not empty, or the current
SetColor() is used. The <expC2> value apply for GUI mode only, and is ignored
otherwise.

Returns:
The functions always return NIL.

Description:
QOUT() is the equivalent function of the ? command, while QQOUT() is the same
as the ?? command. Both are console functions to display the results of one or
more expressions. QOUT() outputs a linefeed (the NEW LINE code) before

FUN 466

displaying the expressions, while QQOUT() displays the results of <expList> at the
current ROW() and COL() position.

The advantage of QOUT() and QQOUT() is their usage within an expression or
code block, or in iterative functions like AEVAL() or DBEVAL().

Redirection of QOUT() and QQOUT() output to PRINTER, ALTERNATE, and
EXTRA text files or devices is supported in the same way as with the ? and ??
commands. ROW() and COL() are updated while being displayed to the console,
and PROW() and PCOL() are updated while being displayed to the printer.

In GUI mode, you may include RichText/HTML tags into the output string and either
use SET HTMLTEXT ON or preface the string by "<HTML>" to interpret the tags.
See more in SET HTMLTEXT.

Example:
LOCAL arr := {1, 2, "text", .T., DATE() }, ii := 1
AEVAL (arr, {|x| QOUT("arr[",STR(ii++,1),"]"), QQOUT(x) })

Qout2("r/b", "r+/w", "Hello", "world")

Classification:
sequential output

Compatibility:
Available in FS and C5 only. Embedded zero bytes are supported in FS by default.
Qout2() and Qqout2() is available in FS5 only.

Related:
?, ??, @...SAY, TEXT, COL(), ROW(), SET CONSOLE, SET PRINTER, SET
ALTERNATE, SET EXTRA, SET HTMLTEXT, SYS.2.7

FUN 467

RAT ()
Syntax:

retN = RAT (expC1, expC2)
Purpose:

Searches through a character string for the last instance of the substring given.

Arguments:
<expC1> is the character string to look for.

<expC2> is the character string to search through.

Returns:
<retN> is a numeric value representing the position of the first letter of the last
instance of the given substring. If the search is not successful, RAT() returns zero.

Description:
RAT() is similar to AT() but searches from right to left to locate the last instance of
the substring. RAT() is also like the $ operator which determines whether a
substring is contained within a string.

Example:
RAT("cd", "abcdabcdabcd") && 11
AT ("cd", "abcdabcdabcd") && 3
RAT("ef", "abcdabcdabcd") && 0

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
$, AT(), STRTRAN(), SUBSTR(), LEFT(), RIGHT()

FUN 468

RDDLIST ()
Syntax:

retA = RDDLIST ()
Purpose:

Returns an array of linked in RDD drivers.

Returns:
<retA> is an array, containing the names of available RDDs.

Description:
RDDLIST() is used to check if a specific RDD can be used. You may alternatively
use ISFUNCTION ("<rddName>NEW") instead.

Example:
? RDDsetDefault() // DBFIDX
RDDsetDefault("Cb4cdx")
aeval (RDDLIST(), {|x| QQOUT(x)}) // DBFIDX CB4CDX CB4MDX

isMdxok := ISFUNCTION ("cb4mdxNEW") // CB4MDX linked?

isMdxok := (ascan (RDDLIST(), ; // alternative
{|x| upper(x) == "CB4MDX"}) > 0)

if isMdxok
RDDsetDefault("Cb4mdx")

endif
use mydbf1 // "Cb4mdx" RDD is used

Classification:
database

Compatibility:
available in FS, C5 and VO.

Source:
<FlagShip_dir>/system/rddsys.prg

Related:
USE, DBUSEAREA(), RDDSETDEFAULT(), RDD.2.2

FUN 469

RDDNAME ()
Syntax:

retC = RDDNAME ()
Purpose:

Returns the name of the RDD driver used in the current work area.

Returns:
<retC> is a string containing the RDD name.

Description:
RDDNAME() is used to determine the current RDD. If you wish to get the name in
another work area, use (alias)->(RddName()).

Example:
use mydbf1 alias olddb new via CB4CDX
use mydbf2 alias newdb new

? RddName() // DBFIDX
? (olddb)->(RddName()) // CB4CDX

? DbObject():RddName // DBFIDX
? (olddb)->(DbObject():RddName) // CB4CDX

Classification:
database

Compatibility:
available in FS5.

Related:
USE, RDDLIST(), DBUSEAREA(), RDDSETDEFAULT(), RDD.2.2

FUN 470

RDDSETDEFAULT ()
Syntax:

retC = RDDSETDEFAULT ([expC1])
Purpose:

Returns and optionally change the default RDD for the application.

Options:
<expC1> is the name of the RDD that will be used to activate and manage all
subsequent database actions, when no RDD is explicitly specified. You may specify
null string "" to reset it to the first announced driver.

Returns:
<retC> returns the current RDD used, when <expC1> was not given, otherwise the
name of previously RDD set.

Description:
The default "DbfIdx" driver is set automatically in the INIT (user modifiable)
procedure RDDINIT, available in the rddsys.prg file (see details in the section
RDD). You may invoke RDDSETDEFA(), or the equivalent DBSETDRIVER() also
later to set your preferred database driver. To force the linker to include the new
driver into your executable, specify also EXTERNAL <rddName>NEW.

Example:
? RDDsetDefault() // DBFIDX
use mydbf1 // std. RDD is used
** EXTERN Cb4cdxNEW // if RDD not expl.linked

if ascan(RDDLIST(), {|x| x == "CB4CDX"}) == 0
alert("sorry - enable EXTERN... to link the Cb4Cdx driver")
QUIT

endif
? RDDsetDefault("Cb4cdx") // DBFIDX
? RDDsetDefault() // CB4CDX
use mydbf2 // "Cb4cdx" RDD is used
set index to myindex1, myindex2 // *.cdx indices used
use mydbf3 VIA ("DbfIdx") // std RDD is temp.used
set index to myindex3, myindex4 // *.idx indices used here

Classification:
database

Compatibility:
available in FS, C5 and VO.

Source:
<FlagShip_dir>/system/rddsys.prg

Related:
USE, DBUSEAREA(), DBSETDRIVER(), RDDLIST(), oRdd:Driver

FUN 471

READEXIT ()
Syntax:

retL = READEXIT ([expL])
Purpose:

Enables or disables the down-arrow and up-arrow keys to be exit keys from a
READ.

Options:
<expL> enables (if TRUE) or disables (if FALSE) the down-arrow and up-arrow
keys to be exit keys from a READ. The default setting is FALSE.

Returns:
<retL> is a logical value representing the current setting on entering the function.

Description:
READEXIT() can be set TRUE in case of a READ which will usually be browsed
through without editing.

Example:
old_exit = READEXIT(.T.)
cur_dat = DATE()
@ 1,0 SAY "Enter the correct date:" GET cur_dat
READ
READEXIT(old_exit)

Classification:
programming

Compatibility:
To provide compatibility to dBASE III, execute a READEXIT(.T.) at the beginning of
the main procedure.

Related:
READ, READINSERT()

FUN 472

READGETPOS ()
Syntax:

retN = READGETPOS ([expA1], [expC2], [expC3],
[expN4], [expN5])

Purpose:
Returns GET element number within the GetList array.

Options:
<expA1> is an array of GET objects. If not specified, the default GetList variable is
used.

<expC2> is the variable name looking for.

<expC3> is a caption text of @GET item looking for. If given, the <expC2> must be
NIL.

<expN4>,<expN5> are @GET coordinates of item looking for. If given, <expC2>
and <expC3> must be NIL.

When no parameters are passed or only <expA1> is given, the current GET item
position is returned.

Returns:
<retN> is the current item or item number found in the GetList array in range 1 to
len(expA1). On error, 0 is returned.

Description:
ReadGetPos() returns the currently processed GET by default READ, or searches
for specified object property. It may be used in UDF specified by SET KEY or by
WHEN or VALID clause of READ.

Example:
SET KEY K_F7 to myUdf1
set font "courier"
var1 := name := addr := space(20)
@ 1,0 say "Press F7 to check GETs"
@ 5,2 say "var1" get var1 when myUdf2(getlist)
@ 6,2 say "name" get name valid myUdf2()
@ 7,2 say "addr" get addr
READ
setpos(18,0)
wait

FUNCTION myUdf1(cProc, nLine, cVarname)
return myUdf2()

FUNCTION myUdf2(aGet)
local obj, iPos, rr := row(), cc := col()
if empty(aGet)

aGet := GetList
endif

FUN 473

@ 10,0 clear
@ 10,0 say "Item 'var1' is GET number : " + ;

ltrim(ReadGetPos(aGet, "var1"))
@ 11,0 say "Item 'name' is GET number : " + ;

ltrim(ReadGetPos(aGet, "name"))
@ 12,0 say "Item 'addr' is GET number : " + ;

ltrim(ReadGetPos(aGet, "addr"))
@ 13,0 say "Item 'foo' is GET number : " + ;

ltrim(ReadGetPos(aGet, "foo"))
iPos := ReadGetPos(aGet, , , 6, 7)
@ 14,0 say "Item at coordinate 6,7 is : " + ltrim(ipos)
if iPos > 0 .and. len(aGet) > 0

obj := aGet[iPos]
?? " and is of type", obj:ClassName(), ;

"with VarName", upper(obj:Name)
endif
@ 16,0 say "Current GET item number : " + ;

ltrim(ReadGetPos(aGet))
obj := GetActive()
@ 17,0 say "Current item is at coordinate " + ;

ltrim(obj:row) + "," + ltrim(obj:col)
?? " and is of type", obj:ClassName(), ;

"with VarName", upper(obj:Name)
setpos(rr,cc)
return .T.

Classification:
programming

Compatibility:
Available in VFS7 and newer.

Source:
available in <FlagShip_dir>/system/getsys.prg

Related:
READ, ReadModal(), ReadSelect()

FUN 474

READINSERT ()
Syntax:

retL = READINSERT ([expL])
Purpose:

Toggles the current insert mode setting.

Options:
<expL> toggles the insert mode on (if TRUE) and off (if FALSE). The default setting
is .F. or the last user-selected mode in READ or MEMOEDIT().

Returns:
<retL> is a logical value representing the last status before the current toggling.

Description:
READINSERT() can be used to set the insert mode before, or to restore the old
setting after a READ or MEMOEDIT(). The insert mode is a global setting belonging
to the current application and not the specific operation.

READINSERT() can be executed prior to or during a READ or MEMOEDIT(). If
used with READ, it can be invoked within a WHEN or VALID clause of @...GET or
within a SET KEY procedure. If used with MEMOEDIT(), it can be invoked with the
user function as well as a SET KEY procedure.

When Set(_SET_INSERT_INKEY) is disabled (the default), the Insert mode is
toggled in READ and MemoEdit() by press on the [INSERT] key. When
Set(_SET_INSERT_INKEY) is enabled, you may toggle the insert mode also by key
press and Inkey() outside of READ and MemoEdit().

To determine the current state of Insert mode, use ReadInsert(),
Set(_SET_INSERT) or InkeyStatus(STATUS_INSERT) functions.

Example:
READINSERT(.T.)
? IF(READINSERT(),"On","Off") && "On"

Classification:
programming

Related:
READ, MEMOEDIT(), READEXIT(), SET KEY, @...GET, InkeyStatus()

FUN 475

READKEY ()
Syntax:

retN = READKEY ()
Purpose:

Determines what key terminated a READ.

Returns:
<retN> is a numeric value representing the key pressed to exit a READ, according
to dBASE convention:

Exit Key retN Updated INKEY()
Up-arrow 5 261 5
Down-arrow 2 258 24
PgUp 6 262 18
PgDn 7 263 3
Ctrl-PgUp 31 287 31
Ctrl-PgDn 30 286 30
Esc 12 268 27
Ctrl-W 14 270 23
Type past end 15 271 ASC(key)
Return 15 271 13

Description:
READKEY() emulates the same named dBASE III+ function. Its purpose is to
determine what key the user pressed to terminate a READ. If UPDATED() is TRUE,
READKEY() returns the code plus 256.

READKEY() has been superseded by LASTKEY() which determines the last
keystroke fetched from the keyboard buffer. To determine the update state of
READ, issue the UPDATED() function.

Example:
@ 10,0 GET name
@ 11,0 say first
READ
? READKEY()
? LASTKEY(), UPDATED()

Classification:
programming

Source:
available in <FlagShip_dir>/system/getsys.prg

Related:
LASTKEY(), UPDATED(), READ, READEXIT(), INKEY() codes

FUN 476

READKILL ()
Syntax:

retL = READKILL ([expL])
Purpose:

Set/get the READ termination flag.

Options:
<expL> enables (if TRUE) or disables (if FALSE) a flag terminating the current
READ.

Returns:
<retL> is a logical value representing the current termination flag. Upon normal
condition, the return value is .F., except CLEAR GETS or ReadKill(.T.) was
executed which then return .T. The ReadKill() status remain valid until the next
READ is invoked.

Description:
ReadKill(.T.) is very similar to CLEAR GETS; both will terminate the current READ
performed via standard getsys.prg. But as opposite to CLEAR GETS, ReadKill(.T.)
will not delete the GetList[] entries when invoking ReadSave(.T.), so you may re-
issue READ anew without filling the GET fields - except when READ CLEAR or
DESTROY was used.

Example:
Terminates the READ by F5 key or entry "exit".

LOCAL var2 := 10.5, var1 := "text "
SET KEY K_F5 to MyExitRead()
@ 1,2 GET var1 VALID if(trim(var1)=="exit",MyExitRead(),.T.)
@ 2,2 GET var2
READ
if ReadKill() // killed via F5 key or "exit" entry?

if empty(var1)
alert("you need to enter any value in the first field")
READ

endif
endif
wait color "r+" guicolor "r+"
FUNCTION MyExitRead(p1,p2,p3)

local iChoice
iChoice := alert("Terminate READ?", ;

{"Ignore","on next key","Now"})
do case
case iChoice == 2

ReadKill(.T.) // terminate READ
case iChoice == 3

keyboard chr(K_ENTER) // simulate Enter key
ReadKill(.T.) // terminate READ

endcase

FUN 477

if empty(var1) .and. iChoice >= 2
ReadSave(.T.) // don't clear GETs, re-used

endif
return .T.

Classification:
programming

Compatibility:
Available in Clipper 5.x and FS5.

Source:
available in <FlagShip_dir>/system/getsys.prg

Related:
READ, CLEAR GETS

FUN 478

READMODAL ()
Syntax:

retL = READMODAL (expA1, [expL2], [expL3],
[expL4], [expL5], [expL6],
[expL7], [expCN8])

Purpose:
Activates a full-screen editing mode for an array of GET objects, as the READ
command for the default GETLIST array.

Arguments:
<expC1> is an array containing a list of GET objects to edit. Usually, the array
elements of GETLIST[] array are filled automatically by the @...GET command and
executed by READ command.

In FS5, the READ and ReadModal() support also other objects like TopBar,
MenuItem, RadioButton, RadioGroup, CheckBox, ListBox etc.

<expL2> is equivalent to the CLEAR|DESTROY clause of READ. If .T., clears GUI
Get widgets on exit, otherwise let the widgets visible same as in Terminal i/o
(default)

<expL3> is equivalent to the ALIGN|NOLAIGN clause of READ. If .T., aligns Get
fields with GuiAlign(), setting .F. will omit aligning, otherwise consider the SET
GUIALIGN setting (default)

<expL4> is equivalent to the SKIPOVER|NOSKIPOVER clause of READ. It allows
to skip over validated fields when .T., otherwise stay in the field which does not
meet the VALID criteria (def). Skipping over a field can mostly occur in GUI by
mouse click on different field or widget in the GetList.

<expL5> is equivalent to the EXITCHECK clause of READ. If .T., check all VALID
conditions at exit, otherwise don't check over- skipped fields on exit (the default)

<expL6> is equivalent to the SAVE clause of READ. If .T., the GetList[] elements
will not be deleted on exit. You may force this behavior by invoking ReadSave(.T.)
during READ process.

<expL7> is equivalent to the CYCLE clause of READ. If .T., moving forward over
the last GET item, or backward over the first GET will not terminate READ but move
to first or last item respectively. The default value is .F.

<expCN8> is equivalent to the SELECT clause of READ. It causes READ to start
with GET item specified by variable name <expC8>, or with item number <expN8>
within the GetList array. If the @GET item is disabled, next enabled item is used. If
SELECT is not given, READ starts at the first enabled item within current @..GET
list. See also ReadSelect() function.

Returns:
The function always returns NIL.

FUN 479

Description:
READMODAL() is a user interface function that implements the full- screen editing
mode for GETs, and is part of the open architecture GET system, compatible to C5.

READMODAL() is like the READ command, but takes any GETLIST (or other
named) array as an argument and does not reinitialize the GETLIST[] array when it
terminates. Hence, using this function, multiple lists of GET objects can be
maintained simultaneously.

Using @...GET/READ commands, a PUBLIC array called GETLIST is used. When
the program starts up and when the READ command is executed without a SAVE
option, the array is cleared to zero length. Each time an @...GET command
executes, it creates a GET object and adds it to the currently visible GETLIST array.

Using a PRIVATE, LOCAL or STATIC array named GETLIST, nested GET/READs
are possible to any depth. The other alternative is to use any named array, creating
the GET object by the GETNEW() class function and filling the object using export
variables. Refer to the section OBJ.GET for more information.

In the source file getsys.prg (usually stored in the <FlagShip_dir>/system
directory), the following modifiable functions are available to customize the
GET/READ system:

GETACTIVE() Return the currently active GET object

GETAPPLYKEY() Apply a key to a GET object from within a GET reader

GETDOSETKEY() Process SET KEY during GET editing

GETPOSTVALIDATE() Post-validate the current GET object

GETPREVALIDATE() Pre-validate a GET object

GETREADER() Execute standard READ behavior for single GET object

GETPREVALIDATE() Pre-validate a GET object

READFORMAT() Return, and optionally set the code block that implements a
format (.fmt) file

READKILL() Return, and optionally set whether the current READ
should be exited

READMODAL() Execute standard READ behavior for an array of GET
objects

READUPDATED() Return, and optionally set whether a GET has changed
during a READ

Refer also to the section OBJ.GET for more information about the class functions
and export variables.

FUN 480

Example 1:
Create two GET objects in array named MYGETS and issue an independent READ.

LOCAL v1 := 0, v2 := "abcd", mygets[2]
mygets[1] := GETNEW (2,0, {|x| IF(x==NIL,x,v1:= x)}, "v1")
mygets[2] := GETNEW (3,0, {|x| IF(x==NIL,x,v2:= x)}, "v2")
READMODAL (mygets)

Example 2:
The same example, but nested GET/READs are used instead.

LOCAL v1 := 0, v2 := "abcd", getlist := {}
@ 2,0 GET v1
@ 3,0 GET v2
READ

Classification:
screen oriented input/output, output bufferable via DISPBEGIN() ... DISPEND()

Compatibility:
available in C5 (param 1 only). Parameters 2 to 6 are new in FS5

Class:
uses GET class objects, prototyped in <FlagShip_dir>/include/ getclass.fh

Source:
available in <FlagShip_dir>/system/getsys.prg

Related:
@..GET, READ, <FlagShip_dir>/include/std.fh, OBJ.2

FUN 481

READSAVE ()
Syntax:

retL = READSAVE ([expL])
Purpose:

Set/retrieve the flag signaling clear of GetList[] during exit of READ.

Options:
<expL> signals that the GetList[] elements should be kept (if TRUE) at exit of the
current READ.

Returns:
<retL> is a logical value representing the current status of a flag signaling to clear
GetList[] entries during exit of READ. Upon normal condition, the return value is .F.,
except READ SAVE was invoked which return .T. and will not clear the GetList[]
data. The ReadSave() status remain valid until the next READ is invoked.

Description:
ReadSave(.T.) is very similar to READ SAVE; both will avoid the deletion of GETs
from the GetList[] array on exit from READ. But as opposite to READ SAVE, the
ReadSave() flag is temporarily only and is reset to .F. by the next READ invocation.
You may invoke ReadSave(.T.) during a process of the current READ when you
wish to re-use all already specified @..GET entries in subsequent READ.

Example:
see ReadKill().

Classification:
programming

Compatibility:
Available in FS5 only.

Source:
The function is available in <FlagShip_dir>/system/getsys.prg

Related:
READ, READ SAVE, ReadKill()

FUN 482

READSELECT ()
Syntax:

retN = READSELECT ([expA1], expCN2)
or:

retN = READSELECT (expCN2)
Purpose:

Select specified GET element during READ.

Arguments:
<expA1> is an array of GET objects. If not specified, the default public/private
GetList variable is used.

<expCN2> is either string containing variable name, or numeric value specifying
item number within <expA1> to be selected. The numeric is either relative to current
GET position (+/-expN2, where for example -1 will select previous item, or 2 the
over-next item), or absolute item position when 1000 is added to, i.e. expN2 =
n+1000 will select GetList[n] and returns n.

Returns:
<retN> is the newly selected item in the GetList array in range 1 to len(expA1). On
error, 0 is returned.

Description:
With ReadSelect() you may "skip" to new GET item, other than in the default order,
once the entry in current GET field is finished. It may be used in UDF specified by
SET KEY or by WHEN or VALID clause of READ. The WHEN and VALID clauses
of skipped-over fields are not recognized, except you specify NOSKIPOVER clause
in READ. When the resulting item skips below 1, first item is selected; when it skips
behind last <expA1> item, the last item is selected.

Example:
#include "getexit.fh" // for GE_* values
LOCAL getlist := {}
LOCAL first := name := addr := space(20)
LOCAL lSave := lExit := .F.
@ 5, 2 say "first" get first
@ 6, 2 say "name " get name valid checkName(name, first, getlist)
@ 7, 2 say "addr " get addr
@ 5,40 GET lSave PUSHBUTTON caption "Save" SKIP ;

notify {|obj| obj:OnClickAction := GE_WRITE}
@ 7,40 GET lExit PUSHBUTTON caption "Exit" SKIP ;

notify {|obj| obj:OnClickAction := GE_ESCAPE }
// or: notify {|obj| obj:OnClickKeys := chr(K_ESC) }

READ
setpos(16,0)
wait

FUN 483

/* ensure first name is filled too when name is not empty,
* or jump to Exit button if name and first are empty
*/
FUNCTION checkName(value_name, value_first, getlist)
local iNewPos := 0
if !empty(value_name) .and. empty(value_first)

iNewPos := ReadSelect(getlist, -1)
elseif empty(value_name) .and. empty(value_first)

iNewPos := ReadSelect(getlist, "lExit")
endif
return .T.

Classification:
programming

Compatibility:
Available in VFS 7 and newer.

Source:
available in <FlagShip_dir>/system/getsys.prg

Related:
READ, ReadModal(), ReadGetItem()

FUN 484

READUPDATED ()
Syntax:

retL = READUPDATED ([expL])
Purpose:

Determines if there was a change in any of the processed GETs during the last or
the current READ or set this flag manually.

Options:
<expL> sets or clears the READ Updated flag manually.

Returns:
<retL> is logically TRUE if there were changes, or FALSE if there were none.

Description:
ReadUpdated() is equivalent to UPDATED() except it lets you change the current
update flag. Per default, this flag is set .T when any characters were successfully
entered into a GET from the keyboard during the last or the current READ.

Each time READ executes, UPDATED() is set to FALSE. Then, any change to a
GET entered from the keyboard or pushed to the keyboard buffer by KEYBOARD
sets UPDATED() to TRUE. This happens after the GET exits or before a VALID
clause or the SET KEY procedure is executed. Changes of the get:BUFFER in a
post-valid function will be not recognized by UPDATED().

Once UPDATED() is set to TRUE, it retains this value until the next READ is
executed or manually reset by ReadUpdated(.F.)

Example:
see Updated().

Classification:
programming

Compatibility:
Available in Clipper5 and FS5.

Source:
The function is available in <FlagShip_dir>/system/getsys.prg

Related:
READ, Updated()

FUN 485

READVAR()
Syntax:

retC = READVAR ()
Purpose:

Retrieves the name of the current GET or MENU variable.

Returns:
<retC> is a character string containing the name of the current GET or MENU
variable in uppercase. If there are other wait statuses, than the READ or MENU TO,
a null string "" is returned.

Description:
READVAR() can be used in SET KEY procedures, and in VALID or WHEN
functions to provide menus or context sensitive help depending on the current GET
or MENU TO variable. It returns the variable name during execution of MENU TO
and READ command, otherwise (and after CLEAR GETS which terminates READ)
a null string "" is returned.

Tuning:
If you wish to hold the last used GET variable name also outside of READ, set
_aGlobSetting[GSET_L_READVAR_HOLD] := .T. // default is .F.

Example:
A simple context-specific help:

@ 1,2 GET name WHEN myhelp()
@ 2,2 GET city WHEN myhelp()
READ

FUNCTION myhelp
LOCAL isvar := READVAR()
@ 20,0 CLEAR
DO CASE
CASE isvar == "NAME"
@ 21, 0 SAY "Enter the user name ..."

CASE isvar == "CITY"
@ 21, 0 SAY "Enter the city ..."

ENDCASE
RETURN .T.

Classification:
programming

Related:
@..GET, READ, MENU TO, SET KEY

FUN 486

RECCOUNT ()
Syntax:

retN = RECCOUNT ()
or:

retN = LASTREC ()
Purpose:

Retrieves the number of physical records in the current database file.

Returns:
<retN> is a numeric value representing the number of records which are physically
present in the current database file. SET FILTER and SET DELETED ON have no
effect on the return value of RECCOUNT().

If there is no database in use in the current working area, zero is returned.

Description:
RECCOUNT() and LASTREC() are equivalent database functions which determine
the number of physical records in the current database.

To execute the function in a working area different from the current one, use
alias->(RECCOUNT()).

Example:
USE article
? RECNO(), RECCOUNT(), LASTREC() && 1 100 100
GOTO BOTTOM
? RECNO(), RECCOUNT(), EOF() && 100 100 .F.
SKIP
? RECNO(), RECCOUNT(), EOF() && 101 100 .T.
APPEND BLANK
? RECNO(), RECCOUNT(), EOF() && 101 101 .F.
SET FILTER TO Theme = "Computers"
COUNT TO Others
? Others, RECCOUNT() && 77 101

Classification:
database

Related:
LASTREC(), SET FILTER, SET DELETED, USE, oRdd:RecCount

FUN 487

RECNO ()
Syntax:

retN = RECNO ()
Purpose:

Retrieves the current record number of the selected working area.

Returns:
<retN> is a numeric value representing the current physical record number. If no
database is open, RECNO() will return a zero.

If the database is empty, RECNO() returns 1, EOF() and BOF() both return TRUE,
and LASTREC() returns zero.

If an attempt was made to move past the first record, BOF() returns TRUE and
RECNO() returns 1. If the record pointer is moved past the last record in the
database (i.e. on a phantom record), EOF() returns TRUE and RECNO() returns
LASTREC()+1.

Description:
RECNO() is a database function that returns the current record number in the
current working area. Each database file is physically ordered by a record number
starting from 1.

The record numbering allows direct access to a record without sequentially
scanning the database file to reach the specified record position using the GOTO
command. A related command is SET RELATION...TO RECNO().

To execute the function in a working area different from the current one, use
alias->(RECNO()).

Example:
USE Article
GO BOTTOM
? RECCOUNT(), RECNO(), EOF() && 100 100 .F.
SKIP
? RECCOUNT(), RECNO(), EOF() && 100 101 .T.
GO 52 ; ? RECCOUNT(), RECNO(), EOF() && 100 52 .F.
GOTO TOP
? RECCOUNT(), RECNO(), BOF() && 100 1 .F.
SKIP -1; ? RECCOUNT(), RECNO(), BOF() && 100 1 .T.

Classification:
database

Related:
BOF(), EOF(), RECCOUNT(), LASTREC(), GOTO, SKIP, oRdd:Recno

FUN 488

RECSIZE ()
Syntax:

retN = RECSIZE ()
Purpose:

Retrieves the record size of the current database file.

Returns:
<retN> is a numeric value representing the size in bytes of the database record in
the current working area. If there is no database in use, zero is returned.

Description:
RECSIZE() is a database function that determines the length of a record by
summing the field lengths, and adding one byte for the record's deleted status.

The size of the database file can then be calculated by multiplying RECSIZE() by
RECCOUNT() and then adding HEADER().

To execute the function in a working area different from the current one, use
alias->(RECSIZE()).

Example:
USE article
filesize = HEADER() + (RECCOUNT() * RECSIZE()) + 1

Classification:
database

Related:
DISKSPACE(), HEADER(), RECCOUNT(), oRdd:RecSize

FUN 489

REPLICATE ()
Syntax:

retC = REPLICATE (expC1, expN2)
Purpose:

Forms a new character string by repeating the given string the indicated number of
times.

Arguments:
<expC1> is the character string to repeat.

<expN2> is the number of times to repeat <expC1>.

Returns:
<retC> is the newly-created character string. If the numeric argument <expN2> is
negative or zero, a null string "" is returned.

Description:
REPLICATE() can be used where a repetition of the same string is needed.
REPLICATE() is like the SPACE() function which returns a specified number of
space characters. Also PADx() functions expand existing strings with given
characters or spaces.

Example:
KEYBOARD REPLICATE(CHR(13), 4) // move to the
@ ... GET... // fifth field
READ

? REPLICATE("*-",3) + "*" // *-*-*-*

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
SPACE(), PADR(), PADC(), PADL()

FUN 490

RESTSCREEN ()
Syntax 1:

NIL = RESTSCREEN ([expN1],[expN2],[expN3],[expN4],
varS5, [expL6])

Syntax 2:
NIL = RESTSCREEN (varS5)

Purpose:
Displays a screen region saved in a memory variable at a specified area of the
screen.

Arguments:
<expN1...expN4> defines the top, left, bottom and right window coordinates to
restore. If the arguments are omitted, 0, 0, MAXROW(), MAXCOL() is assumed.

If the screen contents in <varS5> were saved without coordinates to preserve the
entire screen, no screen coordinates are necessary with RESTSCREEN(). In such
a case, RESTSCREEN(,,,,var) or REST- SCREEN(var) performs the same
functionality.

When the coordinates were given but are out of range, no action is taken and a
warning message displays with set FS_SET("devel",.T.).

<varS5> is a variable of the type SCREEN containing the saved screen region.

<expL6> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

Returns:
The function always returns NIL.

