

The whole FlagShip 7 manual consist of following sections:

Section Content Pages

GEN General information: License agreement & warranty,
installation and de-installation, registration and support 18

LNG
FlagShip language: Specification, database, files,
language elements, multiuser, multitasking, FlagShip
extensions and differences

176

FSC Compiler & Tools: Compiling, linking, libraries, make,
run-time requirements, debugging, tools and utilities 90

CMD Commands and statements: Alphabetical reference of
FlagShip commands, declarators and statements 486

FUN Standard functions: Alphabetical reference of FlagShip
functions 640

OBJ
Objects and classes: Standard classes for Get,
Tbrowse, Error, Application, GUI, as well as other
standard classes

368

RDD Replaceable Database Drivers 38

EXT
C-API: FlagShip connection to the C language, Extend
C System, Inline C programs, Open C API, Modifying
the intermediate C code

160

FS2 Alphabetical reference of FS2 Toolbox functions 376

QRF Quick reference: Overview of commands, functions and
environment 40

PRE Preprocessor, includes, directives 30

SYS
System info, porting: System differences to DOS, porting
hints, data transfer, terminals and mapping, distributable
files

42

REL Release notes: Operating system dependent informa-
tion, predefined terminals 8

APP Appendix: Inkey values, control keys, ASCII-ISO table,
error codes, dBase and FoxPro notes, forms 34

IDX Index of all sections 42

fsman The on-line manual contains all above sections, search
function, and additionally last changes and extensions variable

multisoft Datentechnik, Munich, Germany

Copyright (c) 1992..2009
All rights reserved

Object Oriented Database Development System,
Cross-Compatible to UNIX, Linux and MS-Windows

Section LNG

Manual release: 7.1

For the current program release see label on distribution disk and
your Activation Card, or check on-line by issuing FlagShip -version

Copyright
Copyright © 1992..2009 by multisoft Datentechnik, D-81545 Munich, Germany. All rights
reserved worldwide. Manual authors: Jan V. Balek, Ibrahim Tannir, Sven Koester

No part of this publication may be copied or distributed, transmitted, transcripted, stored in a
retrieval system, or translated into any human or computer language, in any form or by any
means, electronic, mechanical, magnetic, manual, or otherwise; or disclosed to third parties
without the express written permission of multisoft Datentechnik. Please see also "License
Agreement", section GEN.2

Made in Germany. Printed in Germany.

Trademarks
FlagShip™ is trademark of multisoft Datentechnik. Other trademarks: dBASE is trademark
of Borland/Ashton-Tate, Clipper of CA/Nantucket, FoxBase of Microsoft/Fox, UNIX of
AT&T/USL/SCO, AIX of IBM, MS-DOS and MS-Windows of Microsoft. Other products
named herein may be trademarks of their respective manufacturers.

Headquarter Address
Headquarter:

multisoft Datentechnik
Harthauser Str. 85
81545 München
Germany

Telephone: (+49-89) 6490040
Fax: (+49-89) 6412974

E-mail: support@flagship.de
support@multisoft.de
sales@multisoft.de

Web/Ftp: http://www.fship.com
ftp://mult-soft.de/pub

Call or e-mail multisoft for your local dealer or distributor

LNG 1

LNG: Introduction to FlagShip

1. Introduction to FlagShip ..5
1.1 What FlagShip is...5
1.2 Mode of operation ...6
1.3 System differences ...7

2. Basis of the FlagShip Language ...9
2.1 Language Specification ..9
2.2 Structure of a FlagShip Program ..12

2.2.1 Language Syntax..12
2.2.2 Statements..12
2.2.3 Comments ..13

2.3 Program Files and Modules..15
2.3.1 Main Program ...15
2.3.2 Procedures and Functions..16
2.3.3 Code Blocks..19
Macro-evaluated Code Block:..21

2.4 Commands..22
2.5 Control Structures ...23

2.5.1 Choice constructs ...23
2.5.2 Iteration constructs ...25
2.5.3 Interrupting Program Flow, Exceptions ..26

2.6 Variables ...27
2.6.1 Variable Classes...27
2.6.2 Initialization and Declaration...28
2.6.3 Variable Scope, Visibility and Lifetime..29
2.6.4 Type of Variables..30
Numeric Variable ...30
Character Variable (string)...32
Date Variable ...34
Logical (boolean) Variable ...35
Arrays...36
Screen Variable ...39
Code Block Variable ..40
Object Variable ..40
NIL Variable ...41
2.6.5 Binary 0 Characters in Strings..42
2.6.6 Variable Type Declaration ..43

2.7 Literal Constants ...44
Numeric constant...44
Character constant ..45
Date constant...46
Logical constant ...46
NIL constant...47
Array constant..47

2.8 Expressions ..48

LNG 2

Expression List ..48
2.9 Operators ..49

Assignments ..49
Mathematical Operators ..51
Relational Operators..53
Logical Operators ..55
Character Concatenation...56
Operator Precedence ..56

2.10 Macros ..58
Content of the Macro-Variable...59
Type of Macro-Variable ...60
Nested Macros...60
Text-Substitution..60
Macros in Code Blocks..61
Linking Macro-invoked Function..61

2.11 Objects and Classes...62
2.11.1 Class and Object Definition ..62
2.11.2 Instances ..63
2.11.3 Methods, Access, Assign ...65
2.11.4 Naming convention...67
2.11.5 Using Objects ...68
2.11.6 Performance Hints ..71
2.11.7 Converting Class(y) syntax...72

3. Files... 73
Database Files...73
Memo Fields Files..73
Index Files ...73
Memory Files ...73
Report Files ...74
Label Files ...74
Program Files ..74
Include Files...74
Format Files for READ...74
Printer Files..74
Other Files ...75

3.1 File Names UNIX vs. DOS/Windows..76
3.2 Directory and File Access ...77
3.3 Access Rights ...79
3.4 Printer Output ...81
3.5 Low-Level File System..83
3.6 Large File Support ..84

4. The Database System.. 85
4.1 Databases...85

Selected Database Commands and Functions ...86
Creating a Database..88

4.2 Database Records and Fields ..90
Record Order ...91

LNG 3

Accessing the Database Records and Fields..91
Accessing the Memo Field...92
Accessing the Variable Memo Field ..92

4.3 Working Areas ..93
Concurrent Database Access..93

4.4 Aliases ..95
Special Aliases: ...95

4.5 Indices, Sorting ...97
Index Integrity Checking ..98

4.6 Searching, Filtering ...100
4.7 Relations ...101
4.8 Multiuser, Multitasking ..103

5. The Input/Output System...109
5.1 The Output System...114

5.1.1 Sequential (Console) Output ..114
5.1.2 Full-screen Output ..115
5.1.3 Special Output ..116
5.1.4 Terminal Output and Mapping ..116
5.1.5 Colors..117
5.1.6 Printer and File Output..118
5.1.7 Printer Output to a remote printer...119
5.1.8 Printer Output, Options...119
a. Redirection to printer driver ...119
b. Printing Using Spooler File ..120
c. Printing Directly To Port Or Device..120
d. Printing Via FlagShip's Printer Class ...121
e. Passing Spooler-File To Printer...121
f. Printing Via Redirected Port ...122
g. Printing On GDI Based Printers...123

5.2 The Input System..124
5.2.1 Keyboard Input ...124
5.2.2 Keyboard Redefinition ..124
5.2.3 Full-screen Input ...125
5.2.4 Menu System..126
5.2.5 Input Mapping ...126
5.3 Difference between Terminal and GUI ..128
5.3.1 Coordinates ..130
5.3.2 Fonts ...130

5.4 National Character Support ..133
5.4.1. Different Character Sets ..133
5.4.2. Using Of National & Special Characters..134
5.4.3. String Output Conversion ..135
5.4.4. Character Input Conversion...136
5.4.5. Case Studies ...137

6. The GET System ...139
The @...GET Command ...139
The READ Command ...140

LNG 4

7. The TBrowse System... 141
Creation and Usage of TBrowse Objects ...141
Stabilizing the System ..141

8. The Open C System ... 143
8.1 The Extend C System...143
8.2 Open C API...145
8.3 The Included C Code (Inline-C) ..145
8.4 Modifying the intermediate C Code ..147

9. Program and Data Compatibility... 148
9.1 Program compatibility ...148
9.2 Data compatibility ...148
9.3 Differences to Clipper and other xBASE ..149
9.4 FlagShip Extensions ...150
9.5 Keeping compatibility with DOS programs ...153
9.6 Porting to Unix/Linux step-by-step..155
9.7 Porting to MS-Windows step-by-step ...156

10. Programming Examples .. 159

Index.. 169

LNG 5

1. Introduction to FlagShip
In this chapter you will learn about the essential operating modes of FlagShip and the
system differences between DOS and UNIX. The programmer's support is covered in detail
in chapter 2.

Note: This section gives a quick overview of the FlagShip language. It is not
intended as an introduction to programming. If you are a beginning programmer,
any good programming primer, especially in xBase, dBASE, Clipper or FoxBase,
may be used first.

1.1 What FlagShip is
The FlagShip database development system consists of

•A powerful and flexible programming language, which is mostly compatible in syntax to
Clipper and dBASE. Its commands and functions are mostly compatible to Clipper 5.x and
Summer'87, whereby FlagShip offer many additional features and enhancements. A
FoxBase and FoxPro compatibility is available directly or due an additional package.

•The FlagShip Preprocessor acts as one pass of the Compiler. It performs syntactic
source checking and translates the preprocessor directives (see section PRE) and user
defined commands to UDFs (user- defined-functions). The preprocessor uses the standard
include file "std.fh" by default (usually stored in <FlagShip_dir>/include), as well as other
optional include files.

•The FlagShip Compiler which translates the preprocessed FlagShip (and also Clipper or
xBase) source code into C source, checks it for syntax and plausibility, and then invokes
the UNIX C compiler to complete the translation into the machine language (also named
native code).

•The accompanying FlagShip Library, containing
•all necessary modules to support the language, dynamic variable scoping, statements

and commands,
•all standard functions linked as needed,

•the runtime system to support macro evaluation at run-time,

•the database and index engine,

•the input/output system including graphic GUI interface,

•the object classes,

•a debugger enabling checking and setting actual variables and more.

•Tools for file and database handling, creation of Makefiles, as well as for porting your
applications from or to the MS-DOS operating system.

LNG 6

1.2 Mode of operation
FlagShip is a true compiler. The language definition complies to great extent with Clipper
definition, including many extras and enhancements. Thus, all conceptual differences
between Clipper and dBASE apply for FlagShip, too. For a truly compatibility to FoxBase and
FoxPro, use the -fpx or -fxp compiler switch or the additional package.

Most notable is the difference between a compiler (i.e. FlagShip) and an interpreter (i.e.
dBASE). The main property of a compiler being that it produces executable files, not
requiring any kind of a run-time module. The byproduct is protecting the source code.

The compilation of your application is done in the following phases:

•Pre-compiling the FlagShip language, syntax checking and resolving the preprocessor
directives,

•Translation from the FlagShip language in the C code
•Compilation and optimizing the C source into machine language (object code) using the

standard UNIX C compiler.
•Linking the object code together with the FlagShip and UNIX libraries using the standard

UNIX linker.

All this steps are done automatically when invoking FlagShip, however each separate step
can be individually executed with the proper commands. See more in section FSC.

The FlagShip compiler and library handles three different i/o modes:

GUI : graphical oriented i/o, requires X11 or Windows 32/64bit
Terminal: text/curses oriented i/o e.g. for console or remote terminals, same behavior as

FlagShip 4.48 and Clipper.
Basic : basic/stream i/o e.g. for Web, CGI, background processing etc. The screen

oriented i/o is roughly simulated for source compatibility purposes.

The i/o mode is either set at compile-time, or determined at run-time from the currently used
environment. The compile-time solution is recommended when the target environment is
known, it produces faster and smaller executables.

When the application is compiled with -io=a (or without -io=? switch), a hybrid application
is created where the current environment is determined at run-time. GUI i/o is used on active
X11/Win32, Terminal on console, Basic otherwise. The detected environment can be
overridden by the command-line switch -io=g/t/b of the executable.

The GUI based executable creates automatically main window with menu bar. The setup for
the window and menu is customizable and available in the <FlagShip_dir>/system/initio.prg
and initiomenu.prg. Note: these functions are invoked at start-up, before user INIT
FUNCTION and user-main is executed.

LNG 7

All the screen oriented i/o such as @..SAY, @..GET, Achoice(), Alert(), Save/RestScreen()
etc. are fully supported also in GUI. Some of them are internally mapped to GUI conformable
widgets (i.e. controls in Microsoft terminology) like ListBox, dialog boxes etc. or window
properties like Menubar, see more in LNG.5.3.

In GUI, both the common row/column coordinates and y/x pixel entries are supported and
controlled by the SET PIXEL on/OFF or by passing an additional parameter for the most
standard functions and objects. The default is SET PIXEL OFF which ensure backward
source compatibility to FS4 and Clipper sources. In this mode, FlagShip calculates internally
the real pixel position corresponding to the used font, see details in description of Applic and
Font classes and SET FONT TO... command.

There are in fact three different classes in the FlagShip library for each specific i/o operation.
The decision which class should be taken is done either by the compiler when the -io=g/t/b
switch was used, or at run-time from the system environment or via command-line switch.
The run-time setup is available in the source .../system/initio.prg

The in GUI mode used event oriented programming requires mostly full OOP
programming style, which differs significantly from the idea of procedural oriented xBase
programs. To avoid bothering you with a new programming style and a long learning curve,
FlagShip handles all the required event actions internally, so you can fully concentrate your
power on your main task - the development of professional applications.

For programming hints covering the difference between GUI, Terminal and Basic i/o mode,
please refer to section LNG.5.3.

1.3 System differences
FlagShip was designed for the UNIX operating system. But because UNIX differs from one
computer to the other, the actual FlagShip package you are using was adapted especially for
your computer and operating system.

Note: Therefore, we guarantee the full functionality on the same operating system
with a release number which is the same as or higher than that given on the
FlagShip distribution media (see label and Activation Card) only.

We cannot make any warranty for attempting to run an executable on different OS.
The produced executable may however run on the same processor type with other
operating systems (e.g. XENIX executable may run on SCO UNIX but seldom the
reverse and never on Motorola) or other, higher OS releases (i.e. SCO UNIX 3.2
runs on SCO rel 3.4 and 4.1 or HP/UX 8.07 on HP/UX 9.2 etc.).

FlagShip takes into consideration, and adapts to the differences between MS-DOS and
various flavors of UNIX (or to 32bit MS-Windows) for you, so that you do not have to bother
with this. The main differences to MS-DOS operating system are:

LNG 8

•Composition and length of filenames: all versions of UNIX support, at least, 14 characters
in the filename (usually up to 255). Lower and upper characters are distinguished, and dot
(.) is treated as any other character, i.e. it has no predefined meaning and can be repeated
in the filename as many times as chosen. In UNIX the filenames are usually given in lower
case characters, directory and paths are written with "/" instead of "\". FlagShip translates
most of these differences automatically, see section LNG.3 and SYS.

•RAM size and overlays: Neither UNIX nor Windows-32/64 has concept corresponding to
DOS overlays. Instead, it uses paging and/or swapping to achieve virtually unlimited
memory. Therefore, linking is straight-forward, without overlays. See more in chapter
LNG.9.3 and SYS.

•Disk space and file system: UNIX utilizes the concept of mounting physically separate
disks into one file system (a tree-like structure of directories). Thus, from the user's point of
view, all disks and partitions look like one. Asking for free disk space returns the value for
the physical disk and partition on which the current directory resides. There is no
equivalent to the MS-DOS drive selector (like C:) in the path specification, but FlagShip
can translate these automatically to a UNIX directory using the environment variable
x_FSDRIVE (see LNG.3.2, LNG.9.3-4 and FSC.3.3).

•Compatibility of programs: FlagShip supports the structure and semantics of Clipper or
dBASE .prg files as closely as possible, no semantic or syntactic program changes are
necessary. Since .fmt files are essentially program files they are fully supported, too. The
syntax of commands, standard functions and preprocessor directives is compatible with
Clipper'87 and 5.x. Also the Extended C system of Clipper is supported. In addition, the
FlagShip programmer may also use inline C code within a .prg file or the Open C API
interface. See chapter LNG.8 and the section EXT.

•Compatibility to FoxPro sources: the most differences are supported automatically by
using the -fox compiler switch. See further details in section APP.

•Compatibility of database files: .dbf and .dbt file structure of dBASE III+, Fox or Clipper is
fully supported by the default DBDIDX driver without any transformations. Dbase IV and V
databases have to be converted (by dBase) to dBASEIII format. FoxBase and FoxPro .fpt
files are not supported by DBDIFX, but available in the CB4CDX driver.

Index files, neither .ntx (Clipper) nor .ndx (dBase), .mdx (dBase), .idx (Foxbase), .cdx
(Clipper, FoxPro) are supported by the default DBFIDX, but available in the CB4* driver,
see sect. REL. FlagShip's .idx structure is not compatible to the same named Foxbase
index file.

The memo files .mem are compatible to all Xbase dialects. The report an label files .frm
and .lbl are also supported. See also chapter LNG.3 and LNG.9.3-5.

LNG 9

2. Basis of the FlagShip Language
The FlagShip language is based on the Xbase standard with all the extensions of
CA/Clipper. Therefore, all Clipper'87 or 5.x programs and most other Xbase dialects
(dBASE, FoxBase etc.) will be compiled by FlagShip without any modification. Only some
system specific differences (see LNG.1 and LNG.9) have to be considered.

2.1 Language Specification
- Language, Compiler:
Fully source compatible Clipper 5.0 ... 5.2 + 5.3 & 87
Almost source compatible dBASE, FoxBase
Additional compatibility package available for FoxPro
Common source code for DOS and UNIX yes
User defined commands and functions yes
Preprocessor directives of Clipper 5.x yes
Additional preprocessor directives yes *
Macro evaluation at run-time yes
Code blocks, objects yes
All Clipper commands and functions yes
Additional commands and functions yes *
Abbreviation of commands and some functions yes
Extended C system yes
Inline C code within the .prg file yes *
Translation of .prg source into the C language yes *
Support GUI look & feel environment yes *
Support of terminal/console based applications yes *
Support of Web/CGI or batch processing yes *
Hybrid application for all three modes yes *

Function or procedure name 128 chars, first 10 chars significant
Number of UDFs and procedures unlimited *
Nesting of UDFs unlimited *
Structure nesting unlimited *
Number of nested loops unlimited *
Expression and macro length up to 4 KB *
Nesting of each macro up to 255 depth *
Break from loops yes *
Save & restore screen yes
PC-8/OEM character set support yes
ANSI/ISO character set support yes *
Binary 0 in string yes, on request *

- Files, Multiuser:
Maximal program size (executable) 2 to 4 Gigabyte **
Maximal size of .dbf, .dbt > 4 Terabyte **
Fully compatible .DBF and .DBT files yes
Compatible .MEM files yes
File & record locking, exclusive & shared dbf yes
Multiple record locking yes *
Automatic locking, user-modifiable yes *

LNG 10

Network database share yes
Multiuser, multitasking yes *
Support for large files > 2GB yes *

Filename Length any size, system dependent **
Path name Length 255 characters *
Simultaneously opened files unlimited **

- Input/Oputput:
Color and b/w terminals yes
GUI look & feel yes *
Supports terminfo, curses yes *
Runs on text & X/terminal yes *
Access to UNIX using RUN yes *
PC-8 or ANSI/ISO character set yes *
Additional character mapping yes *
Printer output spooled *
Low-level input/output yes

- Variables:
Dynamic variable scoping yes
Public, private, arrays, static, local yes
Typed static, local, global yes *
Number of memory variables unlimited *
Length of variable name unlimited, first 10 chars significant
Variable structure 28 bytes, incl. name and value **
Character variables 8-bit ASCII, up to 2000 MB, on heap *
Numeric variables 8 byte double float, precis. 15 digits
Date variables 4 byte long integer
Logical variables 1 byte character
Screen variables 4 byte memory pointer *
Arrays one- and multi-dimensional
Array size 65535 each dimension *
Array element type all variable types or other array
Store/restore of arrays in .mem files yes *

- Objects:
Predefined classes Get, Error, Tbrowse, TbColumn
Database classes DataServer, DbServer, DbfIdx *
User definable classes yes *
Inheritance of classes yes *
Method, Access, Assign yes *
Protected and Static methods
Instance, protect, hidden, export yes *
Prototyping of methods yes *
Automatic prototypes by the FS compiler yes *

- Database and Index:
Simultaneously opened working areas 65534 **
Simultaneously opened files unlimited **
Indices per working area 65000 *
Relations per working area 65000 *
Records per database 4 billion
Database size > 4 Terabyte **
Fields per record 65000 *
Character field 8-bit ASCII, up to 64 KB *

LNG 11

Numeric field ASCII format up to 19 digits incl. sign and deci
Date field ASCII 8 digits always
Logical field One ASCII character ('T','F','Y','N')
Memo field (.dbf) 10 digits pointer to .dbt block
Memo field (.dbt) blocks of 512 bytes, up to 64 KB ea. max.
Compressed memo field (.dbv) variable size up to 2GB *
Structure of DBF file Binary header + sequential records

of fixed length in ASCII format
Structure of .IDX file Binary header + Btree binary structure *

not compatible with .NTX and .NDX files
Index key size (statement) 420 bytes
Index key size (evaluated) 238 bytes *

By OOP capsulated, replaceable database drivers yes *
Database vs. index integrity checking yes *
Multiple record locking yes *
Automatic locking, user-modifiable yes *

- System:
Supported UNIX systems more than 50 *
Supported MS-Windows systems all 32-bit (NT4,2000,2003,2008,XP,Vista,7) *
User requirements UNIX run-time system or MS-Windows *
Developer requirements FlagShip devel. system + C compiler *
Run-time royalties none
Produces stand alone executables yes

Notes: * marked items are FlagShip extensions to Clipper.
** marked items dependent on the UNIX implementation or the

actual kernel setting or the used Windows version.

LNG 12

2.2 Structure of a FlagShip Program
The source code of any FlagShip program consists of a standard ASCII file with the
extension (the last four chars of the file name) being .prg or .fmt, which contains of an
arbitrary number of program statements.

2.2.1 Language Syntax
There are a number of rules that have to be obeyed so that the compiler can understand the
programmers intention and to produce valid executable code.

A program line may contain one or more statements, or a continuation of the statement given
on the previous line, such as:

• executable program statements (expression, assignment)
• control structures (if, case, loops, breaks etc.)
• variable or field declaration
• module (procedure or function) declarations
• standard and user defined commands
• access to standard and user defined functions
• preprocessor directives
• C inline code
• full-line or inline comments

2.2.2 Statements
Any program statement is terminated by the end-of-line marker. The program line can be
continued on the next line if the last character on the first line is a semicolon (";"). In this way
a program line can be continued on any number of lines, providing that the total length does
not exceed the current limit of 4095 characters.

FlagShip accepts both the UNIX eol syntax (line ends with LF only) and the MS-DOS syntax
(line ends with CR+LF).

The formatting of the source code (e.g. indenting of control structures or adding spaces
between the expression operators) by use of white space (blank or tab) increases the
readability of the source code, and will be ignored by the compiler.

Case sensitivity: all elements of the FlagShip language, like commands, keywords,
variables, procedure or function names etc. (except within the extend C system and the
UNIX file or path names) are not case sensitive (except the #define keywords for the
preprocessor). They may be given upper or lower case and intermixed. For clarity of used

LNG 13

syntax, the keywords, commands and standard function will be always given in
UPPERCASE in this manual.

Multiple statements: a program line may consist of one, two or more statements
(commands, expressions), separated by a semicolon ";". The last valid character on the line
may not be a semicolon, since this marks the continuation of the statement in the next line.
For example

a := 1
b := 2 ; c := a + b ; d := str(c) // same as three prg lines
text := "this " + ; // statement continues

"is my text"

Lists: some commands or statements require or allow more than one value, argument etc.
Such multiple items are separated by comma (see also LNG.2.8), e.g.:

command list : LOCAL var1, var2 := 0, var3
argument list : USE adress INDEX index1, index2, index3
parameter list : (name, text, param3)
expression list: (var1 := 1, var2 := 2, var3++, 4)
code block body: {|x| var1 := x, var2 += var1, .T.}

Other syntax elements are explained in detail in following chapters.

2.2.3 Comments
The clarity and readability of the source code can be significantly increased by using
comments to specify the program author, source status and/or to describe the module
functionality, parameters required and statement results.

The comments do not increase the object or executable code size, since they are removed
from the produced end code during the compilation process either by the FlagShip or the C
compiler.

FlagShip supports four kinds of comments:

•Comment lines are marked with a star (*) or the NOTE keyword, the rest of the line may
contain any user comment. Continuation of comment lines using the ; sign is not allowed.

•Inline comments start with double ampersands && or slashes //, the rest of the line will be
ignored by the compiler.

•Special comments are enclosed in /* and */ (slash-star and star- slash). These
comments are accepted also within a command, statement or expression and may be
continued trough several lines. Nesting of these special comments is not allowed.

•Empty lines are treated by the compiler same as comment lines. They may be used to
increase the source readability.

LNG 14

LNG 15

2.3 Program Files and Modules
Any source file may consist of one or more independent program modules. These program
modules are called user defined procedures (UDP) or user defined functions (UDF).

Each module begins with the name declaration PROCEDURE <name> or FUNCTION
<name> and ends on reaching the next UDF or UDP declaration or the end of the file. Any
module returns execution control to the calling module when encountering a RETURN
statement or the module end. The <name> of the UDP or UDF is any sequence of
characters (A...Z), digits (0..9) and underscore (_) signs. Upper/lower case makes no
difference, only the first 10 characters are significant.

The first module declaration of each file may be omitted. In such a case, the FlagShip
compiler will declare an "automatic procedure" with the same name as the source file, but
without the .prg extension (see PROCEDURE in section CMD).

The whole application may consist of an arbitrary number of source files and modules. The
FlagShip compiler will link all the required files and modules together with the (used)
standard functions from the FlagShip and system libraries into one executable file.

2.3.1 Main Program
Each application has one main module and optionally a number of subordinate program
modules. The execution of the application always starts at the beginning of the main module.

•If the declaration of the main module is omitted (auto-declaration), the execution starts with
the first executable statement of the file. The compiler switch -na may not be used.

•The main program may begin with the usual PROCEDURE or FUNCTION declaration (see
2.3.2) of any valid name. In this case, compile this source file with the -na option and
specify the name of the main module by the -M<mainmodule> switch for the compiler (see
section FSC and CMD).

In very small applications, the whole source code consists of the main program only. More
often, the application is structured in several modules (using user defined procedures and
functions), and the main program controls the activation of the required module.

Argument passing from UNIX shell or Windows CMD: because the main program is
controlled by FlagShip the same way as any other UDF or UDP, the main module may
receive the actual arguments with which it is called using the standard format for formal
parameters (PARAMETERS statement or within brackets enclosed formal parameters). All
formal parameters, if any, are of type character. The argument separator for the UNIX shell
or Windows CMD is at least one white space (blank, tab):

LNG 16

*** file mymain.prg ***
** PROCEDURE mymain // auto declared by FlagShip
PARAMETERS cmd1, cmd2, cmd3 // receives arguments

** PROCEDURE mymain (cmd1, cmd2, cmd3) // alternative syntax
** FUNCTION mymain (cmd1, cmd2, cmd3) // alternative syntax

? "params received:", cmd1, cmd2, cmd3 // output to screen
? "the name of the executable is " + EXECNAME()
RETURN // end of mymain

Invoke

$ FlagShip mymain.prg -o mymain
$./mymain // output: NIL NIL NIL
$ mymain test // output: test NIL NIL
$ mymain 1 test a b c // output: 1 test a
$ mymain 1 test "a b c" // output: 1 test a b c

2.3.2 Procedures and Functions
Each program module may call any number other user defined modules (UDP, UDF,
extended C function) or any standard functions from the FlagShip library.

Procedures (UDP) and functions (UDF) are used to encapsulate computational blocks of
code to provide readability and modularity, to isolate change, and to help manage
complexity. Very similar to UDF are also methods of a class, see LNG.2.11.

The called module is activated by

•UDP: issuing the command "DO <name> [WITH <arguments>]"
•UDF: giving the UDF name followed by left and right brackets, "<name> ([<arguments>])".

A function may be used in an expression. For example:

DO menu // call UDP "menu"
choice = input () // call UDF "input"
DO output WITH 1, choice, .T. // call UDP "output"
print (choice) // call UDF "print"
actDate = date () // call std.function

Reaching the above "activation" statement, the actual module passes the control to the
called UDF, UDP or function, passing down also the optional arguments. The called module
is executed until the RETURN statement is reached (or other subsequent module is called).
The end of the called module passes the control back to the calling program module.

The main difference between a UDP and a UDF is that a standard function or UDF returns a
value into the calling program (which may be ignored), whereas a UDP procedure has no
return value. Also, parameters are passed differently to UDFs and UDPs (by value for UDF

LNG 17

or by reference for UDP); for more details see sections CMD and FUN (DO, PROCEDURE,
FUNCTION).

Note: in FlagShip, the calling conventions of UDF and UDP are interchangeable, so
an UDP may also be called as UDF and an UDF may be called using the
DO...WITH command.

Using aliases: the call of standard and user defined functions (UDF) as well as procedures
called by the UDF syntax can be combined with a specific database working area, in the
same manner as the usage of field variables; the whole UDF has to be enclosed in
parentheses. Prior to the execution of that function, the specified area is selected and stays
as "actual working area" during the function execution. Returning to the called program, the
previous working area is restored.

USE address ALIAS adr NEW
USE custom ALIAS cust NEW
? UPPER(name + city) adr->(UPPER(name + city)) // (1)
? UPPER(name + city), UPPER(adr->name + adr->city) // (2)
? UPPER(name + city) // ─┐
SELECT adr // │ (3)
?? UPPER(name + city) // │
SELECT cust // ─┘

The three fragments of code labeled (1), (2) and (3) are three different ways of expressing
the same thing, and produce the same result.

Argument passing: The calling program may pass any number of arguments to a UDF or
UDP. Each argument is separated by a comma and can be a database field, memory
variable, constant, expression, or nothing. If you do not wish to specify an argument you just
put a comma, as in the following example:

usr_fun2 (2+3, x, , "123")
usr_fun2 (2+3, x, NIL, "123")
DO usr_proc1 WITH 5, 10, NIL, "text"

The third argument is here omitted, which is equivalent to using the reserved variable NIL.

The called module (UDF, UDP, C or standard function) receives the arguments into
predefined variables, called formal parameters in the same order as the arguments passed
(see more CMD.PARAMETERS). The main advantage of parameter passing is the
standardization of program code, running with different initial values, e.g. using a simple
function:

value = my_add (1, 2, 3) // "value" variable becomes 5
value := my_add (2, -1, 0) // "value" variable becomes -2
value := my_add (2, value, 1) // "value" variable becomes -3
RETURN

FUNCTION my_add (par1, par2, oper3)
RETURN par1 * par2 + oper3

LNG 18

Call by reference: The arguments of the "DO...WITH" call are passed by reference. This
means, the formal parameter receives the address of the actual argument. Changes to the
parameter within the called UDP (or such called UDF) automatically affect the argument;
unchanged remain only constants, expressions and arguments of database fields. Closing
the argument in brackets, passes it "by value" instead. For further details see CMD.DO,
CMD.PARAMETERS.

Call by value: the arguments of a function call are passed "by value" into the called module.
That means, the calling program copies the actual argument values and passes the
duplicates. So changes of the parameters by the UDF affect only the duplicates and will
never change the passed argument. If an argument should be passed by reference, the @
sign must be placed prior to the argument. Array names (but not array elements) and objects
are always passed by reference, regardless the @ argument prefix. For further details see
CMD.FUNCTION, CMD.PARAMETERS, CMD.PROTOTYPE.

Argument checking: there is no default argument/parameter type checking in the xBASE
language, as in other languages. The receiving parameter can be checked within the UDF or
UDP at run-time using the TYPE() or VALTYPE() function (see section FUN). But FlagShip
supports typing of parameters and the UDF return value, which allows both compile-time and
run-time argument checking, see 2.6.6 and CMD.PROTOTYPE. FlagShip also supports the
passing of a variable number of parameters, so the number of the arguments passed may
differ from the number of defined formal parameters. The number of actual parameters
passed may be determined by the PCOUNT() function or using the type checking functions,
e.g.:

FUNCTION my_add (par1, par2, par3)
IF PCOUNT() < 2 // at least 2 param needed

RETURN 0
ELSEIF VALTYPE(par1) <> "N" .OR. ; // first two params not numbers

VALTYPE(par2) != "N"
RETURN 0

ELSEIF VALTYPE(par3) # "N" // 3th param not number,
RETURN par1 * par2 // accept first two

ENDIF
RETURN par1 * par2 + oper3 // calculate all params

Recursion: the function or procedure call may be recursive to any depth. Recursion means,
the UDF or UDP call directly or indirectly themselves. The programmer has to specify the
end of the recursion to avoid "infinite" recursion (which in practice may seldom occur
because the UNIX system stops the program execution, if the stack and swap space where
the local variables are stored is exhausted).

STATIC procedures and functions: These are UDPs or UDFs which are visible and
accessible by modules within the same .prg file only. These modules are invisible for all
other program files. Their names do not conflict with STATIC UDPs or UDFs having the
same name within other program files. They are also not reachable through macros. For
further details see CMD.FUNCTION, CMD.PROCEDURE.

LNG 19

INIT and EXIT procedures and functions: These are UDPs or UDFs which are automatically
executed at the program begin (before invoking the main module) or at the program end
(before returning to the Unix shell). For further details see CMD.FUNCTION,
CMD.PROCEDURE.

Calling UNIX/Windows shell or program: a special case of performing other program tasks is
the call of any other executable, script or UNIX/Windows shell using the command RUN (or !,
see section CMD). This is similar to invoking the executable directly from the UNIX shell (or
CMD-Window) or from a script or calling the system() function in C. The RUN call may
include all the required arguments. When the so called executable is finished, the return
code (error level) can be checked by the standard function DOSERROR(). FlagShip allows
also the activation of the executable (or script) in background. For further details see
CMD.RUN.

SET KEY and ON KEY commands specifies to call a defined user-procedure whenever the
predefined key is depressed. This is often used in user- friendly-programs to execute a
context specific help or to support the user with additional information. When starting a
program, FlagShip automatically assigns the F1 key to the user-defined-procedure HELP, if
one exists. For further details see CMD.SET KEY and ON KEY.

Pre-validating and post-validating functions can be used for conditional data entry or to
validate the actual data entered during full screen input (see LNG.5.2, (CMD) @..GET and
the CMD.READ command).

Prototyping of the UDF or UDP parameters or of the return value allows both the compile-
time and run-time parameter/ assignment check and optimizes the calling sequence. The
standard FlagShip functions are prototyped in the "stdfunct.fh" file. See more in LNG.2.6.6
and CMD.PROTOTYPE.

2.3.3 Code Blocks
Code blocks are special unnamed inline functions, in syntax similar to

[var :=] no_name_function ([parameters])
RETURN (expList)

Code blocks bear some similarity to UDFs and macros. They can be compiled or evaluated,
may be used in compiled macros or stored in variables. Note: the compiled code blocks are
significantly faster than macros or macro- compiled/-evaluated code blocks. The syntax of a
code block is:

{ |<paramList>| <expList> }

where
<paramList> is an optional list of variables to receive parameters passed to a code
block from an invocation of the EVAL() function, very similar to the formal

LNG 20

parameters of an UDF. The parameter list is comma separated and must be
enclosed within vertical bars ("|", chr(124), 7Chex). Variables specified in this list
are declared local to the code block and are visible only within the code block
definition. The code block has to contain these two vertical bars, whether the
parameters are used or not.

<expList> is a list of expressions of any type. Two or more expressions must be
separated by comma, see LNG.2.8. Commands, control structures or declarators
are not allowed within the expression. The code block returns the last given
expression.

The whole code block is enclosed in curly braces "{" and "}". Since the code block is usually
translated during the compilation, its usage is significantly faster then the usage of macros.
Therefore, code blocks are often used by the FlagShip preprocessor to translate standard
commands, using the std.fh file.

Visibility of variables: during the execution of a code block, all LOCAL or STATIC variables of
the UDF in which the block is declared, may be used. LOCAL variables of the UDF where
the code block is executed, if this UDF is not the same UDF as where the code block was
declared are invisible. In contrast, the usage of PRIVATE or PUBLIC variables is restricted to
their visibility during code block execution, not the declaration. The variables declared in the
<paramList> are visible for the code block only.

Possible operations with code blocks are:

• assignment to a variable using "=" or ":=",
• argument passing for an UDF,
• execution using EVAL(),
• multiple evaluation on array or database using AEVAL() or DBEVAL().

Examples:

LOCAL vartext := "other text"
LOCAL v1 := 1, v2 := 2, v3 := 3
blockVar1 := { || "text" }
blockVar2 := { || "text", vartext }
blockVar3 := { |par| QOUT(SUBSTR(par,1,3)) }

? EVAL(blockVar1) // text
? EVAL(blockVar2) // other text
EVAL(blockVar3, vartext) // oth
x = EVAL({|| v1++, tmp:= v1+v2, tmp+v3 }) // x = 7
DBEVAL ({|| FIELD->fld := "xxx"}) // REPLA ALL fld WITH "xxx"

Standard vs. compiled macros (see LNG.2.10) produce different results when used in the
code block body. Standard macros get expanded at code block definition while compiled
ones during the execution of the code block:

LNG 21

PRIVATE macvar := "value1"
PRIVATE value1 := "text", value2 := "other text"
bVar1 := {|| &macvar } // same as {|| "text" }
bVar2 := {|| &(macvar) } // compiled at run time

? EVAL (bVar1) // output: text
? EVAL (bVar2) // output: text
macvar := "value2"
? EVAL (bVar1) // output: text
? EVAL (bVar2) // output: other text

Macro-evaluated Code Block:
Code blocks may be stored in string variables (and as such also stored in database or memo
fields) and evaluated using the macro operator "&", see also LNG.2.10. Example:

blockVar1 := "{ || 'text' }"
blockVar2 := "{ |par, tmp| tmp := SUBSTR(par,1,6), QOUT(tmp) }"

REPLACE stor_var WITH blockVar2 // store code block
x := EVAL (&(blockVar1)) // x = "text"
EVAL (&(stor_var), "my text...") // out: "my tex"
bl := &(stor_var)
EVAL (bl, "other text") // out: "other "

bl := &(blockVar1); ? VALTYPE(bl) // "B"
? EVAL(bl) // "text"

Note the differences between the "compiled" and "macro-evaluated" code blocks. The former
is compiled by the compiler to native code, while the latter is evaluated by the FlagShip run-
time system. Compiled code blocks are therefore significantly faster than the evaluated
ones.

