

The whole FlagShip 7 manual consist of following sections:

Section Content Pages

GEN General information: License agreement & warranty,
installation and de-installation, registration and support 18

LNG
FlagShip language: Specification, database, files,
language elements, multiuser, multitasking, FlagShip
extensions and differences

176

FSC Compiler & Tools: Compiling, linking, libraries, make,
run-time requirements, debugging, tools and utilities 90

CMD Commands and statements: Alphabetical reference of
FlagShip commands, declarators and statements 486

FUN Standard functions: Alphabetical reference of FlagShip
functions 640

OBJ
Objects and classes: Standard classes for Get,
Tbrowse, Error, Application, GUI, as well as other
standard classes

368

RDD Replaceable Database Drivers 38

EXT
C-API: FlagShip connection to the C language, Extend
C System, Inline C programs, Open C API, Modifying
the intermediate C code

160

FS2 Alphabetical reference of FS2 Toolbox functions 376

QRF Quick reference: Overview of commands, functions and
environment 40

PRE Preprocessor, includes, directives 30

SYS
System info, porting: System differences to DOS, porting
hints, data transfer, terminals and mapping, distributable
files

42

REL Release notes: Operating system dependent informa-
tion, predefined terminals 8

APP Appendix: Inkey values, control keys, ASCII-ISO table,
error codes, dBase and FoxPro notes, forms 34

IDX Index of all sections 42

fsman The on-line manual contains all above sections, search
function, and additionally last changes and extensions variable

multisoft Datentechnik, Munich, Germany

Copyright (c) 1992..2009
All rights reserved

Object Oriented Database Development System,
Cross-Compatible to UNIX, Linux and MS-Windows

Section PRE

Manual release: 7.1

For the current program release see label on distribution disk and
your Activation Card, or check on-line by issuing FlagShip -version

Copyright
Copyright © 1992..2009 by multisoft Datentechnik, D-81545 Munich, Germany. All rights
reserved worldwide. Manual authors: Jan V. Balek, Ibrahim Tannir, Sven Koester

No part of this publication may be copied or distributed, transmitted, transcripted, stored in a
retrieval system, or translated into any human or computer language, in any form or by any
means, electronic, mechanical, magnetic, manual, or otherwise; or disclosed to third parties
without the express written permission of multisoft Datentechnik. Please see also "License
Agreement", section GEN.2

Made in Germany. Printed in Germany.

Trademarks
FlagShip™ is trademark of multisoft Datentechnik. Other trademarks: dBASE is trademark
of Borland/Ashton-Tate, Clipper of CA/Nantucket, FoxBase of Microsoft/Fox, UNIX of
AT&T/USL/SCO, AIX of IBM, MS-DOS and MS-Windows of Microsoft. Other products
named herein may be trademarks of their respective manufacturers.

Headquarter Address
Headquarter:

multisoft Datentechnik
Harthauser Str. 85
81545 München
Germany

Telephone: (+49-89) 6490040
Fax: (+49-89) 6412974

E-mail: support@flagship.de
support@multisoft.de
sales@multisoft.de

Web/Ftp: http://www.fship.com
ftp://mult-soft.de/pub

Call or e-mail multisoft for your local dealer or distributor

PRE 1

PRE: FlagShip Preprocessor Directives

1. Overview ..2
1.1 Notation...2
1.2 Case-Sensitivity ..2
1.3 Immediately Executed Directives..3
1.4 Translation Directives ...3
1.5 Priority of Translation Directives ...4
1.6 Examining the Results ..5
1.7 Example of Use...5
1.8 Difference to Clipper ...6

#Cinline ... #endCinline...7

#command, #xcommand..8

#comments, #nocomments ...15

#debug_off #debug_on ..16

#define, #undef..17

#error..20

#ifdef, #ifndef ... #else ... #endif...21

#include ...23

#stdout ...26

#translate, #xtranslate ..27

Index...29

PRE 2

1. Overview
One of the FlagShip compiler tasks is the preprocessor. For details refer to section FSC.1.1.
The preprocessor performs syntactical source checking and the translation and/or execution
of special preprocessor directives. The output of this task is written into files with a .bp
extension.