Description:
RESTSCREEN() can be used to display a screen region saved with
SAVESCREEN(), at the same or different position on the screen. The new screen
region must be the same size as the saved one, or you may get ambiguous results.

Typical usage of RESTSCREEN() is to allow the user to drag a window around the
screen, or to save and restore small portions of screens that will be ruined by
displaying small message boxes.

Performance Hints for Terminal i/o
The time required for redrawing the screen is proportional to the line speed setting
(stty) and the size of re-drawn screen. Usually, Curses optimizes the output and will
replace (transmit) characters different from current ones or characters with a
different foreground or background color only.

In any case, saving and restoring a partial screen may speed the output
significantly. To avoid "flickering" on a slow communication line, you may buffer the
output via DISPBEGIN() ; RESTSCREEN(..) ; DISPEND().

FUN 491

Example:
Display an external text using MEMOEDIT:

scr1 = SAVESCREEN(10, 5, 14, 60)
MEMOEDIT (MEMOREAD ("extern.txt"), 10,5, 14,60, .F.)
RESTSCREEN(10, 5, 14, 60, scr1)

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND(). Usable only with
enabled screen oriented output (the default, see sect. SYS.2.7).

Compatibility:
In FlagShip, SAVE SCREEN, RESTORE SCREEN, SAVESCREEN(), and
RESTSCREEN() are supported for any terminal (using the window structure of
curses by or internal GUI bitmap). To modify the saved screen contents, see the
function _retscw() in section EXT (for Terminal i/o mode only).

Syntax 2 is not supported by C5.

To save the contents of a screen, FlagShip uses the variable of type "S" in contrast
to the Clipper's type "C", which are not reversely compatible. See also compatibility
notes in RESTORE FROM command, if screen variables are saved/restored using
.mem file as well as the conversion functions SCRDOS2UNIX() and
SCRUNIX2DOS() .

In GUI, the structure of the screen variable <retS> is incompatible to <retS> from
Terminal i/o mode, see SaveScreen() for details. Parameter 6 is new in FS5

Related:
SAVE SCREEN, RESTORE SCREEN, SAVESCREEN(), SCRDOS2UNIX(),
SCRUNIX2DOS(), SCREEN2CHR(), CHR2SCREEN()

FUN 492

RIGHT ()
Syntax:

retC = RIGHT (expC1, expN2)
Purpose:

Extracts the specified number of characters from the right of a character string.

Arguments:
<expC1> is the character string to extract characters from.

<expN2> is the number of characters to extract from the right side.

Returns:
<retC> is a character string, which consists of <expN2> rightmost characters of
<expC1>. If <expN2> is less than 1, a null string "" is returned. If <expN2> is
greater than the length of <expC1>, the entire string is returned.

Description:
RIGHT() is the same as SUBSTR() with a negative first numeric argument.

The complementary operation to RIGHT() is LEFT().

Example:
? SUBSTR("John is right", -5) && right
? RIGHT ("John is right", 5) && right

Classification:
programming

Compatibility:
Embedded zero bytes are supported by default.

Related:
LEFT(), AT(), RAT(), LTRIM(), RTRIM(), STUFF(), SUBSTR(), PADR(),
FS2:ReplRight(), FS2:RemRight(), FS2:RemAll(),FS2:PosRepl()

FUN 493

RLOCK ()
Syntax:

retL = RLOCK ([expA1])
or:

retL = RLOCK ([expN1], [expN2,..])
or:

retL = LOCK ()
Purpose:

Locks the current or specified record(s) in the selected working area to enable
exclusive write access in multiuser mode.

Options:
<expA1> is an array of numeric values, specifying the record numbers to be locked.
If SET MULTILOCKS is OFF, only the first element is considered. The current
record pointer RECNO() remains unchanged.

<expN1> is a record number or list of records to be locked. If SET MULTILOCKS is
OFF, only the first parameter is considered. The current record pointer RECNO()
remains unchanged.

If no parameters, NIL or an empty array is specified, the current record is locked.

Returns:
<retL> is a logical value, which signals success or error. If TRUE, the record(s) is
(are) successfully locked. Otherwise, the record (or some records from the list)
could not be locked. RLOCK() will return FALSE when another user/process:

•has successfully FLOCKed the database,

•has successfully RLOCKed the same record,

•has APPENDed this record without consequently UNLOCKing it.

Description:
RLOCK() is a network function that locks the current or specified record(s),
preventing other users from updating the record(s) until the lock is released.

After a successful RLOCK() or LOCK(), the record(s) may be changed using an
assignment to a field variable, REPLACE, DELETE, RECALL or @..GET../READ.

For each invocation of RLOCK(), there is one attempt to lock the current or
specified record (of the list), and the result is returned as a logical value. A
movement in the database does not affect the record lock setting.

If the user has locked the database by FLOCK(), the file lock remains active and
RLOCK() return TRUE. Note, for a large array of records, the FLOCK() should be
preferred, since it may be significantly faster and requires only one system locking
slot (see also the Compatibility paragraph below).

FUN 494

RLOCK() is effective only on the database in the selected working area (and the
associated .dbt and .idx files), not on related databases. To execute the function in
a working area other than the current one, use alias->(RLOCK()).

To determine if the record or file is locked, without activating the locking, use
ISDBRLOCK() or ISDBFLOCK() functions. For a list of records locked by the
current application, use DBRLOCKLIST().

Multiple record locking
For multiple record changes (e.g. using the NEXT, FOR or WHILE clause), either
FLOCK() or SET MULTILOCKS ON have to be used.

When SET MULTILOCKS is OFF (the default), any attempt to RLOCK(),
AUTORLOCK(), FLOCK() or APPEND BLANK will release all previous locks set by
the current application. A record remains locked until another record is locked, an
UNLOCK or DBRUNLOCK() is executed, the current database file is closed, the
program terminated, or a FLOCK() is obtained on the current database.

When SET MULTILOCKS is set ON, any consecutive attempt to RLOCK(),
AUTORLOCK() or APPEND BLANK will add the record number to an internal list of
locked records, while FLOCK() releases all previous record locks first. Note, each
user or application has its own locking table. The records remain locked until an
UNLOCK or DBRUNLOCK() is executed, the current database file is closed, the
program terminated, or a FLOCK() is obtained on the current database.

Note, that one (system) lock slot is used for locking of a group of consecutive
records (in natural order), while the non- consecutive records in the rlock-list require
one lock slot each (see also sect. SYS.3). Using the FLOCK() may be significantly
more effective, than a large rlock-list.

Multiuser:
In multiuser mode (SET EXCLUSIVE is OFF or USE.. ..SHARED), the record or file
must be locked to allow a write access to the record or the whole file. Otherwise, if
not locked by the programmer, FlagShip invokes AUTORLOCK() if possible (i.e. if
SET AUTOLOCK is ON, which is the default).

Note, that RLOCK() or AUTORLOCK() will not check, whether the data of the
current (or specified) record was changed by others since the last read access.
Therefore, it may be safer to perform RLOCK() before reading/accessing the data to
ensure, you are always working on the current database record (see example
below); or use RLOCKVERIFY() to check it.

RLOCK() provides a shared lock, allowing other users to read the locked record, but
they cannot write to it.

The lock is not necessary for a read access only, like the SKIP, SEEK, GOTO
commands, or on assigning a field to a memory variable, etc. but may be used to
write-protect an array of records, e.g. during a complex calculation or transaction on
them.

If RLOCK() is used on a database opened READONLY, several users / applications
may successfully lock the same data, if they also use the database in READONLY

FUN 495

mode. The default read/write database access is stronger and allows only one
RLOCK() for the same record, regardless of the open mode.

When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Example:
SET EXCLUSIVE OFF && multiuser mode
USE address
WHILE NETERR() && success ?

USE address && no, try again
END
SET INDEX TO address
WHILE NETERR() && success ?

SET INDEX TO address && no, try again
END

APPEND BLANK && automatic RLOCK
WHILE NETERR() && success ?

@ 0,0 SAY "attempt to APPEND record"
APPEND BLANK && no, try again

ENDDO
REPLACE name WITH "Smith" && write access
UNLOCK
GOTO BOTTOM
DO WHILE .not. RLOCK() && wait until RLOCK

@ 0,0 SAY "waiting for RLOCK" && come trough,
INKEY (1) && with small delay
@ 0,0 SAY SPACE(40) && and user info

ENDDO

IF ! DELETED() && = read access
DELETE && = write access

ELSE
RECALL && = write access

ENDIF
UNLOCK

Example:
The usage of RELATIONs and writing to multiple databases:

LOCAL name
SELECT 5
USE custom INDEX custom SHARED
IF NETERR()

? "cannot open custom.dbf"
RETURN

ENDIF
SELECT 1
USE address SHARED
IF NETERR()

? "cannot open custom.dbf"
RETURN

ENDIF

FUN 496

SET RELATION TO FIELD->name INTO custom

GOTO TOP
BEGIN SEQUENCE

IF !RLOCK() && lock address.dbf
BREAK WITH "address"

ENDIF
IF ! (custom->(RLOCK())) && lock custom.dbf

BREAK with "custom"
ENDIF
REPLACE count WITH count + 1
REPLACE custom->turnover WITH 0
UNLOCK ALL && unlock area 1 and 5

RECOVER USING name
? "cannot RLOCK file", name + ".dbf - no update"

END

Example:
Multiple record locking, e.g. to replace a region of records, while other records are
modifiable by other users. See also additional examples in the SET MULTILOCKS
description.

LOCAL ii, aLockNum := {}
USE address INDEX addr1,addr2 SHARED NEW
SEEK "MÜLLER"
if !found() ; return ; endif
while !eof() .and. left(upper(Name),6) == "MÜLLER"

aadd(aLockNum, recno())
skip

enddo
SET MULTILOCKS ON
while !RLOCK(aLockNum) // locks an array

? "trying to lock an array of records"
enddo
FOR ii := 1 to LEN(aLockNum)

GOTO aLockNum[ii]
REPLACE name with "Mueller"

NEXT
UNLOCK // unlock all

Example:
Multiple record locking, the same example as above in other programming
technique

LOCAL ii, aList
USE address INDEX addr1,addr2 SHARED NEW
UNLOCK
SEEK "MÜLLER"
if !found() ; return ; endif
SET MULTILOCKS ON
while !eof() .and. left(upper(Name),6) == "MÜLLER"

RLOCK() // add lock to list
skip

enddo
aList := DBRLOCKLIST() // retrieve the list

FUN 497

FOR ii := 1 to LEN(aList)
GOTO aList[ii] // replace regardless
REPLACE name with "Mueller" // the logical rec.no.

NEXT
UNLOCK // unlock all

Example:
Note that even the fastest, usual programming technique will fail in this case,
because of not matching the WHILE condition after the first replacement (the logical
record number changes whilst replacing the index key). You would have to use
REPLACE...FOR... without index (slow), or the GOTO aLockNum[ii] ; REPLACE...
combination from the above example instead.

* SET MULTILOCKS OFF // the default
USE address INDEX addr1,addr2 SHARED NEW
SEEK "MÜLLER"
if !found() ; return ; endif
while !eof() .and. left(upper(Name),6) == "MÜLLER"

RLOCK() // lock single record
REPLACE name with "Mueller"
UNLOCK // unlock it
skip // next logical record

enddo // Index != MÜLLER

Example:
Use "early" locking to ensure that the data was not changed by others during the
editing process:

USE stock INDEX stkartno SHARED NEW
SEEK article
if found() .and. RLOCK() // lock before access

aRecData := FIELDGETARR()
for ii := 1 to len(aRecData)

@ ii,0 GET aRecData[ii]
next
READ // modify data
FIELDPUTARR(aRecData) // and store back
COMMIT
UNLOCK // unlock record

endif

Classification:
database

Compatibility:
FlagShip uses Unix and Windows compatible locking methods (via fcntl). The usage
of RLOCK(), FLOCK() and UNLOCK is nevertheless source- and logic-compatible
to other Xbase dialects. FlagShip, Clipper, dBase, and Foxbase/FoxPro locking is
incompatible to each other. The check using ISDBRLOCK() and the AutoLock
feature is available in FS only. Multiple record locks are not available in C5, but are
compatible to FoxPro and VO. Note, the FoxPro's character parameter specifying
the area is not supported; use alias->(RLOCK(...)) instead.

Refer to section SYS.3 (tunable UNIX parameters) to set or increase the number of
maximal locks available. For consecutive (physical) records, only one system lock is

FUN 498

required, while for non-consecutive records, each lock engages one system lock
slot.

Related:
ISDBRLOCK(), DBRLOCKLIST(), DBRUNLOCK(), USE...EXCLUSIVE, SET
EXCLUSIVE, UNLOCK, FLOCK(), ISDBFLOCK(), SET AUTOLOCK, SET
MULTILOCK, RLOCKVERIFY(), oRdd:Rlock(), DBRLOCK()

FUN 499

RLOCKVERIFY ()
Syntax:

retL = RLOCKVERIFY ()
Purpose:

Determines if the current record is still unmodified since last accessed by the
current application and whether a record update is safe. If so, the record is
RLOCKed. This is a superset of the RLOCK() function.

Returns:
<retL> is a logical value, which signals the successful lock on an unmodified
record.

If TRUE, the record contents is equal to that of the last field
access/assign/positioning of the current application, and the record is successfully
RLOCKed for subsequent field REPLACEment.

FALSE signals, that the record was changed by another user or process in the
meantime, the subsequent RLOCK and replacement may not be safe and therefore
no RLOCK is issued. The application should then determine the changed field to
ensure a correct transaction, see example below. Since the fields are not
automatically updated after RLOCKVERIFY(), you may store the "old" data, issue
SKIP(0) and retrieve the new values. A FALSE value may also signal, that RLOCK()
failed.

Description:
RLOCKVERIFY() is a network function that allows you late locking with safe
replacement. It first checks the data of the current record, if it is still the same as
when the last field was accessed (by this application), or got changed by another
user in the meantime. If all the record data is equal to the "old" state, RLOCK() is
performed.

Otherwise, the data got changed in the meantime, or the RLOCK() failed. See the
example below, for how to compare the "old" and "new" record data.

Multiuser:
See detailed information about locking in the RLOCK() description.
RLOCKVERIFY() offers you an alternative (late) locking method, as opposed to the
(early) locking via RLOCK(). If the database is opened in EXCLUSIVE mode,
RLOCKVERIFY() always returns TRUE.

When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

FUN 500

Example:
LOCAL anyfiled, cName, aOldData, aNewData, dele
LOCAL ii, ok := .T.
USE address SHARED
GOTO 5
cName := address->Name // field access
anyfield := FIELDGET(2) // the last field access

WAIT // the record is NOT
// locked and may be

? cName, anyfield // changed by others

if RLOCKVERIFY()
REPLACE // nothing was changed
UNLOCK

else
? "Cannot replace, because:"
aOldData := FIELDGETARR() // save old data
dele := deleted() // and deleted status
SKIP 0 // re-read the record
aNewData := FIELDGETARR() // get new data
for ii := 1 to len(aOldData)

if !(aOldData[ii] == aNewData[ii])
? "Field " + fieldname(ii) + " changed from", ;

aOldData[ii], "to", aNewData[ii]
ok := .F.

endif
next
if dele != deleted()

? "Record was " + if(!deleted(),'un-','') + 'deleted'
ok := .F.

endif
if ok

? "RLOCK() failed, try later"
endif

endif

Classification:
database

Compatibility:
This function is available in FlagShip only. It is equivalent to oRDD:RlockVerify()
method, available also in VO.

Related:
RLOCK(), oRdd:RlockVerify()

FUN 501

ROUND ()
Syntax:

retN = ROUND (expN1, expN2)
Purpose:

Rounds the result of the specified numeric expression to the specified number of
decimal places.

Arguments:
<expN1> is the numeric expression to round.

<expN2> is the number of decimal places to return. Specifying a zero or negative
argument allows rounding the whole number digits.

Returns:
<retN> is a numeric value, representing the argument rounded to the specified
number of decimal places.

The display of the return value depends on the SET FIXED state. If SET FIXED is
ON, the display is determined by SET DECIMALS.

Description:
ROUND() is a numeric function that rounds the given value up or down to specified
decimal digits, when a number has to be used with less precision than it originally
was.

Digits between five to nine, inclusive, are rounded up. Digits below five are rounded
down.

To truncate a floating point value down to integer, INT() may be used.

Example:
SET FIXED ON
SET DECIMALS TO 2
? ROUND(1.414, 1) && 1.40
? ROUND(1.514, 1) && 1.50
? ROUND(1.414, 0) && 1.00
? ROUND(10.4, 0) && 10.00
? ROUND(10.5, 0) && 11.00
? ROUND(15.14, -1) && 20.00
? ROUND(1234.567, -3) && 1000.00

Classification:
programming

Related:
INT(), INT2NUM(), NUM2INT(), SET FIXED, SET DECIMALS, STR(), VAL()

FUN 502

ROW ()
Syntax:

retN = ROW ([expL1])
Purpose:

Reports the current row where the cursor is located on the screen.

Options:
<expL1> is a pixel specification. If .T., the returned value is assumed in pixel, if .F.
in row/col,otherwise the current SET PIXEL status is used.

Returns:
<retN> is a numeric value, representing the current cursor row in the range
between zero and MAXROW(). When the global variable
_aGlobSetting[GSET_L_ROUNDROWCOL] is set .T. (default is .F., see initio.prg),
the returned <retN> value is rounded to integer. When SET COORD UNIT is set to
PIXEL, MM, CM or INCH, and <expL1> is not given, the returned value
corresponds to these units (GUI only).

Description:
ROW() returns the cursor row position as an numeric value. The value of ROW() is
updated by both console and full-screen commands and functions sent to screen,
even if SET CURSOR is OFF.

ROW() is used with COL() and all variations of the @ command to position the
cursor to a new line relative to the current line.

ROW() is related to PROW() and PCOL() which track the current printhead position
instead of the screen cursor position.

If you are using sub-windows via standard MDIopen() or the Wopen() from FS2
Toolbox, Row() and Col() reports the cursor position in the current sub-window.

In GUI mode, any output is pixel oriented. The ROW(.T.) return value therefore
corresponds to the real display position, i.e. where the next output displays. For
your convenience and to achieve cross compatibility to textual based applications,
FlagShip supports also coordinates in common row/col values. When <expL1> is
not given and SET PIXEL is OFF, and SET COORD UNIT is not set, the returned
ROW() value corresponds to manual Pixel2row(Row(.T.)) calculation.

When you change the font size or select different font name using SET FONT
command or the FONT class, the current ROW() position remain unchanged, but
the next line and ROW() coordinate may differ from the current setting. If you wish
to align characters on it base line, use SET ROWALIGN and/or SET ROWADAPT
commands. See further details in LNG.5.3, LNG.5.3.1, LNG.5.3.2, Row2Pixel() and
SET FONT.

In Terminal and Basic i/o mode, the row height is fix 1 independent on the used
font, hence ROW() and ROW(.T.) returns the same value in row/col coordinates.

FUN 503

Example:
@ 10,10 SAY "123"
@ ROW()+1,10 SAY "456"
@ MAXROW(),0 SAY "Help"
@ ROW(),COL()+1 SAY "message"

Classification:
programming, for screen oriented output

Compatibility:
For a terminal independent application, it is wise to use MAXROW() instead of the
fixed screen length, since some UNIX terminals support only 24 instead of 25 lines.

The return value is usable only with enabled screen oriented output (the default,
see sect. SYS.2.7).

The optional parameter is new in FS5

Related:
COL(), MAXCOL(), MAXROW(), PCOL(), PROW(), @...SAY, DEVPOS(),
SETPOS(), SYS.2.7

FUN 504

ROW2PIXEL ()
Syntax:

retN = Row2pixel ([expN1], [expO2])
Purpose:

Calculates pixels of given row corresponding to the given or current i/o Font.

Arguments:
<expN1> is a numeric constant or variable specifying the row size which should be
recalculated to pixels. If not given or < 0, the pixel size of one row is returned.

<expO2> is a Font object to be used for the pixel calculation. If not specified, the
default font set by SET FONT is used.

Returns:
<retN> is an integer value corresponding to the height of given rows in pixels.

Description:
In GUI mode, any output is pixel oriented. For your convenience and to achieve
cross compatibility to textual based applications, FlagShip supports also
coordinates in common row/column values. It then internally re-calculates the given
rows by using Row2pixel() and columns by using Col2pixel() function. The line and
character spacing is affected by the currently used default font.

This function allows you to manually calculate the Y pixel position from given row
coordinate. It is applicable for ROW(), SETPOS() and other positioning commands
and functions. The return value is equivalent to return of oApplic:Row2Pixel(expN1)
method.

In Terminal and Basic i/o mode, the row height is fix 1 independent on the used font
and hence Row2pixel(expN1) returns <expN1>.

See further details about font and coordinates in LNG.5.3, LNG.5.4, Row() and SET
FONT. For minimal porting effort, best to use fixed fonts (SET FONT "Courier", 12).

Classification:
programming

Compatibility:
New in FS5

Related:
Col2pixel(), Pixel2col(), Pixel2row(), oApplic:Row2Pixel()

FUN 505

ROWADAPT ()
Syntax:

NIL = RowAdapt ()
Purpose:

Force a ROW() adaption when the previous screen output includes HTML tags or
different FONTs.

Description:
When performing screen output in GUI mode using HTML tags or with different
FONTs, the COL() position is calculated automatically, but the ROW() setting
considers the
 and <P> HTML tags or the larger/smaller font only when SET
ROWADAPT is ON. Otherwise the ROW() remain unchanged - or is increased by
one line height (using the default font size) when the ? command or QOUT() was
invoked.

When SET ROWADAPT is OFF, you may force the ROW() adaption manually by
invoking RowAdapt() just after the output. When SET ROWADAPT is ON,
RowAdapt() takes no additional adaption.

The SET ROWADAPT and RowAdapt() adaption takes effect only for sequential
screen output (i.e. for ?, ??, @...SAY commands and Qout(), Qqout(), DevOut(),
DevOutPict() functions) in GUI mode.

Classification:
programming, screen output

Compatibility:
New in FS5

Related:
?, ??, @..SAY, SET HTMLTEXT, SET ROWADAPT, Qout(), Qqout()

FUN 506

ROWVISIBLE ()
Syntax:

retN = RowVisible ([expL1])
Purpose:

Reports the currently visible rows on the screen.

Options:
<expL1> is a pixel specification. If .T., the returned value is assumed in pixel, if .F.
in row/col, otherwise the current SET PIXEL status is used.

Returns:
<retN> is a numeric value, representing the currently visible rows in the range
between zero and MAXROW().

Description:
ROWVISIBLE() returns the currently visible rows in the range of zero to
MAXROW(). In GUI mode, it considers the current/resized window size. In Terminal
or Basic mode, the value is equivalent to MAXROW().

RowVisible() is equivalent to m->oAppWindow:CurrSize(APP_Y_USER)

Example:
? "MaxRow()=",ltrim(MaxRow(),"RowVisible()=",ltrim(RowVisible())
if AppIoMode() == "G"

wait "Resize the screen height by mouse, then press any key..."
endif
? "MaxRow()=",ltrim(MaxRow(),"RowVisible()=",ltrim(RowVisible())
wait

Classification:
programming, for screen oriented output

Compatibility:
RowVisible() is new in FS6

Related:
ROW(), MAXROW(), ColVisible(), oAppWindow:CurrSize()

FUN 507

RTRIM ()
Syntax:

retC = RTRIM (expC|expN)
or:

retC = TRIM (expC|expN)
Purpose:

Removes all trailing spaces from a string.

Arguments:
<expC> is the character string to be trimmed.

<expN> is a numeric value which is converted to string first and then trimmed.

Returns:
<retC> is a copy of the string entered, with all trailing blanks removed. In case of a
null string "" or all spaces, TRIM() returns a null string "".

Description:
RTRIM() and TRIM() are alternative names for the same function. They are useful
for removing trailing blanks when several strings are used to form an expression
like an address or title.

Related operations of RTRIM() are LTRIM(), which removes leading spaces, and
ALLTRIM(), which removes both leading and trailing spaces.

The inverse of ALLTRIM(), LTRIM(), and RTRIM() are the PADC(), PADR(), and
PADL() functions which center, right-justify, or left- justify character strings by
padding them with fill characters.

Example:
first = "John "
last = "Smith "
? first + last && "John Smith "
? first - last && "JohnSmith "
? TRIM(first) + " " + last && "John Smith "
? TRIM(first) + " " + TRIM(last) && "John Smith"

? LEN(TRIM(SPACE(20)) && 0

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default. FS5 accept numeric parameter as
well.

Related:
ALLTRIM(), LTRIM(), SUBSTR(), PADx(), FS2:RemRight()

FUN 508

SAVESCREEN ()
Syntax:

retS = SAVESCREEN ([expN1], [expN2], [expN3],
[expN4], [expL5])

or:
retS = SAVESCREEN ()

Purpose:
Saves a specified screen region to a variable of type SCREEN for later display.

Options:
<expN1>...<expN4> defines the top, left, bottom and right window coordinates of
the screen region to be saved. If the arguments are omitted, 0, 0, MAXROW(),
MAXCOL() is assumed.

When the coordinates were given but are out of range, no action is taken, <retS>
returns NIL, and descriptive warning message displays with set
FS_SET("devel",.T.).

<expL5> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used. Apply
for GUI only.

Returns:
<retS> is a variable of type SCREEN containing the visible output and color
attributes of the specified screen region. This variable cannot be used for string or
arithmetic operations. It may however, be translated to a character and back, using
SCREEN2CHR(), CHR2SCREEN() respectively. To manipulate the variable
contents, see example in section EXT, function _retscw(). This apply for Terminal
i/o mode, the bitmap representation used in GUI mode cannot be manipulated.

Description:
SAVESCREEN() saves a screen region to a SCREEN variable, in order for it to be
restored with RESTSCREEN(). Restoring small screen regions using SAVE/
RESTSCREEN() is faster (and avoids the screen flash) than using RESTORE
SCREEN for the whole screen.

Screen regions are usually saved and restored when using a pop-up menu routine
or dragging a screen object. For the manipulation of the screen contents, see
section EXT.2 (_retscr) and EXT.4. For Performance Hints, see the RESTSCR()
description.

In GUI, the structure of the screen variable <retS> is incompatible to <retS> from
Terminal i/o mode. In GUI, it is compressed or un- compressed bitmap object an
hence cannot be extracted by Chr2Screen, Screen2chr() or other low-level curses
routines like ScrUnix2Dos() and ScrDos2Unix(). It also cannot be saved to or
restored from a memo file.

FUN 509

In GUI, you may decide if the bitmap is stored "as is" (default) or in compressed
format which requires significantly less memory. On the other hand, a compressed
format may cause some side-effects depending on the used graphic card and the
selected color depth. If you have many Save/RestScreen() in the application, try to
set SET SCRCOMPRESS ON (default is OFF) and watch if not side effects (like
slight color shifting) occurs after RestScreen(), otherwise let the compression
disabled by SET SCRCOMPRESS OFF.

Example:
This example saves the contents of a window while listing the contents of a
database file inside the window, restoring the screen region at the end:

LOCAL scr1 := SAVESCREEN(15, 0, 20, 79)
@ 15,0 CLEAR TO 20,79
USE authors
DO WHILE .NOT. EOF()

SCROLL (15, 0, 20, 79, 1)
@ 20,10 SAY TRIM(firstname) +" " + lastname
IF INKEY() = 27 && Esc

INKEY(0) && Pause
ENDIF
SKIP

ENDDO
USE
RESTSCREEN(15, 0, 20, 79, scr1)

Classification:
programming (for screen oriented output), usable only with enabled screen oriented
output (the default, see sect. SYS.2.7).

Compatibility:
In FlagShip, SAVE SCREEN, RESTORE SCREEN, SAVESCREEN(), and
RESTSCREEN() are supported for any terminal (using the window structure of
curses). To modify the saved screen contents, see the function _retscw() in section
EXT.

For saving a screen contents, FlagShip uses the variable of type "S" in contrast to
the Clipper's type "C", which are not binary compatible. See also compatibility notes
in RESTORE FROM command, if screen variables are saved/restored using .mem
file as well as the conversion functions SCRDOS2UNIX() and SCRUNIX2DOS().

In GUI, the structure of the screen variable <retS> is incompatible to <retS> from
Terminal i/o mode, see description above. Parameter 5 is new in FS5

Related:
RESTSCREEN(), SAVE SCREEN, RESTORE SCREEN, CHR2SCREEN(),
SCREEN2CHR(), SCRDOS2UNIX(), SCRUNIX2DOS()

FUN 510

SCRDOS2UNIX ()
Syntax:

retS = SCRDOS2UNIX (expN1, expN2, expN3, expN4,
expC5, [expL6])

Purpose:
Converts screen contents in MS-DOS format (created e.g. by SAVESCEREEN() in
Clipper) into FlagShip/Unix format.

Available in Terminal i/o only, accepted as dummy in GUI and basic mode. When
FS-SET("devel") is set .T., GUI and Basic mode raises developer warning.

Arguments:
<expN1>...<expN4> are the top, left, bottom and right window coordinates of the
stored screen region.

<expC5> is a string containing the screen contents of the stored screen area
<expN1> ... <expN4> in MS-DOS format. The significant string size is always
(expN3 - expN1 +1) * (expN4 - expN2 + 1) * 2; rest of the string is ignored.

Option:
<expL6> is a logical switch controlling the display. If FALSE, only a conversion is
performed for later display by RESTSCREEN(). If not specified or given TRUE, the
converted screen contents is displayed at coordinates <expN1>...<expN4>.

Returns:
<retS> is a variable of type SCREEN containing the screen contents converted to
Unix WINDOW format, including color and special character conversion. This return
value may be then re- displayed/restored by the standard FlagShip function
RESTSCREEN(). On conversion error, NIL is returned. <retS> is NIL in GUI and
basic mode.

Description:
SCRDOS2UNIX() is a screen conversion routine. It allows to display screen
contents stored on MS-DOS system into a character variable and restored on Unix
e.g. from a database field or .mem variable.

Since the string of a DOS screen contents may contain binary zeroes, it is
recommended to set fs_set("zero", .T.) while manipulating the string. Also, storing
the string into a .mem field may cause problems in some circumstances, since the
1Ahex (26dec) is a valid color attribute. But you may use SCREEN2CHR() for such
purposes.

Although the combination of SCRUNIX2DOS() and SCRDOS2UNIX() may be used
instead of SAVESCREEN() and RESTSCREEN() combination, the latter pair should
be preferably used, since it is significantly faster and more comfortable.