LNG 22

2.4 Commands
Commands are an essential part of any Xbase language (see section CMD). A command
performs a specific action, similar to a call of a standard function. Commands are formed
from a

•Command verb which is the command identifier and may be a keyword (like USE, READ)
or a special character (like ? or @).

•The identifier may optionally be followed by one or more command clause keyword(s), like
NEW, SAY, GET, PICTURE etc., which define specific actions of the command. White
space separates the identifier, keywords and arguments.

•The command or keyword may optionally have argument(s) to set up the command
execution with a defined value. Two or more arguments are separated by commas.

Examples of valid commands (for clarity, commands and keywords are here given in
uppercase, arguments in lowercase):

USE // identifier only
USE address // command parameter
USE address NEW // additional keyword
USE address NEW INDEX adr1, adr2 // 2. keyword with arguments
@ x,y SAY text PICTURE pict // other command w. keywords
REPLACE name WITH "Smith", ; // command broken

zip WITH 12345, ; // into several
joindate WITH DATE() // program lines

All standard commands and keywords may be abbreviated to the four first characters. In
FlagShip, most of the commands are translated to an equivalent function of the standard
library. The definition of this translation is given in the include file "std.fh". This translation is
also noted in the (CMD) reference.

The programmer can define his own commands and translate them into a UDF, UDP,
standard function or other valid expression using the preprocessor directives #command,
#xcommand, #translate or #xtranslate, see section PRE.

LNG 23

2.5 Control Structures
Control structures determine the logic flow of a program - the way program control moves
from one part of a program to the other as the program runs. The control structures establish
the order in which statements execute, the conditions under which they execute, and how
often they execute.

Control structures are:

•Sequential processing: function or procedure call, command execution, RUN (see LNG.2.3
and 2.4)

•Choice constructs: IF, DO CASE (see LNG.2.5.1)
•Iteration constructs: FOR, DO WHILE (see LNG.2.5.2)
•Program interrupt constructs: BEGIN SEQUENCE, BREAK (see LNG.2.5.3)

In FlagShip, all the control structures may be nested and combined to any depth.

2.5.1 Choice constructs
If the program should execute different tasks or statements under different circumstances or
conditions, one or a combination of the following choice constructs may be used:

IF...ENDIF: a program part enclosed should be executed only if the specified condition is met
(see also CMD.IF).

PARAMETERS cmd1 // get command-line argument
IF .not. EMPTY(cmd1) // is argument given ?

? cmd1 // yes, print it
ENDIF

IF...ELSE...ENDIF: program choices to be executed if the condition is met or to be executed
otherwise. The example demonstrates also nested IF constructs.

IF DAY(DATE()) <= 10 // check the condition
? "first month period" // print if condition is true

ELSE // condition is not met
IF DAY(DATE()) <= 20 // check other condition

? "second month period" // print if true
ELSE

? "third month period" // condition not met
ENDIF // end of second condition

ENDIF // end of first condition

IF...ELSEIF...ELSE...ENDIF: this is an extended IF..ELSE..ENDIF construct, which is
identical to nested IF..ENDIF structures or to the DO CASE...ENDCASE construct. The
number of ELSEIFs is unlimited, the ELSE part may be left out.

LNG 24

choice = mymenu() // get required program flow
IF choice = 1

DO my_procedure WITH "text" // execute UDP
ELSEIF choice = 2

my_funct () // execute UDF
ELSEIF choice = 3

my_funct3 (choice) // execute other UDF
ELSE

? "invalid choice" // print error msg
QUIT // and abort program

ENDIF

DO CASE...CASE...ENDCASE are typically used to execute multiple choices. This construct
is identical to the alternate syntax IF..ELSEIF..ENDIF. There is no restriction on the number
of CASE elements, but at least one must be given. The OTHERWISE clause is optional.
Note: as opposed to similar constructs in other programming languages (like C or Pascal),
the CASE conditions are processed sequentially and always calculated at run- time. Each
CASE may contain different condition checks (see (CMD) DO CASE).

actDate = DATE() // get system date
DO CASE // perform specific action
CASE DOW(actDate) = 2 // choice 1: day-of-week

? "today is monday...sleep well"
CASE DOW(actDate) = 1 .OR. DOW(actDate) > 6

? "non-programmers have a weekend today"
CASE DAY(actDate) = 1 .AND. MONTH(actDate) = 1

? "happy new year !"
CASE size_of_my_shoe < 6 // other choice

? "you're a child, please call your parents..."
QUIT

OTHERWISE // above choices not met
? "have a nice day"

ENDCASE

#ifdef...#else...#endif is similar to the IF...ELSE...ENDIF structure. The significant difference
is, that #ifdef...#endif are preprocessor directives which are already tested and resolved at
the compile-time; the compiler then includes the code (placed between the #ifdef..#endif
lines) only if the condition is met (or does not met for #else part, or with #ifndef respectively).
On the other hand, the IF...ENDIF are executable statements, whereby the condition is
tested (and the following code executed if the condition is met) at run-time of the application.
The #ifdef directives are mostly used to include test-phase statements, or code for different
platforms etc., for example

#ifdef FlagShip // defined automatically
ifdef FS_WIN32 // defined in VFS for Windows

..FlagShip code specially for MS-Windows..
else

..FlagShip code specially for Unix/Linux..
endif
#else
..DOS Clipper code..
#endif

LNG 25

#define TEST_ONLY // or -DTEST_ONLY compiler switch
....
#ifdef TEST_ONLY
? myvar1, myvar2
#endif

see more in section PRE and LNG.9.5.

2.5.2 Iteration constructs
There are two constructs for iteration, which perform looping through any number of
statements or commands, until the end condition is met. Both may be aborted by the EXIT
command or interrupted/continued by the LOOP command. The end condition is always
calculated at the beginning of the loop pass. If the condition is not met, the loop is terminated
and the control is passed to the first statement following the end-of-loop construct (NEXT or
ENDDO).

FOR...NEXT (or FOR...ENDFOR for FoxPro compatibility) is usually used for incremental
looping. The control structure repeats a defined count of loops, giving the start and end
values. If the step interval is omitted, the default increment is one. Both end condition and
the step interval may be changed within the loop (see more features in CMD.FOR).

DECLARE array [200] // declare array
FOR count = 1 TO LEN(array) // repeat if count <= 200

array [count] = count // fill array elements
NEXT // increase count +1

DO WHILE...ENDDO is mostly used for undetermined counts of loops. The repetition ends if
the loop condition is not met. The following example will be executed 50 times if the
database contains 50 records, or not at all if its empty (see more features in CMD.DO).

USE address // open database
DO WHILE .NOT. EOF() // if not end-of-file:

? name, zip, city // screen output,
SKIP // fetch next record

ENDDO // repeat again

There are also repeating functions available, like REPEAT(), SPACE(), AFILL(), AFILLALL(),
AEVAL(), DBEVAL() etc. to fill a string or array with a value or to perform a specific loop
action on arrays or on databases.

LNG 26

2.5.3 Interrupting Program Flow, Exceptions
The special control structure BEGIN SEQUENCE...BREAK...END allows the current
program execution to be terminated and the program control to be passed to the next
statement following the END construct. This break may be used from other control structures
or at any depth of subordinate procedures or functions. It is similar to, but more flexible than
the dBASE commands ON ERROR or RETURN TO MASTER, or the GOTO or BREAK
statements in other programming languages.

FUNCTION my_funct2 (in)
IF VALTYPE(in) != "N" // error:

BREAK >──┐ // BREAK jump
ELSE │
RETURN in + 1 │

│
PROCEDURE my_proc │
BEGIN SEQUENCE │

IF condition1 │
DO WHILE .T. │

error = my_funct1 () │
IF error │

BREAK >──┤ // BREAK jump
ENDIF │
my_funct2 (input_var) │

ENDDO │
ENDIF │

RECOVER <──┘ // if RECOVER given
? "BREAK executed!" │

END <──┘ // elsewhere
? "past BEGIN..END structure"

For more details, refer to (CMD) BEGIN SEQUENCE.

LNG 27

2.6 Variables
A memory variable is a named place in memory where certain values can be stored
temporarily. Memory variables can contain strings, numbers, dates, logical values, arrays,
objects and code blocks. The program refers to a memory variable by its name, not its
contents; the contents and type of each variable can vary without changing the name.

The variable name can contain any combination of letters (A..Z), numbers (0..9) and the
underscore character ("_"). Spaces and non-ASCII letters (e.g. -, /, umlauts etc.) are not
allowed. The name can be of any length but only the first 10 characters are significant.
Thus, VARIABLE_1, VARIABLE_12, and VARIABLE_13 all refer to the same variable.

The capitalization is not significant, as variable names are internally converted to uppercase.
Thus, TEST_VAR, Test_Var and test_var all refer to the same variable. Avoid using re-
served words (commands, keywords and standard functions) as variable names to stay
compatible with other xBASE languages.

The number of memory variables that can be simultaneously used in a user program is in
FlagShip practically unlimited (the UNIX/Windows RAM memory size + swap area,
dependent on the implementation of the operating system).

2.6.1 Variable Classes
In FlagShip, four different groups of variable exist. The lifetime of variables and their visibility
depends on the variable declaration, which specifies the variable class:

•Dynamic (or dynamically scoped) variables: if the variable is declared as PRIVATE or
PUBLIC, it will be created and fully managed at runtime. If a value is assigned to an
undeclared or unknown variable, the runtime system will create a new autoPRIVATE
variable. The usage of dynamically scoped variables is typical for interpreted languages,
but is also fully supported by FlagShip for compatibility purposes. The disadvantage of
such variables is the programmer having to keep track the mere program control of their
visibility and the additional runtime overhead. Dynamic variables are available in all xBASE
dialects. For further details see (CMD) PRIVATE, (CMD) PUBLIC.

•Lexical (also called statically scoped) variables (LOCAL and STATIC) are declared and
visible only within the same module or program file. Because they are created and
managed by the compiler, their usage allows to produce faster and more effective code.
They are also available in Clipper 5.x. For further details see (CMD) LOCAL.

•Typed lexical variables (LOCAL..AS, STATIC..AS, GLOBAL..AS) are available in
FlagShip (and partially in CA/VO) only. They are lexical variables with fixed storage type.
Since additional runtime type checking may be omitted, usage results in very fast
programs (up to 40 times faster then lexical vars). The C-like typed variables may also be
directly reached from the inline C statements without any conversion. For further details
see (CMD) LOCAL...AS.

LNG 28

•Field variables are synonyms for database fields with the same name. They exist only as
long as the corresponding database is open. The FIELD variable of the respectively
selected database has higher read- precedence from the same named dynamic variable.
Using the M->, MEMVAR->, FIELD-> and alias-> operators or FIELD and MEMVAR
declarators prevents the misinterpretation between field and dynamic variables. Field
variables are available in all xBASE dialects. For further details see CMD.FIELD.

•Object instances are similar to memory variables, but are tightly related with the
class/object and accessible by the object selector only. See details in 2.11.2 and OBJ.1.

2.6.2 Initialization and Declaration
The variable declaration is an non-executable statement to tell the compiler the names of
dynamic/field variables used in a module, or to create lexical and typed variables. The
explicit declaration of dynamic/field variables avoids their misinterpretation. Note: if the
compiler switch -w is used, all undeclared variables will be listed.

autoPRIVATE variables: no explicit declaration, initialization or definition of type of these
dynamic variables is required. Instead, variables are created, initialized and their type
defined at the moment they are used. Moreover, the type of the variable can change
during program execution.

PRIVATE variables are created by the PRIVATE, DECLARE or PARAMETERS statement at
runtime and initialized by default with NIL, which is the same as "undefined" in xBASE.
The declaration is not mandatory. The MEMVAR declaration statement may also be
used instead.

PUBLIC variables are created at runtime by the PUBLIC statement and initialized by default
with FALSE. The MEMVAR declaration statement may be used in other (called)
modules.

LOCAL and STATIC variables are created by the compiler with the declaration statement
LOCAL or STATIC. Local variables are initialized with NIL by default.

MEMVAR declared variables are references to PRIVATE or PUBLIC variables, they are
already initialized by the PRIVATE or PUBLIC statement.

Typed variables are created by the compiler with the declaration statement LOCAL..AS,
STATIC..AS or GLOBAL..AS. C-like typed local variables are initialized with 0 (zero) by
default, other typed variable by its EMPTY() value.

FIELD variables are created by the compiler, but visible and initialized automatically at run
time with the actual field contents only if a database with such a field name is currently
open.

LNG 29

2.6.3 Variable Scope, Visibility and Lifetime
If a variable is created as PRIVATE, its scope is the respective program module (procedure
or function) and all modules subsequently called. Returning to the module on a higher level,
releases (un-defines) the variable. If a PRIVATE variable with the same name exists in a
module higher in hierarchy or is declared as PUBLIC, it will be hidden and temporarily
inaccessible as long as a private copy exists.

The same rules as for PRIVATE apply also for implicit PRIVATE variables (autoPRIVATEs)
and for variables declared by the DECLARE or PARAMETER statement.

A variable declared with the PUBLIC or CONSTANT command will not be released when the
respective module is left. Such a variable remains visible to modules both "higher" and
"lower" in the call hierarchy, but will be hidden by other PRIVATE (or PARAMETER),
LOCAL, STATIC declarations.

The PRIVATE and PUBLIC variables can explicitly be destroyed (released) with the
commands CLEAR MEMORY and RELEASE. These variables can be saved to a disk file
with the command SAVE TO, and also restored from it with the command RESTORE FROM.

The scope of LOCAL, STATIC or TYPED lexical variables depends on where the variable is
declared.

•UDF-wide scope: if the variable is declared within a procedure or function, the visibility is
restricted to the module only.

•File-wide scope: if the variable is declared in a .prg prior to the first PROCEDURE,
FUNCTION or other executable statement and the source file is compiled with the -na
switch, the variable is visible for the whole .prg file. Note: Clipper 5.x doesn't support file-
wide LOCAL variables, but STATICs only.

•Restricted-application-wide scope: GLOBAL..AS declared variables are visible the same
as other typed variables (UDF or file wide), depending on where the variable is declared.
The variable becomes visible also within other program files using the EXTERN
GLOBAL..AS declarator there.

The LOCAL, STATIC or typed declaration will hide all other variable types with the same
name. Other declarators with the same name on the same level are not allowed.

The LOCAL and typed LOCAL variables are always created and initialized on entry into the
program module (or any UDF within the .prg for file-wide scope) and destroyed when
returning from that module (or the .prg for file-wide scope). They are invisible in
subsequently called modules, their values (or addresses) may however be passed as
arguments.

The STATIC and typed STATIC variables are created and initialized on the first entry into the
program module (or any UDF within the .prg for file- wide scope). The contents will be not

LNG 30

destroyed when returning from that module (or file), but their names become invisible in
subsequently called modules (or files). The last value prior to the RETURN remains
unchanged until the subsequent UDF (or file) is entered. Their values (or addresses) may
however be passed as arguments.

2.6.4 Type of Variables
The type of a memory variable is determined at run-time by the contents the variable
receives (except for typed variables). This type may change any time during the lifetime of a
variable. The user program may at any time check the variable type by using the standard
functions VALTYPE() and TYPE(). The possible types are:

• numeric (using floating point)
• numeric integer
• character
• date
• logical
• array
• screen
• code block
• object
• NIL (undefined)

Many standard functions (like STR(), SUBSTR(), VAL() etc.) require a fixed variable type and
reports a run-time-error if a wrong variable type is used as argument. For comparisons (and
other expressions) of two or more variables or constants, only the same or comparable
variable types may be used.

Numeric Variable
A numeric variable (implicit or declared AS NUMERIC) stores its value as an 8 byte, double
float (IEEE) number. The internal storage is hardware dependent, the precision is mostly 15
decimal places or more, the range is approx 10 ^ 307. For example:

pi = 3.141592653
qF = pi * r ** 2

Addition, subtraction, multiplication, division and modulus operations can be performed
between two numeric variables. Commands SET FIXED and SET DECIMALS influences the
output only, not the internal storage of numeric values. Many standard functions create or
manipulate numeric variables, i.e. VAL(), ABS(), INT(), ROUND(), MIN(), MAX(), SQRT() etc.

Tech note: FlagShip use IEEE double precision to store and calculate floating point
numbers. It support an extremely wide range of numbers, from

LNG 31

2.2250738585072014e-308 to 1.7976931348623157e+308. Integer values and
constants are calculated by using the (precise) integer mathematic.

The internal representation of IEEE floating point are 64 bits splitted in sign,
logarithm and mantissa with 14-17 significant digits. No human system of
numeration can give a unique representation to every real number; there are just
too many of them. So it is conventional to use approximations. For instance, the
assertion that pi is 3.14159265358979 is, strictly speaking, false, since pi is actually
slightly larger than 3.14159265358979; but in practice we sometimes use 3.14 in
calculations involving pi because it is a good enough approximation of pi. The same
approximation is known e.g. for division 1/3 which gives an endless number of
decimal digits - which of course cannot be stored in the amount of available
memory storage. So the stored result of this division is very-very close to the
mathematical result, but need not be precise equal to. Also the representation of a
number by logarithm may be imprecise - even approximate, and known as "IT
floating point representation", e.g. the number 123456 may be stored as
123456.000000001 or as 123455.999999999 (system dependant) in float
representation.

Additional details: IEEE Standard for Binary Floating Point Numbers, ANSI/IEEE
Std 754. New York: Institute of Electrical and Electronics Engineers (IEEE) 1985.

Conclusion: Floating numbers have (for practical use) a nearly unlimited range, but
may be imprecise. Because of the approximation, a comparison of a numeric
calculation with constant or with another calculation may fail - even if
mathematically equal. If you detect any problems, use round() or compare by a
small range, e.g.

num1 := (1 / 3) * 3 // num1 is mathematically 1, not so in IT :-)
num2 := 1
if abs(num1 - num2) < 0.0000000001 // instead of num1 == num2
... result is ok ...

endif

You also may use the ROUND() function, e.g. to consider 5 deci places:

if ROUND(num1,5) == ROUND(num2,5)
... result is ok ...

endif

See other examples in section LNG.2.9, Mathematical Operators.

Hint: if you wish to always calculate precise, use the LOCAL...AS INTVAR type.
This can be used also for decimals, e.g. the numeric "price" value N 8.2 can be
stored and/or calculated in INTVAR variable as N10.0 or in N 10.0 field. It real value
is simply "price * 100" and the displaying results are divided by 100. Since the
supported range of INTVAR is approx +/- 2 Giga = 2 billions = +/- 2,147,483,637
you will be able to store values *100 up to 20 millions with 2 deci digits by this
method.

LNG 32

FlagShip supports also integer variables (implicit or declared AS INTVAR). The internal
storage is long integer occupying 4 bytes (32 bits) and the representation is precise (as
opposite to floating numbers, see above), the valid range is system dependant, but at least -
2147483648 to +2147483647 (approx +/- 2 Giga or 2 billions).

FlagShip compiler assumes (long) integer, when a constant is given without a decimal point,
and a float number, when a decimal point is specified. You may explicitly type the variable to
(double float) NUMERIC or (long) INTVAR by using the LOCAL...AS statement. If the
variable is not typed, FlagShip automatically switches an integer type to floating number
when required, i.e. on calculation with other float number, on integer overflow, after a division
and so on.

Examples of numeric functions and associated commands:

ABS() Returns the absolute value of a numeric expres-
sion

BIN*() Binary operation on numbers
INT() Converts a real/float value to integer
ROUND() Rounds a numeric value to the specified number

of decimal places
STR(), VAL() Converts a number to string / string to number
MIN(), MAX() Determines the lower/greater of two numbers
%, MOD() Returns the standard/dBASE III modulo of two

numbers
EXP() Evaluates the e^x expression
LOG() Returns the natural logarithm of a numeric expres-

sion
SQRT() Returns the square root of a numeric expression
SET DECIMALS Sets the number of displayed decimal places
SET FIXED Determines how to display numeric values
+ ++ - -- * ** ^ / % Mathematical operators (see LNG.2.9)
= == != # <> < > <= >= Mathematical comparison (see LNG.2.9)

Character Variable (string)
A character variable (implicit or declared AS CHARACTER) in FlagShip may contain 0 to 2
billion characters in ASCII format, each with any value from 0 to 255. The binary value 0 is
supported by the most string operations or by programmer's request, see LNG.2.6.5. For
example

x = "John" + " Smith"
y = ""
long_text := mymemo
REPLACE mymemo WITH x + " " + long_text

LNG 33

defines variable x as a character variable with the value "John Smith", the variable y
becomes zero length (null string). Addition and subtraction (see expressions) can be
performed between two character variables.

Note 1: if the variable contents is to be stored into a database or memo field, or to
create programs portable to other xBASE languages, the string length should not
exceed 64 Kbytes.

Note 2: the contents of the SAVE SCREEN command or SAVESCREEN() function
is in FlagShip stored in special "screen" variables instead of character variables.

Assigning a memo field mymemo from above example creates a character variable
long_text. Character variables may be stored into memo fields using the REPLACE
command, the FIELDPUT() function or := assignment. Many standard functions create,
modify or manipulate character variables, i.e. SPACE(), CHR(), STR(), SUBSTR(),
LOWER(), AT(), LEN() etc.

Examples of character/string functions:

LEN(), EMPTY() Retrieves the length of a string/detects null-string
ASC() Converts an ASCII character to its numeric equivalence
CHR() Converts an ASCII numeric equivalence to a corre-

sponding character
STR(), VAL() Converts a number to string / string to number
SUBSTR() Extracts the specified part of the given string
LOWER(), UPPER() Converts a string to lowercase/uppercase
AT(), RAT() Returns the left/right position of a substring within a

string
LEFT(), RIGHT() Extracts the specified no. of leading / right chars from

string
LTRIM(), RTRIM() Removes all leading/trailing spaces from a string
TRIM(), ALLTRIM() Removes all trailing or leading + trailing spaces from a

string
SPACE(), REPLIC() Forms a string of n spaces/repeating a string n-times
STRTRAN() Searches and replaces within a character string
STUFF() Performs delete, insert and replace within a string
STRZERO() Converts a num. value to a string with leading zeros
PADxxx() Fills the beginning/end of a string with characters
TRANSFORM() Formats an expression according to the given PICTURE
SOUNDEX() Converts character strings to a soundex code
MEMOEDIT() Displays or edits strings or memo fields
MEMOxxx() Several functions for formatting a string
FS_SET("zerobyte") Enables the embedded chr(0) in string, see 2.6.5.
+ - String operators (see LNG.2.9)
= == != # <> < > <= >= String comparison (see LNG.2.9)

LNG 34

Date Variable
A date variable stores its value as 4 byte, long integer by calculating the days since the 1st
January of the Year 1 AD. For example:

yesterday = DATE() - 1
birthdate = {09/12/1993} // or CTOD("09/12/1993")

defines yesterday and birthdate as a date variable. A date variable can be added with a
numeric variable/constant and a numeric variable/constant can be subtracted from a date
variable. Commands SET DATE, SET CENTURY, SET EPOCH influence the output and
input of date variables only, not the way they are internally stored. There are standard
functions for date conversion or handling available, e.g. DTOC(), CTOD(), DATE(), DOW(),
DAY(), MONTH(), WEEK() etc.

Examples of date commands and functions:

DATE () Returns the system date in form of a date value
DAY(),MONTH(),YEAR() Extracts the day/month/year from a date value
CTOD(),DTOC(),DTOS() Converts a date string to a data value and vice-

versa
DOW(), CDOW () Finds the day of the week/its name for a date

value
SET DATE Sets the format for date values
SET CENTURY Toggles the input/display of century digits for

dates
SET EPOCH Sets the epoch of date values
SET () Reports/sets global default settings
+ ++ - -- * / Mathematical operators on date value
= == != # <> < > <= >= Mathematical comparison (see LNG.2.9)

LNG 35

Logical (boolean) Variable
A logical (boolean) variable stores its value as a single ASCII character of value "T", "F", "Y"
or "N". For example:

state = .T.
ok = LEN("text") > 5

defines state as a logical variable with the value "true", ok becomes "false". .AND., .OR. and
.NOT. (or !) operators can be applied to the logical variable. Some standard functions return
logical values, i.e. EMPTY(), EOF(), FOUND(), RLOCK() etc.

Selected functions return logical values:

EMPTY () Determines if the result of an expression is empty
ISCOLOR () Determines if the terminal definition has color capabilities
FILE () Determines whether a file exists in the defined path
EOF () Finds out if there was an attempt to move past the last rec
DELETED () Reports if the current record is marked as "deleted"
USED () Determines if a .dbf is open in the selected working area
FLOCK(), RLOCK() Locks the .dbf file/record before write access
NETERR () Checks the error status in multi-user environment
.AND. .OR. ! .NOT. Operators on logical values (see LNG.2.9)

LNG 36

Arrays
Memory arrays are just a collection of memory variables. Every single array element is, in
fact, a memory variable. FlagShip supports single- and multi-dimensional arrays. Each of the
at most 65535 dimensions can contain up to 65535 elements.

Arrays have to be declared before use so that space for their elements can be reserved. This
is done by the usual declaration statements DECLARE, PRIVATE, PUBLIC, LOCAL and
STATIC or at runtime using the ARRAY(), ACLONE() or ACOPY() functions. The size of an
array can be changed using AADD() or ASIZE(). Other functions, like AINS(), ADEL(),
AFIL(), AEVAL(), ASORT() or ASCAN() insert or delete array elements, fill arrays with a
value, evaluate a code block on arrays, sort or search for value in arrays.

LOCAL aa[25,80], bb := {"text",3,.T.,{2,4,5}}, cc
DECLARE xx[12], yy[4][5]
PUBLIC zz[0]

In the above example, two one-dimensional arrays: xx with 12 elements and zz with 0
elements, and two-dimensional arrays: aa with 2000 and yy with 20 elements, were
declared. The non-symmetric array bb was also declared and initialized with 4 elements in
the first dimension, the 4th element containing an array with 3 elements.

The elements of an array are numbered staring by 1, the array size = number of array
elements in every dimension is reported by LEN(array). Accessing an array, the ordinal
number of the element is enclosed in square brackets, e.g. xx[5] access the fifth element of
the array xx. On multidimensional arrays, both the syntax yy[3,2] and yy[3][2] will access the
same element of a two-dimensional array yy.

Note, that various elements in the same array can be of different type. The following code:

AFILL (xx, "")
cc := ARRAY (5)
yy[2][3] = "test" // or: yy[2,3] := "test"
? LEN(bb), LEN(bb[4]) // 4 3
FOR i = 1 TO LEN(aa) // = 25

FOR j = 1 to LEN(aa[1]) // = 80
aa [i, j] := i * j

NEXT
NEXT

will fill all elements of the array xx with a null-string, create a new array cc with 5 NIL
elements, assign an array element the character string "test", thus defining that element as a
character variable, and fill the array aa with the specified value.

The above example also demonstrates how to determine the array size: the function
LEN(array) returns the size of the first dimension, LEN(array[1]) of the second dimension,
LEN(array[1,1]) of the third dimension of symmetric array, and so on.

LNG 37

A one-dimensional array is stored in sequential order, e.g. DECLARE arr1[3] or arr2 := {1, 2,
3, 4} :

arr1: ┌───┬───┬───┐ arr2: ┌───┬───┬───┬───┐
│NIL│NIL│NIL│ │ 1 │ 2 │ 3 │ 4 │
└───┴───┴───┘ └───┴───┴───┴───┘

FlagShip supports both symmetric and nested multi-dimensional arrays. In fact, a
symmetric multidimensional array is just a special case of a nested array. The declarations:

LOCAL arr3[4,3], arr5 := {"a", "b", "c"}
LOCAL arr4 := {{1,2,3}, 5, {.T., {1,arr5},.F.}, "abc",NIL,NIL}
arr3 [1,2] := 2
arr3 [2,1] := "a"
AFILL (arr3[4], 1)

will create the following structures:

arr3: arr4:
┌───┐ ┌───┬───┬───┐ ┌───┐ ┌───┬───┬───┐
│ ───>│NIL│ 2 │NIL│ │ ───>│ 1 │ 2 │ 3 │
├───┤ ╞═══╪═══╪═══╡ ├───┤ └───┴───┴───┘
│ ───>│ a │NIL│NIL│ │ 5 │
├───┤ ╞═══╪═══╪═══╡ ├───┤ ┌───┬───┬───┐
│ ───>│NIL│NIL│NIL│ │ ───>│.T.│ │.F.│
├───┤ ╞═══╪═══╪═══╡ ├───┤ └───┴─│─┴───┘
│ ───>│ 1 │ 1 │ 1 │ │abc│ │ ┌───┬───┐
└───┘ └───┴───┴───┘ ├───┤ └──>│ 1 │ │

│NIL│ └───┴─│─┘
├───┤ │ ┌───┬───┬───┐
│NIL│ arr5:└─>│ a │ b │ c │
└───┘ └───┴───┴───┘

which can be verified by:

? VALTYPE(arr3), LEN (arr3), LEN(arr3[1]) // "A" 4 3
? VALTYPE(arr3[1]), VALTYPE(arr3[1,2]) // "A" "N"
? VALTYPE(arr3[2]), VALTYPE(arr3[2,1]) // "A" "C"

? VALTYPE(arr4[1]), VALTYPE(arr4[1,2]) // "A" "N"
? VALTYPE(arr4[2]), VALTYPE(arr4[3]) // "N" "A"
? VALTYPE(arr4[3,2,2]), LEN(arr4[3,2,2]) // "A" 3

Assigning an array name to a variable using the = or := operator creates a second reference
only, pointing to the same array body. To make a physical copy of arrays, use the function
ACLONE() instead. Assigning an array element to a variable creates a single variable copy
of the same type as the array element is. Comparing two array names using the == operator
returns a TRUE result if their addresses (of the array body) are identical. To compare the
contents of two arrays, element-by-element comparison, by FOR..NEXT or AEVAL(), has to
be used.

LNG 38

PRIVATE arr1 := {1, 2, "test"}, arr2, arr3
arr2 := arr1
arr3 := ACLONE (arr1)
arr1 [1] := 5
arr2 [2] := "x"
? arr1 == arr2, arr1 == arr3 // .T. .F.
? arr1[1], arr2[1], arr3[1] // 5 5 1
? arr1[2], arr2[2], arr3[2] // x x 2
RELEASE arr1
? arr2[2], arr3[2] // x 2

In FlagShip, array elements can be SAVEd to and RESTOREd from disk files, see
commands SAVE TO and RESTORE FROM and the compatibility FS_SET("memcomp")
function.

Selected array functions

ARRAY () creates an un-initialized array
ACOPY () copy one array into another
ACLONE () duplicates an array
AADD () adds a new array element
AINS (), ADEL () insert / delete an array element
ASIZE () resizes an existing array
AFILL () fill 1-dimensional array with value
AFILLALL () fill any type of array with specific value
ATAIL () returns the last element of a given array
AEVAL () executes a code block on each array element
AFIELDS () info about .dbf fields
ASCAN () seek within an array
ASORT () sorts an array
ACHOICE () full screen menu input/output
ADIR () fills arrays with info about UNIX/Windows files
DIRECTORY () creates an array with the UNIX file/directory info
DBCREATE () creates a .dbf of given structure described in an array

LNG 39

Screen Variable
FlagShip stores the contents of the command SAVE SCREEN TO... or function
SAVESCREEN() in special variables of type "S". These variables save a pointer to a
WINDOW structure, which may be modified at the low level by using the Extend System (see
example in the _retscw() function).

Note: FlagShip screen structure differs significantly from the simple video buffer of
Clipper in MS-DOS. FlagShip handles all the differences automatically using the
optimizations of the curses library (in Terminal i/o mode) or internally by bitmaps in
GUI mode. See more information about terminals in REL release notes and the
section SYS.

Normally, no program changes to other xBASE dialects (e.g. Clipper, dBASE, Fox) are
necessary to store or restore screen contents. To save/read the screen contents in/from text
or .mem files, character fields or memo fields, SCREEN2CHR() or CHR2SCREEN()
translating functions may be used. For converting DOS screen to FlagShip and vice versa,
SCRDOS2UNIX() and SCRUNIX2DOS() functions are available.

LOCAL scr1, scr2
scr1 := SAVESCREEN (0,0, MAXROW(),MAXCOL())
scr2 := SAVESCREEN (10,5, 20,40)
// any temporally output
RESTSCREEN (10,5, 20,40, scr2) // restore original
REPLACE mymemo WITH SCREEN2CHR(scr1) // save in database

In GUI, the structure of the screen variable <varS> is incompatible to <varS> from Terminal
i/o mode. In GUI, it is compressed or uncompressed bitmap object an hence cannot be
extracted by Chr2Screen(), Screen2chr() or other low-level curses routines like
ScrUnix2Dos() and ScrDos2Unix(). It also cannot be saved to or restored from a memo file.
But the SAVE/ RESTORE SCREEN work by the same way in GUI and Terminal mode. See
also SAVE SCREEN, SaveScreen() for further details.

Associated commands and functions:

SAVE SCREEN Saves the screen contents to a SCREEN variable
RESTORE SCREEN Displays a previously stored screen contents
SAVE Saves memory variables to a .mem file
RESTORE Retrieves memory variables from a .mem file
SAVESCREEN () Saves a specified screen region to a variable
RESTSCREEN () Restores a screen region from memory variable
CHR2SCREEN () Converts a string to a screen variable
SCREEN2CHR () Converts a screen variable to a character string
SCRDOS2UNIX () Converts a DOS screen content to FlagShip screen variable
SCRUNIX2DOS () Converts FlagShip screen variable to DOS screen output
FS_SET("memcom") Sets full compatibility of the .mem files to xBASE

LNG 40

Code Block Variable
Code blocks (see also LNG.2.3.3) may be assigned to a variable, which then becomes type
"B" and contains the address of a code block (similar to defining a function name). Releasing
this variable doesn't release the code block (because it is a compiled piece of code), it just
becomes inaccessible.

LOCAL blkVar := {|par| QQOUT("[", par, "]") }
EVAL (blkVar, "text")
EVAL (blkVar, "other text")

See also description of code blocks in chapter LNG.2.3.3.

Object Variable
Objects (see sections OBJ and LNG.2.11) are stored in special variables typed "O". This is a
special array containing the instance variables. The object variable is created using a special
class-creator-function, like GETNEW(), TBROWSENEW(), ERRORNEW() etc. or by
instantiating the object, see chapter 2.11. The access to the object (variable) is done using
the send operator ":".

LOCAL myget, myvar := 12345
myget := GETNEW(5,0, {|par| if(par==NIL, myvar, myvar := par)})
myget:name := "MYVAR"
? myget:row // 5
myget:DISPLAY() // show the GET
READMODAL (myvar) // read

Note: when starting a FlagShip compiled application an empty PUBLIC GETSYS[0] array is
created. GETSYS elements carry get objects created by the @...GET command. The objects
(here elements of GETSYS) subsequently get cleared by the READ command.

Assigning an object variable to other variable using the = or := operator creates a second
reference only, pointing to the same object body, very similar to an array assignment. To
make a physical copy of an object with different data (instances), instantiate it instead.

LNG 41

NIL Variable
On creation, all variables (except for TYPED and PUBLIC variables) are assigned an "U"
undefined type. Such "clean" variables may be checked using functions VALTYPE() and
TYPE() or by direct comparison with the NIL constant. Assigning NIL to the variable will also
"clean" it.

LOCAL xyz
PARAMETERS par
PRIVATE abc
IF TYPE("abc") == "U"

abc := "first value"
ENDIF
IF VALTYPE(xyz) == "U"

xyz := 1
ENDIF
IF par == NIL

? "argument has to be given"
ENDIF

Note: you cannot check unknown or invisible variables by NIL comparison, use TYPE()
function instead.

LNG 42

2.6.5 Binary 0 Characters in Strings
As mentioned earlier, FlagShip uses the C programming language as a vehicle for
portability. It translates the .prg statements into an intermediate ANSI C program, which may
then be compiled to produce native executable code.

According to the C language definition, binary zero characters, represented by CHR(0),
normally terminate a string. All significant string manipulation routines from the standard
UNIX/Windows libraries, like strlen(), strcat(), strcpy(), strchr(), strstr(), printf() etc. use this C
convention.

For your convenience, FlagShip automatically supports the usage of binary zero characters
within a string for the most used string operations and for some other operations on
programmer's request. The automatic support of embedded \0 byte is built in:

•all assignment operators := = += -=
•all comparison operators = == != <> # $ > < >= <=
•following string handling commands and functions: ?, ??, ALLTRIM(), ASC(), AT(), BIN2I(),

BIN2L(), BIN2W(), CTOD(), DESCEND(), EMPTY(), FREAD(), I2BIN(), L2BIN(), LEFT(),
LEN(), LOWER(), LTRIM(), OUTSTD(), PADx(), QOUT(), QQOUT(), RAT(), REPLICATE(),
RIGHT(), RTRIM(), STRPEEK(), STUFF(), SUBSTR(), TRIM(), UPPER()

The following operators and standard functions optionally support the embedded zero byte
when FS_SET ("zerobyte", .T.) is set:

•FREADSTR(), FREADTEXT(), STRLEN(), STRPOKE(), STRTRAN(), STRZERO(),
TRANSFORM(), _parclen(), _retclen(), _storclen()

The CHR(0) containing strings will be handled according to the standard C convention in all
other functions, commands and macros. The same is true, when the embedded-zero-option
is disabled (the default setting) using FS_SET ("zerobyte", .F.) in the optionally supported
operators or functions. This means, the resulting string will be shortened up to (but
excluding) the first binary zero and the operators/functions will only accept strings in this
shortened format.

LNG 43

2.6.6 Variable Type Declaration
Typing of variables (and typing/prototyping the UDF parameters and return value) informs
the compiler, that this variable can contain only the specified data type, e.g. float numeric,
integer, string, date, code block, object and so on. This increases the stability of the
application significantly and may also increase the execution speed up to factor 40 (when
using C-like types).

Already at the compile-time, the compiler checks assignments to and comparison of typed
variables, if the argument type is known at this time (i.e. when assigning a typed variable,
constant or prototyped function). The same is valid for arguments passed to prototyped
function. If the types are the same or compatible (e.g. NUMERIC and INTVAR), an automatic
conversion is performed. If the types are incompatible, a compiler error occurs. If the
argument type is unknown at this time, and the -w2 or -w3 switch is set, these ambiguous
variables are reported by the compiler as warnings.

At the run-time of the application, the assignment to a typed variable, its comparison and
arguments passed to prototyped function are also checked. On incompatible data types, a
run-time error occurs, which avoids later crash otherwise.