The preprocessor directives are part of the FlagShip source program, which also include
other statements, declarations and commands. These directives are instructions to the
compiler/ preprocessor rather than statements controlling the program execution.

By using the directives, user-defined commands (UDC) may also be specified - or in extreme
cases, the standard command meaning may be changed. In fact, most of the standard
commands are automatically translated to FlagShip standard functions. This is done using
the preprocessor directives specified in the automatically included "std.fh" file.

1.1 Notation
Preprocessor directives must appear on a separate line and always begin with a hash
symbol #. Following the hash symbol, optional white space is allowed.

FlagShip preprocessor directives are also accepted if the line starts with white space (blanks
or tabs).

With a semicolon ";" at the end of line, you may continue a preprocessor directive into the
next source line.

Inline comments using //, && and /*..*/ are supported in FlagShip directives. During the
preprocessor phase, such comments will first be removed and they therefore do not
influence the final translation.

The FlagShip directives are comparable to directives or pragmas of the C compiler. In C, the
hash symbol must appear at the first column of the source line in order to be accepted.

1.2 Case-Sensitivity
In FlagShip, preprocessor directives and their arguments are not case-sensitive, except for
the identifier of the #define, #ifdef and #ifndef directives, which are case-sensitive.

Using the Open C API (see section EXT), all standard C directives and pragmas are also
supported within the C program block. These are always case-sensitive.

PRE 3

1.3 Immediately Executed Directives
These directives instruct FlagShip to perform the required action, e.g. to insert another file, to
compile the program block only when a specified condition is met, etc.

Directive Description
#include "<filename>" Include a file into the current source
#ifdef <identifier> Compile only when the identifier exists
#ifndef <identifier> Compile when identifier does not exist
#else Optional part of the #ifdef or #ifndef structure
#endif End of the #ifdef or #ifndef structure
#comments Transfer full-line comments into the .c file
#nocomments No transfer of full-line comments into the .c file
#stdout [<message>] Display a message during compilation
#error [<message>] Display error message and terminate compilation
#debug_off Temporarily disable debugger, if active
#debug_on Enable debugger, unset #debug_off status
#Cinline Start of the inline C source. Transfer all following lines directly

into the .c file
#endCinline End of the inline C source

The executable or conditional directive operates only in the current program line.

1.4 Translation Directives
The translation directives are used to modify standard program statements, re-define user-
defined commands and to declare symbolic names instead of constants. When the
preprocessor encounters such directives, it does not execute them immediately, but stores
them on an internal stack in order to perform a translation of all subsequent program lines,
when the directive rule applies.

Directive Description
#define <identifier> [<constant>] Defines a manifest constant
#undef <identifier> Remove the #defined identifier
#command <pattern> => <result> Translates a user-defined command starting with a

pattern which may be abbreviated
#xcommand <pattern> => <result> Translates a user-defined command starting with

pattern. Does not allow abbreviation
#translate <pattern> => <result> Translates a literal. The pattern may be

abbreviated
#xtranslate <pattern> => <result> Translates a literal, without abbreviation

These directives have a file-wide scope, i.e. they are valid from the current program line until
the end of the current program file is reached.

PRE 4

1.5 Priority of Translation Directives
The preprocessor collects the translation directives on an internal stack (in first-in / last-out
order) and checks all following program lines to determine if the translation directive applies.

The #define directive can also be specified when invoking the FlagShip compiler. The -D
switch is then valid for the whole .prg file.

Translation directives can also influence other, specified directives on the stack. The
directive given last has highest priority overriding a previous one.