Note, that problems (screen garbage) may occur when the Unix terminal does not
support the size of the stored screen area. See also example below.

FUN 511

GUI mode: The ScrDos2Unix() cannot be used in GUI mode, where the screen
variable <varS> is compressed or uncompressed bitmap object an hence cannot be
extracted or converted by this function.

Example:
Displays screen contents stored in database fields on MS-DOS system.

FIELD scrfld, bottom, right
USE scrdata

#ifndef FlagShip
// ----- MS-DOS part -----

append blank
replace scrfld with SAVESCREEN(0,0,24,79) // len= 4000
replace bottom with 24
replace right with 79

#else
// ----- Unix part -----

Local scrVar
Local saveZero := fs_set ("zero", .T.)
if bottom > MAXROW()

? "cannot restore",bottom +1, ;
"lines on terminal with",MAXROW()+1,"lines"

elseif right > MAXCOL()
? "cannot restore",right +1, ;
"columns on terminal with",MAXCOL()+1,"columns"

else
scrVar := ScrDos2Unix (0,0,bottom,right, scrfld, .F.)
if valtype(scrVar) != "S"

? "Error on restoring - window size ?"
else

RestScreen(0,0,bottom,right, ScrVar)
endif

endif
fs_set ("zero", saveZero)

#endif

Classification:
programming (for screen oriented output), usable only with enabled screen oriented
output (see sect. SYS.2.7).

Compatibility:
This function is available in FlagShip only. Embedded zero bytes are only
supported, when FS_SET("zero") is set.

In GUI, the structure of the screen variable <retS> is incompatible to <retS> from
Terminal i/o mode, see SaveScreen() for details. Therefore, this function is working
properly only in Terminal i/o

Related:
SCRUNIX2DOS(), SAVESCREEN(), RESTSCREEN(), SCREEN2CHR(),
CHR2SCREEN()

FUN 512

SCRUNIX2DOS ()
Syntax:

retC = SCRUNIX2DOS ([expN1], [expN2], [expN3],
[expN4], [expS5])

Purpose:
Converts the screen contents from Unix format into MS-DOS format.

Available in Terminal i/o only, accepted as dummy in GUI and basic mode. When
FS-SET("devel") is set .T., GUI and Basic mode raises developer warning.

Options:
<expN1>...<expN4> are the top, left, bottom and right window coordinates of the
stored screen region. These coordinates do not need to exactly match those of
SAVESCREEN(), but only the window size has to match. If not specified, (0, 0,
maxrow(), maxcol()) is assumed.

<expS5> is a SCREEN variable containing the screen contents in Unix format, e.g.
from SAVESCREEN(). If not given or specified NIL, SCRUNIX2DOS() performs
SAVESCREEN() at the given coordinates <expN1> ...<expN4>.

Returns:
<retC> is a variable of type character, containing the screen contents converted
from Unix WINDOW format to MS-DOS, including color conversion. This return
value may be then re-displayed by the standard Clipper function RESTSCREEN().
The returned string size is always (expN3 - expN1 +1) * (expN4 - expN2 + 1) * 2.
On error, null string is returned. <retC> is "" in GUI and basic mode.

Description:
SCRUNIX2DOS() is a screen conversion routine. It allows to display a screen
contents stored in Unix also in an MS-DOS application.

Since the string of a DOS screen contents may contain binary zeroes, it is
recommended to set fs_set("zero", .T.) while manipulating the string. Also, storing
the string into a .mem field may cause problems in some circumstances, since the
1Ahex (26dec) is a valid color attribute. But you may use SCREEN2CHR() for such
purposes.

GUI mode: The ScrUnix2Dos() cannot be used in GUI mode, where the screen
variable <expS> is compressed or uncompressed bitmap object an hence cannot
be extracted or converted by this function.

FUN 513

Example:
Store the content of a Unix screen in database fields in MS-DOS format to redisplay
it on MS-DOS.

FIELD scrfld, bottom, right
USE scrdata
#ifdef FlagShip
// ----- Unix part -----

Local scrVar, cVar
Local saveZero := fs_set ("zero", .T.)
scrVar := SaveScreen (0,0,24,79) // type = S
cVar := ScrUnix2Dos(0,0,24,79, scrVar) // len = 4000
if len(cVar) < 4000

? "Converting error - window size ?"
else

append blank
replace scrfld with cVar
replace bottom with 24
replace right with 79

endif
fs_set ("zero", saveZero)

#else
// ----- MS-DOS part -----

RestScreen(0,0,bottom,right, scrfld))
#endif

Example:
Save and restore screen in MS-DOS format. Although similar to the SaveScreen()
and RestScreen() combination, the SCRxxx() routines via character conversion may
be significantly slower.

cVar := ScrUnix2Dos(0,0,24,79) // similar to SaveScreen()
// later...
ScrDos2Unix (0,0,24,79, cVar) // similar to RestScreen()

Classification:
programming (for screen oriented output), usable only with enabled screen oriented
output (see sect. SYS.2.7).

Compatibility:
This function is available in FlagShip only. Embedded zero bytes are only
supported, when FS_SET("zero") is set.

In GUI, the structure of the screen variable <retS> is incompatible to <retS> from
Terminal i/o mode, see SaveScreen() for details. Therefore, this function is working
properly only in Terminal i/o

Related:
SCRDOS2UNIX(), SAVESCREEN(), RESTSCREEN(), SCREEN2CHR(),
CHR2SCREEN()

FUN 514

SCREEN2CHR ()
Syntax:

retC = SCREEN2CHR (varS)
Purpose:

Converts a screen variable to a character string. This function is applicable for
Terminal i/o mode only.

Arguments:
<varS> is a SCREEN variable (type "S") generated with SAVE SCREEN TO or
SAVESCREEN().

Returns:
<retC> is a character string containing the converted variable of type "S".

Description:
SCREEN2CHR() can be used to store a screen variable into a memo field,
character database field, etc.

The inverse function of SCREEN2CHR() is CHR2SCREEN().

GUI mode: The Screen2chr() may not be used in GUI mode, where the screen
variable <varS> is compressed or uncompressed bitmap object an hence cannot be
extracted or converted by this function.

Example:
myscreen = SAVESCREEN (10,5, 20,40)
// any screen operation
RESTSCREEN (10,5, 20,40, myscreen)

USE initdata SHARED
SET INDEX TO userno
SEEK user
REPLACE memofield WITH CHR2SCREEN (myscreen)
// and later
RESTSCREEN (10,5, 20,40, SCREEN2CHR (memofield))

Classification:
programming (for screen oriented output), usable only with enabled screen oriented
output (see sect. SYS.2.7).

Compatibility:
This function is available in FlagShip only. The returned string is also not
compatible to the result of SAVESCREEN() in MS-DOS (use SCRUNIX2DOS()
instead). To modify the contents of the screen variable, see example in section
SYS, function _retscw(), applicable for terminal mode only.

In GUI, the structure of the screen variable <retS> is incompatible to <retS> from
Terminal i/o mode, see SaveScreen() for details.

Related: CHR2SCREEN(), RESTSCREEN(), SAVESCREEN(), SCRDOS2UNIX(),
SCRUNIX2DOS()

FUN 515

SCROLL ()
Syntax:

NIL = SCROLL ([expN1], [expN2], [expN3], [expN4],
[expN5], [expN6], [expL7])

Purpose:
Clears or scrolls a specified screen region up and down, or right and left.

Options:
<expN1>...<expN4> defines the top, left, bottom and right window coordinates of
the screen region to be scrolled. If the arguments are omitted, 0, 0, MAXROW(),
MAXCOL() is assumed.

<expN5> defines the vertical scrolling direction. If it is positive, the window scrolls
up for the specified number of lines. If it is negative, the window scrolls down. If it is
zero, or neither <expN5> nor <expN6> are specified, or NIL, the region is cleared.

<expN6> defines the horizontal scrolling direction. If it is positive, the window
scrolls left for the specified number of columns. If it is negative, the window scrolls
right. If it is zero, or <expN5> and <expN6> are both not specified or NIL, the region
is cleared.

<expL7> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

Returns:
The function always returns NIL.

Description:
SCROLL() is a screen function that scrolls a screen region up or down a specified
number of rows. When a screen scrolls up, the first line of the region is erased, all
other lines are moved up, and a blank line is displayed in the current standard color
on the bottom line of the specified region. If the region scrolls down, the operation is
reversed. If the screen region is scrolled more than one line, this process is
repeated.

Scrolling the screen right, a space is inserted at the left of each line of the region,
the right characters moved out are lost. Scrolling left, the operation is reversed,
inserting spaces to the right.

SCROLL() can be used to implement listing on a part of the screen, while the rest of
the screen remains still.

FUN 516

Example:
USE authors
@ 10,10 CLEAR TO 15,40
@ 10, 10 TO 15,40 DOUBLE
DO WHILE .NOT. EOF()

SCROLL (11,11,14,39,1)
@ 14,12 SAY lastname
IF INKEY(0.5) = 27 && Pause
SCROLL (11,11,14,39,1)

@ 14,12 SAY "..any key to continue or ESC to exit.."
IF INKEY(0) = 27 && Exit

EXIT
ENDIF

ENDIF
SKIP

ENDDO
USE

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND()

Compatibility:
The optional sixth argument is new in FS4 and C5. Note, FlagShip handles the
screen output using the default UNIX curses library. It sends control escape
sequences to the terminal according to the current TERM description in the
compiled terminfo file. This is similar to the usage of ANSI driver on DOS.
Therefore, scrolling may be significantly slower than the direct updating of the video
buffer used in MS-DOS dialects. On the other hand, it works with any terminal,
connected any way, even by serial cable or by modem.

Parameter 7 is new in FS5

Related:
@...CLEAR, CLEAR SCREEN, @...TO...DOUBLE, @...BOX

FUN 517

SECONDS ()
Syntax:

retN = SECONDS ([expL1])
Purpose:

Reports the number of seconds elapsed since midnight, or continued since 1-
January-1970.

Options:
<expL1> is optional logical value. If true (.T.), the return value represents seconds
(and fraction of seconds if possible) since January 1, 1970, localized. If false (.F.),
the return value are un-localized (UTC) seconds since 1/1/1970, same as the
system function time().

Using this argument is advisable for long time measurements to avoid manual
handling of the midnight wrap, and for measurements with a high accuracy.

Returns:
<retN> is a numeric value, representing the seconds according to the system time,
based on the 24 hour clock. The resolution depends on the used system and is
usually in milliseconds or microseconds. In some older UNIX, only full second
intervals can be reported.

Description:
SECONDS() is used to calculate the length of time intervals. It is related to the
TIME() function which returns the system time as a string in the form "hh:mm:ss" or
optionally as "hh:mm:ss.uuuu".

If only seconds intervals are returned on your system, and smaller time intervals on
a millisecond basis are needed and not supported by seconds(), use
SECONDSCPU() - see the compatibility note below.

Example:
old_sec = SECONDS()
SET PRINTER TO /dev/lp0
printMyDoc()
elap_time = SECONDS() - old_sec
? "Printer was in action for ", elap_time, " seconds."

Classification:
programming, system

Compatibility:
In some older UNIX systems, the elapsed seconds since midnight are available
without decimals only (see UNIX "time"). To determine the true CPU time for
measuring purposes, SECONDSCPU() should be used instead, which also returns
hundredths of seconds and the true performance. In contrast to SECONDSCPU(),
the SECONDS() do not give relevant information on the program performance in
multiuser and multitasking environments.

FUN 518

For the most newer Unix systems and for Windows, Seconds() returns fractions of
seconds. The optional parameter is available in FS5 and FS6 only.

On Unix/Linux, the system functions time(), localtime(), and when available also
gettimeofday() or curtime() are used internally, refer to "man 2 time" and "man 3
localtime" for further details. On MS-Windows, the system functions time(),
localtime() and GetLocalTime() are used.

Related:
TIME(), SECONDSCPU(), SLEEP(), SLEEPMS() FS2:SecToTime(), FS2:Time-
ToSec(), FS2:WaitPeriod()

FUN 519

SECONDSCPU ()
Syntax:

retN = SECONDSCPU ([expN])
Purpose:

Reports how many CPU and/or system seconds have elapsed since the beginning
of the program execution.

Options:
<expN> is an optional numeric expression which controls the counter information
(see also "times" in the UNIX manual):

expN tms_ Action
1 utime user CPU time of the current process
2 stime system CPU time behalf of the current process
3 u + s sum of utime + stime (the default setting)
11 cutime sum of the user CPU time of the current + child process (e.g. RUN

program)
12 cstime sum of the system CPU time of the current + child process (e.g. RUN

program)
13 cu+cs sum of cutime + cstime

If no argument is given, 3 is assumed, so SECONDSCPU() will return the sum of
the CPU and system access time of the current process.

Returns:
<retN> is a numeric value, representing the required CPU time (see table above) of
the program execution. The format is "seconds.hundredths". The number returned
is the number of CPU seconds which have elapsed since the program start.

Description:
SECONDSCPU() is used to determine, how much CPU time the current program
has received since the program start. In heavily-loaded UNIX systems, the total
execution time of a short program may result in a long SECONDS() period, whereas
the real CPU execution time of this process as measured by SECONDSCPU() or
the system routine "time" is only a few milliseconds.

The lowest measured time unit is one "clock tic", which is system dependent and
often 1/60 seconds (0.016 seconds). See also the UNIX manual "times".

Example:
Measuring of the elapsed and CPU time within an application:

full_time = SECONDS()
cpu_time = SECONDSCPU(1)
sys_time = SECONDSCPU(2)
tot_time = SECONDSCPU(3)

FUN 520

FOR i = 1 to 500
? "line", i

NEXT

cpu_time = SECONDSCPU(1) - cpu_time
sys_time = SECONDSCPU(2) - sys_time
tot_time = SECONDSCPU(3) - tot_time
full_time = SECONDS() - full_time

? "Total time spend =", full_time && 18
? "Total CPU time spend =", tot_time && 3.26
? "Real execution time =", cpu_time && 0.02
? "addit. system i/o time =", sys_time && 3.24

Classification:
programming, system

Compatibility:
SECONDSCPU() is not available with Clipper. Because of the single- user-process
from MS-DOS, the difference of two SECONDS() functions there will return
comparable performance results to the difference of two SECONDSCPU() on UNIX.
For compatibility to C5, use:

#ifndef FlagShip
#define SECONDSCPU SECONDS
#endif

For compatibility to other xBase dialects, add a small routine, which is included in
<FlagShip_dir>/fstodos.prg, to the DOS program:

FUNCTION secondscpu parameters p1 return SECONDS()

Related:
TIME(), SECONDS()

FUN 521

SELECT ()
Syntax:

retN = SELECT ([expC])
Purpose:

Determines the working area number of the current or for specified alias.

Options:
<expC> is the alias name of the specified working area. If the argument is not
specified, or is an empty string, the number of the current working area is returned.

Returns:
<retN> is the working area number in the range 1 to 65534. If alias <expC> does
not exist, or no database is open in the current working area, zero is returned.

Description:
SELECT() is a database function that determines the working area number of an
alias, or the current one. This function do not change the current working area.

Note the functional difference between the SELECT (expN) or SELECT (expC)
command, which is translated by the preprocessor to the DBSELECTAREA()
function, and the similar syntax of the SELECT(expC) function. Hence, note:

num = SELECT (“myAlias”) // function, do not change work area
SELECT (“myAlias”) // command, changes work area!

So be careful or use ALIAS() to avoid confusion. The syntax num := SELECT(alias)
is equivalent to alias->(SELECT()).

Multiuser:
When performing operations on the SAME physical database (used con- currently
in different working areas), see chapter LNG.4.8.7.

Example:
USE article NEW ALIAS art
old_area = SELECT() // 1
USE magazine NEW
* do something ...
SELECT (old_area) // here command SELECT !
? SELECT(), SELECT ("magazine") // 1 2 (= functions)

cAlias := " "
? SELECT(cAlias) // 1 = same as SELECT()
cAlias := "magazine"
? SELECT(cAlias) // 2
cAlias := "art"
? SELECT(cAlias) // 1
cAlias := "foo"
? SELECT(cAlias) // 0

Classification: database
Related: ALIAS(), SELECT, DBSELECTAREA(), USE, RDD.1.2

FUN 522

SET ()
Syntax:

ret = SET (expN1, [exp2], [expL3])
Purpose:

Inspects or changes a system setting of the SET commands.

Arguments:
<expN1> is a numeric value that identifies the setting to be inspected or changed.

Options:
<exp2> is an optional argument that specifies a new value for the SET toggle. The
type of this argument depends on the specifier <expN1>.

<expL3> is a logical value that indicates whether or not files are opened in the
ADDITIVE mode for the commands/settings

SET ALTERNATE SET (_SET_ALTFILE, ...
SET PRINTER SET (_SET_PRINTFILE, ...
SET EXTRA SET (_SET_EXTRAFILE, ...

A TRUE value indicates to open the file in append mode (ADDITIVE), while a
FALSE value will truncate the file, if it exists. If this argument is not specified, the
default is the append mode.

Returns:
<ret> is the current value of the specified setting. The type of the return value
depends on the specifier <expN1>. On invalid arguments, the call to SET() is
ignored and NIL is returned. Note that the returned value is the previous setting
when <exp2> is given and the current setting when only <expN1> was passed.

Description:
SET() is a system function that lets you inspect or change the values of the internal
system settings. For more information, refer to the associated command:

Constant in set.fh Type Assoc. Command
_SET_ALTERNATE Logical SET ALTERNATE
_SET_ALTFILE Character SET ALTERNATE TO
_SET_ANSI Logical SET ANSI
_SET_AUTOCOMMIT Logical SET AUTOCOMMIT
_SET_AUTOLOCK Numeric SET AUTOLOCK
_SET_BELL Logical SET BELL
_SET_CANCEL Logical SETCANCEL()
_SET_CENTURY Logical SET CENTURY
_SET_CHARSET Numeric SET CHARSET
_SET_COLOR Character SETCOLOR()
_SET_CONFIRM Logical SET CONFIRM
_SET_CONSOLE Logical SET CONSOLE

FUN 523

_SET_COORD_UNIT Numeric SET COORDINATE
_SET_CURSOR Numeric SETCURSOR()
_SET_DATEFORMAT Character SET DATE
_SET_DBREAD_ISO Logical SET DBREAD
_SET_DBWRITE_ISO Logical SET DBWRITE
_SET_DEBUG Logical ALTD()
_SET_DEBUG_PROFILE Numeric (see below)
_SET_DECIMALS Numeric SET DECIMALS
_SET_DEFAULT Character SET DEFAULT
_SET_DELETED Logical SET DELETED
_SET_DELIMCHARS Character SET DELIMITERS TO
_SET_DELIMITERS Logical SET DELIMITERS
_SET_DEVICE Character SET DEVICE
_SET_EJECT Logical SET EJECT
_SET_EOFAPPEND Logical SET EOFAPPEND
_SET_EPOCH Numeric SET EPOCH
_SET_ESCAPE Logical SET ESCAPE
_SET_EVENTMASK Numeric SET EVENTMASK
_SET_EVENT_DURATION Numeric SetEvent(,n)
_SET_EVENT_INTERVAL Numeric SetEvent(n)
_SET_EVENT_MODE Numeric SetEvent(,,n)
_SET_EXACT Logical SET EXACT
_SET_EXCLUSIVE Logical SET EXCLUSIVE
_SET_EXIT Logical READEXIT()
_SET_FIXED Logical SET FIXED
_SET_FONTBOLD Logical SET FONT
_SET_FONTITALIC Logical SET FONT
_SET_FONTNAME Character SET FONT
_SET_FONTSIZE Numeric SET FONT
_SET_GOTOP Logical SET GOTOP
_SET_GUIALIGN Logical SET GUIALIGN
_SET_GUIASCII Logical SET GUITRANSL ASCII
_SET_GUICOLORS Logical SET GUICOLORS
_SET_GUICURSOR Logical SET GUICURSOR
_SET_GUICURSORTYPE Numeric SET GUICURSOR TO
_SET_GUIDRAWBOX Logical SET GUITRANSL BOX
_SET_GUIDRAWLINE Logical SET GUITRANSL LINES
_SET_GUIDRAWTEXT Logical SET GUITRANSL TEXT
_SET_GUIPRINTER Logical SET GUIPRINTER
_SET_HTMLTEXT Logical SET HTMLTEXT
_SET_INPUT Logical SET INPUT
_SET_INSERT Logical READINSERT()
_SET_INSERT_INKEY Logical (see below)
_SET_INTENSITY Logical SET INTENSITY
_SET_LARGEFILE Logical SET LARGEFILE
_SET_LASTKEYBUFFSIZE Numeric (see below)
_SET_LOCK_MODE Numeric (see below)

FUN 524

_SET_LOCK_RETRY_SEC Numeric (see below)
_SET_MARGIN Numeric SET MARGIN
_SET_MCENTER Logical SET MESSAGE
_SET_MEMOEDITWARN Numeric(Logical) (see below)
_SET_MESSAGE Numeric SET MESSAGE
_SET_MULTILOCKS Logical SET MULTILOCKS
_SET_NFS_FORCE Logical SET NFS
_SET_NOINPUTCHAR Numeric (see below)
_SET_OPEN_ERROR Logical SET OPENERROR
_SET_PATH Character SET PATH
_SET_PIXEL Logical SET PIXEL
_SET_PRINTASCII Logical (see below)
_SET_PRINTCOLOR Character for SET GUIPRINT ON
_SET_PRINTER Logical SET PRINTER
_SET_PRINTFILE Character SET PRINTER TO
_SET_READAHEAD Logical (see below)
_SET_ROWADAPT Logical SET ROWADAPT
_SET_ROWALIGN Logical SET ROWALIGN
_SET_SCOREBOARD Logical SET SCOREBOARD
_SET_SCRCOMPRESS Logical SET SCRCOMPRESS
_SET_TERM_DATA Character (see below)
_SET_SOFTSEEK Logical SET SOFTSEEK
_SET_SOURCEASCII Logical SET SOURCE ASCII
_SET_UNIQUE Logical SET UNIQUE
_SET_UNIQUE_IGNORE Logical (see below)
_SET_WAIT_ECHO Logical (see WAIT command)
_SET_WAIT_IGNFUN Logical (see WAIT command)
_SET_WARN_IGNORE Logical (see below)
_SET_WRAP Logical SET WRAP
_SET_ZEROBYTEOUT Character SET ZEROBYTEOUT

_SET_COUNT Numeric count of _SET_...

Additional settings are available using the FS_SET() and SETKEY() function.
Several global constants can be modified via assignment to _aGlobSetting[...], see
source in <FlagShip_dir>/system/initio.prg

Description for settings available by Set() only:

Set(_SET_DEBUG_PROFILE, [iType]) -> iType
Profiles time spent in each UDF to stderr device, you may redirect it to a file, e.g.
'a.out 2>file.name'

<iType> = 0: disable, default
1: protocol UDF entry, short form with param count
2: protocol UDF entry, long form with param values and

callstack
4: protocol UDF exit
5: protocol UDF entry + exit, short form

FUN 525

6: protocol UDF entry + exit, long form

Set(_SET_INSERT, [logVar]) -> logVar
Get/set the insert mode for GET/READ and MemoEdit(). Equivalent to ReadInsert()
function, refer to detailed description there. See also Set(_SET_INSERT_INKEY)
for ability to change the insert mode by other key press.

Set(_SET_INSERT_INKEY, [logVar]) -> logVar
Get/set ability to change the insert mode by key press outside of GET/READ and
MemoEdit(). The functionality of Set(_SET_INSERT) and ReadInsert() is not
affected herewith. The default value is .F. to remain backward compatible. The
current state of Insert switch can be determined by Set(_SET_INSERT) or
InkeyStatus(STATUS_INSERT).

Set(_SET_LASTKEYBUFFSIZE, [intVar]) -> intVar
Get/set the size of lastkey() buffer, default = 10

Set(_SET_LOCK_MODE, [numVar]) -> nMode
Get/set used locking scheme/mode. The default mode is 1.

0 = use only "old" locking of FS4.4x to FS5.x
1 = compatibility mode: use "new" locking mode 2 when possible but 0 if the

database is already in use by "old" applications. You may check currently used
mode by DbObject():Info(DBI_LOCK_MODE)

2 = use new locking scheme only. Preferred for MS-Windows and Unix or Linux
and only applicable for large files > 2Gb. An "old" application will then deny
USE or DbUseArea() for database in use by others in this mode.

Set(_SET_LOCK_RETRY_SEC, [numVar]) -> nSeconds
Get/set max time frame in seconds for re-trying internal locks (0..600 seconds,
default = 3.0)

Set(_SET_MEMOEDITWARN, [nOn|lOn]) -> nOn
Display MemoEdit() warning on ESC in non read-only mode:

nOn = 2 : always display warning and prompt (default)
1 : display warning and prompt only if text was changed
0 : don't display warning at all

lOn = .T. same as nOn = 2 (display warning and prompt)
= .F. same as nOn = 0 (don't display warnings)

Set(_SET_NOINPUTCHAR, [intVar]) -> intVar
Inkey() key value returned when SET INPUT is OFF, default = 27

Set(_SET_PRINTASCII, [lOn]) -> lRet
Set/get automatic ISO->ASCII translation via Ansi2oem() for printer output. Apply
for Terminal and GUI i/o mode. Set automatically .T. by SET SOURCE ISO in GUI
mode, default = .F. = off

Set(_SET_READAHEAD, [lOn]) -> lRet
Enable/disable read ahead into keyboard buffer, default is ON (.T.)

FUN 526

Set(_SET_TERM_DATA) -> cRet
Returns current terminal data and translation tables used in terminal i/o mode. An
example of the (here splitted) output is:

"TerminalOutMapping=/usr/share/terminfo/FSchrmap.def" + ;
"[fslinxterm] (38 chars redefined) " + ;
"KeyboardMapping=/usr/share/terminfo/FSkeymap.def" + ;
"[fslinxterm] (128 keys redefined)"

Additional information is available via FS_SET()

Set(_SET_UNIQUE_IGNORE, [lOn]) -> lOn
Enable/disable unique index skipping on index created with UNIQUE flag.
Advantageous e.g. for doublet checking. The default is .F., i.e. the Unique flag is
considered if indexed so. With .T., all records are visible, same as on index created
without the Unique flag.

Set(_SET_WARN_IGNORE, [lOn]) -> lOn
Enable/disable additional warning when pressing "Ignore" on RTE errors. Default is
enabled warning, i.e. lOn == .T.

Example:
? SET (_SET_CONSOLE) // .T.
? SET (_SET_PRINTER) // .F.
? SET (_SET_DECIMALS) // 2
SET (_SET_FIXED, .T.) // = SET FIXED ON
SET (_SET_ALTFILE, "xyz", .T.) // = SET ALTERNATE

// TO xyz ADDITIVE
? SET (_SET_ALTFILE) // xyz

Example: check correct setting or restore old
iOldDeci := SET(_SET_DECIMALS, 4) // iOldDeci = before set
iNewDeci := SET(_SET_DECIMALS) // returns new setting
? "Decimals set from", ltrim(iOldDeci), "to", ltrim(iNewDeci)
if iNewDeci != 4

? "failure on new decimals setting"
endif
SET_SET_DECIMALS, iOldDeci) // reset old

Example:
General purpose function to save and restore all settings:

LOCAL actset := {}
#ifdef FlagShip
include "set.fh"

FS_SET ("lower, .T.) // additional settings
#else
include "Set.CH"
#endif

SET
actset := saverestset () // save current settings
SET ...
actset[_SET_DEVICE] := NIL // leave unchanged
saverestset (actset) // restore settings

FUN 527

FUNCTION saverestset (oldset) // parameter is optional
***************************** // to restore only
LOCAL ii, retarr[_SET_COUNT]
IF oldset != NIL .and. VALTYPE(oldset) == "A"

FOR ii := 1 TO LEN(oldset) // restore
IF oldset[ii] != NIL

retarr[ii] := SET (ii, oldset[ii])
ENDIF

NEXT
ELSE // save current

FOR ii := 1 TO _SET_COUNT
retarr[ii] := SET (ii)

NEXT
ENDIF
RETURN retarr

Classification:
programming

Compatibility:
Available in FS and C5 only. The numeric values of <expN1> are version-
dependent and should never be used directly; the manifest constants are available
in "set.fh" (or the C5 equivalences in "set.ch"). Note that the "set.ch" is only a
subset of "set.fh", which should be preferably used in FlagShip.

Several flags are new in FS

Include:
The #include-able constants and manifests are available in the
<FlagShip_dir>/include/set.fh file.

Related:
SET commands, SETKEY(), FS_SET()

FUN 528

SETANSI ()
Syntax:

retL = SetAnsi ([expL1])
Purpose:

Change the behavior how to read from and store data into database.

Options:
<expL1> is a logical value, FALSE value (the default) sets the ANSI <-> PC8
translation OFF, TRUE value enables the translation.

Returns:
<retL> is the current setting.

Description:
With SET ANSI ON or SetAnsi(.T.), a database access of character or memo
translates the PC8/ASCII/OEM charset via Oem2Ansi() into ANSI/ISO charset
(used for display in GUI mode or in X11 terminal without a corresponding mapping).
On replacing a char or memo fields in the database, the reverse Ansi2oem()
translation is taken.

This means, special characters like a-umlaut, stored in the database as chr(132) in
PC8/ASCII/OEM charset are translated during a read access to chr(228) in
ANSI/ISO charset, to be displayed on the screen as a-umlaut in GUI environment or
on X terminal. Reverse, with SET ANSI ON or SetAnsi(.T.), the a-umlaut chr(228)
available in a variable or given in input, is stored in the dbf as chr(132) during the
replace stage.

Note: both the FS and Clipper always use PC8/ASCII charset in the database, i.e.
chr(132) for a-umlaut.

Example:
See examples/setansi.prg for a complete example with description

Classification:
programming, database

Compatibility:
New in FS5

Related:
SET DBREAD, SET DBWRITE, SET KEYTRANSL|CHARSET, Ansi2oem(),
Oem2Ansi()

FUN 529

SETBLINK ()
Syntax:

retL = SETBLINK ([expL1])
Purpose:

In MS-DOS: Toggles asterisk (*) interpretation in SETCOLOR() string between
blinking and background intensity. No effect in FlagShip.

Options:
<expL1> is a logical value, TRUE value (the default) sets the blinking, FALSE sets
background intensity.

Returns:
<retL> is the current setting.