When the variable or parameter contains different data types, you may declare it AS USUAL
or avoid the typing/prototyping at all. You have then to check the data type manually by
using TYPE() or VALTYPE() functions, to avoid the run-time error "datatype mismatch" later.

Examples (see also CMD.LOCAL..AS and CMD.PROTOTYPE):

LOCAL varN AS NUMERIC
LOCAL varI AS INTVAR
LOCAL varC AS CHARACTER
LOCAL var1, var2 // = AS USUAL

varN := 10 + 0.5 // ok, converted to NUMERIC float
varI := 10.55 // ok, compiler warning, converted to 10
varI := varN // ok, compiler warning, converted
varN := "any string" // compile-time error
varC := varN // compile-time error
var1 := varN // ok, var1 is not checked, since USUAL
var2 := var1 + "string" // run-time error (num + char)
varN := SUBSTR(varC,1,2) // compile-time error, if stdfunct.fh used

// otherwise run-time error (num := char)

LNG 44

2.7 Literal Constants
A constant is a fixed value used to initialize variables, to be passed as an argument to a UDF
or to be compared with another variable.

During the compiler phase, FlagShip optimizes the constant usage by pre- calculating known
expressions. Hence, the statement a := b + 5 + 7 will be translated as a := b + 12 or the
statement x := "ab" + "cd" as x := "abcd". Further optimization is also done by the C compiler.

The constant types are:

•numeric
•character
•date
•logical
•array
•NIL (undefined)

Numeric constant
A numeric constant is an optionally signed decimal number represented by ASCII characters
in the code. It will be converted to an 8 byte, double float for NUMERIC variables and to long
integer for INTVAR variable type. An usual numeric variable stores its value as an 8 byte,
double float (almost IEEE) number. The format of internal storage is hardware dependant,
but the precision is usually 15 decimal places or more, the range is approx +/- 10 ^ 308. An
INTVAR variable can store -2 147 483 648 to 2 147 483 647. Example:

3.141592653589793
123
-0.3
3 + 0.5 / 9

The FlagShip compiler assumes a (long) integer, when a constant is given without a decimal
point, and a float number, when a decimal point is specified. Of course, it is then converted
to the type of the NUMERIC or INTVAR variable, if such is declared (e.g. by the LOCAL...AS
statement).

LNG 45

Character constant
A character constant is any sequence of characters delimited with the special character
pairs: double quotes (" "), quotes (' '), brackets ([]) and typographical quotes (` ´):

"double quotes"
'single quotes'
[square brackets]
`back quote and single quote´
"result's contents " + [is "one"] + 'constant string'

The opening delimiting character determines which character must be used to close the pair.
Between the two delimiters, all the other alternative delimiters can be used. A pair of
delimiters with no characters between them is considered as null string. Its length is zero.
Example of null strings:

"" -or- ''
[] -or- `´

Binary 0 characters = CHR(0) are also supported by most string operations in FlagShip, see
LNG.2.6.5.

You may enter special characters within the constant as \nnn where the nnn is a octal
value of the character, e.g.

u_iso := "xx\374yy" // = xx<u_umlaut_iso>yy, len(u_iso) = 5
u_asc := "xx\201yy" // = xx<u_umlaut_ascii>yy, len(u_asc) = 5

which is equivalent to

u_iso := "xx" + chr(252) + "yy" // 252 deci = 374 octal
u_asc := "xx" + chr(129) + "yy" // 129 deci = 201 octal

On the other hand, if you need to store backslash "\" followed by 3 or more digits in a string
constant, you will need to split this constant to avoid this implicit special character
conversion, or use \134 for the backslash itself, e.g.

str1 := "xx\" + "374yy" // = xx\374yy, len(str1) = 8
str2 := "xx" + chr(92) + "374yy" // = xx\374yy, len(str2) = 8
str3 := "xx\134374yy" // = xx\374yy, len(str3) = 8
str4 := "xx\aa\yy" // = xx\aa\yy, len(str4) = 8

Since the conversion is done by the FlagShip preprocessor, you may in doubt check the
<programname>.bp output created by -a compiler switch.

See also SET SOURCE ANSI/ISO, Ansi2oem() and Oem2ansi() for ISO/ASCII conversion
and the -iso compiler switch in section FSC.1.3 and in LNG.5.3, LNG.5.4 (internalization), as
well as the compilable examples in <FlagShip_dir>/examples/ umlauts.prg or pc8lines.prg.

LNG 46

If you wish to enter long string constants exceeding your source-code editor width, use
continuation on subsequent lines, e.g.

cLong := "........10........20........30........40........50" + ;
"........60........70........80........90.......100" + ;
".......110.......120.......130.......140.......150" + ;
".......160.......170.......180.......190.......200"

and so forth. FlagShip compiler will then concatenate these lines into one large string
constant. The size of a string constant is limited in FlagShip compiler by 8KB (i.e. approx.
100 lines each 80 characters), but the most C compilers have lower limits (e.g. MS-VC6 only
2KB, Unix compilers usually 4-8KB). You may exceed these limits by splitting the constant
(i.e. using concatenation of FS variables), e.g.

cLong := "........10........20........30........40........50" + ;
"........60........70........80........90.......100"

cLong += ".......110.......120.......130.......140.......150" + ;
".......160.......170.......180.......190.......200"

which then works unlimited up to the total string size of 2GB. Note: for repetitive character
constants, it is much more efficient to use SPACE(n) or REPLICATE("...",nn) functions, or an
addition of shorter constants (variables) than one large string constant.

Date constant
Date constants denote any valid date expression. Examples of a date constant are:

{31.12.1991}
{12/31/1990}
{01-12-1990}
{31.08.91} + 3 * 7
{0.0.0} // empty date, same as ctod("")

The delimiters are curly brackets { }, but the actual format of the date enclosed depends on
the respective SET DATE, SET EPOCH and SET CENTURY flags. The digit delimiters in the
constant between the day, month and year are dot, slash and dash (see also CTOD()). A
valid date range in FlagShip is 01/01/0001 to 12/31/9999.

Logical constant
A logical constant is a single ASCII character delimited by periods. Upper and lower case T,
F, Y, N are allowed, e.g.:

.T.

.n.

LNG 47

NIL constant
The NIL constant is a synonym for "undefined value". It may be used to check un-initialized
variables or to un-initialize a variable.

FUNCTION xyz (abc)
IF abc != NIL // argument entered ?

abc := NIL // yes, ignore it
ENDIF

Array constant
Array constants (also called literal arrays) are used to set up an array and initialize its
elements. The array constant is defined by curly brackets { } with comma separated
elements/initializer. The array constant may include other constant types or valid
expressions.

LOCAL arr1 := {1} // arr1[1] = 1
LOCAL arr2 := {5, 6, "text", DATE()} // arr2[4]
PRIVATE arr3 := {{1,2}, {3,4}, {5,6}} // arr3[3,2]
PUBLIC arr4
LOCAL arr5 := { } // empty array
arr4 := {DATE(), TIME(), {1,2,.T.}, "X"} // arr4[4] non-symmetric
strArray := "{1, 2, .T.}"
privArray := &strArray // macro creation
? VALTYPE(privArray), LEN(privArray) // A 3
? VALTYPE(arr4[1]), LEN(arr4), LEN(arr4[3]) // D 4 3
? VALTYPE(arr4[3]), VALTYPE(arr4[3,3]) // A L
? VALTYPE(arr2), LEN(arr2), VALTYPE(arr2[4]) // A 4 D
? LEN(arr3), VALTYPE(arr3[1]), LEN(arr3[1]), ; // 3 A 2
VALTYPE(arr3[1,1]), arr3[3,2] // N 6

aeval(arr4, {|n| qqout(VALTYPE(n) + " ") }) // D C A C
? LEN(arr4), LEN(arr4[3]), LEN(arr4[4]) // 4 3 1
? VALTYPE(arr5), LEN(arr5) // A 0

LNG 48

2.8 Expressions
An expression is a

•memory variable,
•constant,
•database field

or any of these combined by one or more operators or function calls. The operator may be
an inline-assignment, concatenation, comparison, mathematical or logical evaluation.
Expressions always resolve to a character, numeric, date, logical or screen type.

Parentheses for grouping () may be nested to any depth. The only limitation to the
expression size is the buffer of FlagShip and the C compiler (most often 4 Kbytes). For
readability, spaces or tabs may be included between the operators. Examples of valid
expression usage:

x := y + z / (2 + w)
SKIP (newpos - oldpos +1)
? "Since last update " + ;

STR(lastdate - DATE()) + " days have passed."
DO myproc WITH 55, DATE() +1

Expression List
Where a single expression may appear, like arguments of commands, declarations, body of
code blocks etc., an expression list may also be used. The expression list is similar to a
parameter, argument or declarator list.

The expression list consists of two or more comma separated independent expressions,
enclosed in parentheses (which may be omitted in code block bodies). The list is evaluated
from left to right. The rightmost expression will be passed, returned or used in place of a
single expression. Examples:

a := (b:=3, c:=4-b) // 1) b := 3
// 2) c := 4 - b
// 3) a := c

d := {|par| a++, b += par, QQOUT(b) } // 1) a := a + 1
// 2) b := b + par
// 3) QQOUT (b)

LNG 49

2.9 Operators
FlagShip uses five different operator groups: assignments, mathematical, relational, logical
operators and character concatenation. There are also other special operators available: the
macro-operator (see LNG.2.10) and the send-operator (see LNG.2.6.4 and 2.11).

Assignments
Assignments are used to assign a value to a variable of any type. The resulting variable type
will be that of the value or expression being assigned.

Operator Operation Description
= assignment stores a value or an expression <exp> into a variable, identical

with the command STORE. If specified within an expression, it is
interpreted as the equality comparison operator.

:= in-line assign similar to the = operator, but can be specified within expressions
and can be used in a declaration statement to initialize the
specified variable. Should be preferred over = for a better
readability, since = is also comparator.

+= addition identical to <var> := <var> + <exp>
-= subtraction identical to <var> := <var> - <exp>
*= multiplication identical to <var> := <var> * <exp>
/= division identical to <var> := <var> / <exp>
%= modulo identical to <var> := <var> % <exp>
^= exponentiation identical to <var> := <var> ^ <exp>
**= exponentiation identical to <var> := <var> ** <exp>

+ unary + unary positive <varN>
- unary - unary negative <varN>
! unary .NOT. unary reverse <varL>

If the resulting variable <var> is not visible or does not exist, an auto- PRIVATE variable is
created and assigned the result of <exp>. If the reference to the resulting variable is
ambiguous (i.e., not declared at compile time and not explicitly qualified with an alias), the
variable is always assumed to be MEMVAR. If the resulting variable is typed (see 2.6.6), the
validity of the assignment is checked at compile-time and run- time.

Assigning an variable of type N, I, C, D, L to other variable via = or := operator creates a
physical copy of the source with an own memory storage.

Assigning an array or object variable to other variable using the = or := operator creates a
second reference only, pointing to the same array or object body. To make a physical copy
of an array, use ACLONE(). To make a copy of an object with different data (instances),
instantiate it with the same class. Note: all objects of the same class always use the

LNG 50

available class code (methods) shared, i.e. the instantiation does not duplicate the code but
the data only.

When assigning a FIELD variable, it must be defined using the FIELD statement or the
FIELD-> or alias-> must precede the variable name (otherwise an autoPRIVATE variable is
created).

Compound assignments (+=, -=, *= etc.) perform the corresponding operation before doing
the assignment. Compound assignments may be used on FIELD variables in the same way
as with := assignments.

Examples:

LOCAL value := 10, ok := .T.
FIELD fvar
avar := bvar := cvar := value ** 3
IF (olddate := (DATE() - 31)) = CTOD("12/20/79") ; ... ; endif
if !ok ; ? "error" ; endif // print error if ok is .F.
address->name:= "Miller"
FIELD->date := address->tempdate := olddate
fvar = "text" // REPLACE fvar WITH "text"
value = 55
cvar = (avar - 20) * value
ok = value = 10 // ok = .F. value = 55
ok = value := 10 // ok = 10 (!) value = 10

bvar *= cvar - 10 // bvar := bvar * (cvar - 10)
? SQRT (value += 6) // out: 4 value = 16
value = -value // value = -16

LNG 51

Mathematical Operators
Mathematical operators perform operations on numeric variables, expressions, or fields
(except for post/pre-increment and post/pre-decrement which modify memory variables
only). The following operators are possible:

Symbol Operation Description
+ addition returns <expN1> incremented by <expN2>
- subtraction returns <expN1> decremented by <expN2>
* multiplication returns <expN1> multiplied by <expN2>.
/ division returns <expN1> divided by <expN2>. If the divisor <expN2> is

zero, the division operation brings out a warning and returns zero.
% modulo returns the remainder of <expN1> divided by <expN2>. If the

divisor <expN2> is zero, modulo brings out a warning and returns
0.

^ or ** exponentiation raises <expN1> to the power of <expN2>
++var pre-increment increases the value of <var> by one, before the value gets used.

Changes memory variables only.
var++ post-increment increases the value of <var> by one, after the value is used.

Changes memory variables only.
--var pre-decrement decreases the value of <var> by one, before the value gets used.

Changes memory variables only.
var-- post-

decrement
decreases the value of <var> by one, after the value is used.
Changes memory variables only.

The pre/post increment/decrement changes the content of memory variables only; database
fields remain unchanged. Expression will be evaluated, the result copied into temporary
variable, pre-increment or pre-decrement increases (or decreases) the temporary variable by
1 and this temporary variable is then used as such in the statement rest, see example below.

Mathematical operators may also be used with date expressions but in the following ways
only:

1. <expD> = <expD> + <expN> // or: <expD> += <expN>
2. <expD> = <expD> - <expN> // or: <expD> -= <expN>
3. <expN> = <expD> - <expD>

Examples:

LOCAL value
FIELD fval
value := (3 + SQRT(9)) * 2 // 12
value := 3 + SQRT(9) * 2 // 9
? value++, value // 10 11
? ++value, value // 12 12
? value++ * 2, value // 24 13

LNG 52

? DATE() - CTOD("07/15/93") // 47

USE test
replace fval with 20
value := 10
? ++fval, fval // 20 20
? ++fval + value, fval // 30 20
? ++(fval + value), fval // 31 20

num := 4
value := ++num * 2 / 3 // => ((4 + 1) * 2) / 3
? num, value // 5 3.33
num := 4
value := ++(num * 2) / 3 // => ((4 * 2) + 1) / 3
? num, ++(num * 2), (num * 2)++, value // 4 9 8 3.0

Note that all mathematical operations are performed using floating point arithmetic (and
coprocessor, if available) for all NUMERIC variables and constants. Due to internal HW
storage and rounding of (double) floating numbers, you may get different results when
truncating the integer part of a complex expression from e.g. simple numeric constants.

Example: the comparison INT(SQRT(3**2)) == 3 etc. may result in .F. on some hardwares,
since SQRT(3**2) may return 2.9999....9999 instead of 3. Similarly, CHR(INT(9^2/3)) may
result in either CHR(27) or CHR(26).

Therefore, the always safe way to get a hardware independent integer part of a complex
mathematical expression is either:

• adding a small fragment to it, e.g. INT(SQRT(3**2) + 0.01) == 3
• or using the ROUND() function, e.g. ROUND (SQRT(3**2), 0) == 3
• or using the INTVAR typed variables

Simple mathematical operations like increment, addition, subtraction, multiplication etc. will
seldom produce rounding differences.

See further tech details about floating point numbers in section LNG.2.6.4

LNG 53

Relational Operators
Valid relational operators are listed below. The expressions being compared must be of the
same type.

Operator Operation returns TRUE if:
< <exp1> is less than <exp2>
> <exp1> is greater than <exp2>
= <exp1> is equal to <exp2>, conditional match on strings
== <exp1> is exactly equal to <exp2>, exact match
!= or # or <> <exp1> is not equal to <exp2>
<= <exp1> is less than or equal to <exp2>
>= <exp1> is greater than or equal to <exp2>
$ <expC1> is contained in <expC2>, i.e. is subset (substring) of <expC2>

For numeric and date expressions the comparison is performed on the magnitude or on the
underlying date value.

An equality comparison by a NIL constant will return TRUE only if the second operand is an
"empty" variable (or another NIL literal).

When comparing character (and memo) expressions, the comparison is based on the
underlying ASCII code. Alphabetic characters in the PC-8 ASCII code, which is standard
nowadays, have an ascending order (e.g., the code for "A" is 65, for "Z" is 90 and for "a" is
97).

Note: the UNIX environment variable LANG and/or the sorting table used by
FS_SET("loadlang"..."setlang") may change the result of the < or > string
comparison.

The SET EXACT command also affects string comparisons (except for the == operator):

•when EXACT is OFF (the default), two character strings are compared for equality
according to the following rules:
•if <expC2> is a null-string, return TRUE for =, >=, <=
•if <expC1> is a null-string, return TRUE for <, <=, <>, #, !=
•if LEN(<expC1>) < LEN(<expC2>), return FALSE.
•compare all characters in <expC2> with <expC1>. If all chars are identical (for the =

operator), return TRUE, otherwise FALSE.
•when EXACT is ON, two character strings must match exactly, except for trailing blanks, to

be equal. See details in SET EXACT.

A comparison using the == operator is not affected by SET EXACT and return TRUE only, if
all characters and both lengths are exactly the same.

LNG 54

For a true string equality comparison, use a == b or !(a == b) resp., since both are
independent of the SET EXACT status. Note also that the !(a == b) syntax is not the
same as a != b and therefore the results may differ. The !=, # and <> operators are fully
equivalent.

If the operators are typed variables (see 2.6.6) or constants, the validity of the expression is
checked at compile-time and run-time.

Examples:

ok := 1 >= SQRT(55) // .F.
ok = "abc" $ "string contains abcdef" // .T.

// SET EXACT OFF SET EXACT ON
? "abc" = "abcdef" // false .F. false .F.
? "abc" = "abc " // false .F. true .T.
? "abcde" = "abc" // true .T. false .F.
? "abc " = "abc" // true .T. true .T.
? "abc" = "" // true .T. false .F.
? "" = "abc" // false .F. false .F.
? "abc" == "" // false .F. false .F.
? "abc " == "abc" // false .F. false .F.
? "abc" # "abcdef" // true .T. true .T.
? "abcde" # "abc" // false .F. true .T.
? "abc" # "" // false .F. true .T.
? !("abcde" == "abc") // true .T. true .T.
? "abc" < "abcdef" // true .T. true .T.
? "abc" < "abc " // true .T. false .F.
? "abcde" < "abc" // false .F. false .F.
? "abc " < "abc" // false .F. false .F.
? "abc" < "" // false .F. false .F.
? "" < "abc" // true .T. true .T.
? "abc" <= "abcdef" // true .T. true .T.
? "abc" <= "abc " // true .T. true .T.
? "abcde" <= "abc" // true .T. false .F.
? "abc " <= "abc" // true .T. true .T.
? "abc" <= "" // true .T. false .F.
? "" <= "abc" // true .T. true .T.

LNG 55

Logical Operators
Logical (boolean) expressions may be combined using the .AND., .OR. and .NOT. (or !)
operator. All operators may be entered in lower or upper case.

By a long evaluation, when the -z compiler option is
Operation used, returns:
.NOT. x or !x .T. if expression x is FALSE
x .AND. y .T. if both expressions x and y are TRUE
x .OR. y .T. if either expression x or y is TRUE

By a short, optimized evaluation (default w/o the -z
Operation compiler option and on run-time evaluation), returns:
.NOT. x or !x .T. if expression x is FALSE, .F. otherwise
x .AND. y result of y expr if x is TRUE, .F. otherwise
x .OR. y result of y expr if x is FALSE, .T. otherwise

Examples:

LOCAL yes := .T., no := .F.
? yes .AND. no // .F.
? yes .AND. my_funct() // depends on result of my_funct()
? no .AND. my_funct() // .F. (my_funct() is NOT entered)
? yes .OR. my_funct() // .T.
DO WHILE .NOT. EOF() // same as: WHILE ! EOF()

? name, city
SKIP

ENDDO

LNG 56

Character Concatenation
Character operators concatenate character strings. See chapter 2.6.5 for the usage of
embedded chr(0) in strings.

Symbol Description
+ Used to concatenate two character expressions, space characters included.
- Used to concatenate two character expressions. Trailing spaces in the first

expression are moved to the end of the resulting expression.
+= identical to <varC1> := <varC1> + <expC2>
-= identical to <varC1> := <varC1> - <expC2>

Example:

? "this is " + "my text " // "this is my text "
? "this is " - "my text " // "this ismy text "

Operator Precedence
When evaluating expressions with two or more operations that are not explicitly grouped
together with parentheses, FlagShip uses an established set of rules to determine the order
in which the various operations are evaluated. These rules, called precedence rules, define
the hierarchy of all of the FlagShip operators.

When more than one type of operator appears in an expression, all of the sub-expressions
are evaluated for each precedence level before sub- expressions at the next level are
evaluated. All function arguments are evaluated from left to right before the call itself is
performed.

Except for multiple in-line assignments, all operations at each level are performed in order
from left to right; multiple in-line assignments are performed from right to left.

Note that although the FlagShip language provides a specific order of precedence for
evaluating expressions, it is better programming practice to explicitly group operations using
parenthesis for readability, to be certain that what executes meets your expectations, and to
remain compatible to other xBASE languages.

The order of precedence for the operators, by category from highest to lowest, is as follows:

1. Parentheses and special operators: the order of precedence for expression evaluation
can be overridden using parentheses. When parentheses are present in an expression,
all sub-expressions within parentheses are evaluated first using the precedence rules

LNG 57

described in this section, if necessary. If the parentheses are nested, the evaluation is
done starting with the innermost pair and proceeding outward. Special operators (like the
send operator :, square brackets [], braces {}, macro & and call-by-reference @ operator)
have the next precedence level.

2. Pre-increment and pre-decrement: both operators in this category (++ and --) exist at
the same precedence level and are performed in order from left to right.

3. Mathematical: when more than one mathematical operator appears in an expression, all
of the sub-expressions are evaluated for each precedence level before sub-expressions
at the next level are evaluated. All operations at each level are performed in order from
left to right. The order of precedence for the mathematical operators is as follows:
•unary positive and negative (+, -)
•exponentiation (**, ^), right bounded
•multiplication, division, and modulus (*, /, %)
•addition and subtraction (+, -)

4. Relational: all of the relational operators exist at the same precedence level and are
performed in order from left to right.

5. Logical: like the mathematical operators, the logical operators also have an established
order of precedence. When more than one logical operator appears in an expression, all
of the sub-expressions are evaluated for each precedence level before sub-expressions
at the next level are evaluated. All operations at each level are performed in order from
left to right. The order of precedence for the logical operators is as follows:
•unary negate (.NOT. or !)
•logical and (.AND.)
•logical or (.OR.)

6. Assignment: all of the assignment operators exist at the same precedence level and are
performed in order from right to left. For the compound operators, the non-assignment
portion (e.g., addition or concatenation) of the operation is performed first, followed
immediately by the assignment. The increment and decrement assignment operations
exist at their own level of precedence, and are not part of assignment category.

7. Post-increment and post-decrement: both operators in this category (++ and --) exist at
the same precedence level and are performed in order from left to right.

The non-assignment portion of the compound assignment operators (e.g., the final
multiplication portion of *=) exists at level 3, and the assignment portion exists at level 6,
e.g.:

a *= b + 2 * c++

is evaluated as

temp = (2 * c)
c = c + 1
a = (a * (b + _temp))

LNG 58

2.10 Macros
The macro operator in FlagShip allows runtime evaluation (interpretation) of expressions and
text substitution within strings. Whenever the macro (&) operator is encountered, the
operand is submitted to a special runtime interpreter referred to as the macro evaluator that
can process expressions, but not statements or commands. FlagShip supports three kinds of
macros:

a. Standard macro and text substitution by the syntax:

&<varC>[.] simple macro
&<varC>.text composed macro
text&<varC>[.text] composed macro
"text &<varC>[.] text" text substitution

where <varC> is a character variable. The period (.) is the macro terminator and is used
to indicate the end of the macro variable and to distinguish the macro variable from the
adjacent text in the statement. Any space, TAB, comma or end-of-line character will also
terminate the macro. In composed macro variables, the name is created at runtime by
concatenating the literal <text> together with the result of the macro evaluation (see
example).

b. Compiled macro expression using the syntax:

&(<expC>)

where <expC> is a character expression that must be enclosed in parentheses. In this
instance, the expression is evaluated first, and the macro operation is performed on the
resulting character value. This allows using contents of fields and array elements within
macros or to evaluate stringified code blocks.

c. Macro functions

MacroEval(<expC>)
MacroSubst(<expC>)

where the first is a special case of compiled macro, see section FUN.

After macro expansion, the resulting expression has to be less than 4095 characters
(Clipper: 254 chars) in length. Otherwise, a run-time error will be generated.

Since macro is an operator, it is accepted as a part of an expression or as assignment (i.e. it
is ok at the right site of the statement or within a command - replacing it string value), but not
stand alone (i.e. not ok as a command alone or at the left site of an assignment).

LNG 59

Content of the Macro-Variable
Macros cannot contain commands, command clauses or parts of commands (same as in
Clipper, but opposite to interpreters like dBase or FoxPro), but may contain function calls.
They may also be used for command or keyword arguments, as an alternative (older) syntax
to the newer, parenthesized (and faster) option. Commas within macros are not allowed,
except for the SET COLOR command, or as a parameter separator in UDFs. Example:

myselect = "25" ; color := "W+/B,N/W"
dbfname := idx1 := "address"; idx2 := "custom"
SELECT &myselect

USE &dbfname INDEX &idx1, &idx2 // ok, same as: USE (dbfname) ...
SET COLOR TO &color // same as: SET COLOR TO (color)
cond1 = "x < 2.71"
cond2 = ".not. eof()"
cond3 = cond1 + " .AND. " + cond2
DO WHILE &cond1 .AND. &cond2 // or: DO WHILE &cond3

x = x + 0.5
skip

enddo

FOR ii = 1 to 274 // create and access composed
xxx := ltrim(str(ii,3)) // macro variables:
myvar&xxx.a := ii * 10 // myvar1a...myvar274a created

NEXT
yyy := "var45a"; q1 := "my"; q2 := "var59"
? myvar20a, my&yyy, &q1.&q2.a // 200, 450, 590

? &(INDEXKEY(1)), &(CHR(INKEY(0)))
myvar = "DTOC(DATE())" // convert date to char,
? &myvar // since myvar has to be <varC>,
datvar = DATE() // or use the macro expression,
? &("DTOC(datvar)") // like this
cdatvar = "DATE()"
? &("DTOC(" + cdatvar + ")") // or this
REPLACE saveblk WITH "{ |exp| QOUT(exp) }"
blkvar := &(FIELD->saveblk)
:
EVAL (blkvar, DATE())
EVAL (blkvar, "mytext")

but

dbfname = "address"
cCmd = dbfname + ' NEW EXCL' // !! dBase or FoxPro syntax,
USE &cCmd // macro is command part, cannot process!

cCmd = 'USE &dbfname NEW EXCL' // !! dBase or FoxPro syntax,
&cCmd // macro is a command, cannot process!

LNG 60

cCmd = 'DbUseArea(.T., dbfname, , .T.)' // ok
cCmd = 'DbUseArea(.T., "address", , .T.)' // ok
cCmd = 'DbUseArea(.T., "' + dbfname + '", , .T.)' // ok
lOk = &cmd // ok

Type of Macro-Variable
LOCAL and STATIC variables are allowed only within simple macro variables <varC>, but
not for composite or nested macro variables. Variables in composite and nested macros are
always searched for in the PRIVATE and PUBLIC tables only. If no such variable exists, a
run-time error will be generated. LOCAL and STATIC variables (e.g. <varC>) cannot be used
if the stringified macro is passed to a functions, like QOUT("&varC"). On the other hand, the
usage of QOUT(&varC) is o.k., because the argument evaluation is done prior to the function
call.

On arrays, macros can be used with PRIVATE and PUBLIC arrays and array elements, e.g.:

arrname := "myarray"
maxelem := 10
elemnam := "myarray[5]"
PUBLIC &arrname.[maxelem] // creates myarray[10]
&elemnam = DATE() // myarray[5] := DATE()
&arrname.[2] :="test" // myarray[2] := "test"
&(myarray[2]) := "new value" // test := "new value"

Nested Macros
Nested macros are allowed, FlagShip supports nesting macros in other macros to a depth of
256, e.g.:

PRIVATE cvar := "first", cvar1 := "second"
PRIVATE avar := "&bvar", bvar := "c" + "var"
? &avar // nesting level 3, prints: first
? &bvar.1 // evals cvar1, prints: second
bvar += "1"; ? &avar // evals cvar1, prints: second

Text-Substitution
FlagShip also supports macro text-substitution. This means, a macro is possible within string
constants and will be evaluated when

•the macro operator & is immediately followed by character(s) without blanks, and
•the characters behind the macro operator may be evaluated as a valid and assigned

LNG 61

PRIVATE or PUBLIC character variable.

In all other cases, the ampersand (&) is printed and no macro evaluation takes place. For
example:

xyz = "string 2"
count = "1"
? "this is &xyz within the &count.st string"

will be printed as "this is string 2 within the 1st string", but:

? "High Tech & Co " + " and &undefined_var"

will be printed as "High Tech & Co and &undefined_var"

If you want to substitute macro in string variable by the same way as in the string constant,
use the MacroSubst(cVar) function instead, see section FUN and examples there.

Macros in Code Blocks
If a macro is used within a code block, two different cases may occur: the standard macro is
evaluated at the time of the block definition; the expression macro is evaluated later, at the
time of the execution of the code block.

PRIVATE mvar := "test", test := 55, newname := "DATE()"
bvar1 := { || &mvar } // assigned as { || test }
bvar2 := { || &(mvar) } // not expanded at defin.time
mvar = "&newname"
? EVAL(bvar1) // out: 55
? EVAL(bvar2) // out: 07/15/93

Linking Macro-invoked Function
When referencing user defined functions UDF or UDP (and some standard functions) in
standard (stringified) macros but not elsewhere, declare EXTERNAL <udfname> in order for
the linker to include them into the executable, in case the file containing <udfname> is not
linked implicitly.

LNG 62

2.11 Objects and Classes
FlagShip fully supports Clipper's and VO's implementation of OOP (object oriented
programming) classes. FlagShip also provides facilities for defining and manipulating user
defined objects as a data type. The OOP syntax used here is compatible to CA-
VisualObjects and is also in most parts applicable for CA-Clipper (and/or Classy). A detailed
description of the commands and objects mentioned in this chapter is given in the manual
sections CMD and OBJ.

In addition to providing the syntax and semantics for using your own classes, FlagShip 4.4
comes with several predefined system classes, each with a corresponding creator function

Get class, -+ compatible to
Error class, | CA/Clipper 5.x
TBrowse class, | and FlagShip 4.3
TBColumn class -+

DataServer class superset of CA/VO DataServer
DBserver class compatible to CA/VO DBserver

DbfIdx class equivalent to DBserver
AsciRDD class subset of DBserver, ASCII driver

CB4CDX class, -+
CB4NTX class, | RDDs for CodeBase
CB4NDX class, | and Fox, Clipper, or dBASE
CB4MDX class -+

2.11.1 Class and Object Definition
Objects in FlagShip are complex data structures with predefined instance variables and
methods to access them. The object variable has some similarity to an array variable,
whereby the object elements contain both data and code. The data element is named
instance, and the code element is a method.

The CLASS statement declares a user-defined class name to the compiler and begins the
definition of the data portion of the class. The METHOD statement declares executable code
(function) tied to and encapsulated in the class. You can define classes as self-contained
units or inherit instances (data) and methods (code) from another class, called a superclass.
Such a derived class is called a subclass. Inheritance is accomplished using the INHERIT
clause of the CLASS statement. Using inheritance, you establish a tree-like hierarchy among
the classes you define.

LNG 63

To create an object, i.e. instantiate a class, you name the class followed by the
instantiation operator { } or alternatively invoke the (by compiler automatically generated)
creator function named classNameNEW () :

<oVar> := <className> { } -or-
<oVar> := <className> {<argumentList>} -or-
<oVar> := <className>New () -or-
<oVar> := <className>New (<argumentList>)

In FlagShip, you may also prototype a class, which declares the presence and structure of
the class to the compiler. When you access an object element (instance) or invoke a
method, the FlagShip compiler will optimize the object access at compile-time, which
significantly speeds up execution. The compiler learns of the class structure by means of a
previous CLASS declaration (in the same source file), or the PROTOTYPE CLASS and
PROTOTYPE METHOD statements (which may also be given in an #include file, see
example in 2.11.5) when the class is declared in another file. If the class is neither declared
nor prototyped, the name resolution is performed at run-time (resulting in decreasing
execution speed).

Hint: To make your job as easy as possible, the FlagShip compiler (pass 2) automatically
generates/modifies a prototype file named reposit.fh and places it in the current working
directory. Every time a CLASS, METHOD, ACCESS or ASSIGN statement is
encountered, the appropriate prototype is appended to this file. After pre-compilation,
this "reposit.fh" file (or a file of your choice) may then be simply #include'd in your
source files or globally in a local copy of the std.fh file. See also section FSC.1.1.3.

Static class: By default, classes declared with the CLASS statement have application-wide
compile-time visibility (see also prototyping above). A STATIC CLASS is available only to the
source file in which it is declared, and will not conflict with other same named STATIC
classes in other files. Static class will not be included in the reposit.fh prototyping file by
FlagShip. The METHODs of a static class are declared in the same way as for usual
classes, but have to be declared in the same source file.

The class itself has no lifetime, since it serves as a declarator only. An instantiated class i.e.
the created object has the same lifetime as the variable carrying it (Local, Public, Static etc.,
see 2.6.3)

2.11.2 Instances
Following the CLASS statement, you can declare instance variables by using the
INSTANCE statement. Each instance variable has a defined place in the object structure
(similar to an array element) and holds the internal object data. The name of the instance
variable is used to access its contents at run-time by means of the "send" operator ":" or by
using an Access or Assign method. During class declaration, only a place-holder and,
optionally, the variable type is specified (in the same way as for local variables). At object
creation time, the instance variables are initialized to the predefined default values (if

LNG 64

specified), or are set to any value in the INIT() method. Otherwise, they are preset to NIL (or
the default value for the type declared).

Some of the instance variables are used only internally in the class methods, and are not
visible to the user. You may specify special object functions (Assign and/or Access methods)
to be able to handle these instances outside of the class. The visibility of the instance
variables is defined during their declaration:

INSTANCE declares regular instance variables that are visible only for the class itself (e.g. in
methods) and subclasses inheriting thereof. These instances are "late bound", you can
override them with ACCESS and ASSIGN methods of the same name.

CLASS Personal // class name
INSTANCE Name := space(20) // initialized instance
INSTANCE Age AS IntVar // typed instance

PROTECT INSTANCE (or just PROTECT) declares instance variables with the same
visibility as the regular instances. The difference is, that protected instances are "early
bound" and cannot be overridden with ACCESS and ASSIGN methods of the same
name. Example:

CLASS Personal
INSTANCE Name AS Char
PROTECT INSTANCE salary
PROTECT Children := 0 AS IntVar

HIDDEN INSTANCE (or just HIDDEN) declares instance variables that are visible only for
the class itself (e.g. in its methods), but not in subclasses inheriting thereof. As with
protected instances, they are early bound and cannot be overridden. Example:

CLASS MySubClass INHERIT Personal
HIDDEN INSTANCE WifesName := ""

EXPORT INSTANCE (or just EXPORT) declares instance variables that are visible also
outside of the class, as externally accessible property of objects. The compiler
awareness of exported variables is the same as of the class itself (see prototyping
above), the run- time scope and visibility is the same as of the carrying object. Exported
instances are early bound and cannot be overridden. Example:

CLASS Personal
EXPORT INSTANCE Name := space(20)
EXPORT INSTANCE Age AS IntVar
PROTECT INSTANCE salary := 0

LNG 65

2.11.3 Methods, Access, Assign
Methods are predefined functions (UDF) which perform actions on the object. They too are
accessed by name via the send operator (see 2.11.5), and executed using the optionally
given arguments. The corresponding object element does not contain the code itself, but
only a pointer to the UDF. Therefore, an inherited class contains only the pointer to the same
functional code. There is no code duplication or redundancy.

Methods are declared outside of the CLASS entity using the METHOD statement followed
by their (UDF) code. The compiler automatically ties the method to the specified class.
Methods are very similar to functions. They also may have parameters, declarations,
programming statements, and return values. The most significant difference is in how they
are invoked (via send operator, see 2.11.5) and their visibility (same as the carrying object
variable, see 2.6.3). Unlike UDFs, which return NIL per default, the METHOD returns its
object (SELF). Example:

CLASS Personnel
PROTECT Salary // invisible instance
...
METHOD GetSalary() CLASS Personnel // method declaration
RETURN Salary // = RETURN self:salary

Assign and Access are special cases of methods. They also are declared outside of the
CLASS entity using the ASSIGN or ACCESS statement followed by the functional code,
similar to METHODs or UDFs. They are used to refer to non-exported instances ensuring
their encapsulation. Both Assign and Access methods therefore represent a "virtual instance
variable", whereby the Access and/or Assign method name may be equivalent to the name
of a regular instance variable or a regular method (but must differ from names of EXPORTed
instances). Unlike with exported instances, you may specify either an access (read) or an
assign (write) "instance" only, and may perform validation checking prior to replacing the
instance.

ACCESS declares a method that is automatically executed each time you access an
instance of the same name, using the

[<result> :=] <className>:<instName>

syntax.