Nesting of translation directives is allowed. This means that one directive may influence all
previously defined directives. For example:

#command EFGH <file> => myudf(<"file">) /* Priority three */
#command ABCDEF <file> => EFGH <file> /* Priority two */
#define XyZ ABCD /* Priority one */

XyZ myname // myudf("myname")
AbcDE anyname // myudf("anyname")
EFGH other // myudf("other")
XyZ XyZ // myudf("ABCD")

As the preprocessor encounters a translation directive, it checks previous definitions in order
to perform substitutions. The order of precedence is: #define, #[x]translate, and
#[x]command. When there is a match, the substitution is made to the resulting text and the
entire line is reprocessed until there are no more matches for any of the translating
definitions.

For this reason you must avoid recurrence. The following directives would produce an infinite
loop and would result in a compiler error:

#define Aaa BBB
#define BBB Aaa
x = BBB + 10 // compiler error
Aaa = 4 // compiler error
aaa = 4 + Aaaa // o.k.

Because the translation directives are processed first-in / last-out, place the most general
case first, followed then by the more specific ones. This assures that the appropriate rule will
match the command specified in the program.

Since the #include "std.fh" file, which contains many #command and #define directives, is
issued automatically by the FlagShip preprocessor (except when the compiler switch -
nI<file> is used) at the program start, all subsequently defined #command, #translate or
#define directives (e.g. in the .prg file or in other #include files) will override the default
translation of the same pattern.

PRE 5

1.6 Examining the Results
To check the preprocessor translation, invoke the FlagShip compiler with the -a option and
examine the .bp file produced with the same name.

1.7 Example of Use
*** file test.prg
/* #include "std.fh" this file is included automatically */

#ifdef FlagShip // compiling with FlagShip ?
#stdout Compiling with FlagShip
#include "inkey.fh"

#else
#stdout Compiling with Clipper
#include "inkey.ch"

#endif

#translate XYZ => abc
#COMMAND FLUSH => DBCOMMIT() /* available in Fox */
#command OPENDBF <*line*> => USE <line> ;

; IF NETERR() ;
; QUIT ;
; ENDIF

#define ESCAPE_KEY 27
#define NONEXCLUSIVE SHARED

#Command SET FILES TO LOWERCASE ;
=> fs_set ("lower", .T.); fs_set ("pathl", .T.)

#Command SET AUTOTRANSLATE [<how:ON,SET>][OFF][UNSET] ;
=> fs_SET ("lowerfile", <.how.>) ;

fs_SET ("pathlower", <.how.>)

Set File to Lower // fs_set ("lower", .T.)
// fs_set ("pathl", .T.)

SET AUTOtransl ON // fs_set ("lowerfile", .T.)
// fs_set ("pathlower", .T.)

OpenDbf Myfile NONEXCLUSIVE NEW // USE myfile SHARED NEW
// IF NETERR ()
// QUIT
// ENDIF

Flush // DBCOMMIT()
xyz = Xyz () // abc = abc ()
SET AUTOtransl OFF // fs_set ("lowerfile", .F.)

// fs_set ("pathlower", .F.)

#ifdef FlagShip
#Cinline

chdir ("/tmp") /* execute C statement */
#endCinline

PRE 6

? "changed to directory", CURDIR()
#else

#error Cannot change directory in DOS
#endif
Close Data // close database

*** eof test.prg

1.8 Difference to Clipper
Both FlagShip's and Clipper's preprocessor work nearly equivalent, while FlagShip's does it
more precisely:

1. The main difference between FS and Clipper is in the "translation" handling of the <match
marker>s. In Clipper, a simply textual replacement is done, whereas in FlagShip the
result is checked to see if it is actually _valid_ expression.

2. The use of operators (such as ":=", "=", "-=", ":", "<" etc.) as a keyword (match marker)
may result in unexpected results or will not be translated at all, because of (1). If so,
replace the operator at the left side of the translation directive by a keyword (for example
the ":=" operator by the "_IS_" keyword, "=" by "_EQ_" etc.). Your directives and sources
then remain backward compatible to Clipper as well.

3. The optional list match [<var,...>] works slightly differently from Clipper, because of (1).
As a general rule, you should specify markers following fix command parts first and put
the optional (repeating) markers at the command end.