Description:
Since the behavior of blinking is dependent on the UNIX terminal and on definitions
in the "terminfo" file, the SETBLINK() function is implemented in FlagShip for
compatibility purposes only.

To change the environment variable TERM and reinitialize the screen, use
FS_SET("setenvir") function.

Classification:
programming

Source:
This user modifiable function is available in <FlagShip_dir>/ system/scrnmode.prg

Related:
SET COLOR, FS_SET("setenv"), FS_SET("term")

FUN 530

SETCANCEL()
Syntax:

retL = SETCANCEL ([expL])
Purpose:

Toggles program termination with Ctrl-K on or off.

Options:
<expL> toggles the termination capability on (if TRUE), or off (FALSE). The default
setting is TRUE.

Returns:
<retL> is a logical value, representing the last state before the current toggling.

Description:
SETCANCEL() is a keyboard function that toggles the state of the termination key
(^K or other key set by FS_SET("break")), and reports the current state of
SETCANCEL().

Using SETCANCEL(.F.) will suppress the user's ability to terminate a program
using the break key (e.g. being in REPLACE or INDEX), until resetting it by
SETCANCEL (.T.).

Example:
PUBLIC FlagShip, Clipper
termkey = if (FlagShip, "Ctrl-K", "Ctrl-C")
yes_no = IF(SETCANCEL(), "", "not ")
? "In case of entering an endless loop", ;

"you can " + yes_no, ;
"terminate the program with " + termkey

Classification:
programming

Compatibility:
Note the different termination keys in FlagShip (Ctrl-K) and Clipper (Ctrl-C). In
FlagShip, the break key may be redefined using FS_SET("break").

Related:
SET ESCAPE, SET KEY, ALTD(), FS_SET()

FUN 531

SETCOLOR ()
Syntax:

retCA = SETCOLOR ([expCAON1], [expL2])
Purpose:

Reports the current color setting and optionally sets a new one.

Options:
<expC1> is a character string containing the new color setting. It contains the
standard, enhanced, border, background and unselected color settings in the same
format as SET COLOR TO. If the argument is not specified, only the current color
setting will be returned. Instead of color symbol, you also may specify RGB string in
#RRGGBB notation, see details in SET COLOR.

<expA1> is an alternative entry via 2 or 3-dimensional array of RGB triplets. See
SET COLOR for more details.

<expO1> is an alternative entry via Color object

<expN1> is an alternative entry using numeric value for the standard color. The
valid <expN1> range is 0..255, and the color pair is coded as foreground-color +
(background-color * 16), e.g. "R+/GR" = "12/6" = 12 + 6*16 = 108, or "W/N" = "7/0"
= 7 + 0*16 = 7. Note, that the numeric value (0..15) is also accepted within the color
string, e.g. "10/1" is equivalent to "G+/B" or to numeric 26. Due of the numeric
nature, the numeric <expN1> value support only the standard color pair. See SET
COLOR for the numeric values.

<expL2> is a flag for the returned type. If .F. or NIL, SetColor() return translation of
closest RGB to color char, .T. return array of RGB triplets

Returns:
<retC> is a character string, containing the current color setting. If a RGB string or
RGB array was specified, either the matching symbol is returned if an exact match
was found, otherwise the partial color is returned as RGB string in #RRGGBB
notification.

<retA> is an array of RGB triplets, returned if <expL2> is .T.

Description:
SETCOLOR() supports the same format of color setting as SET COLOR TO, and
can be used to save, and later restore a color setting.

For more information, refer to the SET COLOR command.

FUN 532

Example:
// Save and restore the color settings:

PROCEDURE warning (message)
LOCAL actcolor := SETCOLOR ()
SET COLOR TO +R/B,RB+/N && SETCOLOR("+R/B,RB+/N")
?? CHR(7)
@ 0,0 SAY "Warning: " + message + " ..any key"
INKEY (0)
SETCOLOR(actcolor)
@ 0,0
RETURN

Classification:
programming, usable only with enabled screen oriented output (see sect. SYS.2.7).

Compatibility:
The additional types of 1st parameter as well as the 2nd parameter are new in FS5

Related:
SET COLOR TO, SET INTENSITY, SETSTANDARD, SETENHANCED,
SETUNSELECTED

FUN 533

SETCOLORBA ()
Syntax:

retA = SETCOLORBAckground ([expCAON1], [expN2,
expN3])

Purpose:
Sets and/or reports the current GUI background color.

Options:
<expC1> is a character string containing the new color setting of the GUI window
background. Only the background of standard color is considered. The syntax is
same as SET COLOR TO. Instead of color symbol, you also may specify RGB
string in #RRGGBB notation, see details in SET COLOR.

<expA1> is an alternative entry via one, two or three-dimensional array of RGB
triplets. See SET COLOR for more details. If one-dim array is used, the form is
equivalent to the return value.

<expO1> is an alternative entry via Color object

<expN1> is an alternative entry using numeric value for the background color. If
<expN2> and <expN3> is used, this value specify the amount of red fraction in the
color as a value between 0 and 255. If <expN2> and <expN3> are not used, see
details in SETCOLOR() or SET COLOR TO.

<expN2> is the amount of green fraction in the color as a value between 0 and 255.

<expN3> is the amount of blue fraction in the color as a value between 0 and 255.

Returns:
<retA> is an array of RGB triplets, where retA[1] is the amount of red fraction in the
color as a value between 0 and 255, retA[2] the amount of green fraction and
retA[3] the amount of blue fraction determined at the time of entering the function.
On error (e.g. in Terminal i/o mode), an empty array is returned.

Description:
SETCOLORBA() allows you to set the background color of the whole user area
(widget, control) by a subsequent CLS or CLEAR command, e.g. when you wish to
use other than the standard gray background. This function is considered in GUI
mode only and is ignored in other i/o modes, where an empty array is returned.

Example:
aOld := SetColorBackgr("N/W+") // white background
aNew := SetColorBackgr()
CLS
qout("Old:") ; aeval(aOld, {|x| qqout(x)}) // 220 220 220
qout("New:") ; aeval(aNew, {|x| qqout(x)}) // 255 255 255
wait

FUN 534

SetColorBackgr(100, 100, 255) // light blue background
CLS
qout("Changed:") ; aeval(SetColorBackgr(), {|x| qqout(x)})
SET COLOR TO "W+/#6464FF"
SET GUICOLOR ON
qout("Changed:") ; aeval(SetColorBackgr(), {|x| qqout(x)})
wait

// apply also for windowing
iWin1 := Wopen(5,10,8,30)
for ii := 1 to 20

? "Line#", ltrim(ii)
next
wait
Waclose()

SET GUICOLOR OFF
SetColorBackground(aOld) // orig. gray background
cls

Classification:
programming, usable only in GUI mode.

Compatibility:
New in FS5

Related:
SET COLOR TO, SETCOLOR(), SET GUICOLOR, CLS

FUN 535

SETCOL2GET ()
Syntax:

retC = SETCOL2GET ([expC])
Purpose:

Transforms the specified or the current color setting into the get:COLORSPEC or
the @...GET...COLOR notation.

Options:
<expC> is a character string containing the color attributes given in the standard
SETCOLOR() or SET COLOR TO notation. If the argument is not specified, the
current color setting will be used.

Returns:
<retC> is a character string, containing the color attributes in the get:COLORSPEC
notation: <inactive_field>, <active_field>.

Description:
The color specification of the get:COLORSPEC instance and the COLOR clause of
the @...GET... command has a different format from the standard SETCOLOR() or
SET COLOR TO... notation:

SET COLOR TO = <standard>,<enhanced>,,,<unselected>
get:COLORSPEC = <unselected>,<enhanced> [,<ignored>...]

SETCOL2GET() converts the SETCOLOR() attributes into the COLORSPEC
notation. If the <unselected> attribute is not specified in <expC>, the <enhanced>
color pair will be used twice. The SETCOL2GET() function does not change the
current SETCOLOR().

Example:
SETCOLOR ("W/B,N/W,,,W+/BG")
? SETCOL2GET() // +W/BG,N/W
? SETCOLOR() // W/B,N/W,,,W+/BG
? SETCOL2GET ("W/B,N/W,,,W+/BG") // +W/BG,N/W
? SETCOL2GET ("R/W,W+/R,,,GR+/B") // +GR/B,+W/R
? SETCOL2GET ("R/W,W+/R") // +W/R,+W/R

Classification:
programming

Compatibility:
Available in FlagShip only.

Related:
SET COLOR TO, SETCOLOR(), SETSTANDARD, SETENHANCED,
SETUNSELECTED, COLORSELECT()

FUN 536

SETCURSOR ()
Syntax:

retN = SETCURSOR ([expNL1])
Purpose:

Activates/disables cursor visibility. In MS-DOS: sets the cursor shape.

Options:
<expN1> is a number indicating the shape of the cursor, e.g. none, underline, half
block etc. Zero specifies SET CURSOR OFF, other values SET CURSOR ON.

<expL1> is an alternative syntax, where .F. disables cursor (same as nMode == 0),
and .T. enables it (same as nMode >= 1)

Returns:
<retN> is the current cursor (shape) set.

Description:
The cursor setting is dependent on the UNIX terminal. Therefore, only on and off
are supported by FlagShip.

SETCURSOR(0) is the same as SET CURSOR OFF, and any positive integer value
of <expN1> is the same as SET CURSOR ON.

Classification:
screen oriented output

Compatibility:
Most UNIX versions (curses libraries) cannot disable the cursor, so the cursor will
be visible on the rightmost bottom position of the screen.

The alternative logical parameter is new in FS5

Related:
SET CURSOR, SET CONSOLE, SetGuiCursor(), SET GUICURSOR

FUN 537

SETEVENT ()
Syntax:

retN = SetEvent ([expN1], [expN2], [expN3])
Purpose:

Change the behavior of GUI in handling events. Ignored in Terminal and Basic i/o.

Options:
<expN1> is the interval in seconds (and fractions of) specifying the time difference
between processing events. The common value if between 0.1 to 3 seconds.
Accepted are values > 0.002 and < 3600, i.e. more than 2 milliseconds but less
than 60 minutes. The default setting is 0.2, i.e. the pending events are processed
every 200 milliseconds. Equivalent to Set(_SET_EVENT_INTERVAL).

<expN2> is the duration in seconds (and fractions of) specifying the maximal time
slice of processing pending events in one specific call. If set <= 0, the default time
slice is triple of <expN1>. Default value is 0. Equivalent to
Set(_SET_EVENT_DURATION).

<expN3> is a numeric value specifying the mode how to process GUI events:

1 = process every pending event, may slow-down the execution speed
2 = check for and process events in intervals of <expN1> seconds.

Default value is 2. Equivalent to Set(_SET_EVENT_MODE).

Returns:
<retN> is the current setting of the interval at the time of entering this function.

Description:
In GUI, the application communicates with the X11 server or with the MS-Windows
via "events". The system specific event queue must be checked and processed
frequently to pass key pressed and mouse movements to the application, and to
display the screen output created by the application. For that purposes, FlagShip
generates in any .prg file a check for event queue.

But testing the system event queue is time expensive; calling it too often may slow
down the processing speed significantly. Therefore, FlagShip does not test the
event queue not before the <expN1> interval is expired. The evens get not lost:
when the event queue contain more events than the time slice <expN2> can
process, the pending events are hold in the queue and are processed at the next
.prg statement and/or the event queue call.

Modifying the <expN1> time value may some cases increase the performance of
your application significantly.

The <expN2> value should be in relationship to <expN1> and to the amount of
expected events to be processed. Setting this value too small and/or smaller than

FUN 538

<expN1> may cause very slow or an delayed output. The default value is twice of
<expN1> which ensures all usual events are processed timely.

For example in a large loop without any in/output, you may set <expN1> to a high
value, e.g. to 0.5 to 2 seconds. On the other hand, if a part of the application is very
i/o intensive, you may set lower <expN1> value (e.g. 0.01) and/or higher <expN2>
value. But don't forget to reset the values thereafter to allow the default event queue
processing. Otherwise the application will behave to be sluggish.

The time slice of event processing can also be set by compiler switches -
ev=<valueMs>, -ne (disable event checking) and -d (debugger). When <expN2> is
set by Set(_SET_EVENT_DURATION) or by SetEvent(), it has preference over the
compiler switch.

Example:
? SetEvent() // 0.2
local iEvent := SetEvent(1) // check events every second
for i := 1 to 1000000

...init variables etc.
next
SetEvent(iEvent) // reset to default

Classification:
programming, database

Compatibility:
New in FS5

Related:
Set(), compiler switches -ev=, -ne, -d

FUN 539

SETGUICURSOR ()
Syntax 1:

retA = SETGUICURSOR ([expN1], [expN2], [expN3],
[expL4], [expL5], [expL6])

Syntax 2:
retA = SETGUICURSOR (expA1)

Syntax 3:
retA = SETGUICURSOR (expL1)

Syntax 4:
retA = SETGUICURSOR ()

Purpose:
In GUI mode, sets the text cursor visibility and/or displays it at given position.

Syntax 1 sets the text cursor at specified position,
Syntax 2 sets/restores the text cursor at specified position,
Syntax 3 enables or disables text cursor visibility,
Syntax 4 reports the current status only.

Arguments:
<expL1> in syntax 3 is a logical value. True .T. enables text cursor visibility at
previously set position, .F. disables the text cursor.

<expA1> in syntax 2 is an array of the same structure as the return value <retA>
and may be used to restore previously determined (and then changed) cursor
setting.

<expN1> in syntax 1 is numeric value specifying the row (or y) position where the
text cursor should display. Depending on <expL5> or SET PIXEL, the value is in
rows or in pixels. If <expN1> is not given or is NIL, the previously set value is used.

<expN2> is numeric value specifying the column (or x) position where the text
cursor should display. Depending on <expL5> or SET PIXEL, the value is in
columns or in pixels. If <expN2> is not given or is NIL, the previously set value is
used.

<expN3> is a numeric value specifying the cursor shape. If not given or is NIL, the
previously set value is used. The CURSOR_* constants are defined in mouse.fh

mouse.fh constant value Description
CURSOR_ARROW -1 standard arrow cursor
CURSOR_UPARROW -12 upwards arrow
CURSOR_CROSS -8 crosshair
CURSOR_WAIT -9 hourglass
CURSOR_IBEAM -11 i-beam (I)
CURSOR_SIZE_VER -2 vertical resize
CURSOR_SIZE_HOR -3 horizontal resize

FUN 540

CURSOR_SIZE_RDIAG -5 diagonal resize (/)
CURSOR_SIZE_LDIAG -4 diagonal resize (\)
CURSOR_SIZE_ALL -13 all directions resize
CURSOR_INVISIBLE -17 blank/invisible cursor
CURSOR_SPLITVER -14 vertical splitting
CURSOR_SPLITHOR -3 horizontal splitting
CURSOR_HAND -6 a pointing hand
CURSOR_FORBIDDEN -16 forbidden action cursor
CURSOR_UNDERSCORE -21 underscore
CURSOR_BOX -22 box in size of one largest character
CURSOR_DEFAULT_TEXT -21 default = CURSOR_UNDERSCORE

<expL4> is a logical value. True .T. forces the text cursor to blink, false .F. displays
solid text cursor. If not given or is NIL, the previously set value is used.

<expL5> is a pixel specification. If .T., the <expN1> and <expN2> are given in
pixel, if .F. in row/col, otherwise the current SET PIXEL status is used.

<expL6> is a logical value specifying character alignment. If .T., the cursor shape is
placed so that it fits to a character, whereby the currently used font is considered. If
.F., no alignment is used. If not given or is NIL, and either <expN1> or <expN2>
was specified, the alignment is OFF (.F.) when pixel coordinates are used, and ON
otherwise. If not given or is NIL and also <expN1> and <expN2> are not specified,
the previous setting is used.

Returns:
<retA> is an array of seven elements, reporting the status at the time of entering
this function. You may use the first six elements as parameters for SetGuiCursor()
to restore previous settings.

retA[1] (N) row in either coordinates or pixel, accord.to retA[5]
retA[2] (N) col in either coordinates or pixel, accord.to retA[5]
retA[3] (N) cursor shape type, same as <expN3>
retA[4] (L) blinking (.T.) or solid (.F.) cursor shape
retA[5] (L) if .T., the retA[1] and retA[2] values are in pixel
retA[6] (L) alignment, same as <expN6>
retA[7] (L) the text cursor is visible (.T.) or is disabled (.F.)

Description:
With SetGuiCursor(), you may display many different cursor shapes anywhere on
the user area of your application screen, except on additional widgets (controls)
created by e.g. @..GET, MemoEdit(), Tbrowse(), MessageBox() and so on.

SetGuiCursor() does not change or influence the current Row() and Col() position.
When you wish to display specific cursor shape during the ?, ??, Qout(), Qqout()
and @..SAY output at the current display position, you may use SET GUICURSOR
ON and SET GUICURSOR TO <shape> commands, or the corresponding
SET(_SET_GUICURSOR) and SET(_SET_GUICURSORTYPE) functions.

FUN 541

When SET GUICURSOR is ON, the default (or the SET GUICURSOR TO) cursor
shape overrides the shape set by SetGuiCursor() at any output via ?, ??, Qout(),
@..SAY etc. but it may be restored by SetGuiCursor(.T.) thereafter.

The WAIT command use own shape to signal user's entry. If the SetGuiCursor()
display is enabled, your cursor shape will be restored automatically at the return
from WAIT.

To set the shape of mouse cursor, use MsetCursor().

This function is designed mainly for GUI mode. In other i/o modes, only the
standard values are returned but no action is taken. To set and display cursor at
specific position in text mode, use SetPos() and control the visibility by SetCursor().

Example:
#include "mouse.fh"
? "hello world"
SetGuiCursor(10,25, CURSOR_WAIT, .T.) // wait-cursor
?? "..text continued, any key..."
inkey(5)

SetGuiCursor(.F.) // disable it
? "cursor shape disabled now, any key..."
inkey(5)

SetGuiCursor(.T.) // enable it
? "cursor shape enabled now..."
inkey(5)

wait NOECHO TIMEOUT 5 ;
"The WAIT command use own shape (any key...)"

? "but the cursor is restored thereafter if active"
inkey(5)

Example:
complete example is available in .../examples/guicursor.prg

Classification:
screen oriented output in GUI mode

Compatibility:
Available in FlagShip only

Related:
SET GUICURSOR, SET CURSOR, SetCursor(), MsetCursor()

FUN 542

SETKEY ()
Syntax:

retB = SETKEY (expN1, [expB2])
Purpose:

Assigns an action block to a key.

Arguments:
<expN1> is the ASCII value of the key, including negative numbers for function
keys (except 0), see INKEY() values. <expN1> can be NIL when also <expB2> is
NIL, see below.

Options:
<expB2> specifies a code block that will be automatically executed whenever the
specified key is pressed during a wait status.

If <expN1> is numeric and <expB2> is not given, the currently assigned code block
for <expN1> key is returned.

If <expN1> is numeric and <expB2> is NIL, the corresponding key action of
<expN1> is cleared, same as SET KEY <expN1> TO.

If both <expN1> and <expB2> are given and NIL, all SET KEY actions are cleared,
same as SET KEY CLEAR

If both <expN1> and <expB2> are omitted (= SETKEY() w/o parameters), or
<expN1> is neither numeric nor NIL, no action is taken and <retB> returns NIL.

Returns:
<retB> is the action block currently associated with the specified key, or NIL if the
specified key is not currently associated with a block.

Description:
SETKEY() is similar function to SET KEY command. It sets or retrieves the
automatic action associated with a particular key during a wait status. A wait status
is any mode that extracts keys from the keyboard except for INKEY(), but including
ACHOICE(), DBEDIT(), INKEYTRAP(), MEMOEDIT(), ACCEPT, INPUT, READ and
WAIT. Any number of keys may be assigned at any one time.

SETKEY() is usually used to assign a UDP or UDF to a specific key. Upon starting
up, the F1 key is automatically assigned to a UDF or UDP named HELP, if such
exist.

When an assigned key is pressed during a wait state, the EVAL() function evaluates
the associated action block, passing the parameters PROCNAME(), PROCLINE(),
and READVAR().

For more information, refer to the SET KEY command.

FUN 543

Example:
Issue the "SET KEY" action also on INKEY():

LOCAL key, block
#include "inkey.fh"
SETKEY (K_F4, {|pnam, plin, rvar| MYUDF (pnam,plin,rvar)})
key = INKEY(0)
block := SETKEY (K_F4)
IF block != NIL

EVAL (block, PROCNAME(), PROCLINE(), READVAR())
ELSE

? "key", IF (key < 0, FKLABEL(key), CHR(key)), "pressed"
ENDIF

Classification:
programming

Compatibility:
Available in FS and C5 only. Refer to the current terminfo for the ability of particular
function key. See also section SYS and the command SET KEY for more
information.

Include:
Predefined function key constants are available in "inkey.fh"

Related:
SET KEY, SET FUNCTION, ON KEY, PmKey(), Eval(), Inkey(), InkeyTrap(),
GetKey(), IsFunction()

FUN 544

SETMODE ()
Syntax:

retL = SETMODE (expN1, expN2)
Purpose:

Set the size of application window (GUI) or console window (Terminal i/o).

Arguments:
<expN1>, <expN2> is the number of rows and columns in the desired display
mode.

Returns:
<retL> is TRUE if the mode change was successful. On UNIX, the function always
returns FALSE.

Description:
This function is equivalent to oApplic:Resize() or ConsoleSize() and apply in GUI
mode and Terminal i/o mode of MS-Windows.

Not applicable for Linux in Terminal i/o mode, where the xterm settings (terminal
size and coordinates) can be controlled by newfswin script. The terminal
characteristic of curses is controlled in UNIX by definitions in the "terminfo" file and
the associated TERM environment variable, hence the SETMODE() function is
implemented for compatibility purposes only. To change the environment variable
TERM and reinitialize the screen, use the FS_SET("setenvir") function.

Classification:
programming, for compatibility purposes

Source:
The user modifiable SETMODE() function is available in <FlagShip_dir>/system/
scrnmode.prg

Related:
FS_SET("setenv"), FS_SET("term"), MAXROW(), MAXCOL()

FUN 545

SETPOS ()
Syntax:

NIL = SETPOS (expN1, expN2, [expL3])
Purpose:

Moves the cursor to a new position.

Arguments:
<expN1> is the new screen row in the range 0 to MAXROW().

<expN2> is the new screen column in the range 0 to MAXCOL().

<expL3> is a pixel specification. If .T., the coordinates are assumed in pixel, if .F.
the coordinates are row/col, otherwise the current SET PIXEL status is used.

Returns:
The function always returns NIL.

Description:
SETPOS() is an environment function that moves the cursor to a new position on
the screen, as the @ expN1, expN2 SAY "" command, but may also be used in
code blocks or expressions.

After the cursor is positioned, ROW() and COL() are updated accordingly. To
control the visibility of the cursor, use the SETCURSOR() function or the SET
CURSOR command.

The function is always executed on the screen, independent of the SET DEVICE
status. To set the cursor or print head in dependence of the SET DEVICE status,
use DEVPOS() instead, which is also used for the @..SAY command.

In GUI mode, any output is pixel oriented. For your convenience and to achieve
cross compatibility to textual based applications, FlagShip supports also
coordinates in common row/column values. It then internally re-calculates the given
rows by using Row2pixel() and columns by using Col2pixel() function. The line and
character spacing is affected by the currently used default font. For minimal porting
effort, best to use fixed fonts (SET FONT "Courier", 12).

For additional hints how to manage proportional fonts, see further details in
LNG.5.3, Col(), Row(), Col2pixel(), Row2pixel(), SET ROWALIGN, SET
ROWADAPT, SET FONT.

Example:
bl := {|par| SETPOS (10,10), QQOUT (par)}
EVAL (bl, "Hello world")
SET DEVICE TO PRINT
SET PRINTER TO ("my.file")
SETPOS (11,10)
?? "printed to screen")

FUN 546

Classification:
screen oriented output, buffered via DISPBEGIN()..DISPEND()

Compatibility:
Available in FS and C5 only. The 3rd parameter is new in FS5

Related:
DEVPOS(), DEVOUT(), @..SAY, ?, ??, COL(), ROW(), Col2Pixel(), Row2pixel(),
SET FONT

FUN 547

SETPRC ()
Syntax:

NIL = SETPRC (expN1, expN2)
Purpose:

Sets the printer row and column to the specified values.

Arguments:
<expN1> is the new printer row.

<expN2> is the new printer column.

Returns:
The function always returns NIL.

Description:
Using SETPRC(), the printer row and column can be changed without moving the
printer head. It can also be used to suppress page ejects or to correct the column
position when control codes are sent to printer.

When a output is set to printer using SET PRINTER or SET DEVICE, the PROW()
and PCOL() values are updated with the current print head position, regardless of
the default FlagShip redirection of the print output to a spool file.

Sending a printer control code to the output, will desynchronize the visual printout
and PCOL() - although control codes are not printed out, PCOL() is affected as if
they were. In this case, correct the PCOL() value using SETPRC().

Example:
#define ITALIC_ON CHR(27) + "I"
#define ITALIC_OFF CHR(27) + "E"
#define MAXLINE 65
USE address
SET DEVICE TO PRINTER
DO WHILE ! EOF()

@ PROW(), 0 SAY ITALIC_ON + TRIM(name) + ITALIC_OFF
SETPRC (PROW(), LEN(name) +1) // make corrections
@ PROW(), PCOL() SAY address
SKIP
IF PROW() > MAXLINE ; EJECT ; ENDIF

ENDDO

Classification:
programming

Related:
PCOL(), PROW(), COL(), ROW(), SET DEVICE, SET PRINTER, EJECT

FUN 548

SETVAREMPTY ()
Syntax:

SetVarEmpty (@var)
Purpose:

Set variable <var> to an empty value, considering the variable type

Arguments:
<@var> is a variable of any type, passed by reference. If you omit the @ prefix, it is
automatically appended by the preprocessor. You may not use this function for
database fields, nor for constants.

Description:
The function is comparable to an assignment

var := "" (for character variable)
var := ctod("") (for date variable)
var := 0 (for numeric variable)
var := .F. (for logical variable)
var := {|| NIL} (for code block variable)
var := array(0) (for array variable)

or to initialization of typed variables.

Example:
var := { 1, 2, {3, 4}}
? valtype(var), len(var), empty(var) // "A" 3 .F.
SetVarEmpty(@var)
? valtype(var), len(var), empty(var) // "A" 0 .T.

var := {|x| qout("?") }
? valtype(var), empty(var) // "B" .F.
SetVarEmpty(@var)
? valtype(var), empty(var) // "B" .T.

var := 1.23
? valtype(var), empty(var) // "N" .F.
SetVarEmpty(@var)
? valtype(var), empty(var) // "N" .T.

var := "abcd"
? valtype(var), len(var), empty(var) // "C" 4 .F.
SetVarEmpty(var)
? valtype(var), len(var), empty(var) // "C" 0 .T.

Classification:
programming

Compatibility:
New in FS5

Related:
assignment, typing, Empty(), FS2:Blank()

FUN 549

SLEEP ()
Syntax:

NIL = Sleep ([expN1])
Purpose:

Sleep for the given period of seconds.

Options:
<expN1> is the number of seconds the application should sleep for. The minimal
value is 1, which is also the default setting when no parameter is given.

Description:
SLEEP(n) is very similar to INKEY(n), both suspends the current process for the
required time slice. Whilst INKEY(n) will be interrupted by a key press or ^K, it
cannot be used w/o IOCLT initialization in CursesInit() and is therefore not usable
for background or CGI processing. On the other hand, SLEEP(n) is not interruptible,
but may freely be used also with disabled Curses and disabled IOCTL input.

Example:
? "Please read this message ..."
sleep(5)
?? " continuing process"

Compatibility:
Available in FS only. See also "man sleep"

Related:
INKEY(), SLEEPMS(), SYS.2.7

FUN 550

SLEEPMS ()
Syntax:

NIL = SleepMs ([expN1])
Purpose:

Similar to Sleep() but use Milliseconds as parameter

Arguments:
<expN1> is the number of Milliseconds the application should sleep for, the default
value is 1000 = 1 sec.

Description:
SleepMs() can be used instead of Sleep(num) when fraction of seconds are
required.

On older Unix systems without usleep() system function, i.e. w/o milli/microsecond
support, Sleep(expN1/1000) is used instead.

Classification:
programming

Compatibility:
New in FS5

Related:
Sleep(), Inkey()

FUN 551

SOUNDEX ()
Syntax:

retC = SOUNDEX (expC)
Purpose:

Converts character strings to a soundex code suitable for indexing and searching.

Arguments:
<expC> is the character string to convert.

Returns:
<retC> is a character string converted to a soundex code in the form A999.

Description:
SOUNDEX() provides a phonetic match or sound-alike code to find a match when
the exact spelling is not known. The following algorithm is used in SOUNDEX():

a. The first character of <expC> is taken in uppercase to <retC>. If
ISALPHA(expC) is FALSE, return 0000.

b. The remaining characters are translated to digits:
1 = B F P V W T
2 = C G J K Q S X Z ß
3 = D
4 = L
5 = M N
6 = R
All other characters, e.g. the upper / lower A E H I O U Y, special characters
and spaces, are skipped.

c. If two or more adjacent letters have the same digit code, all but the first letter
are dropped.

d. Stop if three digits are filled in <retC>. If the <expC> is shorter, fill zeros to total
of three digits.

Example:
USE magazine
INDEX ON SOUNDEX(title) TO magazine
SEEK SOUNDEX("Byte")
? FOUND(), title, RECNO() && .T. Byte 195
SEEK SOUNDEX("bitte")
? FOUND(), title, RECNO() && .T. Byte 195

Classification:
programming

Compatibility:
FlagShip uses an extended xBASE and Clipper algorithm, applicable also for other
human languages. Therefore, the SOUNDEX() results are not fully identical with the
DOS dialects. The UNIX like SOUNDEX() used in release 4.0- is available in source
(soundex2.c) and can replace the default library function.

FUN 552

Source:
<FlagShip_dir>/system/soundex.c and soundex2.c

Related:
INDEX, LOCATE, SEEK, SET SOFTSEEK

FUN 553

SPACE ()
Syntax:

retC = SPACE (expN)
Purpose:

Returns a string consisting of the indicated number of spaces.

Arguments:
<expN> is the number of spaces to return.

Returns:
<retC> is the created character string. If the numeric argument is zero or negative,
null string "" is returned.

Description:
SPACE() can be used to initialize a string variable before input, or to right/left justify
strings within a column. It is similar to the REPLICATE(" ", expN) function.