ASSIGN declares a method that is automatically executed each time you assign a value to
an instance of the same name, using the

<className>:<instName> := <value>

LNG 66

syntax. The <value> is passed as an argument to the assign method. Example for read-only
access to personnel's name, first name, verified write-access to Update and read/write
access to IDno:

CLASS personnel
INSTANCE name // stores name, first
EXPORT idno // visible instance
INSTANCE update

ACCESS name() CLASS personnel // hides the instance access
RETURN name // returns instance variable

ACCESS firstName() CLASS personnel // virtual instance variable
RETURN ltrim(substr(name, at(" ",name)))

ASSIGN update(date) CLASS personnel // hides the instance
update := if (valtype(date)=="D", date, date())
RETURN // = return SELF

Init() method: if a method named INIT(..) is specified, it is called automatically during object
creation. The parameters correspond to arguments given within the class instantiation
operators { }. Common uses of the init() method are to initialize instance variables, allocate
memory for special instances, create subsidiary objects and set relationships between
objects. The init() method is generally designed not to be called manually, but from the
object creator only. Per default, all instance variables are initialized to NIL (or the empty
default values for the declared type), or the assigned values by the object creator function
<className>New(). The method must return the object SELF. See example in chapter
2.11.5. Init() is very similar to class initializer (creator) in C++

Axit() method: if a method named AXIT() is specified, it is called automatically by the run-
time garbage collector, just before the object variable gets destroyed and the occupied
memory freed. It occurs generally at the end of the object-variable lifetime (e.g. by
encountering the RETURN statement when freeing and destroying all LOCAL variables).
Common uses of the Axit() method are to reverse Init() method's doing, e.g. release
relationships between objects, close assigned databases, de-allocate memory etc. Note that
usual instance variables are de-allocated automatically; you will only need Axit() to free
memory for very special instances, explicitly allocated e.g. with _xalloc() in Init(). The axit()
method is generally designed not to be called manually, but automatically from the run-time
system only. The method may return any value, usually logical or NIL, but not SELF. Axit() is
very similar to class destructor in C++

NoMethod() method: to prevent a runtime error when a method's name is not found in the
class, FlagShip's run-time automatically invokes the NOMETHOD (methName
[,arguments...]), if present. Example:

METHOD NoMethod(cMethName,p1,p2,p3,p4,p5) CLASS MyClass
LOCAL param := "()"
if pcount() > 1

param := "(par1" + if (pcount > 2, "..." + ;
"par" + ltrim(str(pcount()-1)), "") + ")"

LNG 67

endif
if upper(cMethName) == "ERRORMSG"

alert ("Unknown method " + cMethName + param + ;
" in " + procname(1) + str(procline(1),4))

quit
else

self:errorMsg ("Unknown method " + cMethName + param + ;
" in " + procname(1) + str(procline(1),4))

endif
return NIL

NoiVarGet() and NoiVarPut() methods: to prevent a runtime error when an instance
variable's name is not found or is not visible, FlagShip's run- time automatically invokes the
NOIVARGET (varName) or NOIVARPUT (varName, assgValue) methods, if present. This
feature is very useful when creating virtual variables dynamically at runtime, e.g. accessing a
field by name in the DBserver class. The method should return the real or default value of
the given instance variable. Examples:

METHOD NoiVarGet(cVarName) CLASS MyDBserver
if USED() .and. FIELDPOS(cVarName) > 0

return FIELDGET(cVarName)
endif
self:errorMsg ("Unknown field/instance " + cVarName + ;

" in " + procname(1) + str(procline(1),4))
return NIL
METHOD NoiVarPut(cVarName, value) CLASS MyDBserver
if USED() .and. FIELDPOS(cVarName) > 0

self:rlock()
self:fieldput(cVarName)
self:unlock()
RETURN .T.

endif
self:errorMsg ("Unknown field/instance " + cVarName + ;

" in " + procname(1) + str(procline(1),4))
return .F.

2.11.4 Naming convention
Because the instances and methods are tied to the specified class, they will not conflict with
the same names of different classes, nor with usual memory variables or regular UDFs.
Instances and methods may also carry the same names in the same class - except for the
access/assign methods, the name of which must differ from exported instances of the same
class. You may choose any name according to the usual naming convention (see chapters
2.6 and 2.3), except for the reserved names for special methods INIT(), AXIT(),
NOMETHOD(), NOIVARGET() and NOIVARPUT(). For compatibility purposes, names of
instance variables and assign/access methods are abbreviated to 10 significant characters
(see 2.6), names of methods are not abbreviated and are significant in the fully declared
length (as opposed to the usual UDFs, see 2.3). The capitalization (upper/ lower case) is not
significant.

LNG 68

2.11.5 Using Objects
Send operator: The ":" operator sends selector messages to or receives them from a
specified object. Such messages access a variable or perform a special object action. The
general syntax is

<object>:<selector> [([<argumentList>])]

SELF keyword: can only be used in methods and refers to the object itself, the object of
which method is executing. Using the SELF: prefix with instance variables or access/assign
method is optional. You may also use the SELF: prefix to distinguish between the instance
variable and the same named local variable within the method, since the local variable hides
the instance. The SELF: keyword may be abbreviated by "::".

SUPER keyword: can only be used in methods and refers to the class that is the nearest
ancestor of the method's class. It is meaningful only if the current object class inherits from
another class, otherwise the self:NOMETHOD() is invoked.

Access of an object's instance: A visible (exported) instance or an access method is
addressed by using the object variable name (or the access method or the SELF/SUPER
keyword while in method), a send operator and the instance/access name, syntactically
<object>:<instance> or <object>:<accessMethod>, e.g.

LOCAL nColumn, oGet := GETNEW()
nColumn := oGet:col // col is an exported instance
? oGet:pos // pos is an access method

Assign value to an object instance: A visible (exported) instance or an assign method is
addressed by using the object variable name (or the assign method or the SELF/SUPER
keyword while in method), send operator and the instance/assign name, syntactically
<object>:<instance> or <object>:<assignMethod>, e.g.

LOCAL nColumn := 25, myget
myget := GETNEW() // create object
myget:col := nColumn // col is assign method or exp.inst.
myget:row := 2 // row is assign method
myget:NAME := "testvar" // assign an instance variable
actpos := myget:POS // access an instance variable
myget:DISPLAY() // perform action (method)

var1 := "cargo", var2 := "right"
myget:&var1 := "my text" // macro on instance var
myget:&var2() // macro with method

Invoking object methods: the object method is invoked by the object variable name, a send
operator, the method name, parentheses and optional arguments, syntactically
<object>:<method>() or <object>:<method>(<arguments>). When another method of the
same object is invoked within a method, use the SELF keyword instead of object name,
syntactically SELF:<method> ([<arguments>]). See examples below.

LNG 69

Availability and visibility: FlagShip checks the availability of the instance variable or
method both at compile-time as well as at run-time. The compile-time check is possible only
if the class is already declared in the same .prg module or if class prototyping is used. If the
instance or method is unknown at compile-time, the slower run-time addressing is used. If it
is unknown at run-time, and the NoIVarGet() or NoIVarPut() method is not declared, an error
occurs.

For available instance variables and methods of predefined object classes, see the section
OBJ.

Examples of class declaration, prototyping and usage (see additional examples in the
section OBJ and REL):

*** file test1.prg ***

#include "test1.fh" // may be omitted here
CLASS Employee // see note a. below

INSTANCE Name
EXPORT Phone AS usual
HIDDEN IdNo := 0 AS IntVar
PROTECT Salary AS Numeric

ACCESS Name CLASS Employee // hides Name inst.
return Name

ASSIGN Name(cValue) CLASS Employee // hides Name inst.
if valtype(cValue) != "C" .or. empty(cValue)

alert ("cannot assign Employee:Name with wrong value")
else

Name := cValue // replace instance
endif
RETURN Name // Instance value

METHOD Init (nId, nSalary) CLASS Employee
Name := space(20)
IdNo := if (valtype(nId) == "N", nId, 999)
Salary := if (valtype(nSalary) == "N", nSalary, 0)
RETURN // returns SELF

ACCESS FirstName CLASS Employee // virtual instance
LOCAL name := SELF:Name // local vs. instance
if !(" " $ name) .and. !("," $ name) // First name available?

return "" // no
endif // Otherwise, extract it
name := strtran(name, ",", " ") // from Name,First,...
name := ltrim(substr(name, at(" ", name))) // or Name First ...
name := if (" " $ name, substr(name, 1, at(" ", name)), name)
RETURN alltrim(name)

METHOD Salaries(user, newValue) CLASS Employee
if user # "Smith" // permission for

return -1 // Smith only
endif

LNG 70

if valtype(newValue) == "N" .and. newValue > 0
Salary := newValue // replace requested

endif
RETURN Salary

METHOD NameSalary (user) CLASS Employee
LOCAL name // local hides inst.
name := SELF:name // local and instance
if SELF:Salaries(user) > 0 // invoke method

name += " " + str (SELF:Salaries(user)) // store local
endif
RETURN name // return local var

FUNCTION start() // main entry
LOCAL personal[10] // array of objects
DO test2 WITH personal // call TEST2
QUIT
*** eof ***

*** file test2.prg ***
PROCEDURE test2 (personnel)
LOCAL user := space(20), input
LOCAL ii, idNo AS INT
LOCAL oEmpl AS Employee // typising the object
LOCAL getsys := {} AS GET // local, nested GET
#include "test1.fh" // class prototypes

for ii := 2 to len(personnel) // Creates objects,
personnel [ii] := Employee {ii, ii * 100} // invoking also the

next // init() method
personnel [1] := EmployeeNew (1, 100) // Alternative syntax

@ 10,10 say "Your name " GET user
READ
while lastkey() # 27

@ 12,10 say "Employee ID" GET idNo RANGE 1,len(personnel)
READ
@ 13,10 CLEAR TO 16,60
oEmpl := personnel [idNo]
@ 13,10 say "Name : " + oEmpl:Name // access
@ 14,10 say "First : " + oEmpl:FirstName // access
@ 15,10 say "Phone : " + oEmpl:Phone // export.instance
@ 16,10 say "Salary: "
?? personnel[idNo]:salaries(user) // method
if empty(personnel[idNo]:Name) // access

input := space(20)
@ 13,10 say "Name :" GET input VALID !empty(input)
READ
personnel[idNo]:Name := input // assign

endif
enddo
RETURN
*** eof ***

LNG 71

*** file test1.fh, see also note (a) below ***
PROTOTYPE CLASS Employee

INSTANCE Name
EXPORT Phone AS usual
HIDDEN IdNo AS Intvar
PROTECT Salary AS DOUBLE

PROTOTYPE ACCESS Name CLASS Employee
PROTOTYPE ASSIGN Name(cValue) CLASS Employee
PROTOTYPE ACCESS FirstName CLASS Employee
PROTOTYPE METHOD Init (nId, nSalar) CLASS Employee
PROTOTYPE METHOD Salaries(user, newValue) CLASS Employee
PROTOTYPE METHOD NameSalary (user) CLASS Employee
*** eof ***

*** Compile: FlagShip test*.prg -na -m -w4 -Mstart

Notes for the above example:

a. During compilation of test1.prg, FlagShip automatically creates an #include file named
"reposit.fh" containing the prototypes of the classes declared there (see also FSC.1.4.3).
So you may also use this file by simply renaming it to "test1.fh" (or specify the -r=test1.fh
switch) instead of creating it manually.

b. If the #include "test1.fh" statement (including the prototypes) is omitted in test2.prg, the
application will also run fine but slower, since the object entities (instances and methods)
have to be determined at run-time by searching the internal name tables for every
access. See more in chapter 2.11.6 below.

c. If the file test2.prg were a part of test1.prg (or if the class declaration would be in the
same source file), the prototyping would not be necessary.

See also section RDD.2 and the <FlagShip_dir>/system/smallrdd/smallrdd.prg file for an
example of a small RDD driver, or the files in .../system/ ascirdd or .../system/cb4rdd
directories for a large C program.

2.11.6 Performance Hints
There are two different ways how the objects and theirs entities are accessed and
addressed:

a. Late binding: the (address of each) object entity is searched by the FlagShip run-time
system during execution. This is the default rule, when the object/class structure
(prototype) is unknown for the FlagShip compiler. If the search fails, the NoiVarGet,
NoiVarPut or NoMethod class method is invoked, if such exists. If not so, a run- time error
appears. This process is comparable to invoking a UDF or accessing a variable by
macro, and is therefore significantly slower than the compile-time address resolution.

b. Early binding: the entity addresses are already resolved at FlagShip compile-time, which
is similar to resolving UDF or variable addresses. It allows much (3 to 5 times) faster
access than the run-time searching. The requirement is, that the compiler is aware of the

LNG 72

class structure (assigned to an object) latest when encountering the entity, which is
provided by the programmer by:

•giving the variable a type of the class, e.g. LOCAL oDbf AS MyServer, and
•announcing the object structure to the compiler via prototyping (e.g. #include

"MyServer.fh"); but is not necessary if the class was previously declared in the same
file. See also example in chapter 2.11.5 above, in section REL, and the PROTOTYPE
statement.

Note: for proper early binding, all properties in the header (.fh) file must match with the
declaration of instances, methods and access/assign methods within the .prg file with
CLASS declaration. You may create or check the/your .fh file by using -rc -r=...
compiler switches, e.g. "FlagShip -m -c -rc -r=myclass.fh myclass.prg" which will create
the myclass.fh file from class declarations available in myclass.prg

The above rules apply for all objects, the standard classes (e.g. GET, TBROWSE,
DBSERVER etc.) as well as for user defined classes. The standard prototypes are declared
in files named getclass.fh, errclass.fh, tbrclass.fh and dataserv.fh. The DBFIDX class is
specified in the dbfidx.fh file, all of them summarized in the "stdclass.fh" file.

To take advantages of the early binding, you may #include the prototype file(s) in your .prg
sources, or #include "stdclass.fh" in the (local copy of the) std.fh file. Using the -w4 compiler
switch, you may verify the early vs. the late binding.

Note, that giving the variable a class type (e.g. LOCAL ... AS ...) does not instantiate the
class, but informs the compiler (or the run-time system) about the class, which is later
assigned to this variable.

2.11.7 Converting Class(y) syntax
If your source uses Classy add-on library for user defined objects in Clipper, you will need to
make few changes only:

Declaration Class(y) Declaration FlagShip and VO
CREATE CLASS <name> -> CLASS <name>
EXPORT : VAR <instance> -> EXPORT <instance>
ENDCLASS -> n/a (remove)
method declarations -> PROTOTYPE <method> CLASS <class>
METHOD <class>:<method> -> METHOD <method> CLASS <class>

and instantiate your object

obj := <class>:new() -> obj := <class>New(....)
or obj := <class>{...}

If your source is instead VO based, no syntax change is required, since FlagShip use the
same semantic and syntax, and corresponds to Clipper 5.x instantiation of standard classes.

LNG 73

3. Files
In both UNIX and MS-Windows, files are referenced by names. For the naming convention,
see chapter 3.1. FlagShip uses the following file types for input and output:

Database Files
A database file has the “.dbf" extension as default. It contains database records, preceded
by a header with record structure definitions. The complete file structure is fully compatible
with that of Clipper and other Xbase dialects such as dBASE III plus. For more information
see chapter 4.

Memo Fields Files
have a fixed “.dbt" extension (in the default RDD driver) which cannot be changed. They
encapsulate the contents of all memo fields from the corresponding database file. Their
structure is fully compatible with that of Clipper or other Xbase dialects, except to the ".fpt"
files of FoxPro. See chapter 4.

FlagShip supports also variable memo fields with the ".dbv" extension.

Index Files
An index file contains keys and pointers to the corresponding records in the .dbf file. The
default extension depends on the used RDD driver, standard is ".idx". Neither Clipper ".ntx"
nor dBASE ".ndx", ".mdx" or FoxPro ".idx", ".cdx" file structure are supported by the default
"DBFIDX" driver, but are available e.g. in the included CB4* database drivers, see section
RDD.

For program portability and to perform existence checking of the index file, you should use
the standard INDEXEXT() function, since it returns ".NTX" for Clipper and ".idx" for FlagShip.
Using the FlagShip global setting FS_SET ("translext", "NTX", "idx") will convert all file
names from .ntx to .idx automatically. For more information see chapter 4.

Memory Files
Memory files contain memory variables and arrays stored by the SAVE command. These
variables can be read from the memory file by means of the RESTORE command. FlagShip
supports storing & restoring of arrays as well. The name, type, length and contents of a
memory variable or an array element are preserved. The default file extension is ".mem".
Clipper and dBASE ".mem" file structure is supported.

LNG 74

Report Files
Report files, default extension ".frm", contain the necessary information for the REPORT
FORM and REPORT EDIT command to produce report forms. The structure of the file is fully
compatible with that of the Clipper/xBASE ".frm" file.

Label Files
Label files, default extension ".lbl", contain the necessary information for the LABEL
FORM and LABEL EDIT command to produce (address) labels. The structure of the file is
fully compatible with that of the Clipper/xBASE ".lbl" file.

Program Files
FlagShip programs are plain ASCII files with a ".prg" extension. They can contain any
number statements and user defined procedures or functions. Names specified in SET
PROCEDURE (and SET FORMAT) commands are actually program file names. For the
Extend C system, and to storing the intermediate C code, files with the extension ".c" are
used. See also LNG.2.3 and LNG.8.

Include Files
Include files are similar to a standard .prg files. Since they are invoked by the preprocessor
statement #incude "filename.ext", any extension may be used. The default extension for
FlagShip include files is ".fh". Usually, the include files contains often used preprocessor
directives, command translations, definitions, etc. For more information, see section PRE.

Format Files for READ
Although files with an ".fmt" extension are in the interpreted xBASE dialects intended for
screen format definitions, any valid FlagShip command can be included. A .fmt file is actually
program file and will be compiled as such.

Printer Files
Printer output from FlagShip is always done through a printer file to facilitate UNIX/Windows
multitasking printouts and spooling. This file will usually be printed using the "lp" command in
Unix. Direct output to a specified device, like /dev/tty01 (or COM2: in Windows) is possible
but discouraged. See also LNG.3.4. In GUI mode with PrintGui(.T.) active, the printer output
goes directly to selected printer (driver) at request via PrintGui() or oPrinter:GUIexec().

LNG 75

Other Files
Output files created by various commands (for example: COPY TO file SDF, TEXT TO file,
SET ALTERNATE TO file, etc.) are plain ASCII files with a default ".txt" extension. You may
access (read, write) any file using the low-level file system (see LNG.3.5), or some of them
also via the ASCIRDD driver.

LNG 76

3.1 File Names UNIX vs. DOS/Windows
UNIX file naming conventions allow any ASCII character to be used in a file name. The
maximum number of characters comprising depend on the UNIX implementation, but is at
least 14. To abbreviate long UNIX names to the DOS convention, FS_SET("shortname")
may be used. Both the path and file name are case sensitive, but file names given in your
.prg source can be automatically transformed to lower or upper case by FS_SET("lower" or
"upper") and/or FS_SET("pathlower" or "pathupper") as already pre-defined in the
"fspreset.fh" (see below).

In Unix, there is no such concept as extension part of file name or MS-DOS drive selector
(like C:). A dot or colon is a "normal" part of file names like any other character. Any number
of dots can be in a file name. The same is valid for embedded space or special characters in
the file name. You may use "ls -lb *" to display file names including special characters.
Note: FlagShip support emulation of the MS-DOS drive selector via environment variable
x_FSDRIVE, see LNG.3.2 for details.

When accessing or creating standard files, FlagShip supports the file naming concept of MS-
DOS to retain compatibility with other xBASE programs. So, wherever an extension can be
assumed, it need not be explicitly specified. However, unconventional extensions can be
used as well. A file extension starts with a dot and contains up to three additional characters.

This may cause some confusion for the UNIX programmer, but a file name without extension
cannot be specified for the standard FlagShip input and output (but is supported in the low-
level file system). For example, using the command USE TEST, the "test.dbf" file will be
assumed and looked for; using the command USE TEST.XYZWQ the "test.xyzwq" file will be
expected; but in USE TEST., the file test. instead of the MS-DOS file test (without a dot) is
assumed. This is due to differences in the operating systems and cannot be avoided.

Please note that UNIX distinguishes between upper and lower case letters, thus "Test" and
"test" are different files. However, FlagShip will automatically convert (during the file
opening process) all upper case letters in a file name to lower case when FS_SET ("lower")
is used, or to upper case, when FS_SET ("upper") is used. The statement

#include "fspreset.fh"

already includes FS_SET("lower"), see details in LNG.9

The MS-Windows port of FlagShip uses standard Windows naming convention. The
maximum length of file name with drive and path is 255 characters, neither the path nor file
name are case sensitive. Conversion to upper or lower case by FS_SET() is accepted as
well but the access remain unaffected since Windows names are case insensitive; it is
however suggested if you plan later port to Unix or Linux.

LNG 77

3.2 Directory and File Access
UNIX, like MS-DOS and Windows, supports a tree-like structure of directories. Anywhere
where a file name can be specified, a path name can be specified too. Subdirectories are
separated by a slash "/" character. The maximum length of a path name in FlagShip is 250
characters.

FlagShip accepts paths in both Unix and DOS/Windows syntax, i.e. using a slash "/" or
backslash "\". During file access, FlagShip for Unix/Linux will automatically replace any
backslash character (MS-DOS or Windows path separator) to a slash character (i.e. "\" to
"/"). FlagShip for MS-Windows will replace slash character by backslash (i.e. "/" to "\").

Path names, like file names, are case sensitive on UNIX. You may choose to convert all
paths given in the program automatically to lower or upper case during the file access by
using FS_SET("pathlower") or FS_SET("pathupper") switches. You alternatively may insert
the command

#include "fspreset.fh"

at the begin of your main, which already includes FS_SET("pathlower"), see details in
LNG.9. It is accepted also in MS-Windows but irrelevant, since Windows file and path names
are case insensitive.

As already mentioned, UNIX has no equivalence for the MS-DOS drive selector (e.g. A:, C:
etc.). Separate disks (and sometimes also floppies) are "mounted" onto the main tree
structure. There also exist utilities to access DOS format floppies or partitions, like doscp,
dosls, etc. See UNIX "man dos".

Nevertheless, FlagShip provides drive letter support by the environment variable
x_FSDRIVE, where x is the required upper case drive selector. If such an environment
variable is set to a path, the drive selector, colon included, in the given path name will be
substituted by the specified UNIX path during file access in FlagShip. (See example in
LNG.9.5.)

FlagShip includes standard commands and functions to access the directory tree or to
determine and manipulate the files available there:

LNG 78

Command / Function Description
COPY FILE TO duplicate a file
ERASE / DELETE FILE delete file
RENAME ... TO rename file
FILE() check if file is available
CURDIR() reports current working directory
DISKSPACE() available disk space
MEMOREAD(), MEMOWRITE() read/write text file
DIR print the directory content
RUN ls -l * print the directory using UNIX
ADIR(), DIRECTORY() determine files & attributes

USE, INDEX... etc. database & index access, see LNG.4

FOPEN(), FCREATE(), FCLOSE() low-level open/closing a file
FSEEK() low-level repositioning of a file
FREAD(), FREADSTR(), FWRITE() low-level read from, write to file

Many of these commands and functions also support the UNIX wildcard convention, i.e. *, ?,
[] .

When using ADIR() or DIRECTORY(), keep in mind the difference in access rights on DOS
vs. UNIX (see LNG.3.3 and section FUN).

LNG 79

3.3 Access Rights
The UNIX system supports a high level of data security using "access permissions" as
standard. To access files from the FlagShip application, you should note:

1. Each file (and directory) has an access right for the file owner, associated group and
other users. The actual rights may be listed with "ls -l", for example:

$ ls -l *.dbf *.DBF *out

-rwxr-x--x 1 john programm 456789 Aug 15 17:05 a.out
drwxr-x--x 2 peter programm 12 Feb 10 10:51 mydir
-rw-rw-r-- 1 hugomayer personal 298765 Jul 20 15:10 adress.dbf
-rw------- 1 dummy programm 127 Jan 8 9:15 Adress.DBF
-rw-rw---- 1 peter personal 1239 Jun 24 10:08 person.dbf
│└┬┘└┬┘└┬┘ └───┬────┘└───┬───┘
││ │ │ │ └────── name of the assoc. group
││ │ │ └───────────────── name of the file owner
││ │ └──────────────────────────── access: others
││ └─────────────────────────────── access: group
│└────────────────────────────────── access: owner
└──────────────────────────────────── directory (or other special) mark

The access rights may be changed by the file owner or by the "superuser" (supervisor) or
"root" using the UNIX commands "chmod" or "chown". You may also change these from a
running application using e.g. RUN chmod 0660 person.dbf (here: change access to -
rw-rw---- rights) provided that you are the owner of the file.

2. FlagShip will open a standard file (e.g. database or index) successful only if this file has
at least "rw" access rights for

others : access for all users allowed
group : access for the same group member only
owner : access limited for the file owner only

Using the READONLY clause in USE command, the database file must have at least the
"r" access right. For index files, "rw" is required regardless the USE clause.

The directory with your databases and indexes must have at least "rwx" access rights.

3. The index and .dbt (or .dbv) files should have at least the same rights as the associated
database.

4. When a new file is created by FlagShip (for example INDEX ON ..., COPY TO ...), the
parent/child heredity principle will be used: the new "child" file (index, database) inherits
the rights of the actual database ("parent").

5. If a new file is created without a "parent" (e.g. CREATE ..., FOPEN(), PRINT TO... etc.),
the new file obtains the standard access rights; your actual "creation mask" (umask) is
used. The application may change these permission rights thereafter e.g. RUN ("chmod
0660 newdbf.dbf")

LNG 80

6. Be careful when using the (not very common) "mandatory locking" right. The RLOCK() or
FLOCK() functions will then lock the whole database also for read access from other
users, until UNLOCK is executed. Therefore, on execution of the USE command, a
warning in the "developer" mode occur (see FS_SET()).

In MS-Windows, files (and paths) may have "system", "hidden" and "read-only" permissions,
which behaves similarly. The permissions are managed by ATTRIB command or via security
options.

LNG 81

3.4 Printer Output
In GUI mode, you may print to any available printer (also GDI) device connected by parallel,
serial, USB or (W)LAN interface, or shared over network. This is very similar to common
CUPS in Linux or Winspool in Windows. To do so, simply invoke PrintGui(.T.) to start printer
buffering, optionally parallel to screen output. With PrintGui() w/o parameter, you will start
the printer output. See further details in section FUN.PrintGui() and CMD.SET GUIPRINTER

An alternative printer output, available in any i/o mode (GUI, Terminal or basic) is available
via SET PRINTER command:

In UNIX or Windows server, there is usually more than one user logged in at the same time,
or the logged-in user may execute several tasks parallely, same as in current Windows
versions. FlagShip therefore automatically supports the "spooled" output of UNIX or
Windows to any printer to avoid garbage being output by the printer. Each output following
SET PRINTER ON will be redirected to a special spooler file. The Unix printout must be
done later using e.g.

$ lp -dlaser <filename> --or--
$ cp <filename> /dev/lp1 --or--
$ cat <filename> > /dev/lp0

or directly from the application by "RUN lp -dlaser <filename>" etc. This method of output is
similar to the MS-DOS printer output via "PRINT <filename>".

In MS-Windows, you may use standard "COPY <filename> PRN" command to print the
spool file, or use printer object to access Windows driver, or specify e.g. SET PRINTER TO
LPT1

FlagShip creates the name of the output file automatically:

<main program name>.<process id>

e.g. "address.123" or "xyz.5647". Within the application, you may determine this file name
using the function FS_SET ("printfile"), see also FS_SET() and SET PRINTER examples.

Normally, the spool file is created in the current directory. To create it in another directory,
set the environment variable FSOUTPUT, e.g.

$ FSOUTPUT=/usr/spool ; export FSOUTPUT

Direct output to any device is also possible using the command SET PRINTER TO <device>,
where <device> is any valid device, like /dev/lp0, /dev/tty02 etc. in Unix & Linux, and PRN or
LPT3 etc. in MS-Windows.

LNG 82

You may tune the printer driver by FS_SET("prset"). Note that some printers requires CR +
LF (= carriage return + line feed) for line break instead of LF (line feed) used by default. In
such a case add the statement

FS_SET("prset", { chr(13)+chr(10) })

before your printer output statements.

In GUI, the printer output may be done upon user's request nearly automatically via
Menu->Print selection or programatically by the Printer class, available via already
instantiated oPrinter object. See also LNG.5.1.6 and section OBJ.Printer for further details.

LNG 83

3.5 Low-Level File System
FlagShip also supports direct access and manipulation of text and binary files. Because of
the low-level access, such usage requires at least basic knowledge of the UNIX (or MS-
Windows) file system, i/o low level handling and the structure of the processed file.

The low-level file system bypasses the FlagShip settings for the high- level routines like SET
PATH and SET DEFAULT, but the extended settings and conversions using
FS_SET("lower", pathlower"...) are considered.

Like in the programming language C, low-level functions are available in FlagShip:

•Open a file: before use, a file has to be opened by an FOPEN() or FCREATE() function.
The input arguments are the file name and an optional access right. On success, the
function returns a "file handle", which is a number used in subsequent functions.

•Read a file: an open file will be sequentially read by FREAD(), FREADSTR() and
FREADTXT(). Note: binary zero (CHR(0)) bytes are supported; for buffer manipulation
using standard string functions refer to chapter LNG.2.6.5.

•Write a file: a predefined string or character buffer will be written into the opened file using
the FWRITE() function. Writing binary zero (CHR(0)) bytes from the buffer are supported.

•Position to a new file offset: the file byte pointer is positioned to the first (0) byte in a newly
opened file, and past the last read/written byte on subsequent operations. Use FSEEK() to
re-position the current byte offset within the file.

•Close a file: the low-level opened file will be closed using FCLOSE() or automatically on
program end, break or termination.

•Check whether the operation has been successful should be performed using the
FERROR() function.

FREAD() and FWRITE() can also be used to process data on serial port (tty device device
on Unix). Complete serial port access is available in the FS2 library.

Keep in mind that the database locking mechanisms; FLOCK(), RLOCK() etc. cannot be
used for this low-level system. Should locking be required, the special low level locking using
FLOCKF() may be used instead.

LNG 84

3.6 Large File Support
In the most operating systems, FlagShip support access and management of files larger
than 2 Gigabytes. To enable it, use SET LARGEFILE ON at the begin of your application,
latest before open and access the data(base). The default setting is OFF to ensure
backward compatibility to available databases and files.

LNG 85

4. The Database System
The FlagShip Database System (DBS) is a collection of commands and functions to handle
databases, fields and indexes. It takes care of keeping binary compatibility to other xBASE
systems like Clipper, dBASE, FoxBase etc. The DBS supports the full handling and program
control of concurrent network, multiuser and multitasking access using standard UNIX or
MS-Windows locking mechanisms. Commands to export or import other ASCII files into
databases are available.

Because all the database (and index) handling functions are object oriented and
encapsulated within the RDD (replaceable database driver), you may freely exchange the
default, or add an other "database engines" of your choice (see sections OBJ and RDD for
details).

4.1 Databases
The database file (also called a "database table") consists of sequential records of fixed
length. For storing strings of variable length, additional memo-field-file(s) may be specified in
the database structure. New records are always added at the end of the file. Records cannot
be removed from the file, rather they will be marked for deletion and the whole file can then
be "purged" with the PACK or ZAP command.

A record consists of fields of fixed length (except for data of memo- fields, since stored in
separate file). The length of a record is equal to the total length of all its fields plus one (the
deleted flag). There are no record or field delimiters. The length of the fields (and thus the
length of the record) is defined at database file creation time. The database is practically a
two-dimensional table with fixed width (fields) and variable length (records). All data in
records is in ASCII format. Database (and index) size exceeding 2 GB is supported by SET
LARGEFILE ON.

At the beginning of the .dbf file is the header (in binary form). It contains information about
last update date, number of records, header size, etc.

The total length of a database file can be calculated as:

dbf_len = 33 + no_of_fields * 32 + no_of_records * record_len

where

record_len = sum (field_lengths) + 1

See also example in FUN.DBSTRUCT().

LNG 86

Selected Database Commands and Functions
Database access
USE .. [index] [exclusive] [alias] open database (and indices)
USE close actual database
CLEAR ALL, CLOSE ALL close all open databases
CLOSE, CLOSE DATABASES close all/the actual database
USED() is the database opened ?
DBF() retrieve the database name

SELECT [scope] [alias] select working area 1...255
SELECT 0, USE...NEW select next free working area
SELECT() get the number of actual working area
ALIAS() get the actual alias or dbf name

SET LARGEFILE ON enables support for files > 2GB
SET RELATION to ... into relate two or more databases
DBRELATION() retrieve the actual relation
DBRSELECT() retrieve the child relation
APPEND ... from [sdf] [delimited] add data from ASCII or database file
COPY TO... [sdf] [delimited] copy database to dbf or an ASCII file
COPY STRUCTURE to... create an empty database
COPY STRUCTURE to... extend create filled structure database
DBCREATE() create a database from an array
CREATE create a structure database
CREATE ... FROM create a database from a structure .dbf
JOIN with ... TO ... for [fields] join two databases into a new one
SORT ... on .. to sort database
UPDATE on...from...[replace] update actual database from another

LABEL FORM [for] [while] [to] label output from a .LBL file
REPORT FORM [for] [while] [to] report output from .FRM file

HEADER() get the size of a .dbf header
LUPDATE() get the last date of a .dbf update

Access to database records
SKIP [range] relative record movement
GO, GOTO [record] [top] [bottom] absolute record movement

APPEND BLANK append an empty record
DELETE [for] [while] mark record as deleted
RECALL [for] [while] unmark record as deleted
PACK remove all deleted records
ZAP remove all records from database

AFIELDS() fill array with info about dbf struct.

LNG 87

DELETED() is the record deleted ?
BOF() attempt to pass the database top ?
EOF() end of database passed ?
LASTREC(), RECCOUNT() database record count
RECNO() current database record number
RECSIZE() database record size

Access to database fields
var = DBFfield assign field to memory variable
var = alias->DBFfield assign field of an aliased database to var
var = DBFfield + 30 database field within an expression
fn (DBFfield, var) database field as argument

FIELDGET(), FIELDGETARR() get specified field or all fields in record
FIELDPUT(), FIELDPUTARR() replace specif.field or all fields in record
REPLACE [range] field .. WITH replace contents of database field
@ ... GET / READ change database field from user entry

AVERAGE ... TO average of numeric fields
COUNT ... TO count records fulfilling condition
SUM ... TO sums a range of numeric fields
TOTAL ON ... [fields] TO sums specified fields into a new dbf

DBEDIT() screen oriented display of dbf fields
FIELD(), FIELDNAME() get the name of a database field
FIELDLEN(), FIELDDECI() determine the field size
DISPLAY display database field(s)
LIST list database

Search, filtering
SEEK, FIND fast index oriented search for data
SEEK EVAL search index for any data
SET SOFTSEEK on/off toggles relative seek on/off
FOUND() was the searched for record found ?
LOCATE for [while] locate data sequentially
CONTINUE continue the previous locate search
SET FILTER to only the specified data is visible

Management of memo fields
charVar = MemoField assign a memo field to a string variable
REPLACE field WITH charVar change the contents of a memo field
MEMOEDIT() screen oriented output/editing of memo
MEMOLINE() get a line from a memo field
MEMOTRAN() change a soft to a hard CR/LF wrapping
MLCOUNT() count the lines in memo field

LNG 88

MLPOS() seek for some text in a memo field

MEMOREAD() read in a text from a Unix/Windows file
MEMOWRIT() write the text to a Unix/Windows file

Index management
INDEX ON create a new index file, sorted on a key
INDEX ON...FOR... create a new index file of selected keys
REINDEX recreate all index files for the current dbf
SET INDEX TO assign an index file(s) to the current dbf
SET ORDER TO set specified index as main sort criterion
SET UNIQUE off/on turn on/off writing multiple record keys
DESCEND() reverse sorting order
INDEXEXT() get the extension of the index file (.idx)
INDEXDBF() report the associated dbf file
INDEXKEY() report curr. sorting criterion of index file
INDEXORD() report the current main index
INDEXCOUNT() report the no. of current assigned indices
INDEXNAMES() create array containing act. index names
INDEXCHECK() check the integrity of index to dbf

Network, multiuser, multitasking
SET EXCLUSIVE on/off open databases exclusive/sharable
SET AUTOLOCK on/off allow automatic record/file locking
SET MULTILOCKS on/off allow multiple record locking
USE ... [exclusive/share] open act.database exclusive/sharable
RLOCK(), FLOCK(), AUTOxLOCK() record or file locking for write access
UNLOCK [ALL], DBUNLOCK() free record or file locking
COMMIT, DBCOMMITALL() flush all buffers onto disk
SKIP 0, DBCOMMIT() flush current database onto disk
NETERR() check success of dbf opening/appending

LNG 89

Creating a Database
A new, empty database can be created on-line by the application using the function
DBCREATE() or commands CREATE and CREATE FROM. The associated .dbt (or .dbv)
file is created automatically, if a MEMO or variable MEMO field(s) is/are used. Example:

LOCAL dbfstru := {{"NAME", "C", 25, 0}, ;
{"FIRST", "C", 20, 0}, ;
{"ADDRESS", "C", 30, 0}, ;
{"BORN", "D", 8, 0}, ;
{"EARN", "N", 8, 2}, ;
{"NOTES", "M", 10, 0}, ;
{"IMAGES", "VB",10, 0} }

DBCREATE ("employee", dbfstru)
USE employee
? RECCOUNT(), FCOUNT() // 0 6

For more examples see (CMD) CREATE, CREATE FROM, COPY STRUCTURE, COPY
STRUCTURE EXTENDED and (FUN) DBCREATE.

LNG 90

4.2 Database Records and Fields
The field is the atom of the database file. It is always of fixed length which determined at
creation time. Its length cannot be changed (rather, a new file with the new structure has to
be created and then data copied from the old file). There are five types of fields. Regardless
of type, their content is always ASCII and is binary compatible to Clipper or xBASE
databases on DOS.

Field names: All database fields are named. The field name can be up to 10 characters
long, must begin with an alphabetic character. The remaining characters can also be
numbers or the underscore ("_") sign. No embedded blanks are allowed. Access to the
field name is done by name, optionally prefixed by an alias (for further details see
chapter LNG.4.4).

Character field: Maximum size of a character field is 65535 characters. It can contain any
combination of letters. In fact a single character can have any value from 0 to 255.

Numeric field: Maximum number of digits is 19 including decimal point and minus sign. The
number is represented with ASCII characters. The actual precision of the number in
numerical computations is 15 decimal places.

Date field: always takes 8 bytes to store. The full date, including century is stored in ASCII
format without delimiters.

Logical field: takes up 1 byte. Its content can be one of " ", "F", "f", "T", "t", where T or t
represents TRUE, everything else a FALSE value.

Memo fields: A memo field is used to store text of variable length. Space is allocated in 512
byte blocks. A memo field in .dbf file is always 10 bytes long. It contains (in ASCII
format) a number of starting sector (of 512 bytes) in the .dbt (memo) file where the
memo text begins. If the memo text exceeds 512 bytes, it continues in next sector and
so on. The maximal storage size of one memo field per record is limited by xBase
specification to 64 KB. If you need to store strings larger than 64kb, use two or more
memo fields, see example in CMD.REPLACE. The memo field string may contain any
ASCII character value 1..255 but not CHR(0) = 0x00 and CHR(26) = 0x1A characters,
since these terminates the memo field. But you may save it via MemoEncode() and read
it later with MemoDecode() or use the CharPack() and CharUnpack() functions from
FS2 Toolbox.