4. Note that non-optional repeating markers <var,...> (i.e. comma- separated markers) are
resolved differently from the optional markers [<var,...>] where the comma is also
optional.

5. When possible, don't translate command names to themselves #command but translate
to another command (see e.g. the @..GET in std.fh) which simplifies the preprocessor's
task.

6. If two or more optional matches e.g. [<var,...>] are used but not coupled with command
keywords e.g. [COLOR <var,...>], the preprocessor is not always sure about how to
match because of (1). You should then use e.g. <keyw1> <xx1> [<xx2>,...] <keyw2>
<yy1> [<yy2>,...].

7. You should also use #command instead of #xcommand in repeated trans- lations with the
std.fh (such an additions to @..SAY etc), since the clauses are often abbreviated there
(refer e.g. to std.fh approx line 530).

8. You may check the translation of your directives in the <source>.bp file when compiling
with "FlagShip -a <source>.prg".

PRE 7

#Cinline ... #endCinline
Syntax:

#Cinline /* case sensitive */
<any valid C statements> /* case sensitive */

#endCinline /* case sensitive */
Purpose:

Delimits C code included in the .prg source.

Arguments:
none.

Description:
Along with the Extend C and Open C API System, FlagShip also supports
programming C directly within the .prg file. This is a very comfortable way to invoke
a function from the UNIX (or Windows) library, speed up complicated calculation,
etc.

The FlagShip preprocessor transfers all the lines between #Cinline and #endCinline
directly into the resulting .c file. The C code must therefore comply with the
standard C syntax (statements are terminated with a semicolon, only /*...*/ and
//... comments are supported, a sequence of code is enclosed in curly brackets
{...} etc.). Additionally, no other FlagShip directives apply to the C code between
#Cinline...#endCinline, while C pragmas and directives may be used.

To access variables in the .prg part, use LOCAL...AS or STATIC...AS typed
variables given in lowercase, or use macros and functions of the Open C System.
For details, refer to the section EXT.4.

If local or external C variables are required, the whole C program block has to be
enclosed in curly brackets {...}.

To be able to generate automatic PROCEDURE <filename> (see LNG.2.3) when
compiled w/o -na switch, at least one FlagShip statement must precede the #Cinline
directive. Best to place #Cinline..#endCinline within usual PROCEDURE or
FUNCTION body. To declare C function(s), place #Cinline...#endCinline at the
begin of .prg file and compile with -na switch.

For more information about inline C programming, refer to sections EXT.3 and
LNG.8.

Example:
See examples in sections LNG.8, EXT.3, EXT.4 and CMD.CALL.

Compatibility:
Available in FlagShip only.

Related:
EXT.3, Open C System, CALL command

PRE 8

#command, #xcommand
Syntax:

#command <pattern> => [<result>]
#xcommand <pattern> => [<result>]

Purpose:
Specifies a user-defined command directive.

Arguments:
<pattern> is the input which the text should match. It defines the translated
command (refer also to sections CMD and LNG) and must follow the command
syntax rule. The <pattern> consists of literal symbols (keywords and clauses) and
optional variables, enclosed in angle brackets, e.g. <var>, complying to the
FlagShip variables naming convention. The keyword must be given. The entire
entry is not case-sensitive.

=> This equals sign immediately followed by a greater than sign is a literal part of
the syntax and separates the <pattern> from the <result>.

<result> is the text to be produced if a portion of the input text matches the
<pattern>. It may include literal constants, clauses and result variables <var>
enclosed in angle brackets. The whole <result> part of the syntax is optional. The
resulting expression must comply with valid FlagShip syntax. If no <result> is
specified, an empty line is produced.

Description:
The #[x]command directive provides a way of re-defining a user- defined command
as any other command or function. You can use a command in place of an
expression or function call to define the order of keywords, required arguments,
combinations of arguments that must be specified together, and mutually exclusive
arguments, at compile time rather than at runtime.

The #command directive is also used in the std.fh file to substitute standard
commands by a function invocation, providing its arguments in the proper order.