Note, the similar PADC(), PADL(), and PADR() functions may perform justification
more effectively.

Example:
LOCAL name := "myself" + SPACE(24)
@ 10,10 SAY "Enter your name:" GET name
READ
? SUBSTR(name + SPACE(40), 1, 40) // =PADR (name, 40)

Classification:
programming

Related:
REPLICATE(), PADL(), PADR(), PADC()

FUN 554

SQRT ()
Syntax:

retN = SQRT (expN)
Purpose:

Returns the square root of a positive number.

Arguments:
<expN> is the positive numeric value to calculate.

Returns:
<retN> is a numeric value, representing the square root of the argument. In case of
a negative argument, zero is returned. The format of the displayed return value
depends on the state of SET DECIMALS.

Description:
SQRT() is often needed in statistical calculations.

Example:
? SQRT(2) && 1.41
? SQRT(4) && 2.00
? SQRT(4) ** 2 && 4.00
SET DECIMALS TO 5
? SQRT(2) && 1.41421

Classification:
programming

Related:
SET DECIMALS, SET FIXED

FUN 555

STATBARMSG ()
Syntax:

retC = StatBarMsg ([expC1], [expC2], [expO3])
Purpose:

Display message <expC1> in status bar or clear status bar

Arguments:
<expC1> If the argument is not specified or is NIL, <retC> returns the currently
displayed message. If <expC1> is "", the current status bar message is cleared.

<expC2> is optional color (or GUI color) for the message <expC1>

<expO3> is optional font object for the message <expC1>. Apply for GUI mode
only, ignored otherwise.

Returns:
If status bar (or the default message item) is not available, <retC> returns NIL

Description:
StatBarMsg() is a subset of the generalized StatusMessage()

Classification:
programming

Compatibility:
New in FS5

Related:
StatusMessage(), StatusBar class

FUN 556

STATUSMESSAGE ()
Syntax:

retA = StatusMessage ([expCBAL1], [expC2], [expC3],
[expO4])

Purpose:
Display message <expC1> in status bar or in SET MENU TO line

Arguments:
<expC1> is the text message. If <expC1> is "", the current status bar or SET
MESSAGE TO line message is cleared.

<expB1> is an alternative syntax, specifying a code block to be evaluated and the
returned string displayed either in SET MESSAGE line or in status bar

<expA1> is an alternative syntax, StatusMessage() will restore the previous screen
content from array returned by previous invocation of retA := StatusMessage(...).
Applicable for Terminal i/o only.

<expL1> is an alternative syntax. If .T. or NIL, StatusMessage() will restore the
previous screen content from internal buffer. Applicable for Terminal i/o only.

<expC2> is the COLOR specification, same as SET COLOR. Apply in Terminal i/o
mode. Considered also in GUI mode when <expC3> is not given and SET
GUICOLOR ON is active.

<expC3> is the GUICOLOR specification, apply only in GUI mode and is ignored
otherwise.

<expO4> is optional font object for the message <expCB1>. Apply for GUI mode
only, ignored otherwise.

Returns:
Saved screen array if at least <expC1> or <expB1> was specified, or NIL otherwise

Description:
StatusMessage() is a generalized function to display a message in SET MENU TO
line (Terminal i/o only) or in status bar (default in GUI or when set in Terminal i/o).
Saves and restores the previous screen content occupied by the message in SET
MENU TO line.

Classification:
programming

Compatibility:
New in FS5

Related:
StatBarMsg(), StatusBar class

FUN 557

STOD ()
Syntax:

retD = STOD (expC)
Purpose:

Converts a character string in ANSI format to a date value.

Arguments:
<expC> is an 8-byte character string, representing the date value. The form is
equivalent to the returned value of DTOS(), in the "yyyymmdd" format. Null date is
represented by SPACE(8).

Returns:
<retD> is the resulting date value. If the <expC> does not contain 8 bytes, and on a
wrong date, null-date is returned.

Description:
STOD() is a counterpart of the DTOS() function. It converts an ANSI string into a
date value. The function is not affected by the current SET DATE, SET
DATEFORMAT and SET CENTURY status.

Example:
? DATE() // 08/20/95
? cDate := DTOS(DATE()) // "19950820"
? STOD(cDate) // 08/20/95
? STOD("19831231") // 12/31/83
? STOD("19831131") // 00/00/00
? STOD("831231") // 00/00/00
? STOD("19831231text") // 00/00/00

Classification:
programming

Compatibility:
Available in FS and VO only, not available in C5. Embedded zero bytes are not
supported.

Related:
DTOC()

FUN 558

STR ()
Syntax:

retC = STR (expN1 [, expN2 [, expN3]])
Purpose:

Converts a numeric expression to a character string.

Arguments:
<expN1> is the numeric expression to be converted.

<expN2> is the length of the destination character string; decimal digits, decimal
point and sign included. The valid range is 1 to 500.

<expN3> is the number of the decimal places to return.

Returns:
<retC> is a formatted character string.

If <expN2> is less than the number of whole number digits in <expN1>, asterisks
are returned instead of the number.

If the number of decimal places to be returned is smaller than the number of
decimals in <expN1>, STR() rounds the number to fit the available number of
decimal places.

If <expN3> is omitted, and <expN2> exists, the return value is rounded to an
integer.

If both <expN2> and <expN3> are omitted, STR() formats the numeric value
<expN1> according to the following:

<expN1> expression <retC> length
Field Variable Field length plus decimals
Expressions, Constants Minimum of 10 digits plus decimals
VAL() Minimum of 3 digits
MONTH()/DAY() 3 digits
YEAR() 5 digits
RECNO() 7 digits

Description:
STR() converts numeric values to character strings.

It can be used to concatenate numeric values to character strings, to build a mixed
index key, or to display values in formats other than the SET DECIMALS format.

STR() is like TRANSFORM() which formats numeric values as character strings
using a PICTURE mask instead of length and decimal specifications. The inverse
operation of STR() is VAL().

FUN 559

Example:
LOCAL value := 34.999
? value && 34.99
? STR(value, 6) && 34
? STR(value, 6, 2) && 34.99
? STR(value, 6, 3) && 34.999
? STR(value, 6, 4) && ******
? STR(value, 0) && 0

Example:
USE orders
INDEX ON STR(ordnum, 6) + SUBSTR(article, 10) TO order

Classification:
programming

Related:
SUBSTR(), STRZERO(), VAL()

FUN 560

STRLEN ()
Syntax:

retN = STRLEN (expC)
Purpose:

Reports the length of a character string, or the length of a character database field.

Arguments:
<expC> is the character expression for which the length should be returned.

Returns:
<retN> is a numeric value representing the length of a character expression. For a
null-string "", zero is returned.

Description:
With a character string <expC>, each byte counts as one, including an embedded
null byte CHR(0), if FS_SET("zero", .T.) is enabled. Otherwise, only the leftmost
bytes up to (but not including) the zero byte are counted.

Similar but not equivalent to the function LEN() which work independent on the
FS_SET("zero") setting. For strings without embedded zero bytes, both functions
return the same value.

Example:
LOCAL str1 := "abc"
LOCAL str2 := str1 + chr(0) + "efg"
? STRLEN(str1), LEN(str1) && 3 3
? STRLEN(str2), LEN(str2) && 3 7
FS_SET("zero", .T.)
? STRLEN(str1), LEN(str1) && 3 3
? STRLEN(str2), LEN(str2) && 7 7

Classification:
programming

Compatibility:
Available in FS only. Embedded zero bytes are only supported, if FS_SET("zero") is
set.

Related:
LEN(), FIELDLEN(), FS_SET()

FUN 561

STRLEN2COL ()
Syntax:

retN = StrLen2col (expC1, [expO2])
Purpose:

Return the string width in fractions of columns in dependence of the passed or the
currently set font.

Arguments:
<expC1> is the string which size is to be calculated

<expO2> is optional Font object. If not given, the currently used font is considered.

Returns:
Number of columns (or a fraction of) occupied by the string

Description:
In Terminal i/o, StrLen2col() is equivalent to Len(expC1) or StrLen(expC1).

In GUI mode, the string width depends on the used font. With fixed fonts (like
Courier), the StrLen2col() return value equivalent to Len(expC1) or StrLen(expC1).
With proportional fonts (like Helvetica or Times) the displayed string width may
differ significantly from the string size returned by Len(expC1) or StrLen(expC1).

Classification:
programming

Compatibility:
New in FS5

Related:
Len(), StrLen(), StrLen2pix(), Col2pixel(), SET FONT

FUN 562

STRLEN2PIX ()
Syntax:

retN = StrLen2pix (expC1, [expO2])
Purpose:

Return the string width in pixels in dependence of the passed or the currently set
font.

Arguments:
<expC1> is the string which size is to be calculated

<expO2> is optional Font object. If not given, the currently used font is considered.

Returns:
String width, i.e. number of pixels occupied by the string

Description:
In Terminal i/o, StrLen2pix() is equivalent to Len(expC1) or StrLen(expC1).

In GUI mode, the string width depends on the used font. The displayed string width
may differ significantly from the string size returned by Len(expC1) or
StrLen(expC1).

When the string starts with "<html>" or "<HTML>", it is assumed to be displayed as
RichText (GUI only) and all HTML formatting <...> is removed before calculating the
string size, to get same results as with ?, ??, Qout(), @..SAY, InfoBox() etc. If the
text contains more than one output line (by using
 or <p>), the size of the
largest line is returned.

Classification:
programming

Compatibility:
New in FS5

Related:
Len(), StrLen(), StrLen2col(), Col2pixel(), Pixel2col(), SET FONT

FUN 563

STRLEN2SPACE ()
Syntax:

retN = StrLen2space (expC1, [expO2])
Purpose:

Return the number of spaces required to fill the given text in fully.

Arguments:
<expC1> is the string which size is to be calculated in spaces

<expO2> is optional Font object. If not given, the currently used font is considered.

Returns:
Number of spaces required to overwrite the <expC1> string, rounded up to integer.

Description:
In Terminal i/o, StrLen2space() is equivalent to Len(expC1) or StrLen(expC1).

In GUI mode, the string width depends on the used font. With fixed fonts (like
Courier), the StrLen2col() return value equivalent to Len(expC1) or StrLen(expC1).
With proportional fonts (like Helvetica or Times) the displayed string width may
differ significantly from the string size returned by Len(expC1) or StrLen(expC1).
Also the width of space " " character differs significantly from e.g. the "A" character.

You may use StrLen2space() to overwrite/clear specific text on the screen,
independent on the used i/o mode. Otherwise you would in GUI need to determine
the string width (and the width of spaces) by StrLen2col() or StrLen2pix() and/or use
pixel coordinates.

Example:
LOCAL myStr := "Hello world"
@ 10,5 say myStr
:
@ 10,5 say Space(StrLen2space(myStr)) // instd.of Space(Len(myStr))

Classification:
programming

Compatibility:
New in FS5

Related:
Len(), StrLen(), StrLen2col(), StrLen2pix(), Space(), SET FONT

FUN 564

STRPEEK ()
Syntax:

retN = STRPEEK (expC1, expN2)
Purpose:

Retrieves (get) a single character from a string.

Arguments:
<expC1> is the target character string to examine. Passing the string by reference
will speed-up the operation.

<expN2> is the position of the character to be returned. The valid range is between
1 and LEN(expC1).

Returns:
<retN> is the ASCII value of the requested character, the valid range being 0/1 to
255. If <expN2> is out of range, zero is returned.

Description:
STRPEEK() is a character function which retrieves a single character in a given
string or in a copy of a memo variable. This function is much faster than the
corresponding extraction method by means of SUBSTR().

Example:
LOCAL mystr := "abcd"
? STRPEEK (mystr, 3) // 99
? STRPOKE (@mystr, 3, ASC("X")) // abXd

Classification:
programming

Compatibility:
Available in FS only. Embedded zero bytes are supported in FS by default. For
compatibility to other xBASE dialects, use:

#ifndef FlagShip
FUNCTION strpeek (str, pos)
RETURN ASC (SUBSTR (str, pos, 1))

#endif

Related:
STRPOKE(), SUBSTR(), ASC()

FUN 565

STRPOKE ()
Syntax:

retC = STRPOKE (expC1, expN2, expN3)
Purpose:

Pokes (replaces) a single character within a string with another.

Arguments:
<expC1> is the target character string to change. Passing the string by reference
will speed-up the replacement on the target string.

<expN2> is the position of the character to be replaced. The valid range is between
1 and LEN(expC1).

<expN3> is the ASCII value of the new character, the valid range being 0/1 to 255.

Returns:
<retC> is the new, changed string <expC1>. If either <expN2> or <expN3> is out of
range, the original string <expC1> is returned unchanged.

Description:
STRPOKE() is a character function which enables replacing a single character in a
given string or in a copy of a memo variable. This function is much faster than the
addition and extraction method used in SUBSTR().

Example:
LOCAL mystr := "abcd"
? STRPOKE (mystr, 3, ASC("X")) // abXd
? mystr + STRPOKE(mystr,3,88) + mystr // abcdabXdabcd
? mystr + STRPOKE(@mystr,3,88) + mystr // abXdabXdabXd

Classification:
programming

Compatibility:
Available in FS only. Embedded zero bytes are only supported, when
FS_SET("zero") is set. For compatibility to other xBASE dialects, use:

#ifndef FlagShip
FUNCTION strpoke (str, pos, char)
RETURN STUFF (str, pos, 1, CHR(char)) //Clipper 5
** RETURN SUBSTR(str, 1, pos-1) + ;
** CHR(char) + SUBSTR(str, pos+1) && others
#endif

Related:
STRPEEK(), SUBSTR(), STUFF(), ASC()

FUN 566

STRTRAN ()
Syntax:

retC = STRTRAN (expC1, expC2, [expC3], [expN4],
[expN5], [expL6])

Purpose:
Searches and replaces characters within a character string or memo field.

Arguments:
<expC1> is the character string to search through.

<expC2> is the string to locate within <expC1>.

Options:
<expC3> is the string to replace occurrences of <expC2> with. If this argument is
not specified, occurrences of <expC1> are replaced with a null string "".

<expN4> is the n-th occurrence of <expC2> in <expC1> from which the
replacement should begin. If this argument is not specified, the default is 1.

<expN5> is the number of occurrences to replace. If this argument is not specified,
the default is all (or exactly: the default limit is 100000 to abort accidental endless
loops). You may set <expN5> value from 1 to 2000000000 (two billions), but of
course only found occurrences are replaced if this <expN5> value is higher.

<expL6> is a logical value. If set true (.T.), the search is case insensitive. If not
specified or is .F., the search is case sensitive (the default).

Returns:
<retC> is a character string, containing <expC1>, with specified occurrences of
<expC2> replaced by <expC3>.

Description:
STRTRAN() searches and replaces within the specified character string for the
defined number of occurrences.

Example:
? STRTRAN ("abcabcabc", "bc", "X", 1, 2) // aXaXabc (2 replaced)
? STRTRAN ("abcabcabc", "a") // bcbcbc ('a' removed)
? STRTRAN ("abcabcabc", "a", "", 2, 1) // abcbcabc (1a removed)

? STRTRAN ("abcabcabc", "BC", "X") // abcabcabc (n.found)
? STRTRAN ("abcabcabc", "BC", "X", , , .T.) // aXaXaX (found)

Example:
str := "abc" + chr(0) + "def" + chr(0) + "ghi"
? str, SET(_SET_ZEROBYTEOUT) // abc?def?ghi ?
? STRTRAN(str, chr(0), "#") // abc?def?ghi (not replaced)
lSet := FS_SET("zero", .T.)
? STRTRAN(str, chr(0), "#") // abc#def#ghi (replaced)
? STRTRAN(str, chr(0), "\0", 2) // abc?def\0ghi (2nd replac)
FS_SET("zero", lSet) // restore previous status

FUN 567

Classification:
programming

Compatibility:
Embedded zero bytes in <expC1>, <expC2> and <expC3> are supported when
FS_SET("zero",.T.) is set but ignored otherwise. Parameters <expN5> and
<expL6> are available in FS5 only.

Related:
$, SUBSTR(), STUFF(), MEMOTRAN(), HARDCR(), AT(), RAT(), STRPEEK(),
STRPOKE(), FS_SET(), FS2:ReplAll(), FS2:RemAll(), FS2:RangeRem(),
FS2:RangeRepl(), FS2:PosDel(), FS2:PosRepl()

FUN 568

STRZERO ()
Syntax:

retC = STRZERO (expN1, [expN2], [expN3])
Purpose:

Converts a numeric expression to a character string where leading spaces are
replaced with 0.

Arguments:
<expN1> is the numeric expression to be converted.

<expN2> is the length of the destination character string, decimal digits, decimal
point and sign included.

<expN3> is the number of the decimal places to return. If not given and <expN2>
exists, the output is rounded to integer.

Returns:
<retC> is a formatted character string.

If <expN2> is less than the number of whole number digits in <expN1>, asterisks
are returned instead of the number.

If the number of decimal places to return is smaller than the number of decimals in
<expN1>, STR() rounds the number to the available number of decimal places.

Description:
STRZERO() can be used instead of STR() to display or print results of numeric
expressions included in character text.

Example:
? STRZERO(34.999, 7, 3) && "034.999"
? STR (34.999, 7, 3) && " 34.999"
? STRZERO(34.999, 7) && "0000035"
? STR (34.999, 7) && " 35"
? STRZERO(34.999, 4) && "****"

Classification:
programming

Compatibility:
This function is included but not documented in Clipper. Embedded zero bytes are
not supported.

Related:
STR(), SUBSTR()

FUN 569

STUFF ()
Syntax:

retC = STUFF (expC1, expN2, expN3, expC4)
Purpose:

Performs delete, insert and replace operations on the specified character string.

Arguments:
<expC1> is the target character string.

<expN2> is the starting position in the target string, where the operation begins.

<expN3> is the number of characters to replace in <expC1>.

<expC4> is the replacement string.

Returns:
<retC> is a character string, consisting of <expC1>, where <expN3> characters,
beginning at <expN2> character, are replaced with <expC4>.

Description:
With different relations between <expN2>, <expN3> and the length of <expC4>,
different combinations of insert, replace and delete operations can be performed.

•Insert: If <expN3> is zero, no characters are removed from <expC1>. The
<expC4> string is inserted at the <expN2> position.

•Replace: If <expC4> has the same length as <expN3>, the <expC4> string
replaces the original characters starting at <expN2>.

•Delete: If <expC4> is a null string "", the number of characters specified by
<expN3> are removed, starting at the <expN2> position.

•Replace and insert: If <expC4> is longer than <expN3>, all <expN3> characters
starting at <expN2> are removed and the string <expC4> is inserted; the resulting
string is longer.

•Replace and delete: If <expC4> is shorter than <expN3>, all <expN3>
characters starting at <expN2> are removed and the string <expC4> is inserted;
the resulting string is shorter.

•Replace and delete rest: If <expN3> is greater than or equal to the number of
characters remaining in <expC1> beginning with <expN2>, all remaining
characters are removed before the string <expC4> is inserted.

FUN 570

Example:
* Insert
? STUFF("John", 4, 0, "NSO") && JohNSOn
* Delete
? STUFF("Johnson",4, 3, "") && John
* Replace
? STUFF("Johnson",2, 1, "a") && Jahnson
* Replace and delete
? STUFF("Johnson",2, 3, "a") && Jason
* Replace and insert
? STUFF("Jason",2,1,"ohn") && Johnson
? STUFF("Müller", 2, 1, "ue") && Mueller

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
STRTRAN(), SUBSTR(), AT(), LEFT(), RAT(), RIGHT(), PADx()

FUN 571

SUBSTR ()
Syntax:

retC = SUBSTR (expC1, expN2 [,expN3])
Purpose:

Extracts the specified part of the given string.

Arguments:
<expC1> is the source character string.

<expN2> is the position to start extracting at. If positive, it is counted from the
beginning of the source string. If negative, it is counted from the end of the string.

<expN3> is the number of bytes to extract from the source string, starting at
<expN2>. If it exceeds the length of the source string, the extra is ignored. If this
argument is omitted, the substring extracted is taken to the end of the source string.

Returns:
<retC> is the extracted string. If <expN2> is greater than the length of <expC1>, or
<expN3> is zero, null string "" is returned.

Description:
SUBSTR() can be used in string manipulation where parts of strings need to be
used. SUBSTR() is related to the LEFT() and RIGHT() functions which extract
substrings beginning with the leftmost and the rightmost characters in <expC1>,
respectively.

Example:
LOCAL name := "Smith, Peter G."
? SUBSTR (name, 1, 5) // Smith
? SUBSTR (name, 1, AT(",")-1) // Smith
? SUBSTR (name, 1, AT("xx")) // ""
? x := LTRIM(SUBSTR (name, AT(",")+1)) // Peter G.
? SUBSTR (x, AT(" ")+1) // G.
? SUBSTR (name, RAT(" ")+1), 1) // G

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default.

Related:
AT(), RAT(), LEFT(), RIGHT(), FS2:ReplLeft(), FS2:ReplRight(), FS2:ReplAll(),
FS2:RemLeft(), FS2:RemRight(), FS2:RemAll(), FS2:RangeRepl(),
FS2:RangeRem(), FS2:PosRepl()

FUN 572

TBCOLUMNNEW ()
Syntax:

retO = TbColumnNew (expC1, expB2)
retO = TbColumn {expC1, expB2}

Purpose:
Create/instantiate new TbColumn object, holding the column information for
Tbrowse.

Arguments:
See TbColumn{} in section OBJ.

Returns:
<retO> is newly instantiated TbColumn object.

Description:
Generally speaking, TbColumn is simply a helper for Tbrowse.

Classification:
programming

Related:
Tbrowse and TbColumn classes in section OBJ

FUN 573

TBROWSENEW ()
TBROWSEARR ()
TBROWSEDB ()
Syntax 1:

retO = TbrowseNew ([expN1], [expN2], [expN3],
[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9])

retO = Tbrowse { [expN1], [expN2], [expN3],
[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9] }

Syntax 2:
retO = TbrowseArr ([expN1], [expN2], [expN3],

[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9], [expA10])

Syntax 3:
retO = TbrowseDb ([expN1], [expN2], [expN3],

[expN4], [expL5], [expL6], [expC7],
[expO8], [expN9])

Purpose:
Create/instantiate new Tbrowse object.

Purpose:
Creates a new TBROWSE object with predefined array movement blocks,
optionally initialized by the arguments supplied.

Options:
<expN1> is the top screen row where TBROWSE is displayed. This argument is
equivalent to assigning the obj:NTOP with the same value. The valid range is
0...MAXROW(). The default value is zero.

<expN2> is the leftmost screen column where TBROWSE is displayed. This
argument is equivalent to assigning the obj:NLEFT with the same value, the valid
range is 0...MAXCOL(). The default value is zero.

<expN3> is the bottom screen row where TBROWSE is displayed. This argument is
equivalent to assigning the obj:NBOTTOM with the same value. The valid range is
<expN1>...MAXROW(). The default value is MAXROW().

<expN4> is the rightmost screen column TBROWSE is displayed. This argument is
equivalent to assigning the obj:NRIGHT with the same value. The valid range is
<expN2>...MAXCOL(). The default value is MAXCOL().

FUN 574

<expL5> is the pixel specification. If .T., the coordinates given are assumed in
pixel. If .F., the coordinates are in row/column. If not given or NIL, the current SET
PIXEL is considered.

<expL6> specifies whether the Tbrowse widget is resizable by user or not. Default
is .F. which means the Tbrowse widget is fix. Apply for GUI mode only, ignored
otherwise.

<expC7> is a ToolTip string. Apply for GUI mode only, ignored otherwise.

<expO8> is a Font object. If not specified, the oApplic:Font is used. Apply for GUI
mode, ignored otherwise.

<expN9> specify the row height in pixel, see also tb:RowHeight. If not specified, the
size of one row is used. Apply for GUI mode, ignored otherwise.

<expA10> is the array to browse. If nor specified, the array need to be assigned by
tb:UserArray

Returns:
<obj> is the newly allocated TBROWSE object, usually assigned to a regular
FlagShip variable.

Description:
Creates flexible table to display any data in rows and columns. The used columns
needs to be prepared by TbColumNew() or TbColumn{} and assigned to the
Tbrowse object via :AddColumn() method, see examples in OBJ.Tbrowse.

Syntax 1 is fully equivalent to instantiation of Tbrowse{}. The required skip blocks
(i.e. handling the movement in rows) needs to be explicitly assigned.

Syntax 2 is similar to syntax 1, but the skip blocks are created automatically
supporting display from an array. The array itself may be passed as 10th
parameter.

Syntax 3 is similar to syntax 1, but the skip blocks are created automatically
supporting display from a database.

If the optional arguments are supplied, the corresponding instance variables are
filled with these values.

Prior to using the TBROWSE object, at least one or more TBCOLUMNs (see
tb:ADDCOLUMN()) must be specified. See additional description in section
OBJ.Tbrowse and OBJ.TbColumn

Example:
Browse thru multi-dimensional array 'myArray'. See more in section OBJ.Tbrowse
and OBJ.TbrowseArr()

oBr := TbrowseArr(6,5, 20,60, NIL, NIL, "My Browse")
oBr:UserArray := myArray // assign array
for ii := 1 to len(myArray[1])

oTbcol := TbColumnNew(aHeader[ii], .T.) // use def. array block
oBr:AddColumn(oTbcol)

next
oBr:Exec() // calls UDF assigned by :Handler

FUN 575

Example:
additional examples are in section OBJ.Tbrowse and in the
<FlagShip_dir>/examples directory

Classification:
programming

Class:
uses TBROWSE class, prototyped in <FlagShip_dir>/include/ tbrclass.fh

Compatibility:
TbrowseArr() is new in FS5 The source code for TbrowseArr() and TbrowseDb() is
available in the <FlagShip_dir>/system directory.

Related:
Tbrowse and TbColumn classes in section OBJ

FUN 576

TBMOUSE ()
Syntax:

retN = TbMouse (expO1, expN2, expN3, [expL4])
Purpose:

For compatibility purposes to undocumented Clipper function of the same name
only.

Arguments:
<expO1> is Tbrowse object <expN2> is the current mouse row
coordinate <expN3> is the current mouse column coordinate
<expL4> is pixel specification or NIL

Returns:
<retN> is TBR_CONTINUE or TBR_EXCEPTION, see buttons.fh

Description:
The function is a wrapper to equivalent functionality of the Tbrowse class method
expO1:GoMousePos(expN2, expN3, expL4)

Classification:
programming

Compatibility:
New in FS5, for compatibility to CL53 only

Related:
Tbrowse class in section SYS

FUN 577

TEMPFILENAME ()
Syntax:

retC = TEMPFILENAME ([expC1], [expC2], [expC3])
Purpose:

Returns a unique file name for the current or specified directory.

Options:
<expC1> is the directory path in which a unique file name should be created. If
omitted or specified null-string or NIL, the current directory ("./") is used. Note, the
environment variable TMPDIR will override this parameter.

<expC2> is a favorite file name initial letter(s). If not given, or specified null-string or
NIL, a fully random name is generated.

<expC2> is an optional extension, with or without period. If not given, or specified
null-string or NIL a file name without extension is generated.

Returns:
<retC> is the generated, random and unique file name, with or without extension.
On error, null-string "" is returned.

Description:
This function generates file names (but not the file self) that can be safely used for
temporary files. It avoids accidentally overwritten files (by/from others), usually
named e.g. "tempor.doc", "tmp.dbf" etc. The algorithm and returned string is similar
(but not equivalent) to the system function tempnam(), i.e.

[<path>]/[<prefix>]<PID><postfix>[.<ext>]
where the

<path> is either <expC1> or ./ or /tmp or TMPDIR envir.var
<prefix> are up to the first 5 characters of <expC2>
<PID> is the process ID number, last 5 digits
<postfix> are three random characters
<ext> is <expC3> if specified

If the file would not have access to the given directory, either TMPDIR or /tmp
directory is used instead. If you wish to create the temp file self (not only it name),
use FS2:TEMPFILE() instead.

In MS-Windows, TempFileName() achieves cross source compatibility to Unix and
Linux:

•when <expC1> is not given or is empty, current directory is used
•when <expC1> is "./" or ".\", the current directory is used, same as when passing

CurDir() value
•when <expC1> is "/tmp", the environment variable %TEMP% or %TMP% or

%TMPDIR% (in that order) is used if such available, otherwise the current
directory

•the "/" path delimiters are accepted and translated to "\"

FUN 578

Example:
cTmp := TempFileName() // ./00647aaa
cTmp := TempFileName("/tmp", "my") // /tmp/my00647du5
dbcreate (cTmp + ".dbf", myDbfStru) // /tmp/my00647du5.dbf

cTmp := TempFileName("./", "my", "dbf") // /tmp/my00647baa.dbf
if !empty(cTmp)

dbcreate (cTmp, myDbfStru) // /tmp/my00647baa.dbf
else

? "cannot create temp file in current nor in /tmp directory"
endif

Classification:
programming, system

Compatibility:
Available in FlagShip only. The 3rd parameter is available in FS5 only.

Related:
FS2:TEMPFILE(), SYS(3) in <FlagShip_dir>/system/foxpro_api.prg

FUN 579

TEXTBOX ()
Syntax:

retN = TextBox (expC1, [expC2], [expN3])
Purpose:

Display an text message box dialog, similar to Alert()

Arguments:
<expC1> is a string containing the displayed text, the lines are separated by
semicolon ";". See additional details in Alert() description.

<expC2> is an optional header text.

<expN3> is optional time-out in seconds. Zero or NIL specify to wait until user press
key or mouse selection. When the time-out expires without user action, the box is
closed and <retN> is set to 0.

Description:
The TextBox() function is available for your convenience. It is equivalent to
TextBox{NIL,cHeader,cMessage}:Show() described in section OBJ. In GUI mode,
plain box without icon is displayed. In Terminal i/o mode, the color is specified in
global variable
_aGlobSetting[GSET_T_C_MSGBOXCOLOR] := "W+/B,B/W" // default

and can be re-assigned according to your needs.

Compatibility:
New in VFS5. The expN3 is supported since VFS7

Related:
Alert(), InfoBox(), ErrBox(), WarnBox(), MessageBox{}, InfoBox{}, ErrorBox{},
WarnBox{}, TextBox{}

FUN 580

TEXTBOXNEW ()
Syntax:

retO = TextBoxNew ([oOwner], [cTitle], [cText])
Description:

This is alternative syntax for creator of TextBox class, see details in section OBJ

Related:
TextBox Class, TextBox()

FUN 581

TIME ()
Syntax:

retC = TIME ([expN1])
Purpose:

Reports the system time.