Variable Memo fields are FlagShip unique feature. The data are stored in separate file with
a .dbv extension, similarly to Memo fields. But as opposite to usual Memo fields, these
variable Memo fields may contain any character (0..255) and are not limited in size (up
to 2 Gigabytes are supported). You therefore may store either character or binary data
like binary images here. In addition to, FlagShip automatically compress the data by
using LZH or RLL compression algorithm, if applicable.

LNG 91

Delete flag (1 byte) holds the information, if the record was deleted by DELETE, i.e. should
the record be invisible when SET DELETED is ON.

Record Order
All database records are internally numbered from 1 to LASTREC(), the actual record
number can be determined with RECNO(). New records are always added on at the end of
the database. Moving the record pointer with the SKIP command will access the physically
next record (1 to 2 then 3 etc.); moving it by GOTO will directly access the required record
number. To locate a defined field value, a sequential search using LOCATE and CONTINUE
is available.

When an index file is used, the "visible" record order changes according to the sorting
criteria. The physical record numbering remains however unchanged, but the SKIP
command moves from the record containing "A" to the record containing the next index
criteria "B" etc. so the physical movement on indexed database is e.g. to record 5,2,7,1 etc.
Very fast searching commands SEEK and FIND are available.

Accessing the Database Records and Fields
The usage of database fields is very similar to the usage of memory variables, after the
record pointer is positioned on the required database record (using SKIP, GOTO, SEEK,
LOCATE etc.).

The contents of the database field (of the currently positioned record) may be stored
(assigned) in a variable, used directly in expressions, or passed as argument to standard
functions, UDF or UDP.

The command APPEND BLANK is used to append a new, empty record to the selected
database. To replace the field contents with a new value, the command REPLACE,
FIELDPUTxxx() functions or the := assignment is used.

The command DELETE will mark the whole record as "deleted". Such a record will be
"invisible" if the switch SET DELETED is ON. To un-delete such a record, use the command
RECALL. With PACK you can irreversibly remove all "deleted" records from the database.

To avoid ambiguity between field usage and PRIVATE or PUBLIC variables with the same
name, the alias-> (or area-> or FIELD->) selector or the FIELD declaration will specify the
name explicitly as a database field. To prefer a PRIVATE or PUBLIC variable, use the
MEMVAR-> or M-> selector or the MEMVAR declaration. For further details refer to LNG.4.4.

If both the selector and declaration are omitted, the FIELD is preferred on access from, but a
memory variable is used on assignments to. LOCAL or STATIC variables always have
preference to the fields with the same name when the alias-> selector is not used.

LNG 92

Accessing the Memo Field
Memo fields store variable length character data in the associated file, named the same as
the database, but with a .dbt extension, see 4.2. The handling of memo fields is the same as
of character fields. To store the contents of a memo field in a variable, use the = or :=
operator, to replace a memo field with a new value, use the REPLACE command,
FELDPUT() function or an aliased assignment with the = or := operator.

The memo field string may contain any ASCII character value 1..255 but not CHR(0) and
CHR(26) characters, since these terminates the memo field. If these characters are used in
the saved data, use MemoEncode() to store such strings in the memo field and
MemoDecode() to read it from.

The memo field is of variable size (in 512 bytes segments) and is per xBase definition limited
to 64 kBytes (65536 bytes). If you need to store strings larger than 64kb, use two or more
memo fields to store it. On REPLACE, split the content via substr() to segments shorter than
64kb; on access simply concatenate these memo fields. For example:

cLongStr := replicate("x", 102400) // 100 kb
REPLACE FIELD->MEMO1 with LEFT (cLongStr, 65000)
REPLACE FIELD->MEMO2 with SUBSTR(cLongStr, 65001)
...
cLongStr := FIELD->MEMO1 + FIELD->MEMO2
? len(cLongStr) // 102400

Accessing the Variable Memo Field
Variable Memo fields are similar to usual Memo fields offering additional features. They store
variable length character and binary data (BLOB) in the associated file, named same as the
database but with .dbv extension, see 4.2. These variable Memo fields may contain any
character (0..255) and are not limited in size (up to 2 Gigabytes are supported). You
therefore may store either character or binary data like binary images here. In addition to,
FlagShip automatically compress the data by using LZH or RLL compression algorithm, but
only if the resulted assigned size is smaller than original. On access, the reverse
decompression is done automatically too.

The handling of variable memo fields is the same as of character fields or usual Memo fields.
To access or store the contents of a variable memo field in a variable, use the = or :=
operator. To replace the variable memo field with a new value, use the REPLACE command,
FELDPUT() function or an aliased assignment with the = or := operator.

You may even use variable character fields in index, e.g. INDEX ON padr(VARFLD, 50)
where VARFLD is the variable memo field. Note that you always will need to adapt the result
to fixed index size, as shown in this example. Keep in mind that the access may be slightly
slower than to regular char fields.

See an example in the <FlagShip_dir>/examples/images.prg file for further use.

LNG 93

4.3 Working Areas
Each opened database is associated to a selected working area. The working area contains
information about the database name, the area number, actually opened accompanying
index files, actual filter criteria and so on. FlagShip supports up to 65000 simultaneously
opened databases, each associated with up to 15 index files and each with up to 8 relations
to other databases.

Note: The physical amount of opened and/or shareable files depends on the actual
setting of the UNIX kernel. For further details see the UNIX system administrator
documentation and "man" pages for sysadmsh, system and so on (OS dependent).
In MS-Windows, FlagShip allows up to 2000 open files simultaneously.

Working areas are numbered 1 to 65534. To select one, the command SELECT is available.
SELECT 0 is reserved for selecting a new, unused working area. On the program start,
working area 1 is pre-selected.

To open a new database,

a. Select any unused working area, using e.g. SELECT 5 or SELECT 0 for automatic
selection. This is only needed when the NEW clause in the following step is omitted.

b. Issue the command USE dbfname, optionally with the clause NEW and/or other clauses,
specifying the alias name, associated indices etc. (see more command USE).

If the same alias is already defined in an other working area, a run-time warning will occur.
Opening a database in a working area will automatically close any previously existing one
along with all its indexes and relations.

For an overview of commands and functions associated to working areas, databases and
indexes, see sections QRF, CMD and FUN.

Concurrent Database Access
The same physical database can in FlagShip be simultaneously used in different working
areas. For such special cases, a different ALIAS is required. The handling of concurrently
opened databases within one application is nearly the same as sharing databases in
multiuser/ multitasking mode (see 4.8.7): SHARED mode is required, RLOCK() or FLOCK()
have to be executed before write access (or SET AUTOLOCK enabled for the automatic
locking). Some database global operations (like PACK, ZAP) are not allowed on concurrently
open databases.

When the developer mode is on, using FS_SET("devel", .T.), you will get developer's
warning at opening the same database twice within the same application. This avoids
unintentional concurrent database use, resulting often in programmer's confusion.

LNG 94

You may check concurrently (multiple) open databases using IsDbMultiple() function. To
determine whether the same database is used by another user or process or executable,
use UsersDbf()

LNG 95

4.4 Aliases
When opening a database file for use, an alias can be specified. For example:

USE address ALIAS adr NEW
USE billing NEW

will open database files "address.dbf" and "billing.dbf" for use in different working areas,
which will be referenced by the "adr" or "billing" aliases as in:

SELECT adr
SELECT billing

or the field access

cur_name = adr->name
bil_name = billing->name
? "Bill #", billing->number, "for Mr." + adr->name

Using the alias-> operator allows database fields to be accessed or to perform expressions
on otherwise unselected work areas. The last example also illustrates the use of aliases in
expressions.

A user-defined or standard function or any other expression can also be executed as an
aliased expression by preceding it with an alias and enclosing it in parentheses (see chapter
2.3.2), like

adr->(myskip(2))
? billing->(EOF())

Special Aliases:
In addition to standard ALIASes generated by the USE command, special alias selectors are
available:

•Field variable: FIELD-> or _FIELD-> prefix specifies that the given database field must
be addressed. This must always be done when REPLACEing the field contents in the = or
:= operator. The equivalent alternative is using the FIELD declaration statement.

•Working area numbers: the number of the working area may be used as alias if enclosed
in parentheses, e.g. (5)->fnam for the field "fnam" used in working area 5.

•Working area letters: for compatibility to dBASE, FlagShip supports the working area letter
A,B,...,L which correspond to the working areas 1,2,...12. The syntax A->fname is
equivalent to (1)->fname, L->fname to (12)->fname etc.

LNG 96

•Memory variable: a M-> or MEMVAR-> prefix specifies that the given PRIVATE or PUBLIC
memory variable must be addressed. This must always be done when variable has to be
made to point to a database field on access. An equivalent alternative is using the
MEMVAR declaration statement.

Examples:

LOCAL city
PRIVATE name
SELECT 3
USE address ALIAS adr // contains field "name"
name := name // ─┐
name := FIELD->name // │ all the statements
M->name := name // │ are equivalent
MEMVAR->name := FIELD->name // │
MEMVAR->name := adr->name // ─┘

SELECT 2
USE custom
MEMVAR->name := adr->name // ─┐
MEMVAR->name := (3)->name // │ name from address
MEMVAR->name := C->name // ─┘
MEMVAR->name := name // ─┐
name := custom->name // │ name from custom
M->name := B->(UPPER(name)) // ─┘
adr->name := custom->name // REPLACE address.dbf
FIELD->name := (3)->name // REPLACE custom.dbf
custom->name := M->name // REPLACE with PRIVATE

city := adr->city // LOCAL and STATIC
custom->city := city // without MEMVAR->

LNG 97

4.5 Indices, Sorting
The physical order of database records (see 4.2) can be changed according to the required
sorting criteria, like ascending for name, descending for the zip code etc., using the SORT
command.

Indexing the database using INDEX ON or REINDEX is similar to SORTing it, but does not
changes the physical order of its records. It creates a separate index file instead, containing
the required sorting criteria. Each database may be associated with up to 15 different index
files.

Using a filtered index (created with the FOR or WHILE clause) will result in significant speed
increase compared to SET FILTER.

A new index is created using the command INDEX ON <exp> TO <file>. The maximum
length of the expression statement <exp> is 420 bytes including white spaces, and of the
evaluated index key 238 bytes. The sorting expression <exp> is stored in the index header
and is retrievable by using INDEXKEY(). Once created indices may be re-indexed using the
REINDEX command.

To assign one or more index files to a database, use the command USE...INDEX <file, file>
or SET INDEX TO <file, file>. The first index specified becomes the controlling sorting
criteria and controls the visible (logical) record order. The controlling index can be changed
any time using SET ORDER TO, without re-opening the index files. To determine the actual
order, use INDEXORD(). The indices are closed automatically when closing the associated
database, or explicitly with CLOSE INDEX or SET INDEX TO.

The main advantage of indices compared to SORTing is, that many different sorting criteria
are available, the index files are automatically updated on changes of the database and a
very fast searching SEEK (or FIND) command is available to finding the required data. Also,
a "soft" searching for the "exact or the next closest item" is available using the SET
SOFTSEEK switch. FlagShip supports additionally a "scan for any value in index" using the
SEEK EVAL command.

The results of searching by LOCATE, SEEK and FIND can be determined with FOUND() or
EOF() functions.

LNG 98

Index Integrity Checking
Since the associated index file represents the "register" of the database, and all database
movements refer to the indices, the index file must always be up-to-date and must match the
database.

If one or more index files are assigned to the opened database using SET INDEX TO ... or
USE...INDEX... commands, or the associated functions respectively, FlagShip will update all
of these indices automatically on any database modification. Using the command SET
ORDER TO, the controlling index may be switched or disabled.

Thus, by assigning all relating indices to the opened database while modifying the database
(i.e. changing the field contents, appending new records, deleting/un-deleting, PACK-ing and
ZAP-ing), the integrity is preserved.

On the other hand, when the database gets changed, expanded or packed without the
corresponding index attached, and the index assigned later, the field "contents" stored in the
index file will not reflect the database contents - the index integrity will be corrupted.

FlagShip checks the integrity of indices by comparing an internal "modification" counter
(stored in the index header) of the index with the same counter in the database. When they
are different, only the REINDEX, PACK and ZAP commands may follow the index
assignment. Otherwise, the first movement in the database will cause a warning (in
developer mode, if the record count is equal) or a run-time error. This avoids fatal breaks in
the middle of transaction, known in Clipper or FoxPro. The application can check the index
integrity itself using the INDEXCHECK() function and perform silently re-indexing.

However, this index integrity checking disables the automatic movement to the database top,
so when you are using SET FILTER or SET DELETED ON, you may need to issue GO TOP
or DbGoTop() after open the database or assigning new indices. You may force the GO TOP
movement automatically by SET GOTOP ON or Set(_SET_GOTOP,.T.) - which will behave
same as Clipper but disables the possibility of silent, programmed index recovery.

The most common cause of corrupted index integrity is:

1. Database was previously open without index (or with not all indices) and modified by

REPLACE <field> WITH <value>
<field> := <value>
FieldPut(), FieldPutArr()
@..GET <field> / READ
APPEND BLANK, DbAppend()
Browse(), TbrowseDb(), Tbrowse()
PACK
ZAP
APPEND FROM...
UPDATE ON..FROM...

LNG 99

2. Database is multiply open (see LNG.4.3) and modified (same as 1), where the second
work area did not open all required indices

3. Database was modified by another FlagShip application, which has not open all
required/used indices

4. Database structure (it key field) was modified, but not re-indexed

5. Index key contain memory variable(s) which are differently set, or uses different relations.
This generally should be avoided.

6. Database and index was changed, but not COMMITed yet

7. Database was modified by another, non-FlagShip application, which does not support
FlagShip indices

8. Database was modified by another RDD driver or directly by own C (or Java or other low-
level etc.) function

FlagShip will detect problems in (1) to (5) and report it by INDEXCHECK(), but
understandably cannot detect automatically problems caused by (6..8). In such a case, run-
time error (usually RTE 331) occurs, when corrupted index key is detected. See also
example in INDEXCHECK(). Corrupted index file will be fixed by REIDEX or INDEX
ON..TO..

LNG 100

4.6 Searching, Filtering
In FlagShip, there are three different possibilities to locate the required data in the database:

•Sequential searching, using the commands LOCATE and CONTINUE, steps the database
record-by-record and compares the requested data given by LOCATE with the actual field
contents. If the data is found, the searching stops and the function FOUND() returns
TRUE, EOF() returns FALSE. The CONTINUE command continues the search for next
applicable data. If the data is not found, EOF() returns TRUE and FOUND() return FALSE.
The sequential search may be used for both indexed or un-indexed databases.

•Index-sequential searching, using the commands SEEK or FIND, is much faster than the
LOCATE (CONTINUE) command, especially on large databases. It is usable on indexed
databases only. To check the success, use FOUND() and EOF(). Only the first applicable
database record will be found (if any), more records with the same index criteria may
follow and are directly found by SKIP. FlagShip also supports "closest similar" index
searching using the SET SOFTSEEK switch. See more in (CMD) SEEK, SKIP, INDEX etc.
To build a FILTER criteria into index key, use INDEX ON...FOR|WHILE...

•Index-sequential index scanning, using the command SEEK EVAL, is similar to the
sequential searching but is performed directly on the index key, and is therefore
significantly faster than the LOCATE command. Using SEEK EVAL, you may scan for any
value in the index key (also for a substring), or continue the previous search. It is usable
on indexed databases only. To check the success, use FOUND() and EOF(). See more in
(CMD) SEEK EVAL, INDEX etc.

Both searching methods, SEEK or LOCATE, may also be used to determine whether or not
an item exists.

When SET FILTER is set, or SET DELETED is ON, the database seems to contain only the
filtered records. Other records, which do not match the filter criteria, are automatically
skipped over. The filter criteria affects LOCATE, SEEK and SEEK EVAL as well.

Using SET FILTER TO <exp> and GOTO TOP is similar to the LOCATE command. The
usage of FILTER slows database access significantly, because all the filtered-out records
must nevertheless internally be read.

On indexed databases, SEEK and DO WHILE <filter_exp> is a better alternative. The fastest
method is the usual invocation of SEEK (or FIND, SEEK EVAL) commands on "filtered"
indices created using the FOR clause of INDEX ON.

LNG 101

4.7 Relations
When designing a database system, you create several separate database files (tables) to
avoid redundancy. In a relational xBASE system, the tables (databases) may be connected
together or refer to each other in any required order. There are no restrictions or
prerequisites well known in other, hierarchical DBMS.

Relations are also called "joins" in database theory. A relation is a link between two
database files on a key field that they both contain. The primary file is called the "parent", the
secondary files are "children".

It is common, to create e.g. the parent customer address database, with relations to
separate databases (children) of invoices, orders, stock, prices etc. After the databases are
linked, one customer record may refer to one ore more invoices, orders or price records.
Moving the database pointer in the parent file moves it to records with the same key
expression in each child.

address.dbf order.dbf article.dbf
╒══════════════════╕ 2:5 ╒══════════════════════╕ 5:3 ╒═══════════════╕
│NAME ADRE CUSTNO│ │CUSTNO DATE ART_NO│ │ART_NO ART_NAME│
│Miller ... 1234 │───┬──>│1234 10/05/93 A-24 │─────>│ A-24 art24.. │
│Smith ... 55 │─┐├──>│1234 10/21/99 B-15 │───┐ │ │
│Adams ... 856 │──┐└──>│1234 11/10/04 A-97 │─┬───>│ A-97 art97.. │
╘══════════════════╛│├───>│856 07/08/02 A-97 │─┘│ │ │

│├───>│856 07/08/09 B-15 │───┴─>│ B-15 art15.. │
││ ╘══════════════════════╛ ╘═══════════════╛
││ invoice.dbf
││2:3 ╒══════════════════════╕
││ │CUSTNO DATE AMOUNT│
│├───>│856 07/08/02 1234.5│
│└───>│856 12/12/06 345.6│
└────>│55 02/02/09 11.2│

╘══════════════════════╛

In the above example, the address.dbf is the parent for order.dbf and invoice.dbf, the
order.dbf is a child of address.dbf and the parent of article.dbf and so on. As you may see,
there are relations 1:0, 1:n, and n:1 possible. The identical keys for the links are CUSTNO
and ART_NO. The relation links are set with the SET RELATION command, e.g.

USE address NEW SHARED
USE order NEW SHARED INDEX order_cust
USE invoice NEW SHARED INDEX invoice_cust
USE article NEW SHARED INDEX article_no
SELECT address
SET RELATION TO custno INTO order [MULTIPLE]
SET RELATION TO custno INTO invoice ADDITIVE
SELECT order
SET RELATION TO art_no INTO article [MULTIPLE]
SELECT address

LNG 102

GO TOP
WHILE !eof()

? address->name, address->custno, order->date, order->art_no, ;
article->art_name, invoice->date, invoice->amount

SKIP
ENDDO

With SET RELATION, FlagShip supports 1:1 relations per default. That means, SKIP on
address (here Miller) locates the corresponding record in order.dbf (here CUSTNO=1234)
and in article.dbf (here ART_NO=A-24). You may then select the related database(s), and
skip thru for subsequent data. The next skip on address.dbf (here Smith) locates his related
data in invoice.dbf, and so forth.

For your convenience, FlagShip also supports 1:N:N relations by using the MULTIPLE
clause in SET RELATION command (similar to SET SKIP in FoxPro). In this case, GO TOP
or SKIP on address.dbf locates the corresponding record in order.dbf and in article.dbf
(Miller -> 1234 10/05/93 -> A-24 art24..), same as with 1:1 relation. But subsequent SKIP on
address.dbf will process all 1:n related databases first, i.e. it checks here for subsequent
data in article.dbf and since not available, skips in order.dbf and returns (Miller -> 1234
10/21/99 B-15 -> none). Next SKIP returns (Miller -> 1234 11/10/04 -> A-97 art97..) and so
forth, as long as the same relation key(s) matches for the master. Thereafter, next record in
address.dbf (master) is selected. Note that with 1:n:n relations, you will need (in worst case)
to skip (records-in-parent * records-in-child1 * records-in-child2) -times to reach eof(). See
complete example in <FlagShip_dir>/examples/relat_one2n.prg

Although links set by SET RELATION are comfortable and easy to handle, they may slow
program execution. Any time the address.dbf is skipped, all relations in child links also have
to be moved. If the link is required in some special cases only (like a user request via hot-
key), the "soft" link is a faster option: the child record is simply positioned by SEEKing the
parent key. For further details see in (CMD) SET RELATION and SEEK.

LNG 103

4.8 Multiuser, Multitasking
FlagShip supports networking as well as multitasking and multiuser programming and file
access.

Multiuser means that one, two or more users can execute their programs at the same time.
The same user may also run the same or different application in different tasks
(multitasking). Users are connected to the UNIX computer using dumb or intelligent terminals
via serial port, Ethernet and so on. The terminal is often a PC computer running a terminal
emulation program such as Procomm, Telix, Windows Telnet, Putty, PC/NFT etc.

Because multitasking/multiuser mode is comparable to networking in MS-DOS, the FlagShip
language uses the same statements for your convenience, to support networking and
multitasking/multiuser. So if your application is ready for network in Clipper or xBASE, no
changes are necessary to run it as a multiuser/multitasking program with FlagShip,
independent on the used target platform.

In addition to user programmable locking, FlagShip supports also automatic (but modifiable)
record and file locking. Therefore, also application written for single-user execution on MS-
DOS are directly usable in FlagShip and multiuser/multitasking environment. The only pre-
requirement is to SET EXCLUSIVE OFF or open the databases via USE...SHARED.

The following network and multiuser/multitasking commands and functions are available for
a manual locking control:

•Exclusive or shareable database access with SET EXCLUSIVE ON/OFF, USE ...
EXCLUSIVE/SHARED

•File locking with FLOCK () or AUTOFLOCK()
•Record locking with RLOCK () or AUTORLOCK()
•Unlocking with UNLOCK, DBUNLOCK() or AUTOUNLOCK()
•Checking the success with NETERR ()
•Flushing the buffers with COMMIT or DBCOMMIT()

Additional functionality is available by invoking the RDD methods, see sections OBJ and
RDD.

The AutoLock functions AUTORLOCK(), AUTOFLOCK() and AUTOUNLOCK() are
activated automatically when a lock is required, SET AUTOLOCK is ON (the default) and a
manual lock was not performed.

The programming rules for running applications in multiuser and multitasking mode with
FlagShip are the same (or even more simple), as for networking with Clipper or other xBASE
dialects:

LNG 104

1. Put the statement SET EXCLUSIVE OFF in front of your main module. All databases
(and indices) that will be opened thereafter, may be shared from different applications or
users. An alternative is the SHARED clause in each by USE opened database which
should/must be shared (applies also for AutoLock).

2. After opening the database and indices, check the status and success using the
NETERR() function. To perform this check, don't open database and index(es) within the
same statement (USE dbfname INDEX indexname), but use two statements (USE .../SET
INDEX TO ...) instead (applies also for AutoLock). Example:

USE dbfname SHARED
DO WHILE NETERR ()

? "waiting for opening"
INKEY (2)
USE dbfname SHARED

ENDDO
SET INDEX TO index1, index2
IF NETERR()

? "wrong indices or permission !"
QUIT

ENDIF

3a. The database must exclusively by opened for global changes of the whole database or
index with:

•ZAP
•PACK
•REINDEX, DBREINDEX()

using the statement USE dbfname EXCLUSIVE or the usual USE while being in the
SET EXCLUSIVE ON mode. This exclusive status will be successful only if the
database isn't in use by other applications (applies also for AutoLock).

3b. The database should by FLOCKed or, better, opened exclusively, when the same index
is/may also be used by other users/processes during the execution of

•INDEX ON...TO..
•DBCREATEINDEX(), ORDCREATE()

In AutoLock mode, AUTOFLOCK() is invoked automatically, if required.

The only exception of this rule is, when you create a temporary index, not used by other
user/process. In such a case, you may avoid the FLOCK check (or the invocation of
AUTOFLOCK) by using the NOLOCK clause of INDEX ON. Example:

SET EXCLUSIVE OFF && see 4.8.1
IF !FILE ("adr1" + indexext()) && see 9.3

USE adress EXCLUSIVE && excl. modus
DO WHILE NETERR () && success ?

? "waiting for opening" && - no,
INKEY (2) && - wait and
USE adress EXCLUSIVE && - try again

ENDDO
INDEX ON STR(zip,6) + name TO adr1

LNG 105

INDEX ON DESCEND(orderno) TO adr2
USE

ENDIF
USE adress && share modus
DO WHILE NETERR ()

? "waiting for opening"
INKEY (2)
USE adress

ENDDO
SET INDEX TO adr1, adr2

After INDEX ON, the index file remains in an EXCLUSIVE mode until the creator
process closes it. The index file may also be locked "exclusively" by the user, issuing
the SET INDEX...EXCLUSIVE command.

4a. Each write access on .dbf or .dbt files with

•REPLACE
•FIELDPUT(), FIELDPUTARR()
•FIELD->dbffield := exp (assignment)
•GET / READ (on database fields)
•DELETE, RECALL
•UPDATE
•EVAL FIELDBLOCK() and FIELDWBLOCK() with parameters

must be locked using record or file locking and unlocked thereafter. You may use either
record (RLOCK) or file locking (FLOCK) to update only one record, you should use file
locking FLOCK to update multiple records, such as REPLACE ALL ... and so on. After
the write access is completed, you should unlock the record or file (free it) using the
UNLOCK command or the equivalent DBUNLOCK() function. To commit the changes to
disk, use COMMIT or DbCommit(), preferably before UNLOCK.

If the AutoLock feature is not disabled, and the record or file is not locked by the
programmer, FlagShip automatically invokes the AUTOxLOCK() function before the
write access and the AUTOUNLOCK() function thereafter.

Example for programmable locking:
select 5
@ 1,2 say "Name" get NAME && = dbf field
@ 1,2 say "Surname" get FIRSTNAME && = dbf field
do while !RLOCK() && wait until the
enddo && record locking is ok
read
UNLOCK && free the lock
:
:
do while .not. FLOCK() && wait until the
enddo && file locking is ok
replace next 10 NUMBER with 5
recall all
UNLOCK && free it

LNG 106

4b. The lock and unlock is effective on the selected database only. So if you change more
then one database, you must lock each separately. If you use relations, you must also
lock the corresponding database to make changes there. The alias selector (see
LNG.4.4) may be used to lock other than the actual working area. All locked databases
may be freed together using UNLOCK ALL.

The AutoLock feature will do the lock and unlock automatically, if required, also on
related databases.

SET EXCLUSIVE OFF
:
SELECT 10
USE adress ALIAS adress
... NETERR() check
SET INDEX TO adr_name
** SELECT 20
USE custom NEW
... NETERR() check
SET INDEX TO cust_name
:
SELECT adress
SET RELATION TO name INTO custom
:
SELECT adress
DO WHILE ! RLOCK() && lock ADRESS database
ENDDO
DO WHILE ! custom->(RLOCK()) && lock CUSTOM, WA 20
ENDDO
REPLACE adress->name WITH "Smith"
REPLACE custom->name WITH adress->name
COMMIT
UNLOCK ALL && free all locks

4c. The statement APPEND BLANK is an exception. Because FlagShip does not allow
locking non-existing records, the new record will be automatically locked by APPEND
BLANK or DBAPPEND(). You must unlock this record yourself using the UNLOCK
statement thereafter; otherwise the lock remain active until the next APPEND BLANK,
RLOCK(), FLOCK(), or AUTOxLOCK() is executed. When the multiple record locking is
enabled (via SET MULTILOCKS), only UNLOCK [ALL], DBUNLOCK() or FLOCK() will
release this lock. Therefore, it is always save to use COMMIT and UNLOCK after
replacing data of the newly added record.

It is recommended to check the success of the append statement with the NETERR()
function:

SELECT adress
APPEND BLANK
DO WHILE NETERR() && try again

APPEND BLANK && until success
ENDDO
REPLACE ... with ...
COMMIT

LNG 107

UNLOCK

4d. All records, also from locked (or AutoLocked) databases, may be read by the same or
other program, with the exception of databases opened in exclusive mode. Exclusively
opened database can be read by the "owner" program only.

4e. Record and file locking (or AutoLocking) and exclusive opening also becomes
automatically effective on .dbt memo files. The index files will be locked by FlagShip
automatically only for the short moment during updating (exception the INDEX ON
command, see 3.b above).

5. FlagShip stores the actual .dbf record in internal working area buffers. Three
mechanisms will flush these internal buffers to UNIX (Windows) and/or on the disk:

5a. The internal buffer of the actual working area (and associated indices) gets flushed (if
changed) to, or updated from the UNIX (or Windows) buffer, and is thereafter available
to other users using:

•SKIP and any other record movement (GOTO, SEEK etc.), also when moving to the
same record by SKIP 0 and GOTO RECNO()

•UNLOCK, DBUNLOCK() or AUTOUNLOCK()

5b. Additionally to the 5.a, the data of the UNIX (or Windows) buffers will be physically
asynchronously (in the background) flushed to the disk using:

•AUTOUNLOCK() (executed by the AutoLock feature)
•SKIP 0
•CLOSE
•USE
•SET INDEX
•DBCOMMIT()
•DBUSEAREA()
•DBCLEARINDEX()

5c. When issuing the following commands, all the used FlagShip working areas and
UNIX/Windows buffers will be written immediately (synchronously) to the hard disk:

•COMMIT, COMMIT ALL
•DBCOMMITALL()
•CLOSE ALL, CLOSE DATABASES, DBCLOSEALL()
•QUIT
•user abort (Ctrl-K) or abort by a run-time error

5d. In a multiuser/multitasking environment on UNIX or Windows workstation or Unix server,
any command of the 5.a or 5.b group flushes/updates the internal FlagShip buffer. On a
distributed network (like NFS), using the 5.c commands are the best way to update
these buffers.

It is wise to flush the buffers just before UNLOCKing the record or database file.

6. Killing the process by "kill -9" or by shut-down (init 0, haltsys), (or by aborting task by
Task-Manager in MS-Windows) flushes the UNIX (or Windows) buffers to harddisk only,

LNG 108

but not the internal FlagShip ones. So by being in REPLACE mode, or not issuing any of
the commands of group 5a...5c after the data changes, may violate the data integrity
of the database and/or its indices.

7. If the same physical database is concurrently used in different working areas of the
same application, some restrictions apply:

•The database must be used (opened) in SHAREd mode,
•The ALIAS names have to be different,
•Each opened database occupies one file handle, which applies also for the

concurrently used ones. If one of the concurrently used databases is closed, the file
handle remains reserved until all instances (work areas) of the same physical
database are closed by the current application.

The handling is equivalent to the use of shared databases, except

•You should NOT access both concurrent databases SIMULTANEOUSLY within the
same operation, e.g. REPLACE alias1->field WITH alias2->field (whereby alias1 and
alias2 point to the same physical database opened in different working areas). In such
a case, use transfer variables, e.g. myVar := alias2->field ; REPLACE alias1->field
WITH myVar The same applies also for all other database operations, performed
directly or indirectly (e.g. via UDF or code blocks).

WARNING: unpredictable errors (in worst case including a data corruption) may occur
otherwise within this simultaneous access on the same database opened in different
working areas, since neither the header, nor the database or index can be internally
protected from each other during the operation. This is due to a system dependent
limitation (Unix locking mechanism).

Since the concurrent usage of the same database within the application is used in very
special cases (or accidentally) only, FlagShip creates developer warning (i.e. it is
displayed in the development mode only, see the FS_SET("develop") function), when
such a concurrent usage is detected during the open operation.

8. For simultaneous use of Unix/Linux and MS-Windows based FlagShip applications
(usually on SAMBA system), you need to invoke SET NFS ON before the first USE
and/or use COMMIT or DbCommitAll() for synchronous flushing, instead of
asynchronous DbCommit().

FlagShip offers a unique data integrity check, see chapter LNG.4.5. See also
<FlagShip_dir>/examples/fsadress.prg for an example of a network, multiuser/multitasking
application.

Note: if you need to convert DOS applications to network-ready, all the programming steps
will be done automatically using the ClipLIST program from multisoft. ClipLIST within
minutes converts your source code fully automatically to a network and
multiuser/multitasking environment. Of course, these programs will also be supported by
FlagShip.

LNG 109

5. The Input/Output System
For communicating between the user and the application, FlagShip makes comprehensive
input and output routines available. This includes keyboard and full screen input and output,
as well as i/o to a printer-spooler or file.

Overview of the input/output commands and functions:

Screen oriented input
@ .. GET [picture] [range] [valid] \ formatted in/output at row, column
READ [save] / for any data type with on-line valid.
@ ... SAY ... GET ... combined input and output for READ
@ ... GET ... CHECKBOX create Checkbox processed by READ
@ ... GET ... COMBOBOX create Combobox processed by READ
@ ... GET ... LISTBOX create Listbox processed by READ
@ ... GET ... PUSHBUTTON create Pushbutton processed by READ
@ ... GET ... RADIOBUTTON create Radiobutton processed by READ
@ ... GET ... RADIOGROUP create group of Radiobuttons for READ
@ ... GET ... TBROWSE create Tbrowse entry for READ
CLEAR GETS delete all open GET fields
KEYBOARD ... simulation of keyboard input
ON [ANY] KEY ... execute procedure when key is depressed
ON ERROR ... simulates FoxPro behavior
ON ESCAPE ... simulates FoxPro behavior
PUSH/POP KEY save/restore ON KEY and SET KEY status
SET ANSI automatic translation of PC8 <-> ANSI chars
SET BELL on/off bell tone on/off
SET CHARSET automatic translation of PC8 <-> ANSI input
SET CONFIRM on/off GET and MENU input with/wo return key
SET COLOR to ... set a specified color
SET DELIMITERS to ... set delimiters of GET fields
SET ESCAPE on/off allow aborting GET...READ with Esc key
SET EVENTMASK specifies events considered by Inkey()
SET FORMAT to ... select the format procedure for READ
SET GUIALIGN align all @..GETs at the same column
SET INPUT enables/disables the keyboard input
SET INTENSITY on/off display GET fields w.stand/enhanc attrib.
SET KEYTRANSL automatic translation of PC8 <-> ANSI input
SET SCOREBOARD on/off toggle status line display
SET FUNCTION to ... assign string to FN-key
SET KEY to ... execute proced. when key is depressed

INKEY() reads a character from the keyboard buffer
INKEY2STR() translates inkey number to readable string
INKEYTRAP() same as Inkey() but process SET KEY trap

LNG 110

ISCOLOR() are colors available ?
MAXCOL(), MAX_COL() available screen columns
MAXROW(), MAX_ROW() available screen rows
MEMOEDIT() output/editing of memo fields or strings
ONKEY () redirect key to UDF, simil.to SET KEY/ON KEY
READEXIT(), READINSERT() controls READ and MEMOEDIT
READVAR() get name of input var. in GET, MENU TO
SETCOLOR() report/redefine the current color setting
SETCOLORBAckgr() report/redefine the GUI background
UPDATED() changes within GET/READ ?

Screen and printer output
? and ?? sequential output
?#, ??# and ??## sequential output to stderr
@ ... SAY [picture] formatted output at row, column
@ ... BOX draw a box with user defined edge chars
@ ... DRAW draw lines in GUI mode
@ ... TO [double] draw a box with single/double lines
@ ... CLEAR [to ...] clear a region of the screen
CLEAR screen, CLS clear the whole screen
SAVE SCREEN [to] save the contents of the screen
RESTORE SCREEN [from] restore the saved screen contents
SAVESCREEN(), RESTSCREEN() save/restore a part of the screen
TYPE ... [to ...] type the content of a text file
TEXT ... ENDTEXT display a block of text
EJECT send a form feed to the printer (file)

ALERT() display dialog/message window
ANSI2OEM() convert ANSI string to OEM character set
SETPOS() set the cursor to specified position
DEVPOS() set cursor or printer to specif. position
COL(), ROW() reports the current cursor position
PCOL(), PROW(), SETPRC() get/set the current printer head position
QOUT(), QQOUT() sequential output, same as ? and ??
OUTSTD(), OUTERR() seq.output to stdout/stderr, same as ??
DISPBEGIN(), DISPEND() set/reset the buffering of screen output
DISPOUT() display data on act. screen position
DRAWLINE() same ad @..DRAW
INFOBOX() display infobox dialog, similar to Alert()
INKEY2STR() translates inkey number to readable string
SETCURSOR() set/report the cursor mode
SETCOLOR(), ISCOLOR() set/get the current color setting
SETCOLORBAckgr() report/redefine the GUI background
SCROLL() enable screen scrolling

SET ANSI automatic translation of PC8 <-> ANSI chars
SET BELL on/off toggle the bell warning on/off

LNG 111

SET DBREAD/DBWRITE auto translation of PC8 <-> ANSI chars
SET ALTERNATE to [file] \
SET PRINTER to ... / redirect the ?, ?? output
SET ALTERNATE on/off \
SET PRINT on/off / enable/disable output redirection
SET COLOR to ... set specified color
SET DEVICE to screen/print redirect the @..say.. output
SET CONSOLE on/off toggle screen output on/off
SET CENTURY on/off set the century in/output for dates
SET CURSOR on/off enable/disable the screen cursor
SET GUIALIGN align all @..GETs at the same column
SET GUICOLORS enable default colors also in GUI mode
SET GUITRANSL ASCII automatic ASCII -> ISO conversion
SET GUITRANSL BOX draw semi-graphic PC8 @..BOX chars in GUI
SET GUITRANSL LINES draw semi-graphic PC8 @..TO chars in GUI
SET GUITRANSL TEXT draw semi-graphic PC8 chars in GUI mode
SET FONT set new GUI output font
SET MARGIN to set the left margin for printer output
SET OUTMODE designates how to display chars < 32
SET PIXEL enable default coordinates in pixel
SET SCRCOMPRESS enable compress of SAVE SCREEN images
SET SOURCE automatic ASCII or ANSI translation
SET ZEROBYTEOUT designates how to display \0 character

REPORT FORM report output from .FRM file
LABEL FORM label output from .LBL file
DISPLAY display database field(s)
LIST list the database contents

Cursor and mouse handling
COL(), ROW() reports the current cursor position
MAXCOL(), MAXROW() reports the available screen size
SETPOS() set the cursor to specified position
SET CURSOR, SETCURSOR() enable/disable the screen cursor

MPRESENT() reports mouse availability (GUI only)
MCOL(), MROW() reports the current mouse cursor position
MSETCURSOR() determine/set mouse visibility and/or shape
MSETPOS() set a new position for the mouse cursor
MSTATE() return the current mouse state
MHIDE(), MSHOW() hide/show mouse cursor, set shape
MLEFTDOWN(), MRIGHTDOWN() reports status of left/right mouse button
MSAVESTATE(), MRESTSTATE() save/restore the current state of a mouse
MDBLK() reports/set speed threshold of the mouse

Menu processing
@ ... PROMPT [message ...] \ output menu items,
MENU TO | get the user choice,

LNG 112

SET MESSAGE to ... [center] / specify additional help text
ACHOICE() pop up menus, with UDF control
SET WRAP on/off set menu item wrapping on/off

Data validation
@ ... GET...WHEN cond conditional data entry, with UDF support
@ ... GET...RANGE cond data entry with numeric bounds check
@ ... GET...VALID cond data entry with validation check or UDF
DATEVALID () test the given date for validity

FlagShip extensions for input/output
FS_SET ("inmap") define a keyboard mapping
FS_SET ("outmap" or "map") define a screen output mapping
FS_SET ("terminal") determine the cur. terminal and mapping
FS_SET ("loadlang") load sorting/language table
FS_SET ("setlang") set sorting/language table
FS_SET ("printfile") determine the name of the printer file
FS_SET ("typeahead") control the curses output
FS_SET ("shortname") truncates file names for MS-DOS compatibility
REFRESH refresh the screen output

Run-time mode
APPIOMODE() returns the current i/o mode (G/T/B)
APPMDIMODE() determines whether compiled in MDI mode
APPOBJECT() get the Application object
ISGUIMODE () checks if application is running in GUI mode

Mainly in GUI mode used
commands and functions
SET ANSI automatic translation of PC8 <-> ANSI chars
SET CHARSET automatic translation of PC8 <-> ANSI input
SET GUIALIGN align all @..GETs at the same column
SET GUICOLORS enable default colors also in GUI mode
SET GUITRANSL ASCII automatic ASCII -> ISO conversion
SET GUITRANSL BOX draw semi-graphic PC8 @..BOX chars in GUI
SET GUITRANSL LINES draw semi-graphic PC8 @..TO chars in GUI
SET GUITRANSL TEXT draw semi-graphic PC8 chars in GUI mode
SET FONT set new GUI output font
SET PIXEL enable default coordinates in pixel
SET SCRCOMPRESS enable compress of SAVE SCREEN images
SET SOURCE automatic ASCII or ANSI translation

LNG 113

APPIOMODE() returns the current i/o mode (G/T/B)
APPMDIMODE() determines whether compiled in MDI mode
APPOBJECT() get the Application object
COL2PIXEL () converts columns into pixels
COLOR2RGB () transforms color string or object into RGB
DRAWLINE () same ad @..DRAW
GETALIGN () align all @..GETs at the same column
INFOBOX () display infobox dialog, similar to Alert()
ISGUIMODE () checks if application is running in GUI mode
PIXEL2COL () converts pixel value to columns
PIXEL2ROW () converts pixel value to rows
ROW2PIXEL () converts rows into pixels
SETCOLORBACKGR() set/get background color in GUI mode
STRLEN2COL () retrieves the true length of string in cols
STRLEN2PIX () retrieves the true length of string in pixel
STRLEN2SPACE() retrieves number of spaces to fill a string

LNG 114

5.1 The Output System
Program output can be specified for the screen, console, printer or file. Sequential and
screen-oriented output may be interchanged as needed.