The #command directive supports abbreviating the matching pattern (keyword and
clauses) up to four characters, while #xcommand only translates patterns exactly
as given. All other rules apply for both directives.

#[x]command is similar to #[x]translate, but it matches only if the input text is a
complete statement, while #[x]translate also matches input text which is not a
complete statement. In general, #[x]command is used for most user-defined
commands, while #[x]translate is used only in special cases.

There are several subtle issues you need to recognize to properly specify a
command definition. Many commands require more than one #command directive
because of mutually exclusive clauses containing different keywords or arguments,
for example the SET command in the std.fh file. This is also true when a result

PRE 9

pattern contains different expressions, functions, or parameter structures for
different clauses specified in the same command (e.g., the @...SAY command).

Pattern:
The <pattern> of the directive may consist of several parts, separated by at least
one white space (blank or tab):

1. Keyword, corresponding to the translated command in the program source.
(The command starts at the beginning of the line, leading blanks are ignored.
For more information, refer to section LNG.2.4). Specify the full length of the
keyword. #command will then also accept a program entry abbreviated with a
maximum of four leading characters.

#command COMMIT => DBcommitALL()
#command FLUSH => DBcommit()

2. Mandatory clauses and literal symbols which must appear in the input text in
order to activate the translation directive. The #command directive will also
accept a program entry abbreviated with up to four leading characters of the
clause. Examples:

#command CLEAR SCREEN => CLS
#command CLEAR MEMORY => __MClear()
#command DO WHILE <*line*> => WHILE <line>

3. Optional clauses and literal symbols which can appear in the input text. These
optional clauses are enclosed in brackets [...], along with their arguments
(variables) and additional clauses. A sequence of optional clauses allows their
order to be interchanged in the matching text. The optional clauses may be
nested. Examples:

#command GO [TO] <rec> => GOTO <rec>
#command SET PRINTER [TO <(fi)>] [<how:ADDIT,APPEND>] ;

=> SET (24, <(fi)>, <.how.>)

4. Mandatory or optional variables, specifying the command arguments. The
variables, holding the input text, are enclosed in angle brackets <...>. There are
five types of pattern variable notations:

<var> Regular match variable
<var,...> List match variable
<var:word list> One-of-list match variable
<*var*> Wildcard match variable
<(var)> Extended expression variable

- Regular match variable <var> saves the next legal expression of the input
text, e.g. the command argument. The matched text is represented by a simple
variable (having scope and visibility for the current directive only). Examples:

#command MYCMD <arg> => myfun (<arg>, .T.)
#command GOTO <rec> => DBGOTO (<rec>)

PRE 10

- List match variable <var,...> saves a comma-separated list of legal
expressions. If there is no input text match, the specified variable does not
contain anything.

The list match variable defines command clauses which have lists as
arguments. Typically these are FIELD clauses or expression lists used by
database commands. When there is a match for such a variable, the list is
usually written to the resulting text using either the "simple" or the "conditional"
stringify result variable. Lists are often also written as literal arrays by enclosing
the result variable in curly {...} braces. Examples:

#command ?? [<list,..>] => QQOUT (<list>)
#xcommand MYLIST <fld,..> => __dblist ({<fld>}, .T.)

- One-of-list match variable <var:text[,text]> matches the input only to one text
in a comma-separated list. If the input text does not match at least one of the
searched text patterns, the match fails and the variable contains nothing. It is
often used with the "logified" result variable to write a .T. if there is a match, or
.F. otherwise (when the match variable is defined as optional). There are two
special signs which may be used in the list: the ampersand &, which will match
any valid macro expression, and the hash #, which will match any valid
identifier, such as variable or function names. Examples:

#command MYCMD <arg:ON,OFF> => myfun (<.arg.>)
#command SETTING <arg:ON,OFF,&> => myset (<(arg)>)
#command SET KEY <num> TO <proc:#>[([<dummy,...>])] ;

=> SetKey (<num>, {|p1,p2,p3| <proc>(p1,p2,p3)})

- Wildcard match variable <*var*> matches any input text from the current
position to the end of the statement. It is often used to stringify or ignore the rest
of a command line. Examples:

#xcommand TEXT1 <*txt*> => QOUT (<(txt)>)
#command SET PATH [TO] <*path*> => SET (6, <(path)>)
#command SHUSE <*arg*> => USE <arg> SHARED
#command ENDDO <*txt*> => END

- Extended Expression variable <(var)> matches a regular or extended
expression, including a filename, path specification etc., where the regular
match variable may fail, e.g.