Options:
<expN1> is an optional modifier for the returned string:

NIL or 0: Return the system time as "hh:mm:ss" (default)
1: Return the system time as "hh:mm:ss.uuuu"
2: Return the system time as "DD-MM-YY hh:mm:ss.uuuu"
3: Return the system time as "YY-MM-DD hh:mm:ss.uuuu"
4: Return the system time as "MM/DD/YY hh:mm:ss.uuuu"
5: Return the system time as "hh:mm:ss AM" or "hh:mm:ss PM"
6: Return the system time as "hh:mm:ss a.m." or ".... p.m."
other: same as TIME() or TIME(0)

where "h" represents hour, "m" minute, "s" second, "u" millisecond, "D" day (01..31),
"M" month (01..12) and "Y" last 2 digits of year.

Returns:
<retC> is a character string, representing the system time "hh:mm:ss" (hours,
minutes, seconds) in 24-hour format (00:00:00 to 23:59:59). The returned value
may be modified by the optional parameter.

The 12-hour format with TIME(5) starts at "12:00:00 AM" (midnight), goes thru
"12.59.59 AM" .. "01:00:00 AM" to "11:59:59 AM", switches to "12:00:00 PM" (noon)
and continues to "11:59:59 PM". The same is valid for TIME(6).

Description:
TIME() is used to display the system time. TIME() is related to SECONDS() which
returns the number of seconds since midnight. The alternative SECONDSCPU()
function determines number of seconds (and its millisecond fragments) since the
program start.

Example:
? TIME() // 15:28:12
? minute := val(substr(TIME(), 4, 2)) // 28
? TIME(0) // 15:28:12
? TIME(1) // 15:28:12.5342
? TIME(2) // 27-02-08 15:28:12.5345
? TIME(3) // 08-02-27 15:28:12.5348
? TIME(4) // 02/27/08 15:28:12.5352
? TIME(5) // 03:28:12 PM
? TIME(6) // 03:28:12 p.m.
SET DATE BRITISH // for DATE() format

FUN 582

SET CENTURY ON // for DATE() format
? DATE(), TIME(5) // 27/02/2008 03:28:12 PM
? DATE(), upper(TIME(6)) // 27/02/2008 03:28:12 P.M.
? left(TIME(2), 14) // 27-02-08 15:28
? CMONTH() + " " + ltrim(DAY()) + ", " + ltrim(YEAR()) + ;
" at " + left(TIME(6),5) + substr(TIME(6),9)

// February 27, 2008 at 03:28 p.m.

Classification:
programming, system

Compatibility:
The correct setting of the environment variable TZ is significant for the proper
calculation of system time.

The optional parameter is new in VFS and not available in Clipper,
LEFT(TIME(1),11) corresponds to FoxPro's TIME(n).

Related:
DATE(), SECONDS(), SECONDSCPU() FS2:TimeValid(), FS2:TimeToSec(),
FS2:SecToTime(), FS2:SetTime()

FUN 583

TONE ()
Syntax:

NIL = TONE ([expN1, expN2])
Purpose:

Produces a beep in FlagShip. On the DOS system, TONE() produces a tone using
the frequency generator.

Arguments:
<expN1> is the tone frequency (DOS only).

<expN2> is the tone duration in 1/18 seconds (DOS only).

Returns:
The function always returns NIL.

Description:
This function is included for compatibility purposes only. You may also use ??
chr(7) instead.

Example:
// Warns the user in case the wrong number of parameters is passed

PROCEDURE myproc
PARAMETERS First, Second, Third
IF PCOUNT() < 3

? "Usage: ", PROCNAME()
?? " <first>, <second>, <third>"
TONE (300,5) // beep on UNIX
RETURN

ENDIF

Classification:
sequential output

Compatibility:
On UNIX, a single beep will be produced. The arguments, if any, are ignored.

Related:
SET BELL, ?? chr(7)

FUN 584

TRANSFORM ()
Syntax:

retC = TRANSFORM (exp1, [expC2])
Purpose:

Forms the results of an expression of the "C", "N", "D", and "L" type to a formatted
string - or any other type to the default string similar to QQOUT() printout.

Arguments:
<exp1> is the character, numeric, date or logical expression to format. If not given,
the standard formatting to string, similar to Qqout() is used.

<expC2> is the format PICTURE of the returned string.

Returns:
<retC> is the resulting formatted string.

Description:
TRANSFORM() is a conversion function that formats a given expression in the
same way the PICTURE clause of @..SAY does, e.g. for display purposes.

For more information, refer to the @..SAY command, PICTURE clause.

Example:
? TRANSFORM("Smith","@!") && SMITH
? TRANSFORM(123.456,"999.9") && 123.4
? TRANSFORM(123.456,"@R 9 9 9.9") && 1 2 3.4

Classification:
programming

Compatibility:
Embedded zero bytes are not supported.

Related:
@...SAY...PICTURE, STR(), LOWER(), UPPER(), PADx()

FUN 585

TRIM ()
RTRIM ()
Syntax:

retC = TRIM (expC1|expN1)
or:

retC = RTRIM (expC1|expN1)
Purpose:

Removes all trailing spaces from a string.

Arguments:
<expC1> is the character string to be trimmed.

<expN1> is a numeric value which is converted to string first and then trimmed.

Returns:
<retC> is a character string, with all trailing blanks removed. In case of a null string,
TRIM() returns a null string "".

Description:
TRIM() and RTRIM() are alternative names for the same function. It can be used to
remove trailing blanks when several strings are used to form an expression like an
address or title.

Refer also to the description of the RTRIM() function. The complementary operation
of TRIM() is LTRIM().

Example:
Name = "John "
Last = "Smith "
? TRIM(Name)+" "+Last && "John Smith "
? LEN(TRIM(SPACE(20)) && 0

Classification:
programming

Compatibility:
FS supports embedded zero bytes by default. Support of numeric value is new in
FS44

Related:
RTRIM(), ALLTRIM(), LTRIM(), SUBSTR(), PADx()

FUN 586

TRUEPATH ()
Syntax:

retC = TRUEPATH (expC1)
Purpose:

Determines the true path or the full file name including a path.

Arguments:
<expC1> is either a relative path to be converted to an absolute one, or a file name
of which the full path is to be determined the same way as the FILE() function
searches for it. If only a path is specified, the string has to be terminated by the "\"
or "/" character.

Returns:
<retC> is the expanded absolute path, optionally including the file name. If the file is
not found, a null string "" is returned. If only a path is specified, no check for its
existence is performed.

Description:
TRUEPATH() is an environment function determining the absolute UNIX path. If a
path only is specified, the FS_SET() translations and the drive substitution (using
the environment variable x_FSDRIVE) is considered. If a file name is given as well,
the current SET PATH is also considered.

Example:
? CURDIR () && /usr/john/tmp
? TRUEPATH ("./") && /usr/john/tmp/
? TRUEPATH ("..\..\data\") && /usr/data/
? FILE (TRUEPATH("..\..\data\"))&& .T. (/usr/data exists)
? TRUEPATH ("myfile.txt") && /usr/john/tmp/myfile.txt
? TRUEPATH ("../adr/adr.dbf") && /usr/john/adr/adr.dbf
SET PATH TO ../../src,../adr
? TRUEPATH ("adr.dbf") && /usr/john/adr/adr.dbf
FS_SET ("lower, .T.)
? TRUEPATH ("Adr.DBF") && /usr/john/adr/adr.dbf
? GETENV ("D_FSDRIVE") && ../../data/
? TRUEPATH (GETENV("D_FSDRIVE"))&& /usr/data/
? TRUEPATH ("D:Mydata.X") && /usr/data/mydata.x
? TRUEPATH ("Mydata.X") && ""
? TRUEPATH ("Myprog.prg") && /usr/src/myprog.prg
FS_SET ("trans", "ntx", "idx")
? FILE ("ADR.NTX") && .T.
? TRUEPATH ("ADR.NTX") && /usr/john/adr/adr.idx

Classification: programming

Compatibility: New in FS4.

Related: FindExeFile(), FS_SET(), FILE(), SET PATH, x_FSDRIVE

FUN 587

TYPE ()
Syntax:

retC = TYPE (expC)
Purpose:

Retrieves the type of the contents of a character expression.

Arguments:
<expC> is an expression of character type, for which the type of the result is to be
determined. The expression can be a field, with or without the alias, a PRIVATE or
PUBLIC variable, or an expression of any type.

Returns:
<retC> is one of the following characters:

retC Variable/Field/Expression
A Array, Sub-array
B Code Block
C Character
D Date
E * short string, usually displayed as C
F Float num, when FS_SET("intv",.T.) is set
I * integer numeric, when FS_SET("intvar") is set
2 * binary short int = +/-32767 (.dbf field)
4 * binary long int = +/-2147483647 (.dbf field)
8 * binary double float (.dbf field)
L Logical
M Memo (.dbt field)
N Numeric
O Object
S Screen variable
U Undefined, NIL, Local, Static
UE Syntax error
UF Undefined function error
UI Other errors
VC * variable character size (.dbv field)
VCZ * compressed var character size (.dbv field)
VB * variable binary/blob data (.dbv field)
VBZ * compressed var binary/blob data (.dbv field)

(*) FlagShip specific

Description:
TYPE() determines the type of a PRIVATE, PUBLIC or FIELD variable, public UDF
and standard function by evaluating the argument using the macro evaluator.
Therefore, LOCAL, STATIC and TYPED variables, as well as STATIC FUNCTIONs
cannot be supported and will lead to "U" or "UF" being returned.

FUN 588

To determine the type of any visible variable, including STATIC and LOCAL, use
VALTYPE() instead. To check the existence of any public UDF or standard function
without executing it, use ISFUNCTION().

References to PRIVATE and PUBLIC arrays and sub-arrays return "A." References
to array elements return the type of the element.

TYPE() can only test the validity of parameters received using the PARAMETERS
statement. Testing a parameter declared as part of a FUNCTION or PROCEDURE
declaration always returns "U". For these formal parameters, use PCOUNT() and/or
VALTYPE() instead.

Example:
DECLARE info[5]
LOCAL var1 := {|| NIL}
info[1] = .T.
info[2] = 12.01
info[3] = CTOD("06/07/93")
info[4] = "Jones"
info[5] = {1, 2, 3}
? TYPE ("info") && A
? TYPE ("info[1]") && L
? TYPE ("info[2]") && N
? TYPE ("info[3]") && D
? TYPE ("info[4]") && C
? TYPE ("info[5]") && A
? TYPE ("info[5,2]") && N
? TYPE ("SUBSTR(info[4],1,2)") && C (std function)
? TYPE ("SOUNDEX('')") && UF (std, not linked)
? TYPE ("myudf(1, 2)") && L (returns logical)
? TYPE ("help()") && U (UDP, returns NIL)
? TYPE ("unknownudf()") && UF (not available)
? TYPE ("var1") && U

? VALTYPE (var1) && B
? ISFUNCTION ("help") && .T.
? ISFUNCTION ("SUBSTR") && .T.
? ISFUNCTION ("SOUNDEX") && .F. (not linked)
? ISFUNCTION ("myudf") && .T.

PROCEDURE help (p1, p2, p3)
RETURN
FUNCTION myudf (p1, p2, p3)
? PCOUNT(), VALTYPE(p2) && 2 N
? PROCNAME(1), PROCLINE(1) && TEST 17 (=TYPE(..))
RETURN .T.

Classification:
programming

Compatibility:
FlagShip will also evaluate (the linked) standard functions, UDPs and UDFs
properly. To check the ability of a PROCEDURE, use the UDF syntax; see example
above.

Related: VALTYPE(), ISFUNCTION(), PCOUNT(), ISOBJPROP()

FUN 589

UPDATED ()
Syntax:

retL = UPDATED ()
Purpose:

Determines if there was a change in any of the processed GETs during the last or
the current READ. If you wish to change the flag manually, use ReadUpdated().

Returns:
<retL> is logically TRUE if there were changes, or FALSE if there were none.

Description:
UPDATED() determines whether characters were successfully entered into a GET
from the keyboard during the last or the current READ.

Each time READ executes, UPDATED() is set to FALSE. Then, any change to a
GET entered from the keyboard or pushed to the keyboard buffer by KEYBOARD
sets UPDATED() to TRUE. This happens after the GET exits or before a VALID
clause or the SET KEY procedure is executed. Changes of the get:BUFFER in a
post-valid function will be not recognized by UPDATED().

Once UPDATED() is set to TRUE, it retains this value until the next READ is
executed or manually reset by ReadUpdated(.F.).

Example:
LOCAL how_much
USE salary
how_much := salary->how_much
SET KEY -2 TO hundred
@ 10,0 SAY "Enter amount:" GET how_much PICT "999999.99"
READ
IF UPDATED()

REPLACE salary->how_much WITH salary->how_much + how_much
ENDIF
PROCEDURE hundred // when F3 is pressed:
KEYBOARD "100" // write 100 to buffer
RETURN

Classification:
programming

Compatibility:
Unlike Clipper, FlagShip returns .T. only if the changes were really made, not by
retyping the value with the same characters.

Source:
The function is available in <FlagShip_dir>/system/getsys.prg

Related:
@...GET, READ, getsys.prg, ReadUpdated()

FUN 590

UPPER ()
Syntax:

retC = UPPER (expC)
Purpose:

Converts all alphabetic characters of a string to uppercase.

Arguments:
<expC> is a character string to be converted to uppercase.

Returns:
<retC> is a character string, with all lowercase alphabetic characters converted to
uppercase according to their ASCII values. If the FS_SET ("loadlang") language
table is used, other conversions may be specified.

Description:
UPPER() is generally used to format character strings for display purposes, or to
normalize strings for case-independent comparison or indexing.

For proper Upper() conversion of extended character set > chr(127), the
FSsortab.def - or other table assigned by FS_SET("Setl"/"Load") is used.

The inverse operation of UPPER() is LOWER().

Example:
? UPPER("abcde") && ABCDE
? UPPER("1266 Maple St.") && 1266 MAPLE ST.
USE address
INDEX ON UPPER(name) TO name && normalize
SEEK "SMITH"

Classification:
programming

Compatibility:
User defined tables for upper/lower case translation are loaded by FS_SET("load")
and FS_SET("setlang"). They are available in FlagShip only. Embedded zero bytes
are supported in FS by default.

Related:
ISUPPER(), LOWER(), ISLOWER(), ISALPHA(), FS_SET()

FUN 591

USED ()
Syntax:

retL = USED ()
Purpose:

Determines whether the working area selected has a database file in use.

Returns:
<retL> is TRUE if there is a database file in use, or FALSE if there is none.

Description:
USED() is a database function that determines whether there is a database file in
USE in a particular working area. Also other database functions, like DBF(),
ALIAS(), FCOUNT() etc. will determine if a database is in USE.

To apply the function in a different working area from the current one,
alias->(USED()) may be used.

Example:
SELECT 1
USE Article
? USED() && .T.
SELECT 2
? USED() && .F.

Classification:
database

Related:
SELECT, USE, SELECT(), oRdd:Used

FUN 592

USERSACTIVE ()
Syntax:

retN = USERSACTIVE ()
Purpose:

Determines the number of currently active users.

Returns:
<retN> is a numeric value representing the number of users executing the same
application, including the caller. The valid range is 1 to USERSMAX().

Description:
USERSACTIV() can be used for developer purposes, e.g. to check the number of
users of the current application.

Example:
#define MY_HIDDEN_NUMBER 10

IF USERSACTIV() > MY_HIDDEN_NUMBER
? "Sorry, your purchased software supports " + ;
LTRIM(STR(MY_HIDDEN_NUMBER)) + " users only."

? "Try later..."
QUIT

ENDIF

Technical note:
You should never kill a process (this is very similar to plug the power cable off <g>)
since the application CANNOT quit properly and restore the status. See also sect.
FSC.3.2.

FlagShip updates the user's count when the application terminates regularly. When
some process irregularly dies or was hard killed, the user information does not
(cannot) get updated correctly. The user count is stored in shared memory, so it is
cleared automatically when rebooting the system. Otherwise you (or your sysadmin)
need to fix it manually:

1) Let all users log off from this application.
2) Invoke as root or su:

ipcs -m
You will receive a list of descriptors. Look for your/the user name in the 'owner'
column and note <id1>, <id2>,... in the 'shmid' column,usually occupying 24
bytes.

3) Invoke
ipcrm shm <id1> [<id2> ...]

or
ipcrm -m <id1> [-m <id2> ...]

which removes the shared segment(s) according to the above ipcs output.

FUN 593

You also can remove the user-own segments without being su/root. But be very
careful what you are doing. Removing wrong shared memory segments may hang
your or other application or produce unpredictable results.

Classification:
programming

Compatibility:
Available in FS only.

Related:
USERSDBF(), USERSMAX()

FUN 594

USERSDBF ()
Syntax:

retN = USERSDBF ([expC1], [expL2])
Purpose:

Determines the number of users simultaneously using the same database.

Options:
<expC1> is a name of the database, optionally including path and extension to
check before opening it with USE. The SET PATH and SET DEFAULT is
considered. If no extension is specified, .dbf is used. If the argument is omitted, the
database in the current working area is retrieved.

<expL2> is a logical value specifying if the <expC1> database, when already open
in the current application, should be counted as well. The default is .F. which means
that database <expC1> only open by others is counted; this behavior is compatible
to previous FlagShip 4.x versions.

Returns:
<retN> is a numeric value, representing the count of users simultaneously using the
same database. The valid range is 0/1 to USERSMAX(), or:

-1 = Error. When <expC1> is given: could not open this file. When <expC1> is not
specified: no database in use in the current work area

-2 = only with <expC1>: database is locked exclusively by others
-3 = only with <expC1>: database is locked exclusively by this executable

Description:
USERSDBF() can be used for system developer purposes, for example, to check
the total usage level of the current database.

If the <expC1> argument is not given, the database in the current working area is
counted in <retN>. Id <expC1> is given, an already open same named database in
the current application is counted in dependence on <expL2>, i.e. not per default.

If the database is open simultaneously in different working areas in this application,
it is counted only once. To determine the concurrent use by the same application,
use IsDbMultipleOpen()

Example:
? USERSDBF ("address") // 0 (not in USE)
USE address NEW
? USERSDBF () // 1 (that's me)
? USERSDBF ("address") // 0 (nobody else)
? USERSDBF ("address", .T.) // 1 (only self)
USE otherbase NEW
? USERSDBF () // 1 (only self)
? address->(USERSDBF()) // 1 (only self)

FUN 595

Example:
if USERSDBF("address") == -2

? "Cannot open address.dbf, used exclusively by other applic"
return

endif
USE address SHARED NEW
IF NETERR()

? "Cannot open address.dbf"
RETURN

ENDIF

IF USERSDBF() == 1 // that's my self
? "Will perform the balance now"
FLOCK()
do_balance()
UNLOCK

ELSE
? "Cannot perform the balance now, since", ;
USERSDBF() -1, "other users need the data. Try later"

ENDIF

Example:
#define MY_HIDDEN_NUMBER 10
LOCAL dbf_users
dbf_users := USERSDBF ("address")
DO WHILE .T.

IF dbf_users >= MY_HIDDEN_NUMBER
? "Sorry, cannot open additional database, since"
? "your purchased software supports " + ;
LTRIM(STR(MY_HIDDEN_NUMBER)) + " .dbf users only."

? "Try later..."
ELSEIF dbf_users >= USERSMAX() // avoid RTE

? "Cannot open address.dbf because current", ;
dbf_users, "already is using the database."

? "Since my FlagShip is limited to", ;
USERSMAX(), "users, at least",
dbf_users - USERSMAX() + 1, ;
"OTHER applications use MY database."

? "Terminate the OTHER program or try later."
ELSE

EXIT
ENDIF
WAIT
IF LASTKEY() = 27

QUIT
ENDIF

ENDDO
USE address

Classification:
programming, database

Compatibility:
Available in FS only.

Related: USERSDBF(), USERSMAX(), ISDBMULTIPLE()

FUN 596

USERSMAX ()
Syntax:

retN = USERSMAX ()
Purpose:

Determines the maximum supported number of users for the current FlagShip
license.

Returns:
<retN> is a numeric value, representing the number of users allowed to use the
same application or database simultaneously. The returned value is 1 for a single-
user license, 4 for a four- user, etc. or 1024 for an unlimited license.

Description:
USERSMAX() can be used for system developer purposes.

Refer to the section GEN.2 and GEN.3.3.7 for more information.

Example:
see examples in USERSACTIVE() and USERSDBF().

Classification:
programming

Compatibility:
Available in FS only.

Related:
USERSACTIVE(), USERSDBF()

FUN 597

VAL ()
Syntax:

retN = VAL (expC)
Purpose:

Converts a numeric string to a numeric value.

Arguments:
<expC> is the character string to convert. The string may contain leading spaces,
sign, digits and deci point. All other trailing characters are discarded. Accepts also
exponential values "nn.nnEnn","nn.nnE+nn", "nn.nnE-nn" in the syntax
[spaces][sign]<digits>[.deci][+/-]e<exp>

Returns:
<retN> is the resulting numeric value including decimal digits, if any. If no valid
digits are encountered, zero is returned.

Description:
VAL() is a conversion function that converts a character string containing numeric
digits to a numeric value.

When VAL() encounters a non-numeric character, a second decimal point, the end
of the string, or embedded zero byte, it stops the evaluation. Leading spaces are
ignored.

When SET FIXED is ON, VAL() returns the number of decimal places specified by
SET DECIMALS, rounding the <retN> value, if <expC> contains more digits than
the current DECIMALS value. When SET FIXED is OFF, VAL() returns the number
of decimal places specified in <expC> and the length of the returned number is
calculated from the leading spaces, sign and significant digits including decimal
point. The size of exponential entry is variable to fit the result.

The inverse operations of VAL() are STR() or TRANSFORM().

Example:
? VAL (" 01.1") && 1.1
? VAL ("No. 1") && 0
? VAL (" ") && 0
? VAL ("1 23.9") && 1

SET FIXED ON
SET DECIMAL TO 3
? VAL ("123.4") && 123.400
? VAL ("123.4569") && 123.457

Classification:
programming

Related:
STR(), TRANSFORM(), STRZERO(), SUBSTR(), SET DECIMALS, SET FIXED

FUN 598

VALTYPE ()
Syntax:

retC = VALTYPE (exp)
Purpose:

Determines the data type of the given expression.

Arguments:
<exp> is an expression whose data type is to be determined. The expression can
be a field, with or without the alias, a PRIVATE, PUBLIC, LOCAL or STATIC
variable, or an expression of any type.

Returns:
<retC> is one of the following characters:

retC Variable/Field/Expression
A Array, Sub-array
B Code Block
C Character
D Date
E * short string, usually displayed as C
F Float num, when FS_SET("intv",.T.) is set
I * Integer numeric, when FS_SET("intv") is set
2 * binary short int = +/-32767 (.dbf field)
4 * binary long int = +/-2147483647 (.dbf field)
8 * binary double float (.dbf field)
L Logical
M Memo (.dbt field)
N Numeric
O Object
S Screen variable
U Undefined, NIL, Local, Static
UE Syntax error
UF Undefined function error
UI Other errors
VC * variable character size (.dbv field)
VCZ * compressed var character size (.dbv field)
VB * variable binary/blob data (.dbv field)
VBZ * compressed var binary/blob data (.dbv field)

(*) FlagShip specific

Description:
VALTYPE() determines the type of any variable, including PRIVATE, PUBLIC,
FIELD, LOCAL, STATIC and TYPED variables. Also the result of a function
execution may be evaluated.

FUN 599

Unlike TYPE(), which is evaluated by the expansion, the argument of VALTYPE()
specifies directly the variable or function. If the argument specifies an unknown
function, a link error (undefined external) will occur.

To check the existence of any public UDF or standard function without executing it,
use ISFUNCTION().

References to arrays and sub-arrays return "A". References to array elements
return the type of the element.

Example:
DECLARE info[5]
LOCAL var1 := {|| NIL}, var2
STATIC_INT var3
info[1] = .T.
info[2] = 12.01
info[3] = CTOD("06/07/93")
info[4] = "Jones"
info[5] = {1, 2, 3}

? TYPE ("info") && A
? VALTYPE (info) && A
? VALTYPE (info[1]) && L
? VALTYPE (info[2]) && N
? VALTYPE (info[3]) && D
? VALTYPE (info[4]) && C
? VALTYPE (info[5]) && A
? VALTYPE (info[5,2]) && N
? VALTYPE (SUBSTR(info[4],1,2)) && C (std function)
? VALTYPE (SOUNDEX('')) && C (will be linked)
? VALTYPE (myudf(1, 2)) && L (returns logical)
? VALTYPE (help()) && U (returns NIL)
? VALTYPE (var1) && B
? VALTYPE (var2) && U
? VALTYPE (var3) && N

? ISFUNCTION ("help") && .T.
? ISFUNCTION ("SUBSTR") && .T.
? ISFUNCTION ("MAXCOL") && .F. (not linked)
? ISFUNCTION ("myudf") && .T.

PROCEDURE help (p1, p2, p3)
RETURN
FUNCTION myudf (p1, p2, p3)
RETURN .T.

Classification:
programming

Compatibility:
To check whether a PROCEDURE is available, use the alternative UDF syntax as
in the example above. To check the UDF or UDP existence only, use
ISFUNCTION() instead. The INTVAR type is available in FS only.

Related: TYPE(), LOCAL..AS, FS_SET("intvar"), INT2NUM(), NUM2INT(), ISFUNCTION(),
PCOUNT(), ISOBJPROPERTY()

FUN 600

VERSION ()
Syntax:

retC = VERSION ([expN])
Purpose:

Returns the FlagShip (or FlagShip tools) release used.

Options:
<expN> is a numeric value representing the required output. Zero (the default)
returns the release of the FlagShip library. Invoking VERSION(1) will return the
release of additional serialized FlagShip libraries, like the FS2 Toolbox,
AutoCHECK, HelpEditor, etc.

Returns:
<retC> is the current release of the linked FlagShip library. The returned string will
consist of three parts:

• "FlagShip " (or another tool name)
• "release." (the main FlagShip release)

"subrelease." (the current subrelease)
"addit " (add. info for support purposes)

• "(xx users)" (license used)

Description:
VERSION() is an environment function that returns the version of the FlagShip
used.

For other system information, refer also to OS(), NETNAME(), FS_SET(), SET().

The returned string is similar to the start-up information given by the command-line
argument $ a.out -FSversion in Linux/Unix, or C:> myexe.exe -FSversion in MS-
Windows.

Example:
? VERSION() // "FlagShip 4.3.9876 (4 users)"
#ifdef FlagShip

addit = VERSION (1)
WHILE ! EMPTY (addit)

? "+ Tools :", addit
addit = VERSION (1)

ENDDO
#endif

FUN 601

Example:
version := VERSION ()
release := SUBSTR (version, 10, AT("(", version) -11)
release := SUBSTR (release, 1, RAT(".", release) - 1)

// or numeric, e.g. 4.3 :
// relnum:=VAL(SUBSTR (version, 10, AT("(",version) -11))
? "The current FlagShip " + ;
"release is " + release // "The ... is 4.3"

? "for the " + OS() + " system" // "...HP Apollo9000.."
? "You are " + NETNAME() // "peter@hpserv"

Classification:
programming

Compatibility:
The returned string differs from the Clipper's one.

Related:
OS(), NETNAME(), FS_SET(), SET()

FUN 602

WARNBOX ()
Syntax:

retN = WarnBox (expC1, [expC2], [expN3])
Purpose:

Display an warning message box dialog, similar to Alert()

Arguments:
<expC1> is a string containing the displayed text, the lines are separated by
semicolon ";". See additional details in Alert() description.

<expC2> is an optional header text.

<expN3> is optional time-out in seconds. Zero or NIL specify to wait until user press
key or mouse selection. When the time-out expires without user action, the box is
closed and <retN> is set to 0.

Description:
The WarnBox() function is available for your convenience. It is equivalent to
WarningBox{NIL,cHeader,cMessage}:Show() described in section OBJ. In GUI
mode, warning icon (yellow triangle with exclamation mark) is displayed. In
Terminal i/o mode, the color is specified in global variable
_aGlobSetting[GSET_T_C_WARBOXCOLOR] := "GR+/B,B/W" // default

and can be re-assigned according to your needs.

Compatibility:
New in VFS5. The expN3 is supported since VFS7

Related:
Alert(), InfoBox(), ErrBox(), TextBox(), MessageBox{}, InfoBox{}, ErrorBox{},
WarnBox{}, TextBox{}

FUN 603

WARNINGBOX ()
Syntax:

retO = WarningBoxNew ([oOwner], [cTitle], [cText])
Syntax:

retO = WarningBox ([oOwner], [cTitle], [cText])
Description:

This is alternative syntax for creator of WarningBox class, see details in section
OBJ

Related:
WarningBox Class, WarnBox()

FUN 604

WebDate ()
Syntax:

retC = WebDate ([expD1], [expCL2])
Purpose:

Forms the given or current date and time to a string common in e- mails and web
pages.

Options:
<expD1> is the date value. If not given, current DATE() is used.

<expCL2> is the time value. If passed as non-empty string, the value is added to
the resulting value. If passed as an empty-string or logical .T., the current TIME() is
used. Otherwise ignored.

Returns:
<retC> is the resulting string in a form "01-Jan-1999" or "01-Jan- 1999 15:46:25"
depending on <expCL2>.

Description:
WebDate() converts the date (and time) value to a normalized string, independent
of the current SET DATE setting.

Example:
? WebDate() // 10-Aug-2001
? WebDate(, .T.) // 10-Aug-2001 15:14:56
? WebDate(date()-20, "hello") // 21-Jul-2001 hello

Source:
Available in the <FlagShip_dir>/tools/webtools/webutil.prg file.

Compatibility:
Available in FlagShip only.

Related:
DATE(), TIME()

FUN 605

WebErrorHandler ()
Syntax:

NIL = WebErrorHandler (expO1, expC2, [exp3],
[expA4], [expB5])

Purpose:
Installs new error handler designed for use in CGI invoked applications on the Web
server.

Arguments:
<expO1> is the error object, passed e.g. via ErrorBlock(), see example.

<expC2> is the name of error log file, including path if required, where the error
messages are appended.

Options:
<expC3> optional string with an e-mail address where a notification about errors
should be send. If not given, no error e-mails are sent.