5.1.1 Sequential (Console) Output
The output commands and functions, which operate sequentially (in raw mode) are
sometimes called "console" output. They don't need to be positioned to a specific screen or
printer row and column. The output always starts on the actual screen/printer position. The
console operations are:

Command / Function Description
? and ?? sequential output with/wo new line
QOUT(), QQOUT() sequential output, same as ? and ??
ACCEPT output a prompt, accept a string input
INPUT output a prompt, accept any input
WAIT output a prompt, wait for input
TEXT ... ENDTEXT display a block of text
DISPLAY display database field(s)
LIST list the database contents
TYPE type the contents of a text file
REPORT FORM report output from .FRM file
LABEL FORM label output from .LBL file
EJECT send a form feed to the printer (file)
SET OUTMODE designates how to print chars < 32
SET ZEROBYTEOUT designates how to display \0 character

Output of these console operations may also be simultaneously re-routed to a printer or an
ASCII file using the SET ALTERNATE, SET EXTRA and SET PRINTER commands. Most of
the console commands support the TO PRINTER or TO FILE clause for preferred output re-
direction. To disable simultaneous output to the screen, use the SET CONSOLE OFF
command.

For the console output on the screen, FlagShip interprets/executes some special characters
instead of outputting their graphical screen equivalents:

chr(7) sounds a BELL, beep instead of: (graph)
chr(8) execute BACKSPACE, move one char left instead of: (graph)
chr(9) execute TAB, move to the next tab position instead of: (graph)
chr(10) execute LF, move to the next line instead of: (graph)
chr(13) execute CR, move to the first column instead of: (graph)

All other characters printed to the screen will be mapped, according to the TERM description
in <FlagShip_dir>/terminfo/FSchrmap.def (see chapter 5.1.4 and section SYS).

LNG 115

5.1.2 Full-screen Output
Some commands and functions are designed to operate in full-screen mode. The output
begins on the required (or actual) row/ column position.

Command / Function Description
@ ... SAY formatted output at row, column
@ ... GET formatted output for data entry by READ
@ ... PROMPT output a menu item for MENU TO
@ ... TO draw a box with single/double lines
@ ... BOX draw a box with user defined edge chars
@ ... DRAW draw lines in GUI mode
DEVOUT() display data on current screen position
DISPOUT() display data on current screen position

@ ... CLEAR clear (a region) of the screen
CLEAR SCREEN, CLS clear the whole screen
SAVE SCREEN save the contents of the screen
RESTORE SCREEN restore the saved screen contents
SAVESCREEN(), RESTSCREEN() save/restore a part of the screen

SETPOS() set the cursor to specif. position
DEVPOS() set the cursor or printer to specif. posit.
COL(), ROW() reports the current cursor position
MAXCOL(), MAXROW() reports the max. available column/row
PCOL(), PROW(), SETPRC() set/report the current printer head posit.

SET CURSOR, SETCURSOR() set/report the cursor mode
SETCOLOR(), ISCOLOR() set/report the current color setting
SETCOLORBAckgr() report/redefine the GUI background
SCROLL() enable/perform screen scrolling

The command @..SAY and function DEVPOS() operate in the same manner for printer
output, when SET DEVICE TO PRINT is specified. To reroute output to file instead of printer,
use the SET PRINTER TO.. command.

Note: the screen oriented output in Terminal i/o uses the Curses package of the Unix system
(or pdcurses in Windows). This package usually clears the screen at the program begin
and at the time of the termination. Since this may disturb some special process modes
(e.g. applications running in background or requires to redirect stdout to file), it is
possible to disable Curses in the INIT function cursinit() if you do not use full screen i/o;
see details in section SYS.2.7. Even better for such purposes is to use the Basic i/o
mode by -io=b compiler or command-line switch, see also section LNG.1.2 and FSC.1.3

LNG 116

5.1.3 Special Output
The following output performs a special action:

Function Description
DISPBEGIN() start the buffering of screen output (Terminal i/o)
DISPEND() disables the buffering, output buffer
OUTSTD() sequential output to stdout, same as ??
OUTERR() sequential output to stderr, same as ??#
?#, ??# and ??## sequential output to stderr

The function DISPBEGIN() disables the actual direct screen output. All subsequent
sequential or screen oriented output will be stored in an internal buffer and printed to the
screen when executing the function DISPEND(). It may be used to prepare complex screen
output for slow terminals in the background.

Interrupting the execution by ^O, ^K or by a run-time error prints the hidden buffered screen
output too.

The functions OUTSTD() and OUTERR() work the same as QQOUT() or the ?? command,
except for the re-routing possibility to a printer or file. The OUTSTD() sends the output to
stdout (the standard screen), the OUTERR() sends it to stderr instead. Normally, the stdout
and stderr reflect the same output device. With the sh (bourne) or ksh (korn) shell, the stderr
program output may be rerouted to an other device or file, e.g.:

$ a.out 2>/dev/tty2
$ a.out 2>/usr/myfile.txt

The OUTSTD() is processed by the curses library, and therefore should not be rerouted.

5.1.4 Terminal Output and Mapping
To support screen output on any terminal, FlagShip uses the standard UNIX interface library
(n)curses and the terminal description terminfo. The extended terminfo description
<FlagShip_dir>/terminfo/FStinfo.src supplied with your FlagShip system, enhances the
standard terminfo with function keys, extended cursor keys and so on. All the extended
terminal descriptions begin with the prefix FS, like FSansi, FSVT100 etc. See section REL
for available enhanced terminals.

Note: the UNIX system searches for the terminal description in the default directory
/usr/lib/terminfo or in the one given by the environment variable TERMINFO.

Many UNIX terminals cannot directly display the whole PC-8 character set, but have the
graphic characters available in the "alternate" mode. Such PC-8 characters may be mapped
to the equivalent character in an other mode or to a similar, available ASCII character, like

LNG 117

"─>" to ">" or "ü" to "u" etc. The default mapping for the predefined terminals (see sect. REL)
is available in the ASCII file <FlagShip_dir>/terminfo/ FSchrmap.def

Note: On starting up, FlagShip searches for the character mapping file in the actual directory
and in /usr/lib/terminfo. The search path may also be given using the environment
variable SCRMAP. If the file is not found, or if the actual TERM setting is not included
there, no output mapping will be done. During program execution, the mapping file and
terminal name may be redefined, using FS_SET ("outmap").

Proper terminal setting is essential for the correct functionality of your application. Example:

[$ TERMINFO=/usr/home/myterm; export TERMINFO]
[$ SCRMAP=/usr/home/myterm; export SCRMAP]
$ TERM=FSansi; export TERM
$ a.out

A wrong terminal setting may cause garbage using the screen-oriented output, colors,
mapping etc. Make sure that additional UNIX mapping (ttymap, mapchan etc.) is disabled.
See more information about terminals in section SYS and the system-specific information in
section REL. The environment is described in section FSC.

5.1.5 Colors
FlagShip supports both monochrome and color terminals. The availability of the color output
depends on your hardware and the used operating system. See additional information in the
Release Notes (sect. REL) if your system does not fully support colors.

The color capability is defined in the actual terminal description, see above chapter 5.1.4 and
section SYS.

During program execution, you may examine the color capability using the function
ISCOLOR() and set/change the preferred colors using SET COLOR TO or SETCOLOR().
Example:

IF ISCOLOR()
SET COLOR TO "W+/B,N/BG"

ELSE
SET COLOR TO "W+/N,N/W"

ENDIF
CLEAR SCREEN
@ 10,20 SAY "Hello world"

** or the same in another notation:
SETCOLOR (IF (ISCOLOR(), "W+/B,N/BG", "W+/N,N/W"))
CLEAR SCREEN
mytext = "Hello world"
@ 10,20 SAY mytext
@ 11,20 GET mytext

LNG 118

In GUI mode, the color support via SET COLOR or COLOR clauses is disabled by default to
ensure proper GUI look & feel. You may enable it at any time by setting SET GUICOLOR
ON. Alternatively you may override this setting by using the GUICOLOR clause available in
the most commands, or the corresponding parameter in the translated function. You also
may set the default background by using the SETCOLORBACKGR() function.

5.1.6 Printer and File Output
All of the sequential output operations (5.1.1) and some of the screen- printed ones (5.1.2)
may be redirected to printer either directly via the PrintGui() function or SET PRINTER TO
command, as well as to an ASCII file by using the SET PRINTER, SET ALTERNATE, SET
EXTRA or SET DEVICE commands.

Because of the multi-user and multi-tasking capability of UNIX and Windows, FlagShip
doesn't output on the printer directly, but uses a spool file instead. This avoids garbage
being printed if several users printed at the same time. This spool file may be printed at any
time (during the execution of the application or later), see LNG.3.4 and SET PRINTER
command.

If necessary, direct printer output is available by using SET PRINTER TO /dev/lp0 etc. or by
SET PRINTER TO LPT3 in Windows. Also, re-direction to other devices, such as a second
screen, is possible in Linux/Unix with SET PRINTER TO /dev/tty2a and so on.

In special cases, you may also redirect the stdout directly to file; see details in section
SYS.2.7.

Printer output from GUI based application: in the .../system/initiomenu.prg file, there is pre-
defined menu entry "File->Printer Setup" which opens a dialog window for the preferred
printers and default drivers detected on your system. Once the statement SET PRINTER
OFF was detected and something was printed to the spooler file, also the menu entry "File-
>Print" become available. The user may then simply click on this menu entry to perform the
print action, which is pre-defined in the initiomenu.prg but freely re-definable, see the
description of InitIoPrint() in initiomenu.prg, and example in the <FlagShip_dir>/examples/
printer.prg

You have different choices to print:

• re-direction of screen output parallely to printer via PrintGui()
• output directly to printer port / device
• output to spooler file and spool/print it from application
• output to spooler file and spool/print it externally
• output to spooler file and spool/print it by default/selected driver

Each step is described in detail below.

LNG 119

5.1.7 Printer Output to a remote printer
Printer output via Ethernet: when you want to redirect the local printout (at the Unix server) to
a remote printer which has an Ethernet printserver module installed, you simply set lp (or lpr)
to the printer IP address.

In MS-Windows, you may print to any other shared printer too, either by specifying the share
name in oPrinter class for GUI based application, or by redirecting the share by NET USE
e.g. to LPT3 either in CMD or from the application by RUN ("NET USE \\other\user\laser5
LPT3:") and printing via SET PRINTER TO LPT3:

Printer output via Terminal emulator: you may also print remotely via terminal emulator (e.g.
from MS-Windows 9x/NT) when the emulator supports transparent printer redirection via VT
escape sequences. An example is in the section CMD:SET PRINTER. An usable overview
of terminal emulators is e.g. on http://winfiles.com/apps/nt/terminals.html (we have tested the
CRT from http://www.vandyke.com which work fine also in ANSI color mode).

5.1.8 Printer Output, Options
There are three different kinds for printer output: a) redirect the screen output (text and
graphics) to any available printer (parallel, serial, USB, network) in GUI mode, using the
printer driver via PrintGui() function b) passing text output directly to printer device via SET
PRINTER TO ... c) passing text output to spool file and print thereafter (default).

There are several ways to create the printer output and pass it to your printer:

a. Redirection to printer driver

In GUI mode, you may redirect text and graphics (?, ??, @..SAY, @..DRAW) to any
available printer (also GDI) device connected by parallel, serial, USB, LAN or WLAN
interface, or shared over network. This is very similar to output from any other GUI
application like OpenOffice, Word etc. via common CUPS in Linux or Winspool in Windows.

To do so, simply invoke PrintGui(.T.) to start printer buffering, optionally parallel to screen
output. With PrintGui() w/o parameter, you will start the printer output, for example

PrintGui(.T.) // start buffering for GUI printer
@ 5,10 SAY "Text at row/col 5,10"
? "This is other text"
@ 7,5,12,9 SAY IMAGE FILE "mypicture.jpg" SCALE UNIT=CM
PrintGui(.F.) // stop buffering to GUI printer
PrintGui() // print to selected printer

See further details in section FUN.PrintGui() and CMD.SET GUIPRINTER

LNG 120

b. Printing Using Spooler File

As mentioned above and described in CMD.SET PRINTER, FlagShip generates spooler-
printer-file per default, when SET PRINTER is ON. The default name is <applic>.<process-
id-num> located in the current directory. It name can be determined by FS_SET("print")
function. You may set the print-directory by environment variable FSOUTPUT, e.g. SET
FSOUTPUT=C:\my\path in Windows, or "export FSOUTPUT=/my/path" in Linux/Unix. If you
wish to use another name, use SET PRINTER TO "my_output_name" command, where the
output name is either newly created text file or available device name.

Every user-task gets unique printer-spooler-file name which don't interfere with other users
or applications. The printer-spooler-file can be printed by several ways at the time of the
application execution, or any time thereafter.

A typical command sequence for printing is

SET CONSOLE OFF // don't print to screen
SET PRINTER ON // redirect output to default printer (file)
? "first line"
? "second line"
eject // print form feed (new page)
SET PRINTER OFF // end of printer redirection
SET CONSOLE ON // continue with output to screen
? "Output created into file " + FS_SET("print") // opt. message to user

and/or

SET DEVICE TO PRINT // redirect @..SAY to default printer (file)
@ 1,5 SAY "first line"
@ 2,5 SAY "second line"
SET DEVICE TO SCREEN // end of @..SAY redirection

or by combined "?" and "@..SAY" commands.

With the FS_SET("prset") function, you may set special control sequences of your printer,
e.g. CR+LF for new line, FF for page break, etc. If required, invoke this setup before above
printing, since the given sequences will be included directly in the printer output (or spooler
file).

c. Printing Directly To Port Or Device

If you don't need to bother with interfering by other users/applcations, you may print directly
to available device (port), e.g.

LNG 121

#ifdef FS_WIN32 /* following sequence is compiled in Windows */
SET PRINTER TO LPT1 // Windows: 1st parallel port
SET PRINTER TO PRN // Windows: default port
SET PRINTER TO COM2 // Windows: 2nd serial port

#else /* following sequence is compiled in Linux/Unix */
SET PRINTER TO /dev/lp0 // Linux/Unix: 1st parallel port
SET PRINTER TO /dev/stty1 // Linux/Unix: 2nd serial port

#endif
... print according to 5.1.8.a
SET PRINTER TO // end of printer redirection

d. Printing Via FlagShip's Printer Class

The easiest way to do print in GUI mode is to use PrintGui() function which communicates
with FlagShip printer class, and supports nearly all screen oriented output also for printing.
You alternatively may execute the _oPrinter:exec() or _oPrinter:execFormatted() methods,
you may select the printer driver via the common printer pop-up dialog oPrinter:Setup(). It
supports all available local and remote printers, also attached via network.

... print according to 5.1.8.b
* _oPrinter:Setup() // optional, select printer driver
_oPrinter:Exec() // print the default spooler file

* _oPrinter:ExecFormatted() // formatted printout

e. Passing Spooler-File To Printer

As said above, the standard spool file is named <application>.<pid> and it real name can be
determined by FS_SET("print") function. You also may specify any other file name by e.g.

SET PRINTER TO ("/my/path/MyFile.prn") // output into user file
... print according to 5.1.8.b
SET PRINTER TO // end of printer redirection

Once the output file is created, you may pass it to the printer port. Since it is plain text file,
you may alternatively use one of copy commands

#ifdef FS_WIN32 /* following sequence apply for Windows */
COPY FILE FS_SET("print") TO ("LPT1:") // copy to 1st parallel port
RUN ("COPY " + FS_SET("print") + " LPT3:") // copy to user port
COPY FILE ("C:\my\path\MyFile.prn") TO ("LPT2:") // user file
#else /* following sequence apply for Linux/Unix */
COPY FILE FS_SET("print") TO ("/dev/lp0") // copy to 1st parallel port
RUN ("cp " + FS_SET("print") + " /dev/lp1") // copy to 2nd parallel port
COPY FILE ("/my/path/MyFile.prn") TO ("/dev/lp1") // user file
#endif

You may pass the spooler file to your printer at any time by using operating system
commands. You either may specify the name of spooler file, or display the automatically

LNG 122

created file name by FS_SET("print"). Assume, the file is named "myapplic.prn", invoke in
Windows

C:> COPY myapplic.prn LPT1 // print via 1st parallel port
C:> COPY myapplic.prn PRN // print via default parallel port
C:> COPY myapplic.prn LPT3 // print via user defined port

or on Linux

lpr myapplic.prn // print to default printer
lpr -PmyPrinter myapplic.prn // print to selected printer
cp myapplic.prn /dev/lp0 // print to 1st parallel port

f. Printing Via Redirected Port

In Windows, you may use NET USE to redirect an unused port to network (or local) driver:

C:> NET USE LPT3 \\ComputerName\PrinterSharedName

where

ComputerName is either IP address, or shared computer name, or local
computer displayed by NET VIEW
PrinterSharedName is the shared name of the printer, see
Start -> Printer and Faxes -> (Right click on printer) ->
Properies -> Sharing -> Shared name

You also may do it from the application, e.g. by

RUN ("NET USE LPT3 \\Server\Printer2")
RUN ("NET USE LPT3 \\MYCOMPUTER\Printer5")

and then print by

SET PRINTER TO LPT3
... print according to 5.1.8.b
SET PRINTER TO

or simply copy the output to your printer

... print according to 5.1.8.a
COPY FILE FS_SET("print") TO ("LPT1:") // copy to 1st parallel

port
* RUN ("COPY " + FS_SET("print") + " LPT3:") // copy to user port
* COPY FILE ("C:\my\path\MyFile.prn") TO ("LPT2:") // user file

This will work fine on printers supporting text mode (like matrix or line printers, or printers
with PCL or postscript capability). It usually will not work on GDI printers, see below.

LNG 123

In Linux, the CUPS tool will manage also redirection to network printer or to USB printers.
Once CUPS is set, simply issue

... print according to 5.1.8.b
RUN ("lpr -PmyPrinterName " + FS_SET("print"))

g. Printing On GDI Based Printers
A GDI based printer is also known as Windows-printer. It does not include hardware and
software to manage text input, but requires rastering by CPU using special printer driver.

The easiest way in GUI mode is to use PrintGui() function which allows you to redirect
screen output to any available printer, see 5.1.8.a above. You also may use the Printer class
(see 5.1.8.d above). In terminal i/o mode, you will need some software to create the GDI
image (e.g. http://www.dos2usb.com). You may pass the output to another GUI application
(e.g. to Notepad) to be printed there. In Linux, you may use the "lpr" tool to print it. For
example

... print according to 5.1.8.b
#ifdef FS_WIN32
? "Select your printer via 'Print' menu"
RUN ("Notepad " + FS_SET("print")) // for MS-Windows

#else
RUN ("lpr -PmyUsbPrinter " + FS_SET("print")) // for Linux

#endif

which is similar to method 5.1.8.c for direct print in GUI mode, but is usable also for terminal
i/o based applications.

LNG 124

5.2 The Input System
Normally, user-program communication will be done via keyboard input. Using UNIX pipes
and redirection input from a file will also be accepted.

5.2.1 Keyboard Input
FlagShip stores the user keyboard entries in an internal type-ahead buffer. The buffer size is
set by default to 80 characters, but may be resized using the SET TYPEAHEAD command,
to any size from 2 bytes up to 2 Gigabytes. The characters stored in the internal buffer will
be removed by the input commands and functions ACCEPT, ACHOICE(), DBEDIT(),
INKEY(), INPUT, MEMOEDIT(), READ and WAIT.

Storage in the type-ahead buffer allows the required input to be input before the system has
finished processing the last command. The characters are stored and removed according to
the first-in, first-out principle. The next character available in the type-ahead buffer, if any,
may be checked by the NEXTKEY() function. The last 10 keys removed from the buffer are
available using LASTKEY().

To simulate a user input, characters may be pushed into the type-ahead buffer using the
KEYBOARD command. Also special characters, like the RETURN or function keys, will be
accepted.

Note: key codes, which produce a negative INKEY() code (see appendix), will be stored in
the type-ahead buffer as two characters, to ensure that they will be properly read.

The type-ahead buffer will be cleared by the CLEAR TYPEAHEAD command or by removing
all awaiting characters with e.g.:

DO WHILE INKEY() # 0
ENDDO
? "last key pressed:", LASTKEY()

5.2.2 Keyboard Redefinition
Using the SET KEY command, any key may be redefined to execute the specified user
defined procedure (UDP) instead of processing the depressed key.

The command SET FUNCTION assigns a string to an function key. When pressing such a
function key in input mode, the string will be pushed into the type-ahead buffer and removed
by the input command or function (see LNG.5.2.1).

LNG 125

If the same key is redefined by SET KEY and SET FUNCTION, the SET KEY has
precedence, and the SET FUNCTION assignment only becomes active again, after the SET
KEY redefinition is disabled.

Up to 48 keys may be redefined at the same time. On program start, the F1 key is
automatically redefined to the HELP procedure (just as if the user had SET KEY 28 TO
HELP). If such a UDP exists, pressing the F1 key will call this procedure, mostly used to
execute a context specific help.

Note: on some UNIX systems (like SUN with X/Open) or terminals, the F1 key is
preconfigured or sometimes hard-wired to system help. In such cases, if the
configuration may not be changed, use another FN key for the context help purposes,
e.g. the F2 key: SET KEY 28 TO ; SET KEY -1 TO HELP

To redefine the system keys Ctrl-O (activate the debugger) and Ctrl-K (abort the program),
use the FlagShip functions FS_SET("debug") and FS_SET("break").

The availability of the ESCAPE, debug and BREAK key to the user is controlled by SET
ESCAPE, ALTD() and SETCANCEL().

5.2.3 Full-screen Input
Similar to full-screen output, many FlagShip input commands or functions operate at
specified screen position. There are:

Command / Function Description
@ ... GET \ formatted in/output at row, column
READ / for any data type with on-line valid.
READMODAL() user modifiable READ (getsys.prg)

MEMOEDIT() output/editing of memo fields or strings
DBEDIT() display (modify) records from .dbf
GET class low-level GET/READ system
TBROWSE class display (modify) .dbf or array
TBCOLUMN class set columns for the TBROWSE class

These operations display (formatted) data at a specified screen position and wait for a user
input. The navigation keys (cursor ó ─>, End, Home, PgUp, PgDn etc.) support the full-
screen handling.

Many operations support on-line validation of the user data input, e.g. using the RANGE and
VALID clause for @...GET, defining a UDF in MEMOEDIT or DBEDIT etc. The GET/READ
system also supports a pre-validation, using the WHEN clause.

Rerouting the full-screen-input to a printer or a file is pointless and is therefore not
supported.

LNG 126

5.2.4 Menu System
To perform menu oriented choices on the screen, two menu systems are available in
FlagShip: @..PROMPT/MENU and ACHOICE().

Command / Function Description
@ ... PROMPT \ output menu items,
MENU TO | get the user choice,
SET MESSAGE / specify additional help text
ACHOICE() pop up menus, with UDF control
ALERT() pop up menu for messages etc.

Database display using DBEDIT() and the array/database TBrowse system are also very
useful in executing the required user choices. The behavior of DBEDIT() is fully modifiable,
since included in source code in the <FlagShip_dir>/system/dbedit.prg file.

In all menu systems, the user can move a light bar specifying the actually selected item (up
and down or left and right), or press the first character of the menu text to perform fast
selection.

The menu systems ACHOICE(), DBEDIT() and TBrowse support scrolling to invisible items.
MENU TO has wrapping to the first/last item and additional help messages too. All of the
menu systems may be nested to any level.

5.2.5 Input Mapping
To support the keyboard input on any terminal, FlagShip uses for the terminal/keyboard
description the standard UNIX curses interface library and the terminal description terminfo,
see chapter 5.1.4.

Many UNIX keyboard/terminals do not support the whole PC-8 character set, function keys
or support an ISO set only. FlagShip allows the incoming keyboard characters to to be
mapped to other PC-8 characters. The default input-mapping for the predefined terminals
(see sect. REL) is available in the ASCII file <FlagShip_dir>/terminfo/FSkeymap.def

Note: On starting up, FlagShip searches for the character mapping file in the actual directory
and in /usr/lib/terminfo. The search path may also be given using the environment
variable SCRMAP. If the file is not found, or if the actual TERM setting is not included
there, no input mapping will be done. During program execution, the mapping file and
terminal name may be redefined using FS_SET ("inmap").

If the terminal description specified by the TERM environment variable is not found at
all, the further program execution is aborted with the message "...cannot handle the
terminal ..."

LNG 127

Proper terminal setting is essential for the availability of function, cursor or special keys and
for the correct interpretation of incoming characters. Example:

[$ TERMINFO=/usr/home/myterm; export TERMINFO]
[$ SCRMAP=/usr/home/myterm; export SCRMAP]
[$ mapkey /usr/lib/keyboard/FSkeys.us]
$ TERM=FSansi; export TERM
$ a.out

If the terminal is set up incorrectly, special keys may be misinterpreted. Make sure the
additional UNIX keyboard mapping or character set (mapkey, ttymap, xset, vidi, aixterm,
hpterm etc.) is properly set or disabled. For more information see section SYS and the
system-specific information in section REL.

For your convenience, we have added three scripts which sets your environment
automatically. They may slightly differ according to the Operating System used (see details
in sect. REL), but the general invocation is

$ newfscons a.out being on console
$ newfswin a.out being in Xwindows
$ newfsterm a.out from remote terminal

Because special keys (cursor, FN keys etc.) mostly produce a key-escape- sequences,
setting the serial communication line too high or too low (like 36 Kbaud and above or below
1200 baud) may cause a misinterpretation of some incoming special keys, e.g. the cursor
key as the ESCAPE key only.

Note: For portable programs, omit the [Alt]+[key] combinations, since they are not available
on most UNIX terminals. For some terminals, FlagShip maps the Alt-FN keys to Shift-
Ctrl-FN key instead. See section REL and the file FStinfo.src.

LNG 128

5.3 Difference between Terminal and GUI

In section LNG.1.2 are described the three different modes of operation which FlagShip
support:

GUI : graphical oriented i/o, requires X11 or MS-Windows/32
Terminal: text/curses oriented i/o e.g. for console or remote terminals, same behavior as

FlagShip 4.48.
Basic : basic/stream i/o e.g. for Web, CGI, background processing etc. The screen

oriented i/o is roughly simulated for source compatibility purposes.

Please refer there for additional description. We will focus here the difference from the
programmer/developer view.

Most probably, the only significant difference in GUI to terminal based application will be
visible when using proportional fonts (which is the default of most window managers) and
overwriting partition of screen text via @...SAY or setpos(), devpos(). Usually, you will not
see any difference with the common xBase statements

@ 2,5 SAY "Hello world"
?? ", that's me"

which displays the text "Hello world, that's me" as expected, starting at row 2, column 5 (i.e.
at y=45, x=30 in pixels). A visible difference occurs, when not considering that the length of
proportional text may differ significantly to the size of fixed font text. So the sequence

cText := "Hello "
@ 3,5 SAY cText + "world"
@ 3,5 + len(cText) SAY "partner"

will display "Hello partner" with fixed fonts and in terminal based application, but "Hello world
partner" with proportional fonts in GUI. Why? The text of "Hello world" is 52 pixel long
(Helvetica 12) and ends at pixel 82, but the column 11 of @..SAY is calculated as x=99 in
pixels, check by e.g. Col2pixel(len("Hello world")) or Strlen2col(cText).

So most possibly, only such programming constructs will need your attention and small
adaption of the available source code. BTW, there are several ways to fix/program such
proportional font behavior:

@ 3,5 SAY "Hello "
x := col() // get the current column (here x = 7.89)
@ 3,x say "world" // and use the retrieved column
@ 3,x say "partner" // also later on

or
@ 3,5 SAY "Hello world"
@ 3,5+Strlen2col("Hello ") SAY "partner" // use real text width

or

LNG 129

SET FONT TO "courier" SIZE 12 // set fixed font,
// SET FONT TO "adobe-courier",13 // (often better alternative)
@ 3,5 SAY "Hello world" // the "old" code
@ 3,5+6 SAY "partner" // remain unchanged

and so forth, there are other examples in the @...SAY description.

The same apply, when you try to overwrite, or clear previously displayed text by spaces
using proportional font. The sequence

set font "Arial", 12 // proportional font
@ 3,5 say "XXXXXXXXXX" // length = 110 pixel
@ 3,5 say "xxxxxxxxxx" // length = 70 pixel
@ 3,5 say " " // length = 40 pixel

will work fine with fixed font, but will not produce the result you are expecting with
proportional character set; you will not clear this area by spaces, but will see " xxxXXX".
Why? All three text lines are ten characters long, but the proportional text occupy 40 to 110
pixels (see also LNG.5.3.2 below and the Strlen2pix() function). So in this example, the
second output overwrites first 70 pixels of the first, and the third output clears first 40 pixels
only. To clear the first output, best to use @ 3,5 CLEAR TO 3,14 which automatically
calculates the correct column size, or determine the required amount of spaces by @ 3,5
SAY SPACE(Strlen2space("XXXXXXXXXX")) To clear screen region, use e.g. @ 3,5
CLEAR TO 10,MaxCol() To clear whole screen, use CLS or CLEAR SCREEN.

Overlayed widgets/controls: In GUI mode, the Get, Memoedit, Tbrowse and other objects
are drawn as widgets (or controls in MS terminology) and hence displays as overlayed layers
in "third dimension". To ensure the backward compatibility to FS44 and Clipper, these
widgets remains visible also after the READ, Get, Memoedit etc. process finishes. The
widget is cleared at the end of the variable visibility scope or via @.. CLEAR TO .. or CLS
command. When the @..GET object overlays another object (like Tbrowse), you may want to
clear the Get widget after READ finish via READ CLEAR command or via oGet:Destroy()
method, which removes it from the topmost visibility layer. You may see these GUI widgets
(controls) as small, modal sub-windows.

In GUI mode, FlagShip uses different "layers" for the display. At the lowest layer (display)
resides the application screen layer and plain display by @..SAY, ?, ??, @..BOX,
save/restscreen etc. In layer above are standard widgets (controls) like @..GET,
@..PROMPT, Pushbutton, Listbox, Achoice, Memoedit, Dbedit, Browse, Tbowse etc. In
topmost layer resides overlayed widgets like dialogs, MDIopen or Wopen sub-windows.

You therefore cannot write "over" the widget in GUI mode (as opposite to the flat "two-
dimensional" Textual i/o) using the common ?, ??, @..SAY.., @..BOX etc. statements which
writes directly to the background, or to lowest layer in GUI.

Colors and lines drawing are per default disabled in GUI mode to provide proper GUI look
& feel. You may enable the color support in GUI mode via SET GUICOLOR ON or
Set(_SET_GUICOLORS,.T.). To draw semi-graphic ASCII characters 179..218 in GUI mode,

LNG 130

use SET GUITRANSL TEXT ON or Set(_SET_GUIDRAWTEXT,.T.) for an automatic
translation of text strings to graphic ASCII chars. To draw lines and boxes via @..TO.. and
@..BOX in GUI mode too, use SET GUITRANSL LINES ON and/or SET GUITRANSL BOX
ON or the corresponding Set(_SET_GUI*) function, see details in the section CMD and
FUN. To disable the color or drawing support, set it OFF. You may draw lines also by the
@..DRAW command. All these commands and functions may remain global in the source
code, they will be ignored when the application run in Terminal or Basic mode.

5.3.1 Coordinates
In Terminal and Basic i/o mode, the current cursor or display position is reported in rows and
columns. The coordinate system start at 0,0 in the upper left edge, the max. display size is
reported by MaxCol() and MaxRow() for the bottom right edge (i.e. is 79,24 for 80x25
screens).

In GUI mode, any output is pixel oriented. For your convenience and to achieve cross
compatibility to textual based applications, FlagShip supports also coordinates in common
row/column values. It then internally re-calculates the given rows by using Row2pixel() and
columns by using Col2pixel() functions. The character and line spacing is affected by the
currently used font, see details in LNG.5.3.2 below.

Note: one pixel is a "dot on the screen", i.e. smallest single component of a digital image.
The character size in pixel depends on the used font (see CMD.SET FONT and 5.3.2 below)
and can be determined by Row2pixel(), Col2pixel() and Strlen2pix(). For example, with SET
FONT "Arial",12 the width of letter "X" is 11 pixel, but "i" occupy only 4 pixel; the row height is
21 pixels, and column stepping is 13 pixels = width of "M". In contrast to, fixed fonts like SET
FONT "Courier",12 always have the same size, here is the character and column width 11
pixel, and the row height 20 pixels. These data depends on the screen resolution, here for
WUXGA desktop monitor with resolution of 1920x1200 pixel (check by
oApplic:DesktopWidth and oApplic:DesktopHeight, see section OBJ.Application).

The GUI coordinate system is same as in Terminal i/o and is in range 0,0 to
MaxRow(),MaxCol(). Nevertheless, you may use pixels directly, either globally by SET
PIXEL ON, or by using the corresponding PIXEL clause or parameter in i/o commands and
functions. In addition to, you also may use coordinates in mm, cm or inch (see SET COORD
UNIT in section CMD), which are then internally re-calculated to pixel (or to lpi for printer
output).

5.3.2 Fonts
In Terminal i/o mode, FlagShip uses the standard terminal font, or (in Unix/Linux) any other
font assigned to the color_xterm or xterm system command (see the man pages or e.g. the
<FlagShip_dir>/bin/newfswin script and section REL for details). In MS-Windows, you may
assign the required font by a right mouse click + Properties of the console window.

LNG 131

In Basic i/o mode, the default console font is used.

In GUI mode, FlagShip uses typographic fonts. A "font" is the combination of typeface and
other qualities such as size, pitch and spacing. For example, Helvetica is a typeface that
defines the shape of each character. Within the Helvetica typeface, there are many fonts to
choose from, i.e. with different size, bold and italic style and so on.

At the program start, FlagShip takes it default font from your X11 Window manager (e.g.
KDE, Gnome etc) or from setup of MS-Windows. You may then at run-time assign and use
any other available font by the SET FONT command, or by using corresponding FONT
clause in many i/o commands and functions, or by using the Font{} class.

For our programming purposes, we need to distinguish between two kinds of fonts: having
proportional or fixed pitch. The fixed pitch (monospaced) font (like "Courier" or "Terminal")
has the same character width for all characters; we don't need to worry about the character
spacing and can handle it by the same way as in textual application.

In proportional fonts (like "Helvetica", "Arial", "Times"), the character width vary, i.e. the "X"
or "m" character is wider (needs more pixels) than the "i" or space character. When you
display the string chr(153) + "Mi p" on the screen (e.g. by using ?, ??, @... i/o commands),
you will see:

(0)-------------------------------------(+)--- <- top character frame
| * * | | | | |
| ### | # # | # | | |
| # # | ## ## | | | | currently displayed line
| # # | # # # # | # | | #### |
| # # | # # # | # | | # # |
| ### -| # # -| # -| -| #### -| <- font base line
| | | | | # |
| | | | | # |
--- <- bottom character frame
--- <- line spacing, next top
| * * | | | | |
| ### | # # | # | | | next line/row
| # # | ## ## | | | |
| # # | # # # # | # | | #### |

|<-------->|<-------->|<-->|<->|<------>| different character width

The current x/y or col/row display position starts at position marked by (0) above, the next
position (after display) is marked by (+) and is reported by the ROW() and COL() function.

For a cross compatibility, and to start the output at 0,0 coordinates (see LNG.5.3.1), the
default x/y font alignment is on the top left character frame as marked in the above picture.
You may change this alignment by SET ROWALIGN TO...

You may retrieve the font characteristics by using Font class properties (see section OBJ),
e.g. m->oApplic:Font:FontFamily reports the used font name/family, oApplic:Font:Size it size

LNG 132

in points etc. You may determine the width of a string by using Strlen2pix(chr(153) + "Mi p")
for above example, or the similar StrLen2col() or by oApplic:Font:WidthChar()

The font height (same as other font characteristics) is fix and corresponds to the used
typeface (or font family) and it size. You only may vary the line spacing displacement by
assigning the required amount of pixels (positive or negative) to the global variable
_aGlobSetting[GSET_G _N_ROW_SPACING], see the source code in <FlagShip_dir>/
system/initio.prg for details.