<expA4> optional array with e-mail header data, see WebSendMail(). Applicable
only if <expC3> is given.

<expB5> optional code block returning a string with additional data to be stored in
the error log.

Returns:
There is no typical return value. If the handler detect a currently active BEGIN
SEQUENCE, it performs a BREAK to jump into the RECOVER section of the
SEQUENCE, passing the current <expO1> value. If no BEGIN SEQUENCE is
active, NIL is returned after storing the error data and optionally sending the e-mail.

Description:
WebErrorHandler() avoids displaying of errors on the screen or in the produced
HTML output. It stores the messages in an error file and optionally sends an e-mail
to e.g. the Web administrator.

Example:
bOldErrBlock := ErrorBlock({|oErr| WebErrorHandler(oErr, ;

"/cgi-bin/err.log", "webmaster@mydomain.com") })

Source:
Available in the <FlagShip_dir>/tools/webtools/webutil.prg file.

Compatibility:
Available in FlagShip only.

Related:
ErrorBlock(), WebLogErr(), WebSendMail(), BEGIN SEQUENCE

FUN 606

WebGetEnvir ()
Syntax:

retA = WebGetEnvir ()
Purpose:

Fills the commonly used Web-server environment variables into an array.

Returns:
<retA> is a two-dimensional array containing each the name of the environment
variable and its value.

Description:
The WebGetEnvir() function check the current system environment for variables
(see the webutil.prg source for details) and if found, adds the name and its value to
the resulting array.

Example:
aVars := WebGetEnvir()
aeval(aVars, {|x| qout(x[1],"= [" + x[2] + "]") })

Source:
Available in the <FlagShip_dir>/tools/webtools/webutil.prg file.

Compatibility:
Available in FlagShip only.

Related:
GetEnv()

FUN 607

WebGetFormData ()
Syntax:

retA = WebGetFormData ([expBC1], [expL2])
Purpose:

This is usually a central function for CGI invoked application, receiving the FORM
data from the HTML page.

Options:
<expBC1> optional code block or a name of a UDF which handles errors. There
are two parameters passed to the UDF: the current value of REQUEST_METHOD
and the text message.

<expL2> if specified .T., it translates the first character of each field value to upper
case.

Returns:
<retA> is a two-dimensional array containing each the form identifier (name) and
the corresponding value.

Description:
WebGetFormData() determines the Form Request Method (GET or POST) and
stores the form names + values in the resulting array.

Example:
Simple application invoked from HTML via CGI in the FORM section. It returns a
page containing the FORM-Tag fields and the current environment.

ErrorBlock({|oErr| WebErrorHandler(oErr, ;
"/cgi-bin/err.log", "webmaster@mydomain.com") })

private cWebHeaderTitle := "Back-response"
local aEnv := WebGetEnvir()
local aData := WebGetFormData()

WebHtmlBegin(NIL,"FFFFFF")
? "<P>Received data:
"
WebOutData(aData)
if len(aEnv) > 0

? "<P>Current environment:
"
aeval(aEnv, {|x| qout(x[1], " = ", x[2], "
") })
? "<P>"

endif
WebHtmlEnd()
quit

FUNCTION CursesInit() // see SYS.2.7
RETURN NIL
FUNCTION ProgramInit() // see SYS.2.9
CALL fgsUse4html

RETURN NIL

FUN 608

Source:
Available in the <FlagShip_dir>/tools/webtools/webutil.prg file.

Compatibility:
Available in FlagShip only.

Related:
WebHtmlBegin(), WebHtmlEnd(), WebErrorHandler(), WebGetEnvir(),
WebOutData(), FREADSTDIN(), SYS.2.7, SYS.2.9, fs4web.html in
<FlagShip_dir>/tools/fs4web/

FUN 609

WebHtmlBegin ()
Syntax:

NIL = WebHtmlBegin ([expBC1], [expC2])
Purpose:

Prepare a header for HTML output.

Options:
<expBC1> optional code block (returning a string) or a string which should be
printed at the begin of the HTML text, i.e. just after the <BODY> tag.

<expC2> optional background color in the syntax "#RRGGBB" or "RRGGBB",
where "#FFFFFF" is white and "#000000" is black.

cWebHeaderTitle a PRIVATE or PUBLIC string variable describing the HTML
<TITLE> tag. If not specified, a PUBLIC cWebHeaderTitle := "HTML Request" will
be created automatically.

lWebHeaderOut a PRIVATE or PUBLIC logical variable containing .F. as a start
value. If not specified, a PUBLIC lWebHeaderOut will be created automatically. At
the first invocation of WebHtmlBegin(), this variable is set .T. so the next
invocations of this function do not generate the header again.

Description:
Every HTML output needs a correct syntax containing the header tags, optional text
and the bottom tags. The HTML page header tags are generated by this function.

Example:
see example in WebGetFormData()

Source:
Available in the <FlagShip_dir>/tools/webtools/webutil.prg file.

Compatibility:
Available in FlagShip only.

Related:
WebHtmlEnd(), fs4web.html in <FlagShip_dir>/tools/fs4web/

FUN 610

WebHtmlEnd ()
Syntax:

NIL = WebHtmlEnd ([expBC1])
Purpose:

Prepare the bottom tags for a HTML output.

Options:
<expBC1> optional code block (returning a string) or a string which should be
printed just before the bottom tags of the HTML page.

Description:
Every HTML output needs a correct syntax containing the header tags, optional text
and the bottom tags. The HTML page bottom tags are generated by this function.

Example:
see example in WebGetFormData()

Source:
Available in the <FlagShip_dir>/tools/webtools/webutil.prg file.

Compatibility:
Available in FlagShip only.

Related:
WebHtmlBegin(), fs4web.html in <FlagShip_dir>c/tools/fs4web/

FUN 611

WebLogErr ()
Syntax:

NIL = WebLogErr (expC1, expC2, [expC3], [expA4])
Purpose:

Writes any given message to the error log file.

Arguments:
<expC1> is the message text written to error-log file.

<expC2> the name of error log file, including path if required. It should correspond
to <expC2> of WebErrorHandler() if such is used.

Options:
<expC3> optional string with an e-mail address where a notification about errors
should be send. If not given, no error e-mails are sent. It may correspond to
<expC3> of WebErrorHandler() if such is used.

<expA4> optional array with e-mail header data, see WebSendMail(). Applicable
only if <expC3> is given. It may correspond to <expA4> of WebErrorHandler() if
such is used.

Description:
This function is invoked by WebErrorHandler(), but may also be called explicitly,
e.g. when an error is detected during the data validation etc.

Example:
see example in WebErrorHandler()

Source:
Available in the <FlagShip_dir>/tools/webtools/webutil.prg file.

Compatibility:
Available in FlagShip only.

Related:
WebErrorHandler()

FUN 612

WebMailDomain ()
Syntax:

retC = WebMailDomain (expC1)
Purpose:

Checks and extracts the e-mail address from the given string.

Arguments:
<expC1> is the source string from which the e-mail address should be extracted.

Returns:
<retC> is the extracted e-mail address from <expC1> or one space " " ==
empty(retC) on error.

Description:
E-mail addresses needs to be normalized according to URL rules
(name@[subhosts.]host.domain) for a correct addressing by the mail server.
This function extracts the plain URL address (w/o prefix and postfix) from the given
string. It checks the given syntax, but does not (and cannot) verify the availability of
this domain/URL (you may try "ping" here), nor real availability of the addressee.

Example:
? '"aaa bbb" <xxx@yyy.zzz> qqq' // xxx@yyy.zzz
? 'aaa bbb xxx@yyy.zzz' // xxx@yyy.zzz
? 'aaa bbb xxx @ yyy.zzz' // " " = error

Source:
Available in the <FlagShip_dir>/tools/webtools/webutil.prg file.

Compatibility:
Available in FlagShip only.

Related:
WebSendMail()

FUN 613

WebOutData ()
Syntax:

NIL = WebOutData ([expA1])
Purpose:

This is a helper which prints the received form-tag fields to the HTML output.

Options:
<expA1> is an array containing the results from e.g. WebGetFormData() or
WebGetEnvir(). If not given, the WebGetFormData() is invoked automatically.

Description:
You may use this function e.g. for testing your CGI based application. For a correct
functionality, WebHtmlBegin() should already be invoked.

Example:
see example in WebGetFormData()

Source:
Available in the <FlagShip_dir>/tools/webtools/webutil.prg file.

Compatibility:
Available in FlagShip only.

Related:
WebGetFormData(), WebGetEnvir(), WebHtmlBegin(), fs4web.html in
<FlagShip_dir>/tools/fs4web/

FUN 614

WebSendMail ()
Syntax:

retN = WebSendMail (expCA1, expC2, expC3, expC4,
[expC5], [expC6], [expC7])

Purpose:
Prepares and sends an e-mail (electronic mail) to the given addressee via system's
"sendmail" daemon.

Arguments:
<expCA1> e-mail header: either a string with the sender e-mail address, or an
array containing e-mail header data

{"sender address",
"sender organization/company",
"send reply to",
"return path"}

where the not used array elements may be set NIL or may contain an empty string.

<expC2> a string for the e-mail subject.

<expC3> the e-mail body (text), sent "as given". At least one character is required.
You may format the text by new-line LF = chr(10) or CRLF = chr(13)+chr(10) for the
e-mail line width (usually 75-78 chars) but this is not strictly required.

<expC4> the e-mail addressee(s). Since the string is not validated here, it may be
advised to use WebMailDomain() for a check, if the string contains a correct e-mail
URL. A usual syntax for the e-mail address is e.g.:

any_name@my.domain.com
"any name" <myname@mydomain.com>
<name1@server1.com>, "other name" <name2@server2.com>

The URL address in case insensitive.

Options:
<expC5> optional string with CC (carbon copy) e-mail address(es).

<expC6> optional string with BCC (blind carbon copy, invisible for the recipient) e-
mail address(es).

<expC7> optional string specifying the sendmail executable incl. path, e.g.
"/usr/lib/sendmail" or "x:\usr\lib\sendmail.exe". If not given, default is
"/usr/lib/sendmail".

Returns:
<retN> is the success or error return code:

0 success
1..6 check for argument no. 1..6 failed
7 not enough arguments passed
10 command-line of the header is too long, check e.g. <expC4>
11 could not open (invoke) sendmail as sub-process. Check if sendmail is in

FUN 615

/usr/lib, otherwise create a (symbolic) link or modify the #define and recompile
webmail.c according to instruction given in the header of it.

Description:
This function can be used to send e-mails from any FlagShip application, either
stand-alone or web based. It invokes the "sendmail" program or daemon on the
computer where the application is running. The used sendmail is default for all Unix
and Linux versions. For MS-Windows, you may need sendmail.exe available with
Microsoft Mail (PC Networks Resource Kit), or the free package from
http://glob.com.au/sendmail or it copy via http://www.fship.com/tools/sendmail.zip or
via ftp://fship.com/pub/multisoft/FlagShip/tools/sendmail.zip or the commercial
sendmail version from http://www.indigostar.com/sendmail.htm

Example:
#define CRLF chr(13)+chr(10)
cText := "Dear Jim," + CRLF + ;

"this is my first try to send e-mail" + CRLF + ;
"via FlagShip..." + CRLF + CRLF + "Paul" + CRLF

ok := WebSendMail('"Paul Smith" <pauls@mydomain.org>', ;
"First e-mail to Jim", cText, "jimx@aol.com")

if (ok > 0)
? "mail not sent, error",ltrim(ok),"from sendmail"

endif

Example:
You may add additional MIME tags (like HTML formatting etc.) in the subject
parameter, separated from it (and by each other) with chr(10):

cSubject := "A subject of this mail" + ;
chr(10) + 'Content-Type: text/html; charset="iso-8859-1"' + ;
chr(10) + 'Content-Transfer-Encoding: quoted-printable'

ok := WebSendMail(aYourData, cSubject, cHtmlText, ...)

Source:
Available in the <FlagShip_dir>/tools/webtools/webmail.c file.

Compatibility:
Available in FlagShip only.

Related:
WebMailDomain()

FUN 616

WORD ()
Syntax:

Cint = WORD (expN1)
Purpose:

Converts the CALL command numeric argument from double to a C int value.

Arguments:
<expN1> is a FlagShip numeric value to convert to (long) int which usually has a
range of ± 2,147,483,647.

Returns:
The function returns a C integer. Used in the CALL command, the FlagShip
compiler generates a temporary (int) variable which is passed by value to the
CALLed function.

Description:
WORD() is a numeric conversion function that is designed for parameter conversion
within a CALL command. Refer to the CALL command for more information.

Using the FlagShip Extend C System is the safer way to execute a C function
because of parameter checking and passing.

Example:
LOCAL var1 := 5.56, var2 := 10
CALL myCudf WITH WORD(12345), var1, WORD(var2)
? var1 // 987.65 changed by myCudf
? var2 // 10.00 remains unchanged

Classification:
programming

Compatibility:
On DOS systems, the int value is two-byte long in the range of +/- 32,767. On most
UNIX systems, the C int value is equivalent to a LONG int, stored in four bytes.

Related:
CALL

FUN 617

YEAR ()
Syntax:

retN = YEAR ([expD])
Purpose:

Extracts the year from a date value.

Arguments:
<expD> is the date value to convert. If not specified, the current system date() is
used.

Returns:
<retN> is a numeric value representing the year including the century digits. The
value returned is not affected by the current SET DATE or SET CENTURY format.
Specifying an invalid or a null date CTOD("") returns zero.

Description:
YEAR() is a date conversion function that converts a date value to a numeric year
value. It is used when the year is needed as a part of some calculations.

Other date extracting functions are DAY() and MONTH().

Example:
? DATE() // 07/25/93
? YEAR(DATE()) // 1993
? YEAR() // 1993
d := DATE() +1
? CMONTH(d), LTRIM(STR(DAY(d))) + ",", ;
LTRIM(STR(YEAR(d))) // July 26, 1993

SET DATE GERMAN
? DATE() // 25.07.93
? YEAR(DATE()) // 1993
? YEAR() + 12 // 2005

Classification:
programming

Compatibility:
Clipper requires the <expD> value, it does not use current date() with empty
parameter.

Related:
DATE(), DAY(), MONTH(), CTOD(), DOW(), CDOW(), CMONTH(), DTOC(),
DTOS(), FS2:DoY(), FS2:BoY(), FS2:EoY(), FS2:IsLeap(), FS2:Week(),
FS2:Quarter(), FS2:MDY()

FUN 618

_DISPLARR ()
_DISPLARRSTD ()
_DISPLARRERR ()
Syntax 1:

retA = _DisplArr (expA1, [expC2], [expN3], [expN4],
[expL5])

Syntax 2:
retA = _DisplArrStd (expA1, [expC2], [expN3],

[expN4], [expL5])
Syntax 3:

retA = _DisplArrErr (expA1, [expC2], [expN3],
[expN4], [expL5])

Purpose:
Formats an one- or multi-dimensional array for displaying

Arguments:
<expA1> is the array to be formatted.

<expC2> is an optional text prefix describing the output.

<expN3> start element of <expA1>, default is 1

<expN4> last element of <expA1>, default is LEN(expA1)

<expL5> display flag for object elements:

.T. display object header of sub-objects only,

.F. (default) display all sub-object properties

Returns:
<retA> is 1-dimensional array containing re-formatted array <expA1>. All elements
of <retA> are converted to character.

Description:
The function is mainly used for testing and debugging purposes.

Syntax 1 return the formatted array

Syntax 2 display the formatted array to standard output, same as
AEVAL(_DisplArr(expA1,expC2), {|x| Qout(x)})

Syntax 3 display the formatted array to stderr, same as
AEVAL(_DisplArr(expA1,expC2), {|x| outerr(x,chr(10)) })

Classification: programming
Compatibility: New in FS5
Related: Aeval(), _DisplObj()

FUN 619

_DISPLOBJ ()
_DISPLOBJSTD ()
_DISPLOBJERR ()
Syntax 1:

retA = _DisplObj (expO1, [expC2], [expN3], [expN4],
[expL5])

Syntax 2:
retA = _DisplObjStd (expO1, [expC2], [expN3],

[expN4], [expL5])
Syntax 3:

retA = _DisplObjErr (expO1, [expC2], [expN3],
[expN4], [expL5])

Purpose:
Returns or displays object properties

Arguments:
<expO1> is the object to be traced.

<expC2> is an optional text prefix describing the output.

<expN3> requested properties to output, add to each other:

0: CLASS ... only
1: exported instance
2: usual/protect instance (with -d switch)
4: access
8: assign

16: methods
255: - all above, default for _DisplObjStd(), _DisplObjErr()
256: list also properties of super class
511: - all above
512: use instance instead of access, if possible

1023: - all above, default for _DisplObj()

<expN4> sort and display format flag:

0: (default) sort, filter, transfer/format to 1-dimens array
1: display multi-dimensional, no formatted, no filtered, no sorted
2: display multi-dimensional, no formatted, no filtered, sorted
3: display multi-dimensional, no formatted, filtered, sorted

>3: same as 0
<0: same as positive, but print also debug info

FUN 620

<expL5> display flag:

.T. display object header of sub-objects only,

.F. (default) display all sub-object properties

Returns:
<retA> is 1-dimensional array containing properties of <expO1> and re-formatted to
string.

Description:
The function is mainly used for testing and debugging purposes.

Syntax 1 return the object properties in an array

Syntax 2 display the formatted object properties to standard output, same as
AEVAL(_DisplObj(expA1,expC2), {|x| Qout(x)})

Syntax 3 display the formatted object properties to stderr, same as
AEVAL(_DisplObj(expA1,expC2), {|x| outerr(x,chr(10)) })

Classification:
programming

Example:
see <FlagShip_dir>/examples/printer.prg

Compatibility:
New in FS5

Related:
Aeval(), _DisplArr()

FUN 621

Index

.

.MEM file
- compatibility modeFUN-268

@

@..GET
- align.......................................FUN-297
- changedFUN-589
- exit...FUN-471
- input processingFUN-298
- insertFUN-474
- object.....................................FUN-296
- post-validatingFUN-304
- pre-validating.........................FUN-305
- process input.........................FUN-306
- process SET KEYFUN-299
- variable..................................FUN-485

_

_DisplArr()FUN-618
_DisplArrErr()FUN-618
_DisplArrStd()FUN-618
_DisplObj()FUN-619
_DisplObjErr()FUN-619
_DisplObjStd()............................FUN-619

A

Aadd() ..FUN-15
Abs()...FUN-16
Absolute valueFUN-16
Achoice()FUN-17
Aclone()..FUN-25
Acopy()...FUN-26
ADCCP ...FUN-90
Adel()..FUN-27
Adir() ..FUN-28
AelemType()FUN-30
Aeval()..FUN-31
Afields() ..FUN-33

Afill() ...FUN-34
AfillAll() ...FUN-35
Ains()..FUN-36
Alert() ...FUN-37
Alias

- assign....................................FUN-164
- clearFUN-101, 102
- determineFUN-40
- selectFUN-147, 521

Alias() ...FUN-40
AllTrim()FUN-41
Alpha character...........................FUN-340
AltD() ..FUN-42
AND

- binaryFUN-62
ANSI X3.66FUN-90
Ansi2oem

- translation table.....................FUN-255
Ansi2oem()...................................FUN-43
AnsiToOem()................................FUN-43
Aplication

- user nameFUN-429
AppIoMode()FUN-44
Application

- active usersFUN-592
- exit code................................FUN-197
- i/o type.............................FUN-44, 350
- max users..............................FUN-596
- MDI, SDI..................................FUN-45
- name ofFUN-200
- object of...................................FUN-46
- PID ..FUN-201

Application window
- status bar

-- message...................FUN-555, 556
AppMdiMode()FUN-45
AppObject()FUN-46
Array

- add new element.....................FUN-15
- browsing................................FUN-573
- check element typeFUN-30
- clearFUN-548
- cloning.....................................FUN-25
- copy elementsFUN-26
- copy of.....................................FUN-25

FUN 622

- create FUN-47
- delete element FUN-27
- display FUN-618
- display elements FUN-32
- duplicate.................................. FUN-25
- empty FUN-191
- evaluate................................... FUN-31
- fillFUN-34, 35
- filled by database structure FUN-33,

158
- initialize with valueFUN-34, 35
- insert element.......................... FUN-36
- last element............................. FUN-55
- of environment variables....... FUN-302
- of record valuesFUN-217, 224
- process elementd.................... FUN-31
- re-size FUN-51
- scan... FUN-49
- search FUN-49
- size.. FUN-365
- sort .. FUN-52

Array() .. FUN-47
Asc()... FUN-48
Ascan()... FUN-49
Asize().. FUN-51
Asort() .. FUN-52
At() ... FUN-54
Atail().. FUN-55
AtAnyChar() FUN-56
AutoFlock()................................... FUN-57
AutoRlock() FUN-57
AutoUnlock() FUN-57

B

BEGIN SEQUENCE
- check..................................... FUN-341

Between()..................................... FUN-68
Bin2i()... FUN-59
Bin2l()... FUN-60
Bin2w()... FUN-61
BinAnd() FUN-62
Binary AND FUN-62
Binary OR FUN-64
Binary shiftFUN-66, 67
Binary XOR................................... FUN-65
BinLshift()..................................... FUN-66
BinOr() ... FUN-64

BinRshift()FUN-67
BinXor() ..FUN-65
Bof() ...FUN-69
Box

- commandFUN-179
- dialog.......................................FUN-37
- error.......................................FUN-193
- info ..FUN-324
- listboxFUN-366
- text ..FUN-579
- warning..................................FUN-602

BREAK..FUN-70
- check.....................................FUN-341

Break key....................................FUN-256
Break() ...FUN-70
Browse().......................................FUN-71
Buffering

- screen outputFUN-178, 182, 183

C

C
- integer

-- conversion
--- from numericFUN-616

Call stackFUN-448, 460, 462
- file lineFUN-459
- file name................................FUN-458

CapsLock statusFUN-329
CCITT X.25FUN-90
CdoW()...FUN-73
CGI

- processing.. FUN-see Web processing
Character

- alphaFUN-340
- ASCII valueFUN-48, 74
- conversion

-- from numericFUN-74
-- to numeric...........................FUN-48

- convert
-- from screenFUN-76
-- to screen...........................FUN-514

- digit..FUN-348
- extract from stringFUN-564
- lower caseFUN-351, 369
- replace in string.....................FUN-565
- search in string..........FUN-54, 56, 467
- upper caseFUN-359, 590

FUN 623

Character set
- ASCII, OEM, PC8..................FUN-435
- ISO, ANSI................................FUN-43
- translation........................FUN-43, 435

Chr() ...FUN-74
Chr2screen()FUN-76
Class

- DataServer
-- determine object...............FUN-134

- DbServer
-- determine object...............FUN-134

- name from objectFUN-352
- propertiesFUN-355
- TbColumn

-- instantiateFUN-572
Cmonth()FUN-78
Code block

- evaluating..............................FUN-199
- for fields

-- read/write..................FUN-213, 227
- retrieveFUN-407

Col() ...FUN-80
Col2pixel()FUN-82
Color

- backgroundFUN-533
- check availabilityFUN-342
- color spec..............................FUN-535
- conversion

-- to RGB................................FUN-84
- outputFUN-465
- RGB ..FUN-84
- selectFUN-85
- setting....................................FUN-531

Color2rgb()FUN-84
ColorSelect()FUN-85
Column

- in pixelFUN-451
- max availableFUN-376
- mouseFUN-380
- pixel conversionFUN-82
- position....................................FUN-80
- printerFUN-449

-- set.....................................FUN-547
- set..FUN-545
- visibleFUN-83

ColVisible()...................................FUN-83
Comparison

- maximum...............................FUN-375
- min, max..........................FUN-68, 410

- minimum................................FUN-409
Condition

- inline
-- if..endifFUN-314

Console window
- open ..FUN-86
- size ..FUN-88

ConsoleOpen().............................FUN-86
ConsoleSize()FUN-88
Convert string codingFUN-43, 435
Crc32() ...FUN-90
CurDir() ..FUN-92
Cursor

- on/offFUN-536
- set positionFUN-173
- type..FUN-539

Cut and paste..............................FUN-393

D

Database
- active usersFUN-594
- add recordFUN-97
- alias ...FUN-40
- assign indexFUN-151
- bof ...FUN-69
- browse...................................FUN-114
- browsing..........................FUN-71, 573
- check.....................................FUN-591
- close..............................FUN-102, 164
- close allFUN-101
- controlling indexFUN-154
- create

-- from array.........................FUN-107
- date of last update.................FUN-371
- delete recordFUN-113

-- check for...........................FUN-168
- determine all open.........FUN-124, 128
- driverFUN-149

-- set default.........................FUN-470
-- used..........................FUN-468, 469

- edit...FUN-114
- emptyFUN-69
- eof ...FUN-192
- exclusive

-- checkFUN-343
- field

-- accessFUN-216

FUN 624

-- assign FUN-222
-- decimals FUN-214
-- length................................ FUN-218
-- memo

--- count lines FUN-411
--- display FUN-390
--- edit............................... FUN-390
--- extract line FUN-399
--- extract string................ FUN-412
--- string position FUN-414
--- translation....FUN-386, 389, 405

-- modify............................... FUN-222
-- name FUN-220
-- number of FUN-205
-- position FUN-221
-- replace.............................. FUN-222
-- size FUN-365
-- type................................... FUN-225

- filter
-- clear.................................... FUN-98
-- determine FUN-126
-- set..................................... FUN-150

- filtering.............................FUN-98, 150
- header size............................ FUN-309
- index

-- close FUN-99
-- create FUN-110
-- current FUN-323
-- descending....................... FUN-169
-- open FUN-151

- index count............................ FUN-318
- index integrity FUN-315
- indexing.........................FUN-110, 137
- information FUN-128
- integrity check FUN-315
- lockingFUN-see file

-- automatic............................ FUN-57
-- file lock FUN-234

--- check FUN-345
-- multiple FUN-142

--- list of FUN-142
-- record lock.......FUN-141, 142, 367,

493, 499
--- check FUN-346

-- unlockFUN-144, 160, 162
- max users.............................. FUN-596
- modify record FUN-222
- movement

-- checkFUN-69, 192

- multi-userFUN-165
- nameFUN-123
- object.....................................FUN-134
- openFUN-164

-- error..........................FUN-427, 591
-- multipleFUN-347

- process records.....................FUN-121
- RDDFUN-149
- record

-- copy to array.....................FUN-217
-- numberFUN-487
-- number ofFUN-363, 486
-- replace from arrayFUN-224
-- sizeFUN-488
-- validationFUN-69, 192

- record movementFUN-132, 157
-- bottomFUN-131
-- topFUN-133

- relations.................................FUN-138
-- 1 to nFUN-140
-- clear..................................FUN-100
-- count.................................FUN-139
-- determineFUN-138, 143
-- set.....................................FUN-155

- search
-- by indexFUN-146, 242
-- conditional by index..........FUN-242
-- index keyFUN-146
-- locate conditionFUN-130, 153
-- successFUN-242

- select.............................FUN-147, 521
- sortingFUN-110

-- descendingFUN-169
-- unique

--- on/off............................FUN-526
- structure

-- copy to array...............FUN-33, 158
- translation..............................FUN-528
- un-delete recordFUN-136
- unique index

-- on/offFUN-526
- used by indexingFUN-319
- used indicesFUN-322

Date
- comparison

-- maximum..........................FUN-375
-- min, max.....................FUN-68, 410
-- minimum...........................FUN-409

- convert

FUN 625

-- from stringFUN-91, 557
-- to string.....................FUN-189, 190
-- to web format....................FUN-604

- currentFUN-94
- day of monthFUN-96
- day of weekFUN-187
- day of weekFUN-73
- emptyFUN-191
- for webFUN-604
- format

-- web format........................FUN-604
- formattingFUN-584
- last database update.............FUN-371
- maximum...............................FUN-375
- minimum................................FUN-409
- monthFUN-416
- month stringFUN-78
- validationFUN-95
- yearFUN-617

Date() ...FUN-94
DateValid()FUN-95
Day() ..FUN-96
DbAppend()..................................FUN-97
DbClearFilter()FUN-98, 150
DbClearIndex().............................FUN-99
DbClearRelation()FUN-100
DbCloseAll()FUN-101
DbCloseArea()FUN-102
DbCreate()FUN-107
DbCreateIndex()FUN-110
DbDelete()..................................FUN-113
DbEdit()FUN-114
DbEval()FUN-121
Dbf() ...FUN-123
DbFilter()FUN-126
DbfInfo()FUN-124
DbFlock()FUN-127
DbfUsed()...................................FUN-128
DbGetLocateBlock()...................FUN-130
DbGoBottom()............................FUN-131
DbGoto()FUN-132
DbGoTop()FUN-133
DbObject()..................................FUN-134
DbRecall()FUN-136
DbReindex()...............................FUN-137
DbRelation()FUN-138
DbRelCount()FUN-139
DbRelMulti()FUN-140
DbRlock()FUN-141

DbRlockList()FUN-142
DbrSelect()FUN-143
DbrUnlock()................................FUN-144
DbSeek()....................................FUN-146
DbSelectArea()FUN-147
DbSetDriver()FUN-149
DbSetIndex()..............................FUN-151
DbSetLocateBlock()FUN-153
DbSetOrder()FUN-154
DbSetRelation()FUN-155
DbSkip()FUN-157
DbStruct()...................................FUN-158
DbUnlock()FUN-160
DbUnlockAll()FUN-162
DbUseArea()FUN-164
Debugger

- activate....................................FUN-42
- hot key...................................FUN-257

Debugging
- display array..........................FUN-618
- display call stackFUN-448
- display objectFUN-619
- performanceFUN-524

Decimals
- in num field............................FUN-214

Declaration
- array ..FUN-47

Default()FUN-167
Delay

- milliseconds...........................FUN-550
- seconds.................................FUN-549

Deleted()FUN-168
Descend()FUN-169
Development mode.....................FUN-258
DevOut()FUN-171
DevOutPict()FUN-172
DevPos()FUN-173
Digit character.............................FUN-348
Directory

- check for fileFUN-228
- currentFUN-92
- FlagShip installationFUN-233
- informationFUN-28, 174

Directory()FUN-174
Disk

- free spaceFUN-176
DiskSpace()FUN-176
DispBegin()FUN-178
DispBox()FUN-179

FUN 626

DispCount()................................ FUN-182
DispEnd() FUN-183
Display error.................................. FUN-37
DispOut().................................... FUN-184
DosError() FUN-185
DosError2str() FUN-186
DoW()... FUN-187
Drawing

- box .. FUN-179
- lines...............................FUN-188, 307

DrawLine() FUN-188
DtoC()FUN-91, 189
DtoS()... FUN-190

E

Edit
- memo field............................. FUN-390

E-mail
- extract URL from string FUN-612
- send FUN-614

Empty() FUN-191
Environment

- in Web................................... FUN-606
- retrieve FUN-300
- setting.................................... FUN-280
- store to array......................... FUN-302
- variable.................................. FUN-300

Eof() ... FUN-192
ErrBox()...................................... FUN-193
Error

- code block FUN-194
- display FUN-37
- handling................................. FUN-194
- in clear text....................FUN-186, 212
- in development mode............ FUN-258
- last... FUN-185
- prompt FUN-526

ErrorBlock()................................ FUN-194
ErrorLevel() FUN-197
Eval().. FUN-199
Evaluate

- code block FUN-199
- macroFUN-372, 373

Event
- handling................................. FUN-537

Exception
- error block FUN-194

Exception handling........................FUN-70
- check.....................................FUN-341

EXCLUSIVE clauseFUN-164
ExecName()FUN-200
ExecPidNum()............................FUN-201
Executable

- name ofFUN-200
- PID ..FUN-201
- search forFUN-230

Exit codeFUN-197
Exp() ..FUN-202
Exponent.....................................FUN-202

F

Fattrib()FUN-204
Fclose()FUN-203
Fcount()......................................FUN-205
Fcreate()FUN-206
Feof() ...FUN-208
Ferase()FUN-209
Ferror().......................................FUN-210
Ferror2str().................................FUN-212
Field

- accessFUN-216, 217, 227
- assign....................FUN-222, 224, 227
- code blockFUN-213, 227
- decimalsFUN-214
- lengthFUN-218
- modify............................FUN-222, 224
- nameFUN-220
- number ofFUN-205
- position..................................FUN-221
- replaceFUN-222, 224
- size..FUN-365
- store to arrayFUN-217
- typeFUN-225

Field() ...FUN-220
FieldBlock()FUN-213
FieldDeci()..................................FUN-214
FieldGet()FUN-216
FieldGetArr()FUN-217
FieldLen()...................................FUN-218
FieldName()FUN-220
FieldPos()...................................FUN-221
FieldPut()FUN-222
FieldPutArr()...............................FUN-224
FieldType().................................FUN-225

FUN 627

FieldWblock()FUN-227
File

- access rightsFUN-204
- attributeFUN-204
- check availabilityFUN-228
- deleteFUN-209
- directory information........FUN-28, 174
- get absolute path...................FUN-230
- low level

-- closeFUN-203
-- createFUN-206
-- end-of-fileFUN-208
-- error..................................FUN-210

--- in clear textFUN-212
-- lockingFUN-236
-- move pointer.....................FUN-251
-- openFUN-238
-- read from stdinFUN-245
-- read stringFUN-247
-- read text linesFUN-248
-- read to bufferFUN-243
-- seek..................................FUN-251
-- write..................................FUN-294

- pathFUN-586
- read text fromFUN-401
- renameFUN-249
- temporaryFUN-577
- translation

-- path to lowercaseFUN-272
-- path to uppercaseFUN-272
-- to lowercaseFUN-266
-- to uppercase.....................FUN-266

- uniqueFUN-577
- write text to............................FUN-406

File system
- free spaceFUN-176

File() ...FUN-228
FindExeFile()..............................FUN-230
FkLabel()FUN-231
FkMax()......................................FUN-232
FlagShip

- installation directoryFUN-233
- library

-- functionsFUN-11
-- locationFUN-11

- version...................................FUN-600
FlagShip_Dir()............................FUN-233
Flock() ..FUN-234
FlockF()......................................FUN-236

Fopen()FUN-238
Found()FUN-242
Fread()FUN-243
FreadStdin()FUN-245
FreadStr()...................................FUN-247
FreadTxt()FUN-248
Frename()FUN-249
FS_SET()FUN-253
FS_SET(ansi2oem)FUN-255
FS_SET(breakkey)FUN-256
FS_SET(debugkey)FUN-257
FS_SET(develop)FUN-258
FS_SET(escdelay)......................FUN-259
FS_SET(guikeys)........................FUN-260
FS_SET(inmap)FUN-261
FS_SET(intvar)FUN-263
FS_SET(loadlang)FUN-264
FS_SET(lowerfiles)FUN-266
FS_SET(mapping)FUN-269
FS_SET(memcompat)FUN-268
FS_SET(outmap)FUN-269
FS_SET(pathdelim)FUN-271
FS_SET(pathlower)FUN-272
FS_SET(pathupper)....................FUN-272
FS_SET(printfile)FUN-274
FS_SET(prset)FUN-276
FS_SET(setenvir)FUN-280
FS_SET(setlang)FUN-282
FS_SET(shortname)FUN-283
FS_SET(speckeys)FUN-285
FS_SET(translext)FUN-289
FS_SET(typeahead)FUN-291
FS_SET(upperfiles)FUN-266
FS_SET(zerobyte)FUN-292
Fseek().......................................FUN-251
Function

- call stackFUN-460, 462
- check availabilityFUN-349
- notationFUN-11
- source file lineFUN-459
- source file name....................FUN-458
- standardFUN-11

Function key
- nameFUN-231
- number ofFUN-232
- simulate input

-- checkFUN-303
Fwrite()FUN-294

FUN 628

G

GetActive() FUN-296
GetAlign()................................... FUN-297
GetApplyKey()............................ FUN-298
GetDosKey() FUN-299
GetEnv()..................................... FUN-300
GetEnvArr()................................ FUN-302
GetFunction() FUN-303
GetPostValid()............................ FUN-304
GetPreValid() FUN-305
GetReader() FUN-306
Gui

- color
-- background FUN-533

GUI mode
- cursor type FUN-539

GuiDrawLine()............................ FUN-307

H

Hard disk
- free space FUN-176

HardCr() FUN-308
Header()..................................... FUN-309
Help procedure FUN-310
HELP() FUN-310
Hex2num() FUN-312
Hexadecimal numbersFUN-312, 432
HTML

- footer FUN-610
- forms FUN-607
- header FUN-609
- row adaption.......................... FUN-505

I

I/o mode
- detection..........................FUN-44, 350
- MDI.. FUN-45

I2bin()... FUN-313
If()... FUN-314
Iif().. FUN-314
Index

- ascending.............................. FUN-169
- bag

-- add key............................. FUN-438
-- delete key......................... FUN-438

-- destroy..............................FUN-437
-- nameFUN-437

- close........................FUN-99, 102, 439
- close allFUN-101
- condition, scopeFUN-437
- controlling..............................FUN-154
- countFUN-318
- createFUN-110, 137, 437
- currentFUN-323
- database used.......................FUN-319
- default extensionFUN-320
- descending............................FUN-169
- info

-- descendingFUN-437
-- extensionFUN-437
-- for condition......................FUN-438
-- key....................................FUN-438
-- key valueFUN-439
-- nameFUN-437, 439
-- number of keys.................FUN-438
-- order number....................FUN-439
-- record

--- logicalFUN-438
-- scope................................FUN-439
-- unique...............................FUN-438

- integrity checkFUN-315
- key...FUN-321
- move

-- to specif. keyFUN-438
- names currently used............FUN-322
- openFUN-151, 439

-- error..................................FUN-427
- order......................................FUN-154
- rebuildFUN-137, 439
- relationFUN-439
- select.....................................FUN-439
- skip..FUN-157
- unique

-- on/offFUN-526
-- skipFUN-440

IndexCheck()..............................FUN-315
IndexCount()FUN-318
IndexDbf()FUN-319
IndexExt()...................................FUN-320
IndexKey()..................................FUN-321
IndexNames()FUN-322
IndexOrd()..................................FUN-323
InfoBox()FUN-324
Inkey() ..FUN-326

FUN 629

- considering SET KEY............FUN-332
- in clear text............................FUN-335
- next..FUN-430
- previous.................................FUN-361
- translation..............................FUN-335

Inkey2read()FUN-334
Inkey2str()FUN-335

- own text fileFUN-334
InkeyTrap().................................FUN-332
Input

- cut and paste.........................FUN-393
- databaseFUN-573
- inkey......................................FUN-326
- inkey with SET KEYFUN-332
- key press...............................FUN-326

-- redirection.........................FUN-332
- list of choices...................FUN-17, 366
- menusFUN-17
- mouseFUN-326

-- buttonFUN-413, 420
-- position

--- column.........................FUN-380
--- row...............................FUN-421

-- redirection.........................FUN-332
-- setting...............................FUN-381

- multiple linesFUN-390
- next key.................................FUN-430
- pop-up window........................FUN-37
- previous keyFUN-361
- redirectionFUN-436, 542
- screen oriented

-- arrayFUN-573
-- database...........................FUN-573

- stdin...............................FUN-336, 337
- text...FUN-390

Insert key status..........................FUN-329
InStdChar()FUN-336
InStdString()FUN-337
Int()...FUN-338
Int2num()....................................FUN-339
Integer valueFUN-338, 339
IsAlpha().....................................FUN-340
IsBegSeq()FUN-341
IsColor()FUN-342
IsColour()FUN-342
IsDbExcl()FUN-343
IsDbFlock().................................FUN-345
IsDbMultipleOpen()FUN-347
IsDbRlock()FUN-346

IsDigit().......................................FUN-348
IsFunction()FUN-349
IsGuiMode()FUN-350
IsLower()FUN-351
IsObjClass()FUN-352
IsObjEquiv()FUN-354
IsObjProperty()...........................FUN-355
IsPrinter()FUN-358
IsUpper()FUN-359

K

Keyboard
- break key...............................FUN-256
- CapsLock status....................FUN-329
- debugger keyFUN-257
- escape

-- delay.................................FUN-259
- function key

-- nameFUN-231
-- number ofFUN-232

- inputFUN-326
-- redirection.........................FUN-332

- insertFUN-474
- Insert status...........................FUN-329
- key press...............................FUN-326

-- redirection.........................FUN-332
- next key.................................FUN-430
- NumLock statusFUN-329
- previous keyFUN-361
- redirectionFUN-436, 542
- status.....................................FUN-329
- termination key......................FUN-530
- translation table

-- GUI modeFUN-260
-- localizedFUN-264, 282
-- terminal mode...................FUN-261

--- special keysFUN-285

L

L2bin() ..FUN-360
LastKey()....................................FUN-361
LastRec()FUN-363
Left()...FUN-364
Len()...FUN-365
Listbox...FUN-366
ListBox()FUN-366

FUN 630

Lock() ... FUN-367
Locking

- automatic................................. FUN-57
- file..................................FUN-127, 234

-- check FUN-345
- multiple records..................... FUN-142
- recordFUN-141, 367, 493, 499

-- check FUN-346
-- list of FUN-142

- unlock....................FUN-144, 160, 162
- whole database..................... FUN-234

Log()... FUN-368
Logarithm

- base FUN-202
- natural FUN-368

Lower()....................................... FUN-369
Ltrim().................................FUN-370, 507
Lupdate().................................... FUN-371

M

Macro
- evaluate.........................FUN-372, 373
- substitute............................... FUN-373

MacroEval()................................ FUN-372
MacroSubst() FUN-373
Max().. FUN-375
Max_col() FUN-376
Max_row() FUN-378
MaxCol() FUN-376
MaxRow()................................... FUN-378
Mcol() ... FUN-380
MdbLck() FUN-381
Mdi

- window
-- close FUN-382
-- open FUN-383
-- select FUN-385

MDI mode FUN-45
MdiClose().................................. FUN-382
MdiOpen() FUN-383
MdiSelect()................................. FUN-385
Memo field

- count lines FUN-411
- extract line............................. FUN-399
- extract string.......................... FUN-412
- input, output FUN-390
- string position FUN-414

- translation..............FUN-386, 389, 405
Memo file

- compatibility modeFUN-268
MemoCode()FUN-386
MemoDecode()FUN-389
MemoEdit()FUN-390

- insertFUN-474
- soft CR translation.................FUN-308

MemoEncode()FUN-386
MemoLine()................................FUN-399
MemoRead()FUN-401
Memory()....................................FUN-402
MemoTran()FUN-405
MemoWrit()FUN-406
MemvarBlock()...........................FUN-407
Mhide()FUN-408
Min() ...FUN-409
MinMax()FUN-410
MlCount()FUN-411
MlCtoPos()FUN-412
MleftDown()................................FUN-413
MlPos().......................................FUN-414
Mod()..FUN-415
Modulus

- dBaseFUN-415
Monitor

- color checkFUN-342
Month().......................................FUN-416
Mouse

- buttonFUN-413, 420
-- setting...............................FUN-381

- button pressFUN-326, 332
- button status..........................FUN-329
- check for................................FUN-418
- cursor

-- hide...................................FUN-408
-- position

--- set................................FUN-424
-- show.................................FUN-425
-- type...................................FUN-423

- movementFUN-326, 332
- position

-- column..............................FUN-380
-- row....................................FUN-421

- status.............................FUN-329, 426
-- recoverFUN-419
-- save..................................FUN-422

MposToLc()................................FUN-417
Mpresent()..................................FUN-418

FUN 631

MrestState()FUN-419
MrightDown()FUN-420
Mrow() ..FUN-421
MsaveState()..............................FUN-422
MsetCursor()FUN-423
MsetPos()...................................FUN-424
Mshow()FUN-425
Mstate()FUN-426
Multiple database open...............FUN-347
Multi-user

- currently activeFUN-592, 594
- error.......................................FUN-427
- max supportedFUN-596

N

Name
- of executable.........................FUN-200

NetErr()FUN-427
NetName()FUN-429
Network

- error.......................................FUN-427
- user nameFUN-429

NEW clauseFUN-164
NextKey()FUN-430
Num2hex()FUN-432
Num2int()FUN-339
Number

- convert
-- from stringFUN-597
-- to string.............................FUN-558

- convert to integerFUN-338, 339
- formatFUN-568
- formattingFUN-558, 584
- hexadecimalFUN-312, 432
- roundingFUN-501
- square rootFUN-554

Numeric
- absolute valueFUN-16
- binary AND..............................FUN-62
- binary ORFUN-64
- binary shift.........................FUN-66, 67
- binary XOR..............................FUN-65
- comparison

-- maximum..........................FUN-375
-- min, max.....................FUN-68, 410
-- minumum..........................FUN-409

- maximum...............................FUN-375

- minumumFUN-409
- to characterFUN-74

NumLock statusFUN-329

O

ObjClone()..................................FUN-433
Object

- clearFUN-548
- clone......................................FUN-433
- determine classFUN-352
- determine propertiesFUN-355
- displayFUN-619
- equivalence check.................FUN-354
- error blockFUN-194
- GET activeFUN-296
- TbColumn

-- createFUN-572
Oem2ansi

- translation table.....................FUN-255
Oem2ansi()FUN-435
OemToAnsi()..............................FUN-435
ON KEY

- status.....................................FUN-436
OnKey()......................................FUN-436
Operating system

- usedFUN-441
OR

- binaryFUN-64
OrdBagExt()FUN-437
OrdBagName()...........................FUN-437
OrdCond()FUN-437
OrdCreate()FUN-437
OrdDescend()FUN-437
OrdDestroy()FUN-437
OrdFor()FUN-438
OrdIsUnique()FUN-438
OrdKey()FUN-438
OrdKeyAdd()FUN-438
OrdKeyCount()...........................FUN-438
OrdKeyDel()FUN-438
OrdKeyGoto().............................FUN-438
OrdKeyNo()................................FUN-438
OrdKeyVal()FUN-439
OrdListAdd()...............................FUN-439
OrdListClear()FUN-439
OrdListRebuild().........................FUN-439
OrdName()FUN-439

FUN 632

OrdNumber().............................. FUN-439
OrdScope() FUN-439
OrdSetFocus() FUN-439
OrdSetRelat()............................. FUN-439
OrdSkipUnique() FUN-440
Os() .. FUN-441
OutErr() FUN-442
Output

- array FUN-618
- box .. FUN-179

-- dialog.................................. FUN-37
-- info.................................... FUN-324

- browsing................................ FUN-573
- database

-- screen oriented FUN-573
- dialog box................................ FUN-37
- Error box FUN-193
- extra file................................. FUN-465
- format FUN-444
- formatting FUN-584
- info box.................................. FUN-324
- list of choices......................... FUN-366
- object..................................... FUN-619
- printerFUN-171, 465

-- formatted FUN-172
-- position FUN-547

- redirectionFUN-442, 443
- screen

-- boxes................................ FUN-179
-- bufferingFUN-178, 182, 183
-- clear.................................. FUN-515
-- color..................FUN-184, 465, 531

--- background.................. FUN-533
--- get................................ FUN-535

-- column....................FUN-80, 82, 83
-- convert

--- from Dos...................... FUN-510
--- to Dos FUN-512

-- cursor FUN-536
--- gui type........................ FUN-539

-- drawing.....................FUN-188, 307
-- flickering FUN-178
-- formatted FUN-172
-- length

--- in columns FUN-561
--- in pixel FUN-562
--- in spaces FUN-563

-- linesFUN-188, 307
-- max columns FUN-376

-- max rowsFUN-378
-- pop-up window ..FUN-37, 193, 324,

579, 602
-- positionFUN-173, 545
-- position from string...........FUN-417
-- restoreFUN-490
-- row............................FUN-502, 504

--- adaption.......................FUN-505
--- visible...........................FUN-506

-- save..................................FUN-508
-- scrollFUN-515
-- sequential .FUN-171, 172, 184, 465

- screen oriented
-- arrayFUN-573
-- database...........................FUN-573

- text ..FUN-390
- Text boxFUN-579
- to stderrFUN-442
- to stdoutFUN-443
- translation table

-- terminal.............................FUN-269
- Warning boxFUN-602

OutStd()FUN-443

P

PadC()..FUN-444
PadL() ..FUN-444
PadR()..FUN-444
Param()FUN-446
Parameter

- get by positionFUN-446
- number ofFUN-447, 450

Parameters()FUN-447
Path

- absolute.................................FUN-586
Pcalls()FUN-448
Pcol()..FUN-449
Pcount()FUN-450
PID

- currentFUN-201
Pixel

- conversion.......................FUN-82, 504
- string length...........................FUN-562
- to columns.............................FUN-451
- to rows...................................FUN-452

Pixel2col()FUN-451
Pixel2row()FUN-452

FUN 633

Pop-up windowFUN-37, 193, 324, 579,
602

Print
- GUI driver..............................FUN-453

Printer
- availability..............................FUN-358
- column...................................FUN-449
- cursor

-- positionFUN-547
- esc sequencesFUN-276
- file name................................FUN-274
- row...FUN-464
- setting....................................FUN-276
- spooler

-- file name...........................FUN-274
- status.....................................FUN-457

PrintGui()....................................FUN-453
PrintStatus()FUN-457
Procedure

- call stackFUN-460, 462
- source file lineFUN-459
- source file name....................FUN-458

ProcFile()FUN-458
ProcLine()FUN-459
ProcName()................................FUN-460
ProcStack()FUN-462
Program

- active usersFUN-592
- call stackFUN-448, 460, 462

-- file lineFUN-459
-- file name...........................FUN-458

- exception handlingFUN-70
- exit code................................FUN-197
- max users..............................FUN-596
- name ofFUN-200
- performanceFUN-524
- PID ..FUN-201
- sleep

-- milliseconds......................FUN-550
-- secondsFUN-549

- termination key......................FUN-530
Proper()FUN-463
Prow() ..FUN-464

Q

Qout() ...FUN-465
Qout2()FUN-465

Qqout()FUN-465
Qqout2()FUN-465

R

Rat() ...FUN-467
Rdd

- set default..............................FUN-470
- used drivers...................FUN-468, 469

RDD
- database

-- object of............................FUN-134
RddList()FUN-468
RddName()FUN-469
RddSetDefault()FUN-470
READ

- changedFUN-589
- current variableFUN-485
- dBase alike............................FUN-475
- exit...FUN-471
- input changes?......................FUN-484
- input processingFUN-298
- insertFUN-474
- post-validatingFUN-304
- pre-validating.........................FUN-305
- process one GETFUN-306
- process SET KEYFUN-299
- processing.............................FUN-478
- save fieldsFUN-481
- terminateFUN-476

Read fileFUN-401
ReadExit()FUN-471
ReadInsert()FUN-474
ReadKey()FUN-475
ReadKill()FUN-476
ReadModal()FUN-478
READONLY clause.....................FUN-164
ReadSave()FUN-481
ReadUpdated()FUN-484
ReadVar()FUN-485
RecCount().................................FUN-486
RecNo()......................................FUN-487
Record

- copy to arrayFUN-217
- countFUN-363, 486
- deleteFUN-113

-- check for...........................FUN-168
- field

FUN 634

-- access FUN-216
- filtering.....................FUN-98, 126, 150
- lockingFUN-141, 367, 493, 499

-- automatic............................ FUN-57
-- check FUN-346
-- list of FUN-142
-- unlockFUN-144, 160, 162

- logical FUN-438
- modify.................................... FUN-222
- movementFUN-132, 157

-- first.................................... FUN-133
-- last.................................... FUN-131

- new.. FUN-97
- number FUN-487
- process.................................. FUN-121
- replace FUN-222
- replace from array................. FUN-224
- size.. FUN-488
- un-delete FUN-136

RecSize() FUN-488
Redirection

- outputFUN-442, 443
Relation of databasesFUN-138, 155
Rename file................................. FUN-249
Replicate().................................. FUN-489
RestScreen().............................. FUN-490
RGB color FUN-84
Right() .. FUN-492
Rlock().. FUN-493
RlockVerify() FUN-499
Round() FUN-501
Rounding..................................... FUN-501
Row

- adaption FUN-505
- in pixel FUN-452
- max available FUN-378
- mouse FUN-421
- pixel conversion FUN-504
- position.................................. FUN-502
- printer FUN-464

-- set..................................... FUN-547
- set ... FUN-545
- visible FUN-506

Row() ... FUN-502
Row2pixel() FUN-504
RowAdapt() FUN-505
RowVisible()............................... FUN-506
Run-time

- application objecz FUN-46

- application typeFUN-44, 350
- MDI, SDI..................................FUN-45

S

SaveScreen()FUN-508
ScrDos2unix()FUN-510
Screen

- convert
-- from characterFUN-514
-- from Dos...........................FUN-510
-- to characterFUN-76
-- to DosFUN-512

- cursorFUN-539
-- positionFUN-545

- restoreFUN-490
- save.......................................FUN-508

Screen2chr()FUN-514
Scroll()..FUN-515
ScrUnix2dos()FUN-512
SDI modeFUN-45
Seconds()...................................FUN-517
SecondsCpu()FUN-519
Seek

- successFUN-242
Select().......................................FUN-521
SET

- status.....................................FUN-522
SET FUNCTION

- retrieveFUN-303
SET KEY

- status.....................................FUN-542
Set() ...FUN-522
SetAnsi()FUN-528
SetBlink()FUN-529
SetCancel()FUN-530
SetCol2get()...............................FUN-535
SetColor()...................................FUN-531
SetColorBackground()FUN-533
SetCursor()FUN-536
SetEvent()FUN-537
SetGuiCursor()...........................FUN-539
SetKey()FUN-542
SetMode()FUN-544
SetPos()FUN-545
SetPrc()......................................FUN-547
SetVarEmpty()FUN-548
SHARED clause..........................FUN-164

FUN 635

Shift key status............................FUN-329
Sleep()FUN-549
SleepMs()...................................FUN-550
Soundex()FUN-551
Source

- autolock.prg.............................FUN-58
- getsys.prg..............................FUN-480
- webmail.cFUN-615

Space
- on hard disk...........................FUN-176

Space()FUN-553
Spooler

- file name................................FUN-274
Sqrt() ..FUN-554
StatBarMsg()FUN-555
Status bar

- message........................FUN-555, 556
StatusMessage()........................FUN-556
Stderr

- outputFUN-442
- redirectionFUN-442

Stdin
- inputFUN-336, 337
- read from...............................FUN-245

Stdout
- outputFUN-443
- redirectionFUN-443

StoD()...FUN-557
Str() ..FUN-558
String

- access
-- positionFUN-564

- alpha characterFUN-340
- ASCII valueFUN-48, 74
- clearFUN-548
- comparison

-- min, max.............................FUN-68
- conversion

-- from int formatFUN-313
-- from long int formatFUN-360
-- to int formatFUN-59
-- to long int format.................FUN-60
-- to short int formatFUN-61

- convert
-- from dateFUN-189, 190
-- from numberFUN-558
-- from screenFUN-76
-- to dateFUN-91, 557
-- to numberFUN-597

-- to screen...........................FUN-514
- CRC 32 value..........................FUN-90
- create

-- by replicatingFUN-489
-- by spacesFUN-553

- day of weekFUN-73
- digit character........................FUN-348
- emptyFUN-191
- extract

-- left.....................................FUN-364
-- part ofFUN-571
-- rightFUN-492

- extract e-mail URLFUN-612
- fill from fileFUN-401
- formattingFUN-463, 584
- from number

-- with leading zeroesFUN-568
- hexadecimal from numberFUN-432
- hexadecimal to number.........FUN-312
- insertFUN-569
- insert spacesFUN-444
- lengthFUN-365, 560

-- in columnsFUN-561
-- in pixelsFUN-562
-- in spacesFUN-563
-- normalize..........................FUN-444

- locate.........................FUN-54, 56, 467
- lower character..............FUN-351, 369
- monthFUN-78
- number of charactersFUN-365, 560
- paddingFUN-444
- pathFUN-586
- remove spaces FUN-41, 370, 507, 585
- replaceFUN-569

-- partiallyFUN-566
-- positionFUN-565
-- tags...................................FUN-566

- search & FUN-see replace
- search forFUN-54, 56, 467
- soft CR to hard CR................FUN-308
- spaces...................................FUN-553
- substring................................FUN-571
- time..FUN-581
- translation

-- character set...............FUN-43, 435
- trim all......................................FUN-41
- trim leftFUN-370
- trim rightFUN-507, 585
- upper characterFUN-359, 590

FUN 636

- width
-- in columns FUN-561
-- in pixels FUN-562
-- in spaces FUN-563

- words
-- first char in uppercase...... FUN-463

- write to file FUN-406
- zero byte FUN-292

StrLen() FUN-560
StrLen2col() FUN-561
StrLen2pix() FUN-562
StrLen2space() FUN-563
StrPeek().................................... FUN-564
StrPoke().................................... FUN-565
StrTran()..................................... FUN-566
StrZero()..................................... FUN-568
Stuff() ... FUN-569
SubStr()...................................... FUN-571
System

- CPU seconds FUN-519
- memory available.................. FUN-402
- operating system used.......... FUN-441
- performance.......................... FUN-524
- Performance.......................... FUN-519
- seconds................................. FUN-517
- sleep

-- milliseconds...................... FUN-550
-- seconds............................ FUN-549

- time FUN-581
System error FUN-185

- in clear text............................ FUN-186

T

TbColumn{ } FUN-572
TbColumnNew()......................... FUN-572
TbMouse().................................. FUN-576
Tbrowse

- column................................... FUN-572
- mouse handling..................... FUN-576

Tbrowse{ }................................... FUN-573
TbrowseArr() FUN-573
TbrowseDb() FUN-573
TbrowseNew()............................ FUN-573
TempFileName()........................ FUN-577
Terminal

- type ahead FUN-291
Text

- input, outputFUN-390
TextBox()FUN-579
Time

- currentFUN-581
- formattedFUN-581
- seconds.........................FUN-517, 519

Time()...FUN-581
Tone() ..FUN-583
Transform()FUN-584
Translate

- soft CR to hard CR................FUN-308
Translation

- file extensionFUN-289
- file name................................FUN-283
- file to lowercaseFUN-266
- file to uppercase....................FUN-266
- memo field.............FUN-386, 389, 405
- path separatorFUN-271
- path to lowercase..................FUN-272
- path to uppercaseFUN-272

Translation table
- ANSI to OEM.........................FUN-255
- keyboard

-- GUI mode.........................FUN-260
-- terminal modeFUN-261

--- special keysFUN-285
- localizedFUN-264, 282
- terminalFUN-269

Trim() ...FUN-585
TruePath()..................................FUN-586
Type()...FUN-587

U

Updated()FUN-589
Upper()FUN-590
Used() ..FUN-591
User nameFUN-429
Users

- applicationFUN-592
- databaseFUN-594
- max supportedFUN-596

UsersActive()FUN-592
UsersDbf()..................................FUN-594
UsersMax()FUN-596

FUN 637

V

Val()..FUN-597
ValType()FUN-598
Variable

- character
-- trimFUN-see String, trim

- clearFUN-548
- code block

-- retrieveFUN-407
- default value..........................FUN-167
- empty value...........................FUN-191
- macro

-- type...................................FUN-587
- numeric

-- typed
--- conversionFUN-339

- screen
-- convert........FUN-76, 510, 512, 514

- set
-- empty................................FUN-548

- type................................FUN-587, 598
-- differateFUN-263

Version()FUN-600

W

WarnBox()..................................FUN-602
Warning

- in development mode............FUN-258
- promptFUN-526

Web
- dateFUN-604
- processing

-- environment......................FUN-606
-- error..................................FUN-605
-- error logFUN-611
-- extract e-mail URLFUN-612
-- form dataFUN-613
-- formsFUN-607
-- HTML

--- footerFUN-610
--- headerFUN-609

-- input..................................FUN-613
-- send e-mail.......................FUN-614

WebDate()..................................FUN-604
WebErrorHandler().....................FUN-605
WebGetEnvir()FUN-606
WebGetFormData()FUN-607
WebHtmlBegin().........................FUN-609
WebHtmlEnd()FUN-610
WebLogErr()FUN-611
WebMailDomain()FUN-612
WebOutData()............................FUN-613
WebSendMail()FUN-614
Window

- mdi
-- closeFUN-382
-- openFUN-383
-- selectFUN-385

- status bar
-- message...................FUN-555, 556

Word() ..FUN-616
Work area

- alias name...............................FUN-40
- close......................FUN-101, 102, 164
- determine all used.........FUN-124, 128
- new................................FUN-147, 164
- openFUN-164
- selectFUN-147, 521
- used indicesFUN-322

Write fileFUN-406

X

XOR
- binaryFUN-65

Y

Year() ...FUN-617

FUN 638

FUN 639

FUN 640