For additional information about font handling, see

•LNG.5.3 (difference between terminal and GUI i/o),
•LNG.5.4 (national character support),
•LNG.5.4.2 (national, special and Ansi/Oem chars),
•LNG.5.4.3 (output conversion, PC8 translation)
•OBJ.FONT (font properties),
•SET FONT (font setting and searching for)
•SET GUITRANSL (drawing semi-graphic characters, lines, boxes)
•SET PIXEL, Col(), Row(), Col2pixel(), Row2pixel(), SET GUIALIGN, SET ROWALIGN,

SET ROWADAPT, StrLen2col(), StrLen2pix().

A good font introduction is given in http://www.nwalsh.com/comp.fonts/FAQ/, many
additional information is available on the Web when searching for "typography", for example
in http://www.microsoft.com/typography or in http://www.linux.org/docs/ldp/howto/Font-
HOWTO/

You may list the available fonts on Unix by xlsfonts command or use any font manager
otherwise.

Hint: For minimal porting effort from/to textual i/o, best to use fixed fonts, e.g. simply add

SET FONT "Courier", 12
//or: SET FONT "adobe-courier",10

at the begin of your application (with #include "fspreset.fh" according to LNG.9.5) and use
the standard row/col coordinates. The application behaves then same as in textual i/o mode.
With proportional fonts, you will often get more pleasant look, but will need to consider the
font characteristics by adapting the row/col output coordinates in your source.

LNG 133

5.4 National Character Support
You surely know the confusion: when opening a document (or source code) containing
national character set or special characters in a different editors (like MS-WinWord, DOS-
Word, edlin, UltraEdit, vi, Emacs, Nedit, Jedit, Kedit and so on), you may see different text.
Instead of semi- graphic horizontal line you see A-umlaut, or instead of e-accent you see
greek Theta and so on. This is caused by different keyboard and output mapping and/or the
used/default editor's character set.

For you, as a software developer, it is nothing new that every character in the text document
is represented by a binary bit combination. The most text documents and all source codes
are byte oriented, i.e. each character in the text is represented by one byte. But the range of
255 possible byte combinations is not sufficient to cover all the human languages, alphabets
and additionally also store some special characters like semi-graphic. To allow this, at least
two bytes per character are required, such coding is known as Unicode or wide-character
set. On the other hand, these two-byte (or sometimes up to six-byte) characters are not so
easy to handle as the byte-by-byte text storage and requires special coding/decoding
mechanism, slowing the string handling significantly.

Note: We cannot cover here all the aspects and details about the different character sets, but
will short explain only the main differences between them. For further information, please
consult the literature or Internet. A good overview is for example on http://czy-
borra.com/charsets/codepages.html, http://czyborra.com/charsets/iso8859.html, http://czy-
borra.com/utf/ and the links there, as well as on http://www.microsoft.com/global-dev/
reference/default.mspx, www.microsoft.com/globaldev/reference/cphome.mspx and so forth.

5.4.1. Different Character Sets
•1 byte (8bit) character set is known as ASCII and is also named OEM, or IBM PC-8

character set. There are different variants of, known as "code pages", for example CP-437
or CP-850 for western chars, CP-852 or eastern Europe, CP-855 or 866 for Cyrillic chars
etc. The common characters in all ASCII code pages are in the range 1..127 covering the
standard Latin alphabet, numbers and some special characters. This character set is used
in DOS, Unix console, remote terminal processing and in the most cases for source-code
programming.

•Another 1 byte (8bit) character set is ISO 8859 and contains a full series of standardized
multilingual single-byte coded graphic character sets. It is also known as ANSI char set.
The most popular are ISO-8559-1 and ISO-8559-15 (or CP-1252) for western character
set, ISO-8559-2 (or CP-1250) for eastern Europe characters and so forth. Only the
characters in range 1..127 are compatible to ASCII character set and to other ISO pages,
characters 128..255 differs for each character set. This character set is used mostly in
graphical environment like X11, MS-Windows, HTML browsers and on some Unix
consoles.

•A multi-byte character set containing 2 to 6 bytes per character is known as Unicode.

LNG 134

FlagShip use this character set internally for GUI handling.

5.4.2. Using Of National & Special Characters
When editing a text or program source, the most editors behaves similarly for all characters
in the range 32 (space) to 126 (tilde). With all other characters outside of this range, you
sometimes get anything else than you expect, depending on the editor setting. With other
words: WYSIWYG is not always true what-you-see-is-what-you-get or -what-you-expect-to-
get :-)

For example, the u-umlaut ("u" with two dots) is represented by chr(129) in ASCII charset =
octal 201 = 0x81, but with chr(252) = octal 374 = 0xFC in ISO-8559-1 (Latin-1) character set.
So when your keyboard has the "u- umlaut" key and you type "M(u-umlaut)enchen", your
text may contain either chr(77,129,110,99,104,101,110) or chr(77,252,110,99,104,101,110)
depending on the editor setting and/or the used environment.

Similarly, when displaying the string "M(u-umlaut)enchen" coded in source
chr(77,129,110,99,104,101,110), you may see either "München" or "M•nchen".

This apply also for special characters like the semi-graphic IBM-PC8 characters, so coding
chr(195,196,197,196,180) which is roughly "|-+-|" can be displayed as "├─┼─┤" or as
"ÃÃÅÃ´", i.e. (A-tilde), (A-umlaut), (A-circle), (A-umlaut), (apostrophe) depending on the
console/X11/Windows environment setting.

In FlagShip, you may influence the GUI output by SET SOURCE ASCII for considering
strings written in ASCII/PC8/OEM character set, or by SET SOURCE ISO when the source
strings are coded in native ISO/Ansi charset. Additional commands for language support are
SET GUITRANSL, SET ANSI, SET DBREAD, SET DBWRITE, SET KEYTRANS,
FS_SET("ansi2oem"|"guikeys"), Ansi2oem(), Oem2ansi().

The default i/o setting is based on standard ASCII character set, including the IBM-PC8
extended characters. This assumes the .prg source contain ASCII/PC8/OEM text and which
provides full backward compatibility to DOS based applications (sources and databases) and
makes porting easy.

In addition to the default setting, FlagShip supports any special needs by using external,
user modifiable translation tables. These are:

a. Screen/terminal output mapping table for terminal i/o mode is read automatically at start-
up of a terminal based application. The default table is named FSchrmap.def and is
located in the terminfo directory, see details in SYS.2.4. The table depends on the current
TERM or FSTERM environment variable. User modifiable tables can be specified and
loaded via FS_SET("outmap") function.

b. Keyboard mapping table for terminal i/o mode is read automatically at start-up of a
terminal based application. The default table is named FSkeymap.def and is located in

LNG 135

the terminfo directory, see details in SYS.2.5. The table depends on the current TERM or
FSTERM environment variable. User modifiable tables can be specified and loaded via
FS_SET("inmap") function, some tables are already predefined in <FlagShip_dir>/
terminfo/FSkeymap.*

c. Keyboard mapping table for GUI mode is pre-defined in the library and corresponds to
the FSguikeys.def file located in <FlagShip_dir>/terminfo directory. User modifiable tables
can be specified and loaded via environment variable FSGUIKEYS=<filename> at start-
up and/or any time later via the FS_SET("guikeys") function.

d. OEM -> Ansi and Ansi -> OEM translation and GUI output table is used for Ansi2oem(),
Oem2Ansi() and for output translation in GUI mode, when SET SOURCE ASCII (which is
the default when using #include "fspreset.fh", see LNG.9.5). These tables translates the
OEM (ASCII, PC8) string to Ansi (ISO, Latin) and vice versa. The default table is pre-
defined in the library and corresponds to the FSansi2oem.def file located in
<FlagShip_dir>/terminfo directory specifying the ISO-8859-1 = Latin1 character set. User
modifiable tables can be specified and loaded via FS_SET("ansi2oem") function.

e. User specific sorting table, upper/lower translation and messages is read automatically at
start-up of a GUI or terminal based application. The default table is named FSsortab.def
and is located in the terminfo directory, see details in SYS.2.6. User modifiable tables can
be specified and loaded via FS_SET("loadlang"/"setlang") function, some tables are
already predefined in <FlagShip_dir>/terminfo/ FSsortab.*

5.4.3. String Output Conversion
In Terminal i/o mode, which use Curses with 8bit coding, the output conversion is relative
simple:

a) the environment variable FSTERM or TERM specifies the used screen character set
b) the passed string is converted according the used FSchrmap.* table and the environment

variable FSTERM/TERM to Curses character
c) the Curses subsystem displays these characters on the screen

In GUI mode, the string conversion for screen output is performed in these more complex
steps:

a) when SET SOURCE is ASCII or SET GUITRANS ASCII is ON, the passed string is
converted from ASCII to ISO set (still 8bit) via Oem2Ansi() according to the current
FSansi2oem.* table

b) when SET GUITRANSL TEXT is ON, the semi-graphical PC-8 characters or theirs
mapping are considered according to the FSansi2oem.* table

c) the ASCII or ISO string is converted to Unicode (16+ bit) in that order:
•when a specific font is assigned to a widget, or widget's font: CharSet() or

font:CharSetName() was set, use this character set
•when a specific font is assigned to the oApplic:Font property, or

LNG 136

m->oAplic:Font:CharSet() or m->oApplic:Font:CharSetName() was set, use this
character set. For MessageBoxes, the :FontWindows property of m->oApplic object is
used instead of :Font.

•when the environment variable LANG contain a <dot><charset> specification, use this
<charset>. For example "export LANG=pl_PL.ISO-8859-2" uses the ISO-8859-2 table
for the Unicode conversion.

•otherwise use Latin1 = ISO-8859-1
d) display the text by the GUI i/o subsystem (using internally Unicode)

In Basic i/o mode, none input/output conversion is done, the passed string is displayed "as
is" via the standard i/o system.

5.4.4. Character Input Conversion
The keyboard input is in Terminal and GUI mode asynchronous, which means the user key
press is stored in the keyboard or event buffer and can be retrieved by the application later
via Inkey() and associated commands or functions like InkeyTrap(), ACCEPT, INPUT, WAIT
etc. The same is valid for mouse movement or button press in GUI mode, whereby many of
the mouse (and keyboard) actions may be handled by the GUI subsystem automatically. In
Basic i/o mode, the input is handled synchronously by the standard i/o system at the time of
invoking Inkey().

A key press triggers following actions:

a) The keyboard sends a scan code to the system (Unix or Windows)
b) This scan code is translated to one byte or to sequence of multiple bytes by system

internal tables according to the keyboard specification. On Unix, these tables are user
modifiable, see e.g. "man 5 keymaps", "man ttymap", "man loadkeys", "man mapkey",
"man mapchan", "man 8 getkeycodes", "man stty" and section SYS.2.1 in this manual

c) On X11 system, following tables are considered by the X system as well:
/etc[/X11]/XF86Config, ~/.Xdefaults or ~/.Xresources, ~/.Xmodmap, see e.g. "man
xmodmap", "man X11", "man XFree86", "man setxkbmap"

d) The system passes the byte or sequence of bytes to the application. Depending on the
used i/o mode, FlagShip's run-time system converts this to Inkey-equivalence-number
(see manual appendix and inkey.fh):

•In Terminal i/o, the Curses subsystem converts the byte or sequence of bytes (Esc-
sequence) to mnemonic token or character according to the used FSTERM or TERM
environment variable. This conversion can be changed by the
<FlagShip_dir>/terminfo/Fstinfo.src file, see also section SYS.2.2. The incoming character
can additionally be converted by user modifiable FSkeymap.* table, see details in
LNG.5.4.2.b above and in SYS.2.5

•In GUI i/o mode, the from system receiving character or sequence is translated via the
FSguikeys.* table to Inkey number, see also section LNG.5.4.2.c above. This table is user
modifiable and loaded by FS_SET("guikeys",file). You may additionally use SET

LNG 137

KEYTRANSL to influence the conversion.

•In Basic i/o mode, none additional conversion is done, the Inkey number is taken from the
system's input buffer.

5.4.5. Case Studies
1. The .prg sources are coded in PC-8 (ASCII,OEM) character set, or contain characters

1..127 only, databases are DOS compatible and contains PC8 (ASCII) code, the default:
a. Terminal i/o: the environment variable TERM or FSTERM should be set accordingly to

your used environment (e.g. FSansi, fsansi, fslinux etc.), see details in section REL.
For a proper display of special chars, best to use the "newfscons", "newfswin" or
"newfswin" scripts which sets the environment accordingly.

b. GUI i/o: to proper display the ASCII strings in ISO mode, use SET SOURCE ASCII (or
#include "fsprest.fh"), which is similar to Oem2Ansi() sting translation done manually.
You may disable this translation by SET SOURCE ISO or ANSI. To draw PC-8 semi-
graphic characters, lines and boxes, use SET GUITRANSL TEXT/BOX/LINES ON
and/or explicitly by @..DRAW or GuiDrawLine().

2. The .prg sources are coded in PC-8 (ASCII, OEM) character set and contain also national
characters 128..255, coded by an explicite ASCII char() value like this: cString :=
"M"+chr(129)+"nchen" or "M\0201nchen" to display "Munchen" with u-umlaut:
a. Terminal i/o: same as (1a) above. If different than the default PC8 (CP437/850)

character set is used, apply the corresponding input/ output char translation by
FS_SET("outmap") and/or FS_SET("intmap")

b. GUI i/o: same as (1b) above. If different than the default PC8 (CP437/850) character
set is used, set the conversion table via FS_SET("ansi2oem"). Compare e.g.
FSansi2oem.def and FSansi2oem.pl

3. The .prg sources are coded in native ISO (Ansi) character set and contain also national
characters 128..255 coded inline, e.g. as "München" or "M•nchen". Note: the semi-
graphic characters are usually not avaliable in native ISO mode.
a. Terminal i/o: similar as (1a) above, but set the ISO terminfo, e.g. FSsun, fslinux etc.

by using the TERM or FSTERM.
b. GUI i/o: use SET SOURCE ISO (after #include "fsprest.fh" if used). The SET

GUITRANSL TEXT conversion has usually no effect, but SET GUITRANSL
BOX/LINES and @..DRAW or GuiDrawLine() work fine.

4. When the .prg source strings are coded "inline", e.g. "München" or "M•nchen", the
conversion depends on the byte representation of the special character - if the u-umlaut
is chr(129) == ASCII, or chr(252) == ISO code. Simply follow suggestion 5.4.5.2 or
5.4.5.3 above.

5. When you are using ASCII program mode, the data are stored also in this backward
compatible mode in the database. When you instead want to store ISO data in the
database, and your current setting is ASCII, use SET ANSI ON or SET
DBREAD/DBWRITE ANSI/ISO. When your current source setting is ISO/Ansi, and you

LNG 138

want to keep the database backward compatible, you may translate the database content
by SET ANSI OFF or SET DBREAD/DBWRITE ASCII/PC8.

LNG 139

6. The GET System
The GET system of FlagShip allows the programmer, to design his own custom-built
GET/READs. The system consists of the (low-level) GET class and the (high-level)
modifiable access routines found in <FlagShip_dir>/system/getsys.prg.

Both the high and low level systems are already included in the FlagShip library, so if
modifications are not necessary, the system is automatically available during the compiling
and linking phase.

The GET system of FlagShip is functionally compatible to Clipper 5.x and, using commands
@..GET and READ, also to all Clipper'87 or other xBASE programs.

Usually, the usage of the command @...GET and READ is the most common and
comfortable way to access the whole system. The FlagShip preprocessor (see section FSC)
will translate these commands automatically to the equivalent class definitions and function
calls.

This chapter covers the basic information of the GET system. For a further description and
additional options, see commands @..GET and READ in section CMD. The experienced
programmer who wishes to tune the input system to his own needs, will find in-depth
information in section OBJ and in the interface program getsys.prg.

The @...GET Command
To activate full-screen data input (see also chapter 5), the variable (or database field) storing
the user entry, and the position and size of the input field has to be defined:

LOCAL name := space(25), city := space(20), zipcode := space(10)
SET COLOR TO "W+/B,N/W"
CLS
@ 10,5 SAY "Name " GET name
@ 12,5 SAY "City, zip " GET city VALID LEN(TRIM(city)) > 2
@ 12,COL() +1 GET zipcode PICTURE "!!!!!!!!!!" VALID !EMPTY(zipcode)
READ

The above example defines three entry fields. Two of them are validated for the correct
entry, the entry of the zip code is automatically converted to uppercase.

The @..SAY..GET command outputs these three fields, including the additional description
in the specified colors. The description will be given intensive white on blue background, the
entry fields are colored inverse white. Many additional features, including pre-validation,
formatting etc. are available, see (CMD) @..GET.

LNG 140

The FlagShip preprocessor additionally creates for each of the @...GET commands a GET
object and adds it into a global array GETLIST. Using a LOCAL (or PRIVATE, STATIC)
GETLIST := {} declaration allows you to create GET/READs, nested to any level.

The READ Command
In the example above, the READ command enables the user input in the three input fields.
The user may move from field to field using the cursor-up and cursor-down keys or edit the
actual field with e.g. the cursor <─ ─> keys, BACKSPACE, DELETE, INSERT and so on.
More editing and navigation keys are available, see (CMD) READ. The correct data entry will
be automatically checked by the defined VALID condition.

The FlagShip preprocessor translates the READ command to the READMODAL(getlist) UDF
call. If a LOCAL array GETLIST was declared, a nested READ is executed.

The source code of the READMODAL() function available in getsys.prg (directory
<FlagShip_dir>/system). The inner behavior of the READ command including the pre- and
post-validation checking is thus freely modifiable.

An advanced programmer may also change the low-level GET/READ behavior by inheriting
the GET class into his own subclass. See details in section LNG.2.11 and OBJ.2.

LNG 141

7. The TBrowse System
The FlagShip TBROWSE system allows the user to browse and/or modify tables, i.e.
databases or arrays. It is similar to the (older) DBEDIT() function and based on the
TBROWSE and TBCOLUMN object class.

An advanced programmer may also change the low-level TBROWSE and TBCOLUMN
behavior by inheriting the class into his own subclass. See details in section LNG.2.11 and
OBJ.3.

This chapter covers the basic usage of the TBrowse system. For detailed information, see
section OBJ.3. It is also used in DBEDIT(), available in source code in the
<FlagShip_dir>/system/dbedit.prg file, which may be a good source of a practical TBROWSE
usage.

Creation and Usage of TBrowse Objects
By using one of the class-definition functions TBROWSENEW() or TBROWSEDB(), a new
TBrowse object can be created. The TBROWSEDB() is specially designed for browsing
databases, the former has more generic capabilities.

The columns of the Browse systems are described by TBColumn objects, defined with
TBCOLUMNNEW(). At least one column needs to be assigned.

Horizontal and vertical movement in the browsed table is specified by code blocks assigned
to the corresponding instance variables. At least the :SkipBlock must be assigned, assigning
:GoTopBlock and :GoBottomBlock is recommended for speed.

mybrow := TBROWSENEW (5,0, MAXROW()-1, MAXCOL())
mycol1 := TBCOLUMNNEW ("Cust.Name", {|| name})
mycol2 := TBCOLUMNNEW ("Address", {|| city + " " + zipcode})

mybrow:ADDCOLUMN (mycol1)
mybrow:ADDCOLUMN (mycol2)
mybrow:SKIPBLOCK := {|par| myskip(par)}

Additional settings, like different color specifications for any column, vertical column
separators etc. are available.

Stabilizing the System
The main advantage of the TBrowse system compared to e.g. ACHOICE() is the
asynchronous movement in the table and the actual data being displayed. This allows the
data to be prepared "in the background" and to display only the required part of it.

LNG 142

Every time user movement is requested, the system gets into an "unstable" condition. When
the database (or array) movement and the data display is finished, the TBrowse system
becomes "stable". If any user key is pressed in the meantime, the stabilize and/or output
process may be interrupted for the next required action. Example of a small, simple TBrowse
program:

LOCAL users := { { "charles", "210" }, ; // the array to browse
{ "hubert ", "216" }, ;
{ "peter ", "201" }, ;
{ "paula ", "215" }, ;
{ "root ", "100" } }

LOCAL element := 1 // index in the array
LOCAL key, mycol
LOCAL mybrow := TBROWSENEW (0,0, 7,20) // create TBrowse object
mycol := TBCOLUMNNEW ("Username", {|| users[element][1]})
mybrow:ADDCOLUMN (mycol)
mycol := TBCOLUMNNEW ("User ID ", {|| users[element,2] })
mybrow:ADDCOLUMN (mycol)
mybrow:SKIPBLOCK := { |input, temp| temp := element, ;

element := MAX(1, MIN(LEN(users), ;
element + input)), element - temp }

mybrow:COLSEP := " │ " ; mybrow:HEADSEP := "─┼─"
CLS // or: CLEAR SCREEN
WHILE (.T.)

WHILE (!mybrow:STABLE) // (re)build screen,
mybrow:STABILIZE() // wait for stabilizing
IF NEXTKEY() != 0 // optional:

EXIT // manage async.input
ENDIF

ENDDO
key := INKEY(0) // get key pressed
DO CASE
CASE key = 19 // left

mybrow:LEFT()
CASE key = 4 // right

mybrow:RIGHT()
CASE key = 5 // up

mybrow:UP()
CASE key = 24 // down

mybrow:DOWN()
OTHERWISE

** RETURN (element) // other key termina-
QUIT // tes the browsing

ENDCASE
ENDDO // system is unstable now

LNG 143

8. The Open C System
The open architecture of FlagShip use different levels of API (application program interfaces)
which are connected to the C language:

•The Extend C System, almost compatible to Clipper 5.x and Summer'87,
• Included C inlines within the regular .prg code, using the #Cinline directive,
• Invoking the standard FlagShip functions from any C program.
•Modification of the intermediate C code produced by the FlagShip compiler.

The former is the most common way to include C code into a FlagShip application. It is also
suitable for C programmers of low and medium experience. The Extend System includes
several checking mechanisms to avoid mistakes and has also a direct access to FlagShip
variables.

The included C code allows an experienced programmer to code short program sequences
directly into the .prg file and to directly call other C functions and libraries. Access to
FlagShip variables and functions is possible.

Modification of the produced C code is not very common, but possible by very experienced C
programmers. Such modified code will loose the high level of compatibility, but porting to
other UNIX systems can be done on the C FlagShip level.

! Warning: Programming in the C language allows you nearly unlimited access to the
whole UNIX or MS-Windows system. Therefore, it requires a high level of programming
discipline to avoid a system or application crash, as compared to the easy, high-level
programming and "learning by doing" when using the FlagShip (xBASE) language.

This chapter covers the basic usage of the FlagShip's Open C System. For detailed
information, see section EXT.

8.1 The Extend C System
The FlagShip Extend C programs are common C source files with the .c extension. The
programs may be pre-tested on the C level, e.g. using a symbolic debugger of the UNIX or
MS-Windows system. The ready-to-run C programs will be compiled by cc or FlagShip and
simply linked together with the rest of the application.

The extend C function is called from the .prg in the same way, as any usual user-defined-
function UDF written in the FlagShip language. Access to the FlagShip system from the C
program is done by parameter passing and by using the prepared exchange routines.

Compared to stand-alone C or Clipper's Extend C program, very few modifications and rules
are necessary:

LNG 144

•Include the FlagShip's extend file FSextend.h
•Use the macro FlagShip(fn_name) instead of the common function C declaration by

fn_name() or CLIPPER fn_name().
•After internal variable definitions, first call the function FSinit() to receive the parameters

from your FlagShip application.
•For parameter passing, use the Extend System functions _parxxx(). Preferably, check the

incoming parameters for type and validity.
•Pass the return values to FlagShip using _retxxx() functions, pass other values to .prg

using _storxxx().
•Return from the C program and pass control to FlagShip using FSreturn.

Example of a small Extend C program to rotate a string from left to right:

/*** File strrot.c ***/
/*** Call it from FlagShip program: new = str_rotat (old) ***/

#include <FSextend.h>
#include <string.h>
FlagShip (str_rotat) /* declare name */
{

int lng, left, right; /* internal C */
char *str, temp; /* variables */
FSinit () ; /* init params */
if (PCOUNT != 1 || _parinfo (1) != CHARACTER) { /* check param1 */

_retc (""); /* return error */
FSreturn; /* and exit */

}
str = _parc(1); /* get string- */
lng = strlen (str); /* ptr passed */
if (lng > 1) {

for (left=0, right=lng-1; left < right; left++, right--) {
temp = str[left];
str[left] = str[right]; /* swap chars */
str[right] = temp;

}
}
_retc (str); /* push to FS */
FSreturn; /* exit C to FS */

}

Note: The program works on the internal string copy passed from FlagShip, expanding the
string length is therefore NOT allowed. For more examples see in section EXT.

You may compile this program together with your application entering:

$ FlagShip test.prg strrot.c
$ a.out

LNG 145

8.2 Open C API
This interface is designed for any C programmer. It allows you to access nearly the whole
system, including the local and dynamically scoped FlagShip variables, or standard FlagShip
and C functions trough any C program. By using such a interface, access from other
programming languages (Fortran, Cobol, Pascal) is also possible. If you wish, you may
create the whole application in C; the only pre-requirement is, that the main module must be
a FlagShip procedure or function.

The Open C API is commonly used for programming of RDDs (if you don't like to program it
into .prg), other system drivers, or for very often called functions to increase theirs execution
speed. In fact, the most of FlagShip standard functions are programmed by using Open C
API. See details in the section EXT.4.4, as well as examples in the files
<FlagShip_dir>/system/CB4rdd.tar.Z or .../ascirdd.tar.Z

8.3 The Included C Code (Inline-C)
Using C code between the directives #Cinline and #endCinline allows you to include it
directly into FlagShip's .prg source file. During the compiler phase, all statements between
these two directives will be passed directly into the intermediate C code. You may directly
access all the TYPED FlagShip variables, or the untyped ones using connecting functions.

The typical usage of included C:

** File test.prg

LOCAL angle
LOCAL_DOUBLE radian, sinus, cosine
INPUT "Enter angle 0...360 degree: " TO angle
radian := 2.0 * 3.1415926535 * angle / 360.0

#Cinline
sinus = sin(radian); /* use std. C math library */
cosinus = cos(radian); /* use std. C math library */

#endCinline

? "sin(" + ltrim(str(angle)) + ")=", sinus, ;
"cos(" + ltrim(str(angle)) + ")=", cosinus

The previous string rotation example from 8.1 can be also defined as inline C code. Because
of the additional variable declaration within the C part, and the include's for the C part, the
whole C routine has to be enclosed in curly brackets {...}:

** File test.prg
LOCAL myStr as character
myStr := "abcdefgh"

LNG 146

? "original string:", myStr
#Cinline
{
#include "FSopenc.h" /* VAR_* macros */

int left = 0, right; /* internal C */
char *str, temp; /* variables */
str = VAR_CHR(VAR_NAME_LOCAL(mystr)); /* ptr to LOCAL */
for (right = strlen(str)-1; left < right; left++, right--) {

temp = str[left];
str[left] = str[right]; /* swap chars */
str[right] = temp;

}
}
#endCinline
? "swapped string:", myStr

Note the different string indices in C (0...strlen(str)-1) compared to the FlagShip/xBASE
convention (1...LEN(str)). Also note that the accessed FS variables in the C part via
VAR_NAME_LOCAL() must be given in lower case, and need to be assigned to C type via
VAR_*() before using. More examples and a full description of using in-line C code are
available in sections EXT.3 and EXT.4.

You may also use the CALL command, which translates FlagShip variables to the C
equivalent automatically:

** File test.prg
#Cinline
#include <string.h> /* std. UNIX */

void RotateStr (str) /* in/output, */
unsigned char *str; /* see CALL cmd */
{

int left = 0, right; /* internal C */
char temp; /* variables */
for (right = strlen(str)-1; left < right; left++, right--) {

temp = str[left];
str[left] = str[right]; /* swap chars */
str[right] = temp;

}
}
#endCinline

FUNCTION main ()
LOCAL mystr
mystr := "abcdefgh"
CALL RotateStr WITH mystr
? "swapped string:", mystr

** Compile: $ FlagShip test.prg -na -Mmain

Note: C functions must be declared at the beginning of the .prg file. The required C include
files should be put there as well.

LNG 147

For a comparison, the same string rotation program, fully coded in the FlagShip language:

** File test.prg
LOCAL mystr, temp
LOCAL_INT left := 1, right // typed vars increases the speed
mystr := "abcdefgh"
right := LEN (mystr)
DO WHILE left < right

temp := ASC(SUBSTR(mystr,left,1))
STRPOKE (@mystr, left++, ASC(SUBSTR(mystr,right,1)))
STRPOKE (@mystr, right--, temp)

ENDDO
? "swapped string:", mystr

8.4 Modifying the intermediate C Code
Because the modification of the produced C code from the FlagShip compiler is not very
common but may be interesting for very experienced C programmer, the description will be
given in detail in the section EXT.

LNG 148

9. Program and Data Compatibility
This chapter describes possible differences to compatible database systems for MS-DOS
(such as Clipper or dBASE). A full description for porting your application will be given later
in the section SYS.

9.1 Program compatibility
The FlagShip language is in semantics, syntax and operation highly compatible to programs
written in dBASE, Foxbase, FoxPro or in the Clipper language. Therefore porting such
applications from MS-DOS to Unix or MS- Windows is extremely easy.

Note: please keep in mind, FlagShip is an independent programming language in its
own right, and neither the Clipper nor the dBASE or Fox system (all of which are often
not fully compatible to their own previous releases, work other than the documentation
says and have several documented or undocumented anomalies). FlagShip supports
very different operating systems from the MS- DOS. Our goal is to maximize the
portability and minimize your expense as much as possible. The remaining, very small
differences in FlagShip are system dependent, and can be handled in your program
(see below).

The programmer should only consider the specific differences between the two operating
systems, for more detailed information see chapters LNG.1.3 LNG.9.3 and section QRF,
SYS.

9.2 Data compatibility
FlagShip fully supports the .dbf and .dbt database structure without any modification or
conversion. Indices from MS-DOS xBASE languages (like dBASE .ndx or Clipper .ntx) are
not supported by the default DBFIDX driver, FlagShip uses optimized B-tree indexes in .idx
files instead. Nevertheless, other replaceable database and index drivers are already
available (see section RDD), additional drivers will follow in the next release or by Third
Party vendors.

The .mem files are compatible to Clipper (5.x and '87) and most of the other xBASE systems
per default. FlagShip reads (RESTORE FROM) both the older (rel 3.x) and the new *.mem
format and produces (SAVE TO) always in the new format. The *.mem files are now portable
to/from DOS or to/from other UNIX or MS-Windows systems, just like *.dbf and *.dbt files.
Because FlagShip can store arrays (Clipper doesn't), it is up to you to enable this option
using FS_SET ("memcomp", .F.); the full .mem file portability to DOS may be lost thereafter.
Screen variables are not compatible to Clipper or xBASE at all.

LNG 149

You may use the same data files (like databases, memo files etc.) on Unix and MS-DOS.
When transferring these binary files from other system, you must use binary transfer or
protocol, instead of text transfer. You cannot use index files from other platforms. For
copying the .prg and other source files, you may use text or binary protocol.

9.3 Differences to Clipper and other xBASE
The way FlagShip operates has some similarity to Clipper (CA, formerly Nantucket), which
was designed for the MS-DOS system only. FlagShip is still more flexible, designed mainly
for a multi-user purposes. Because of the translation into the C language, no "hidden p-
code" is produced, and this C source may by modified by yourself if required.

FlagShip has no problems or limits with "not enough memory". Both UNIX and MS-Windows
uses virtual memory management, so your programs may be as large as 2-4 Gigabytes (this
is 6000 times 640 Kbytes). Because of this it is no longer necessary to use complicated
overlays to run a large application. Also, any other program may be called directly by using
the RUN statement. Note: the real size limit of your application is restricted only by the
"swapspace" area of your disk, the size of which is often fix set during UNIX/Windows
installation, see also section SYS.

To ensure forward and backward compatibility between FlagShip and Clipper, the Extend
System of Clipper is included into FlagShip as well. Only very slight modifications are
necessary, see LNG.8 and section EXT. It is very easy to embed C code written to your
special needs directly into your FlagShip (or Clipper) program, rather than modifying the
generated C code. Nevertheless, FlagShip's Open C System gives you the option of doing
this.

Notable differences to dBASE and FoxBase are listed in the Appendix. An additional
compatibility to FoxPro is available by using the -fox compiler switch.

Notable extensions and differences to Clipper and MS-DOS:

•UNIX file names are case sensitive, but FlagShip will optionally convert them automatically
to the UNIX convention (see FS_SET() and example below in chapter 9.4).

•Clippers .NTX indices cannot be used. FlagShip's .idx indices must be created on the
target system using INDEX ON...TO. See LNG.2.1, LNG.4.5 and (CMD) INDEX

•MS-DOS (Clipper's) object files and libraries cannot be used for Unix, nor MS-Windows
based FlagShip, the .prg or .c sources must be recompiled on the target system. Third
party libraries are usable only if they are ported to Unix (or MS-Windows/32) or if available
in source code. See section FSC.

•Be careful of differences in system commands, if used in RUN (e.g. RUN ls -l * instead of
RUN DIR *.*). See (CMD) RUN and the "man" pages of your UNIX system.

•FlagShip produces spooled printer output by default, but it may be fully deactivated on

LNG 150

special request according to SYS.2.7. To use direct output to the device driver, use e.g.
SET PRINTER TO /dev/lp0. See LNG.3.4 and (CMD) SET PRINTER.

•Screen variables of type "S" are used in FlagShip for SAVESCREEN() variables, instead
of the var type "C" in Clipper. Converting functions, e.g. SCRDOS2UNIX and
SCREEN2CHR are available to be able to use DOS created screens or to store the screen
content into dbf or dbt fields. See LNG.2.6.4 and FUN.

•Binary 0 (represented by CHR(0)) normally terminates the string in the C language.
FlagShip supports embedded chr(0) automatically or on request for most string operations.
See LNG.2.6.5.

•File attributes (used e.g. in the ADIR() or DIRECTORY() function) of UNIX (drwxrwxrwx)
differ to the MS-DOS ones (a,d,s,h,v). See LNG.3.1 and FUN.

•For portability avoid using the [Alt]+[key] combinations, since they are not available on
most UNIX terminals. See LNG.5. 2 and section SYS.

•Clipper's .clp and .lnk files are not supported, since FlagShip's command line entry is more
powerful, see section FSC. The usage of UNIX or BCC make and Windows nmake is
possible. See section FSC.

•The program interruption key is ^K, the debugger is activated with ^O. Both keys are
redefinable using FS_SET(). See sections FSC and FUN.

•Additional settings using FS_SET(...) are available, e.g. to run in developer mode with
more warnings, automatic file conversions etc. See sections QRF, CMD and FUN.

•Many additional FlagShip commands and functions, enhanced the language, are available.

•To minimize porting effort, add these statements at the begin of your main module:

#ifdef FlagShip
#include "fspreset.fh"
SET FONT "courier"

#endif

•Possible differences in syntax or functionality are noted and explained in the reference
part, sections CMD, FUN, OBJ, PRE and EXT.

LNG 151

9.4 FlagShip Extensions
To support the full program portability between DOS and UNIX, we have added into the
FlagShip language the following extensions:

1. Public FlagShip: your application may decide automatically and online, on which
operating system it is actually running, if you use the reserved PUBLIC variables
CLIPPER and FLAGSHIP:

If the application is compiled by FlagShip, the public variable FLAGSHIP will be
automatically set to "true", the variable CLIPPER is unchanged as "false". If you
recompile it with Clipper, FLAGSHIP variable remains "false" and CLIPPER variable will
be set by the compiler to "true". Running the same program with other xBASE dialects
sets both public variables to .F.

UNIX DOS
public FlagShip .T. .F.
public Clipper .F. .T.

2. #ifdef FlagShip: is the preferable, more comfortable way to keep compatibility with all
Clipper 5.x programs. The FlagShip preprocessor defines automatically #define FlagShip
as true, so the usage of

#ifdef FlagShip /* "FlagShip" is case sensitive */
RUN ls -l *.* | pg // or other FlagShip statements
FS_SET ("lower", .T.)

#else
RUN DIR *.* // or other Clipper statements

#endif

is very comfortable to code different system options (see example in getsys.prg). The
decision which code segment to compile is done by the preprocessor, the other part (like
the Clipper's one in a FlagShip program) will be not included in the translated code at all.
See also section PRE. To determine difference between FlagShip for MS-Windows and
Unix/Linux, use

#ifdef FS_WIN32
RUN dir *.exe // MS-Windows statements

#else
RUN ls -la // Unix/Linux statements

#endif

3. FS_SET() functions: the UNIX system and FlagShip offer you more possibilities than in
MS-DOS. You can set some additional switches, compared to standard SET ...
commands. To insure the compatibility to Clipper, all of these are included in the
FlagShip FS_SET function. For the DOS program, you only include a dummy empty
function (or link the compiled fstodos.prg program) to satisfy the linker. See more in
section FUN.

LNG 152

4. 8-bit support: FlagShip accepts the complete IBM-PC character set in the source code,
during the run time process as well. The only requirement is the support of the 8-bit-set
from your UNIX system and terminal. See more in section SYS.

5. Multiuser/Multitasking: additional to DOS networking, FlagShip supports also the UNIX
specific multiuser and multitasking environment. For your convenience, FlagShip uses
the same statements for this as Clipper/dBASE does for the network support. In addition
to, FlagShip also supports fully automatic locking, see more in chapter LNG.4.8.

6. Data security: FlagShip automatically supports all of UNIX access rights and checks the
index integrity. See chapters LNG.3.1 and LNG.4.5.

7. Error System: FlagShip offers you two different error systems, including an extended,
almost Clipper 5 compatible, object oriented error system, see sections FSC and OBJ.

8. Open C System: the programmer has five options to include his C programs into a
FlagShip application (see chapter 8 and section EXT):

•using the nearly Clipper compatible Extend System,
•coding C programs directly in the .prg program, using the #Cinline directive,
•using the CALL command as interface to C,
•programming in the C language with access to the FlagShip library functions,
•directly merging or modifying the intermediate C code produced from the FlagShip

compiler.

9. FlagShip supports, in addition to all default Clipper and xBASE variable types, typed
variables (in the CA/VO syntax) as well as C- like typed, which significantly increase the
program stability, the execution speed and allow you direct data exchange between the
.prg and inline C program part. See LNG.2.6.1 and section CMD.

10. As opposed to Clipper 5, FlagShip allows exiting from a DO WHILE or FOR loop using
BEGIN SEQUENCE...BREAK...END in the same manner as Clipper'87. See LNG.2.5.3
and CMD.BEGIN.

11. As opposed to Clipper 5, FlagShip supports user-defined objects and classes (OOP),
compatible to the VO syntax. You may also modify the behavior of any standard class
(e.g. Get, Tbrowse, Error, DbServer, DataServer, DbfIdx) by inheriting it into your own
sublass. See LNG.2.11.

12. Nested GET/READ: the GET/READ system may be nested to any level using LOCAL
GETLIST := {} within a UDF. The GET system is fully user modifiable, using the file
(<FlagShip_dir>/system/)getsys.prg. See LNG.6 and CMD.READ.

13. Character Mapping: FlagShip supports special handling with different character sets
using external mapping tables for the screen output and/or keyboard input. See
chapters LNG.5.1.4, LNG.5.2.5, section SYS and functions FS_SET ("outmap" and
"inmap").

14. Individual Sorting: to support different human languages, commands like ASORT() etc.,
are on request controlled by external sorting tables from ASCII files. See chapter SYS
and FS_SET ("loadlang").

LNG 153

15. Individual Index Searching using the SEEK EVAL command.

16. Extended Color Manipulation using the SETSTANDARD, SETENHANCED and
SETUNSELECTED commands.

17. Printer output is by default done to external file and using the UNIX spool system, so
there are no collisions in multiuser/ multitasking environment. The printout may be
activated directly or outside the application. Additional redirections and pipes are
supported. See chapter LNG.3.4.

18. On special request, you may deactivate the Curses initialization and the creation/use of
the default spooler file. See details in SYS.2.7.

19. File system: In UNIX, there is no equivalent to the MS-DOS drive selector (like C:) in the
path specification, but FlagShip can substitute it automatically to an UNIX directory
using the environment variable x_FSDRIVE (see LNG.3.2, LNG.9.5 and section FSC).
The conversion of "\" to "/" within a path will be done automatically. You may enable the
character letter case translation of file names and/or path names using FS_SET()
functions.

20. Many additional FlagShip commands and functions, which enhance the language, are
available. See section QRF, CMD, and FUN. To use these on a DOS system, copy the
program <FlagShip_dir>/system/fstodos.prg to DOS and add it to the application.

LNG 154

9.5 Keeping compatibility with DOS programs
Using the extended options of FlagShip, it is easy to keep compatibility between the DOS
and the UNIX application. It is important for maintenance purposes to be able to maintain
one common set of source code for both DOS and UNIX.

Example of a fully DOS/UNIX compatible application, normally no other modification
necessary:

1. Include the following statements into the main .prg module:

*** main module, remains fully compatible to Clipper 5.x ***
*
#ifdef FlagShip

#include "fspreset.fh" // the preferred method
#endif

- or - insert your preferred definitions as needed:

#ifdef FlagShip // automatically defined in FS
FS_SET ("lower", .T.) // convert files to lower case
FS_SET ("pathlower", .T.) // paths and drives to lower case
FS_SET ("translext", "ntx", "idx") // search for .idx instead of .NTX

IF GETENV ("C_FSDRIVE") == "" // only if drive letter C: is used
? "set C_FSDRIVE env.variable first"
QUIT

ENDIF
#endif

That's all there is to it! The rest of the applicat. (all .prg modules) remain unchanged, e.g.

SET PATH TO C:\test\Data;..\Xyz\ABC
SET DEFAULT TO ("D:\other\Data")
IF .not. FILE("XYZ.NTX") ...

Note: when the FlagShip extensions and additional functions are used, copy the program
<FlagShip_dir>/system/fstodos.prg to DOS and add it to the application.

2. Set UNIX environment variable(s) to substitute the DOS drive letters prior to the
execution of the a.out, if drive letters are used:

$ C_FSDRIVE=/usr/data1 ; export C_FSDRIVE (if C: or c: letter used)
$ D_FSDRIVE=/usr/data2 ; export D_FSDRIVE (if D: or d: letter used)

LNG 155

9.6 Porting to Unix/Linux step-by-step
1. Copy (binary!) your sources (*.prg, *.fmt) and data (*.dbf, *.dbt, *.lbl, *.frm) from DOS to

Linux. If the file names are in uppercase or mixed case now, you may convert them to the
usual Unix/Linux lowercase by "files2lower", see also fsman LNG.9 for details

2. At the begin of your main module, add the statements

#include "fspreset.fh"
SET FONT "courier"
//or often better: SET FONT "adobe-courier",10

for an automatic upper/lowercase support and to use fix fonts to minimize porting effort,
see fsman LNG.9 and LNG.5.2, LNG.5.3. If you wish to see PC8 lines and boxes also in
GUI mode, add also

SET GUITRANSL TEXT ON
SET GUITRANSL BOX ON

as described in section LNG.5.3 and LNG.5.4.2. See also example in
<FlagShip_dir>/examples/umlauts.prg and pc8lines.prg where the <FlagShip_dir> is your
installation path, e.g. /usr/local/FlagShip7

3. Internalization: in dependence of the used source-code editor, you may need to set

SET SOURCE ASCII // already set in fspreset.fh
or SET SOURCE ISO // or: SET SOURCE ANSI

for an automatic translation of your national character set used in strings. You may test it
with <FlagShip_dir>/examples/umlauts.prg For database internalization, you may use
SET ANSI ON/OFF or Oem2Ansi() and Ansi2oem() functions, in dependence on the used
run-time mode and character set.

4. If your program already tests for index availability, skip to point 5. Otherwise add test for
indices before opening them

if !file("myindex" + indexext())
use mydatabase excl
if !used()

alert("could not open 'mydatabase.dbf' exclusively")
quit

endif
index on ... to myindex
use

endif
use mydatabase index myindex shared

This method also creates FlagShip indices at the first invocation.

5. Compile your sources by FlagShip, e.g.

FlagShip myapp*.prg -Mmain -o myapplic

see fsman section FSC for further details. Watch for compiler or linker errors. If any error

LNG 156

occurs, read the self-explaining error message and check fsman section FSC.1.8, fix and
recompile. For larger applications, you may preferably use 'make' (see FSC.2) which
replaces DOS/Clipper compiling and linking with @... or rmake files.

6. Run your application by "./myapplic" in GUI mode, or by using the newfswin (or
newfscons, newfsterm) script in Terminal i/o mode, e.g. "newfswin ./myapplic -io=t", see
section FSC.3 and REL for details.

LNG 157

9.7 Porting to MS-Windows step-by-step
1. You may use your sources (*.prg, *.fmt) and data (*.dbf, *.dbt, *.lbl, *.frm) from DOS "as

is" except the indices, which needs to be created anew, see LNG.9.3 and point 4 below.

2. At the begin of your main module, add the statements

// #include "fspreset.fh" // optional
SET FONT "courier"

for an automatic upper/lowercase support (optional, only to keep multi- platform
compatibility to Unix/Linux) and to use fix fonts to minimize porting effort, see fsman
LNG.9 and LNG.5.3, LNG.5.4. If you wish to see PC8 lines and boxes also in GUI mode,
add also

SET GUITRANSL TEXT ON
SET GUITRANSL BOX ON

as described in section LNG.5.3 and LNG.5.4.2. See also example in
<FlagShip_dir>\examples\umlauts.prg and pc8lines.prg, where the <FlagShip_dir> is
your installation path, e.g. C:\Program Files\FlagShip

3. Internalization: in dependence of the used source-code editor, you may need to set

SET SOURCE ASCII // already set in fspreset.fh
or SET SOURCE ISO // or: SET SOURCE ANSI

for an automatic translation of your national character set used in strings. You may test it
with <FlagShip_dir>\examples\umlauts.prg For database internalization, see SET ANSI
ON/OFF or Oem2Ansi() and Ansi2oem() functions, used in dependence on the current
run-time mode and character set, see details in section CMD and FUN.

4. If your program already tests for index availability, skip to point 5. Otherwise add test for
indices before opening them

if !file("myindex" + indexext())
use mydatabase excl
if !used()

alert("could not open 'mydatabase.dbf' exclusively")
quit

endif
index on ... to myindex
use

endif
use mydatabase index myindex shared

This method also creates FlagShip indices at the first invocation.

5. Compile your sources by FlagShip, e.g.

FlagShip mymain.prg myapp*.prg

LNG 158

see fsman section FSC for further details. Watch for compiler or linker errors. If any error
occurs, read the self-explaining error message and check fsman section FSC.1.8, fix and
recompile. For larger applications, you may preferably use make (named 'nmake' in MS-
VC6++) which replaces DOS/Clipper compiling and linking with @... or rmake files, see
FSC.2 for details.

6. Run your application by "mymain" in GUI mode, or in Terminal or Basic i/o mode by using
the -io=t or -io=b switch respectively. You may invoke the executable either from
command-line (console window or start->run) or by click on the .EXE file in Explorer. See
section FSC.3 and REL for further details.

LNG 159

10. Programming Examples
For a overview how to use FlagShip, we give you here short commented program examples.
For these purposes, different programming techniques are demonstrated. Please consult
also many other examples in the manual or the attached *.prg sources.

Example 1: create a new database and fill it with data. See also example 5 for a generalized
program.

*** file: example1.prg

#ifdef FlagShip
include "fspreset.fh" // w/o regard lower/uppercase
#endif
#define CRLF chr(13)+chr(10) /* pseudo-constants */

LOCAL aStruct := {{"Name", "C", 25, 0}, ; // declare multidimensional
{"First", "C", 20, 0}, ; // array containing the
{"Address", "C", 50, 0}, ; // required database
{"Phone", "N", 20, 0}, ; // structure
{"Note", "M", 10, 0} }

LOCAL ii

if !file("address.dbf") // is the database available?
dbcreate ("address", aStruct) // no, create it now

endif
use Address // open the database
if !used() // successful ?

? "Database address.dbf is in " + ;
"exclusive use by others" // no, display message and

quit // terminate the application
endif
if LastRec() == 0 // is it empty ?

? "adding dummy addresses " // yes, fill first 10 records
for ii := 1 to 10

?? "." // display progress
append blank // add new record
replace Name with "Any Name" + str(ii,3)
replace First with "foo", Address with "dummy data" , ;

Phone with ii * 10000 + ii
if (ii % 2) == 0

replace Note with "Note of record " + ltrim(str(recno())) + ;
CRLF + "-- line 2" + CRLF + CRLF + "-- line 4"

endif
next

endif
quit // program end
*** eof

Compile: FlagShip example1.prg -oexample1
Execute: example1 -or- ./example1

LNG 160

Example 2: display some fields the database "address.dbf"

*** file: example2.prg

PROCEDURE MyMain (cmd1, cmd2) // main entry point

? "Command-line parameters: "
if empty(cmd1)

?? "-none-"
else

?? cmd1, if (empty(cmd2), "", cmd2)
endif
if .not. file("address.dbf")

? "Sorry, database 'address.dbf' is not available."
QUIT

endif
USE address // open database, exclusive
if .not. used() // success ?

? "Sorry, cannot open address.dbf - used by others ?"
QUIT

endif
? padl("recno",7), "", padr("Name",len(name),"."), ;
padr("First",len(First),"."), padc("Phone",fieldlen("Phone"),".")

LIST name, First, Phone // or: ... TO FILE /dev/lp0
USE // close database
return
*** eof

Compile: FlagShip exam*2.prg -Mmymain -na
Execute: a.out -or- ./a.out -or- newfscons ./a.out

Example 3: browse thought the database "address.dbf".

*** file: example3.prg
#ifdef FlagShip
include "fspreset.fh" // convert files to lowercase
#endif
if ! file("./AddResS.DbF")

? "Sorry, database 'address.dbf' is not available."
quit

endif
USE Address SHARED // open database, multiuser
if !used() // success ?

? "Sorry, cannot open address.dbf - access rights ?"
quit

endif
DbEdit (0,0, 15, MaxCol()) // browse at row 0..15
use // close database
return 22 // exit with return code
*** eof

Compile: FlagShip ex*3.prg -oexample3
Execute: example3 -or- ./example3

LNG 161

Example 4: display or maintain any given database (optionally indexed by the giving index).
See also BROWSE() and <FlagShip_dir>/system/ mydbu.prg

*** file: example4.prg
** procedure example4 // created automatically

LOCAL executable, aColors
#ifdef FlagShip
include "fspreset.fh" // w/o regard lower/uppercase
executable := execname()

#else
executable := "EXAMPLE4.EXE"

#endif

PARAMETERS DbfName, IndexName // retr. command-line params

if .not. CheckOpenIt (@DbfName, @IndexName, executable)
quit

endif
if iscolor()

aColors := {"GB+/B,R+/BG", "GR+/B", "W+/N,N/W", ;
"R+/B", "W+/N", "G/N" }

endif
@ 0,0 say "File : "
@ 0, col() say DbfName COLOR (if (iscolor(), "GR+/N", "W+/N"))

BROWSE (1, 0, maxrow()-1, maxcol(), aColors) // does the work
return

*--
* CheckOpenIt() checks and corrects the parameters passed by reference,
* and opens the database (with index, if given)
*
FUNCTION CheckOpenIt (DbfName, IndexName, execName)

if empty(DbfName) .or. left(dbfName,2) == "-h"
? "** The correct syntax is: " + execName + " dbfName [indexName]"
return .F.

endif

if .not. (upper(right(dbfName,4)) == ".DBF")
dbfName += ".dbf" // dbfName = dbfName + ".dbf"

endif
if .not. file(dbfName)

? "Sorry, file " + dbfName + " not available."
quit

endif

Use (dbfName) SHARED
if !used() // or: if .not. used()

? "Sorry, cannot open " + dbfName + " - access rights ?"
return .F.

endif

LNG 162

if !empty(IndexName)
IndexName += IndexName + if(indexext() $ IndexName, "", indexext())
if file(IndexName)

set index to (IndexName)
else

wait "Index " + IndexName + " not available, using " + ;
dbfName + " w/o index. Any key..."

indexName := ""
endif

endif
return .T.

*** eof

Compile: FlagShip example4.prg -oshowdbf
Execute: showdbf -or- newfscons ./showdbf

Example 5: create a new database from a ASCII structure file, including an extensive validity
check and command-line help. This demonstrates diverse array and file i/o handling. See
similar, simplified Example 1. This file is available also in <FlagShip_dir>/system/creadb.prg.

*** File: creadb.prg
*--
* Main program
*
* FUNCTION Start (DbfName, AsciName) // retr. command-line params

PARAMETERS DbfName, AsciName // alternative syntax
LOCAL executable
LOCAL aDbStru := {}

#ifdef FlagShip // FlagShip settings
include "fspreset.fh" // convert files to lowercase
include "fileio.fh" // defines used here
executable := execname()

#else // Clipper 5.x settings
include "fileio.ch"
executable := "EXAMPLE5.EXE"

define FS_START 0
#endif

if .not. CheckIt (@DbfName, AsciName, executable)
quit

endif
aDbStru := readStruct(AsciName) // fill array
if len(aDbStru) == 0

? "** sorry, no valid data in the file " + AsciName
? " invoke '" + executable + " -h' for help"
quit

endif

dbcreate (DbfName, aDbStru) // create the database file

?

LNG 163

? "--> done, file " + lower(DbfName)
if ascan(aDbStru, {|x| x[2]=="M" }) > 0 // memo field(s) ?

?? " and " + lower(substr(DbfName,1,len(DbfName)-1)) + "t"
endif
?? " created."
? "--> Display structure (y/j/o|n) ? "
ii := 0
while !(upper(chr(ii)) $ "YJNON")

ii := inkey(0)
enddo
if upper(chr(ii)) # "N"

displStruct (DbfName)
endif
return 0

*--
* CheckIt() checks and corrects the parameters passed by reference
*
FUNCTION CheckIt (DbfName, AsciName, execName)
LOCAL answer := ""

? "--> This '" + execName + "' creates a database according to " + ;
"ASCII structure file"

if empty(DbfName) .or. empty(AsciName) .or. left(dbfName,2) == "-h"
? "--> The correct syntax is: " + execName + ;
" <dbfName> <ascName>"

? " where <dbfName> is the name of the dbf (optional with path)"
? " <ascName> is the name of an ASCII file " + ;

"describing the dbf structure"
? " Structure of each line in the <ascName> file:"
? " <FieldName> <FieldType> [<FieldLen>] [<FieldDeci>]"
? " <FieldName> is the name of the field"
? " <FieldType> is the field type (C,N,D,L,M)"
? " <FieldLen> is the total field length [or default]"
? " <FieldDeci> is the number of decimal digits [or 0]"
? " whereby the data are separated by space(s) or tab(s), e.g.:"
? " |# comment lines or inline-comments are prefaced by " + ;

"the '#' sign"
? " | # empty lines are ignored"
? " |FamName C # sets default field length to 10"
? " |AddRess ch 50 # uppler/lower case is supported"
? " |Salary Num 10 3 # only 1st char of FieldType " + ;

"is signific."
? " |# eof"
?
return .F.

else
? "--> enter '" + execName + " -h' for help"
? "-->"
? "--> Your entry is: " + execName, DbfName, AsciName
?

endif
if .not. file(AsciName)

? "*** Sorry, the ascii file " + asciName + " is not available."
return .F.

LNG 164

endif
if .not. (upper(right(dbfName,4)) == ".DBF")

dbfName += ".dbf" // make correction
endif
if file(dbfName)

while !(upper(left(answer,1)) $ "NYJO") // wait for correct key
accept "Warning: database " + dbfName + " is AVAILABLE. " + ;

"Overwrite (N|no/y|yes|j|o) ? " to answer
enddo
if upper(left(answer,1)) == "N"

return .F.
endif

endif
return .T.

*--
* ReadStruct() reads the ascii file and stores data into array
*
STATIC FUNCTION ReadStruct (cFileName)
LOCAL ii, handle, buff, nSize, line := 0, retArr := {}, arr

handle := FOPEN (cFileName, FO_READ) // open input read-only
if handle < 0

? "*** i/o error on open " + cFileName + " (access rights ?)"
return retArr

endif
nSize := FSEEK (handle, 0, FS_END) // file size in bytes
FSEEK (handle, 0, FS_START) // go to file begin
while FSEEK(handle, 0, FS_RELATIVE) < nSize

buff := alltrim(FREADTXT (handle)) // read one asci line
buff := strtran (buff, chr(9), " ") // convert tabs to space
? str(++line,3) + ":" + buff
if (ii := at("#", buff)) > 0

buff := substr(buff, 1, ii-1) // remove comments
endif
if empty(buff) // empty lines are ignored

loop // read next line
endif
arr := tokenize (@buff, retArr)
aadd (retArr, arr)

enddo
FCLOSE (handle) // close input
return retArr

*--
* Tokenize() split input into tokens
*
STATIC FUNCTION Tokenize (buff, retArr)
LOCAL ii, cc, nType := 0, arr := {}
STATIC aCheck := {{"C",0}, {"N",0}, {"M",10}, {"D",8}, {"L",1}}

while " " $ buff
buff := strtran (buff, " ", " ") // remove multiple spaces

enddo
buff := upper(buff) + " " // convert to uppercase
while (ii := at(" ", buff)) > 1 // tokenize the input

LNG 165

aadd (arr, left(buff, ii-1)) // into array elements
buff := substr(buff, ii+1)
if len(arr) == 4

exit
endif

enddo

do case
case len(arr) < 2 // minimal requirements ?

? "*** error: at least <FieldName> and <FieldType> must be given"
quit

case !isalpha(arr[1]) // 1st char = Alpha
? "*** error: <FieldName> must start with Alpha char, here: " +;
arr[1]

quit
endcase
arr[1] := trim(left(arr[1], 10)) // name = max 10 chars

for ii := 1 to len(arr[1]) // check name validity
cc := substr(arr[1],ii,1)
if .not. (isAlpha(cc) .or. isDigit(cc) .or. cc == "_")

? "*** error: invalid character '" + cc + "' in " + arr[1]
quit

endif
next
if len(retArr) > 0

if ascan (retArr, {|x| x[1] == arr[1]}) > 0 // check field name
? "*** error: field name " + arr[1] + " is multiple defined"
quit

endif
endif
for ii := 1 to len(aCheck)

if aCheck[ii,1] == left(arr[2],1) // check the field type
nType := ii
exit

endif
next
if nType == 0

? "*** error: wrong <FieldType>, here: " + arr[2]
quit

endif
arr[2] := left(arr[2],1)

if len(arr) < 3 // check the field size
aadd (arr, if(aCheck[nType,2] == 0, 10, aCheck[nType,2]))
? "--- FieldLength of " + arr[1] + " set to " + ltrim(str(arr[3]))

else
arr[3] := val(arr[3])
if arr[3] <= 0 .or. ;

(arr[3] # aCheck[nType,2] .and. aCheck[nType,2] # 0)
? "--- FieldLength of " + arr[1] + " CORRECTED " + ;

"from " + ltrim(str(arr[3]))
arr[3] := if(aCheck[nType,2]==0, 10, aCheck[nType,2])
?? " to " + ltrim(str(arr[3])) + " ... any key"
inkey(0)

endif

LNG 166

endif
if len(arr) < 4 // check deci places

aadd (arr, 0)
else

arr[4] := val(arr[4])
if arr[2]=="N" // but for numeric only

if arr[4] < 0
arr[4] := 0

else
if (arr[4] +2) > arr[3]

? "--- DeciPlaces of " + arr[1] + " CORRECTED " + ;
"from " + ltrim(str(arr[4]))

arr[4] := arr[3] -2
?? " to " + ltrim(str(arr[4])) + " ... any key"
inkey(0)

endif
endif

else
arr[4] := 0

endif
endif
return arr

*--
* DisplStruct() display the database structure
*
STATIC FUNCTION displstruct(name)
local astru, ii, jj, m1 := 0, m2 := 0, m3 := 0, split := .F., dummy

use (name)
astru := dbstruct()
use
dummy := " ------------- structure of " + name + " "
dummy += replicate("-", 60 - len(dummy) -1)
? dummy
ii := len(astru)
if ii > 5

ii := round((ii / 2) + 0.1, 0)
split := .T.

endif
for jj := 1 to len(astru)

m1 := max(m1, len(astru[jj,1]))
m2 := max(m2, len(ltrim(str(astru[jj,3]))))
m3 := max(m3, len(ltrim(str(astru[jj,4]))))

next
for jj := 1 to ii

? space(4) + padr(astru[jj,1], m1), astru[jj,2], ;
str(astru[jj,3],m2), str(astru[jj,4],m3)

if split .and. ((jj + ii) <= len(astru))
?? space(10), padr(astru[jj+ii,1], m1), astru[jj+ii,2], ;

str(astru[jj+ii,3],m2), str(astru[jj+ii,4],m3)
endif

next
? " " + replicate("-", 60 -5)
return NIL

LNG 167

*--
* For DOS only: simulate FlagShip functions not available in Clipper
*
#ifndef FlagShip
static FUNCTION FREADTXT(handle)
local buff := space(500), out := ""
local pos, ii, jj, cc
pos := FSEEK (handle, 0, FS_RELATIVE)
jj := FREAD (handle, @buff, 500)
for ii := 1 to jj

cc := substr(buff,ii,1)
if asc(cc) != 10 .and. asc(cc) != 13

out += cc
pos++

else
while ii <= jj .and. (cc == chr(10) .or. cc == chr(13))

pos++
cc := substr(buff,++ii,1)

enddo
exit

endif
next
FSEEK (handle, pos, FS_START)
return out

#endif
*** eof

Compile: FlagShip creadb.prg -ocreadb
Execute: creadb -or- newfscons ./creadb

LNG 168

LNG 169

Index

.

.C file ...LNG-74

.CDX file ..LNG-73

.CH file ..LNG-74

.CLP fileLNG-150

.DBF file ..LNG-73

.DBT file ..LNG-73

.DBV file ..LNG-73

.FH file...LNG-74

.FMT file ..LNG-74

.FRM file..LNG-74

.IDX file ...LNG-73

.LBL file ...LNG-74

.LNK fileLNG-150

.MDX fileLNG-73

.MEM fileLNG-73

.NDX file ..LNG-73

.NTX fileLNG-73, 149

.PRG file..LNG-74

.PRN file ..LNG-74

.TXT file...LNG-75

A

Access method ...LNG-see Class, method
Access rights.................................LNG-79
Alias ..LNG-17

- open ..LNG-95
- specialLNG-95
- using..LNG-95

AND
- logical operator........................LNG-55

Application
- killingLNG-107

Argument LNG-see Parameter
- checkingLNG-18
- passing....................................LNG-17

-- by referenceLNG-18
-- by valueLNG-18

Array
- variable..........LNG-see Variable, array

Assign methodLNG-see Class, method

B

Binary 0 in stringLNG-150
Boolean operators.........................LNG-55

C

Call
- external executableLNG-19
- shell ...LNG-19

Call by reference...........................LNG-18
Call by valueLNG-18
Case sensitivityLNG-13
Character set

- ANSILNG-133
- ASCIILNG-133
- ISO ..LNG-133
- national..................................LNG-134
- OEMLNG-133
- translation..............................LNG-134
- umlauts..................................LNG-134

CharCharacter set
- keyboard mapping.................LNG-134
- terminal output mappingLNG-134
- UnicodeLNG-133

Class
- binding.....................................LNG-71
- convert from Class(y)LNG-72
- declaratorLNG-62
- definition..................................LNG-62
- destructorLNG-66
- example of...............................LNG-69
- initializerLNG-66
- instance...................................LNG-64

-- exportLNG-64
-- hidden.................................LNG-64
-- protectLNG-64
-- visibilityLNG-69

- instantiationLNG-63
- lifetime.....................................LNG-63
- methodLNG-65

-- accessLNG-65
-- assignLNG-65

LNG 170

-- Axit() LNG-66
-- Init() LNG-66
-- NoiVarGet() LNG-67
-- NoMethod() LNG-66

- naming convention.................. LNG-67
- performance............................ LNG-71
- prototype LNG-63
- Self .. LNG-68
- standard LNG-62
- static.. LNG-63
- Super....................................... LNG-68
- user defined LNG-62
- using of.................................... LNG-68

Class(y)... LNG-72
Cliper

- libraries.................................. LNG-149
Clipper

- difference
-- handling............................ LNG-150

- difference to LNG-149
- index files LNG-149
- link files LNG-150
- object files LNG-149
- variable.................................. LNG-151

Code block LNG-19
- compiled.................................. LNG-21
- macro evaluated LNG-21
- variable.LNG-see Variable, code block

Code page
- CP-1252 LNG-133
- CP-437 LNG-133
- CP-852 LNG-133

Color
- in GUI mode.......................... LNG-118
- support of LNG-117

Command
- clause...................................... LNG-22
- identifier................................... LNG-22
- keyword................................... LNG-22
- options..................................... LNG-22
- syntax...................................... LNG-22
- user definable.......................... LNG-22

Comments..................................... LNG-13
Compatibility

- Clipper
-- keeping............................. LNG-154

- data LNG-148
- difference to Clipper.............. LNG-149

- source LNG-148
- to MS-DOS............................ LNG-149
- Unix and Windows LNG-151
- Unix difference to MS-DOS...LNG-149

Constant
- array .. LNG-47
- character LNG-45

-- conversion LNG-45
-- size of LNG-46

- date ... LNG-46
- literal.. LNG-44
- logical LNG-46
- NIL... LNG-47
- numeric LNG-44

Control structure LNG-23
- begin sequence..end............... LNG-26
- break LNG-26
- choice...................................... LNG-23
- do case..endcase.................... LNG-24
- exception................................. LNG-26
- for..next LNG-25
- if..endif..................................... LNG-23
- interation LNG-25
- interruption LNG-26
- while..enddo LNG-25

Coordinates................................. LNG-130
- pixel LNG-130

Cursor
- handling................................. LNG-111

D

Data
- compatibility LNG-148

Database
- access LNG-86
- alias... LNG-95
- creating LNG-89
- field........................ LNG-see database
- filter LNG-100
- handling................................... LNG-85
- in network.............................. LNG-103
- index.............................LNG-see index
- integrity.................................... LNG-98
- join... LNG-101
- locking LNG-103

-- automatically LNG-103
- management LNG-86

LNG 171

- memo
-- accessLNG-87

- multi-userLNG-103
- open

-- concurrently........................LNG-93
- recordLNG-85
- relationLNG-101
- searching.........................LNG-87, 100

-- index scanLNG-100
-- index-sequentialLNG-100
-- sequentialLNG-100

- size ofLNG-85
- structureLNG-85

Date
- variable...........LNG-see Variable, date

Directory
- access rightsLNG-79
- permission...............................LNG-79

DOS
- system difference......................LNG-7

Drive
- translation................................LNG-76

E

Environment
- TERMLNG-137

Executable
- GUI basedLNG-6
- hybrid ..LNG-6

ExpressionLNG-48
Expression listLNG-48
Extend C APILNG-143

F

Field
- accessLNG-91
- declaratorLNG-28
- nameLNG-90
- type

-- characterLNG-90
-- dateLNG-90
-- memoLNG-90
-- numeric...............................LNG-90
-- variable...............................LNG-90

- variable....................................LNG-28

Fild
- accessLNG-87

File
- access rightsLNG-79
- binaryLNG-75
- databaseLNG-73, 85
- extension.................................LNG-76
- formatLNG-74
- fspreset.fhLNG-77
- include.....................................LNG-74
- index..LNG-73
- label...LNG-74
- low level

-- accessLNG-83
- memoLNG-73
- memoryLNG-73
- naming conventionLNG-76
- path ...LNG-77
- permission...............................LNG-79
- printerLNG-74
- program...................................LNG-74
- reportLNG-74
- spoolerLNG-74
- text...LNG-75

FlagShip
- compatibilityLNG-5
- compiler.....................................LNG-5
- extensionsLNG-151
- languageLNG-5

-- alias LNG-see Alias
-- arguments LNG-see Argument
-- case sensitivityLNG-13
-- code blockLNG-see Code block
-- commands...... LNG-see Command
-- comments.......LNG-see Comments
-- control structure... LNG-see Control

structure
-- function.............. LNG-see Function
-- listsLNG-13
-- main programLNG-15
-- multiple statementsLNG-13
-- procedure LNG-see Procedure
-- program files.......................LNG-15
-- program structure...............LNG-12
-- recursion..........LNG-see Recursion
-- source.................................LNG-15
-- specification..........................LNG-9
-- statements..........................LNG-12

LNG 172

-- syntax LNG-12
- library .. LNG-5
- mode of operation LNG-6
- preprocessor LNG-5
- source files LNG-15

Floating point
- precision.................................. LNG-31

Font
- ANSI...................................... LNG-133
- ASCII..................................... LNG-133
- characteristics LNG-132
- code page LNG-133
- default LNG-130
- fixed....................................... LNG-131
- height LNG-132
- ISO .. LNG-133
- national characters................ LNG-133
- OEM LNG-133
- proportional LNG-131
- Unicode LNG-133
- width...................................... LNG-131

FS_SET(inmap) LNG-137
FS_SET(nsi2oem) LNG-137
FS_SET(outmap)........................ LNG-137
FSansi2oem.def file LNG-137
FSchrmap.def file........................ LNG-134
FSguikeys.def fileLNG-135, 136
FSkeymap.def file LNG-134
fspreset.fh file................................ LNG-77
fsprest.fh include file LNG-137
FStinfo.src file LNG-136
Function .. LNG-16

- difference to procedure LNG-17
- exit... LNG-19
- in macro LNG-61
- init.. LNG-19
- prototyping LNG-19
- static.. LNG-18

G

Get system.... LNG-139 see also @..GET
GUI

- based executable...................... LNG-6
- color LNG-118
- commands and functions LNG-112

GUI i/o
- difference to terminal LNG-128

H

Hybrid i/o mode............................... LNG-6

I

I/o mode
- basic.. LNG-6
- GUI.. LNG-6
- hybrid .. LNG-6
- terminal LNG-6

IEEE.. LNG-31
Index

- integrity.................................... LNG-98
- management LNG-88
- use of LNG-97

Inline C codeLNG-see Open C API
Input

- full-screen.............................. LNG-125
- keyboard LNG-124
- mapping LNG-126
- mapping files LNG-134

Input/output system..................... LNG-109
InstanceLNG-see Class, instance
Integrity check............................... LNG-98
Internationalization...................... LNG-133

K

Keyboard
- input LNG-124
- processing............................. LNG-112
- redefinition............................. LNG-124
- redirection LNG-19
- translation.............................. LNG-136

L

Language
- FlagShip LNG-5
- xBase .. LNG-5

Library
- from Clipper........................... LNG-149

Local
- declarator LNG-28

Locking
- automatic............................... LNG-103

LNG 173

Logical
- variable........LNG-see Variable, logical

M

Macro
- compiled..................................LNG-58
- function used inLNG-61
- functions..................................LNG-58
- in code blockLNG-61
- nestedLNG-60
- standardLNG-58
- substituted...............................LNG-58
- text substitutionLNG-60
- types..LNG-58
- variable....................................LNG-59

-- type.....................................LNG-60
Main program................................LNG-15
Mapping file

- keyboard
-- GUILNG-135
-- terminal.............................LNG-134

- terminal outputLNG-134
Memvar

- declaratorLNG-28
Menu

- processing.............................LNG-111
Menu system...............................LNG-126
MethodLNG-see Class, method
Mouse

- handling.................................LNG-111
MS-DOS

- system difference......................LNG-7
MS-Windows

- source forLNG-151

N

Network
- database in............................LNG-103

NIL
- variable............ LNG-see Variable, NIL

NOT
- logical operator........................LNG-55

Number
- precision..................................LNG-31

O

Object
- creatingLNG-63
- instance

-- accessLNG-68
-- assignLNG-68
-- visibilityLNG-69

- lifetime.....................................LNG-63
- method

-- invokingLNG-68
- standardLNG-62
- using of....................................LNG-68
- variable........ LNG-see Variable, object

Object files
- from Clipper...........................LNG-149

OOP LNG-see Class
Open C API.................................LNG-145

- inline C codeLNG-145
Open C System...........................LNG-143
Operator

- assignment..............................LNG-49
-- compound...........................LNG-50

- booleanLNG-55
- colon..LNG-68
- comparison..............................LNG-53
- concatenation..........................LNG-56
- decrementLNG-51
- incrementLNG-51
- logicalLNG-55
- Macro LNG-see Macro
- mathematical...........................LNG-51
- precedenceLNG-56
- relational..................................LNG-53

OperatorsLNG-49
OR

- logical operator........................LNG-55
Output

- full-screen..............................LNG-115
- mapping filesLNG-134
- printerLNG-110, 118
- screenLNG-110
- screen orientedLNG-109
- sequentialLNG-114
- specialLNG-116
- string translation....................LNG-135
- terminal orientedLNG-116

LNG 174

P

Parameter LNG-see Argument
- prototyping LNG-19

Parentheses.................................. LNG-48
Path

- length LNG-77
- separator LNG-77

Pixel .. LNG-130
Porting to Unix/Linux................... LNG-155
Porting to Windows..................... LNG-157
Printer

- output LNG-81, 118
- spooling................................. LNG-149

Procedure LNG-16
- difference to function............... LNG-17
- exit... LNG-19
- init.. LNG-19
- static.. LNG-18

Program
- compatibility LNG-148
- examples............................... LNG-159

R

RecordLNG-see Database
- access LNG-86, 91
- deleted flag.............................. LNG-91
- order.. LNG-91
- searching................................. LNG-91

Recursion...................................... LNG-18

S

Screen oriented output ... LNG-see Output
SELFLNG-see Class,Self
SET ANSI.................................... LNG-137
SET DBREAD............................. LNG-137
SET GUITRANSL TEXT LNG-137
SET SOURCE ANSI LNG-137
SET SOURCE ISO LNG-137
Source

- getsys.prg.............................. LNG-139
Source files LNG-15
Spooling printer output................ LNG-149
Statements.................................... LNG-12
Static

- declarator LNG-28
Step-by-step

- porting to Unix/Linux LNG-155
- porting to Windows LNG-157

String
- binary 0 support LNG-42
- output

-- translation......................... LNG-135
- variable LNG-see Variable:-- character

SUPER................... LNG-see Class,Super
System difference

- to DOS LNG-7
- Unix ... LNG-7

T

TableLNG-see Database
Tbrowse LNG-141 see also

TbrowseNew()
- create LNG-141
- stabilize LNG-141

TERM..................... LNG-see environment
Terminal

- mapping LNG-116
- output LNG-116

Terminal i/o
- difference to GUI LNG-128

U

UDF.............................. LNG-see Function
UDP LNG-see Procedure
Umlauts....................................... LNG-134

V

Variable
- array .. LNG-36

-- multi-dimensional LNG-36
-- nested................................. LNG-36
-- one-dimensional LNG-36

- autoPrivate LNG-28
- booleanLNG-see Variable, logical
- case sensitivity LNG-27
- character LNG-32

-- binary 0 support LNG-42
-- size of LNG-32

LNG 175

- code blockLNG-40
- constant..................LNG-see Constant

-- lifetimeLNG-29
- date ...LNG-34
- declaration...............................LNG-28
- dynamic...................................LNG-27
- field..LNG-28
- initialization..............................LNG-28
- instance...................................LNG-28
- integer

-- precisionLNG-32
- intVarLNG-see Variable, integer
- lifetime.....................................LNG-27
- local ...LNG-27

-- scope..................................LNG-29
-- visibilityLNG-29

- logicalLNG-35
- macroLNG-59
- memvarLNG-28
- nameLNG-27
- NIL...LNG-41
- number ofLNG-27
- numericLNG-30

-- integer ...LNG-see Variable, integer
-- intVarLNG-see Variable, integer
-- precisionLNG-31

- object.......................................LNG-40
-- instanceLNG-28

- privateLNG-28
-- lifetimeLNG-29

- publicLNG-28
-- lifetimeLNG-29

- scope.......................................LNG-29
- screenLNG-39, 150

- static ..LNG-27
-- scope..................................LNG-29
-- visibilityLNG-29

- string LNG-32 see Variable, character
-- binary 0.............................LNG-150

- type..LNG-30
-- arrayLNG-see Variable, array
-- boolean...LNG-see Variable, logical
-- characterLNG-see Variable,

character
-- code block LNG-see Variable, code

block
-- dateLNG-see Variable, date
-- declaration..........................LNG-43
-- logicalLNG-see Variable, logical
-- memo LNG-see Variable, character
-- NIL.............. LNG-see Variable, NIL
-- numericLNG-see Variable, numeric
-- object...... LNG-see Variable, object
-- screen....LNG-see Variable, screen

- typedLNG-27
- visibility....................................LNG-29

W

Work area
- number ofLNG-93

X

xBase
- languageLNG-5

LNG 176

LNG 177

LNG 178