#command SET DEFAULT [TO] <(path)> => SET (7, <(path)>)
#command DELETE FILE <(file)> => FErase(<(file)>)

Result:
The <result> portion of a translation directive is the text the preprocessor will
produce if the <pattern> was found in the input text. The <result> syntax starts after

PRE 11

the => symbol of the #command directive and may consist of several parts,
separated by at least one white space (blank or tab):

1. Any literal text, that is written directly to the result text, including any valid
keyword, clause or name of the FlagShip language. These words are written
directly to the resulting text. Special characters (like [,], < or >) of the text must
be preceded with a backslash \. Examples:

#command SET TALK <*rest*> ;
=> * \<unsupported\> SET TALK <rest>

#command GOFIRST => GOTO TOP
#xtranslate LASTGET => ATAIL(GetList)
#xtranslate GET_NUM (<nr>) => GetList \[<nr>\]
#command MYCMD [EVERY [TIMES] [<xx>]] => OTHER (<xx>)

Set Talk Off // * <unsupported> SET TALK Off
x = LastGet // x = ATAIL(GetList)
y = GET_NUM(2) // y = GetList [2]
GOFIRST // GOTO TOP
GOFIR // GOTO TOP
GOFIRST anything // GOFIRST anything [no match]
MYCMD // OTHER ()
MYCMD EVERY // OTHER ()
MYCMD EVERY 20 // OTHER (20)
MYCMD EVER TIME anything // OTHER (anything)

2. Mandatory and/or repeating result variables, matching the <pattern> variable
names, enclosed in angle brackets <...>. There are six types of result variable
notations:

<var> Regular result variable
#<var> Always-stringified result variable
<"var"> Simple stringified result variable
<(var)> Conditional stringified result variable
<{var}> Conditional blockified result variable
<.var.> Logified result variable

- Regular result variable <var> writes the contents of the input pattern text,
represented by <var>, to the resulting text as is. If no input text for <var> was
found, the result of <var> is empty. Examples:

#command GOTO <rec> => DBGOTO (<rec>)
#command MYCMD [<arg>] => myfun (<arg>, .T.)
GOTO 25 // DBGOTO (25)
GOTO anything // DBGOTO (anything)
GOTO anything else // GOTO anything else [no match]
MYCMD // myfun (, .T.)
MYCM anything // myfun (anything, .T.)

PRE 12

- Always stringified result variable #<var> stringifies the contents of the input
<var> with "...", '...' or [...] depending on the text contents and writes it to the
resulting text. No match in the input text results with a null string "". If the input
is a list <var,...>, the resulting string is the entire list enclosed in "" symbols. It is
generally used for commands where the arguments are specified as a literal
value but the resulting text must always be written as a string, even if the
argument is not specified.

#command MYCMD <arg,...> => myfun (#<arg>)
#command SET COLOR TO [<*arg*>] => SetColor (#<arg>)
MYCMD xyz // myfun ('xyz')
MYCMD abc, xyz // myfun ('abc,xyz')
SET COLOR TO // SetColor ('')
Set Color To &var // SetColor ("&var")
set colo to W+/B,N/W // SetColor ('W+/B,N/W')
set colo to 'W+/B,N/W' // SetColor ("'W+/B,N/W'")

- Simple stringified result variable <"var"> writes the contents of the input
<var> to the resulting text. It is similar to the always stringified variable, but if
the input is a list <var,...>, it stringifies each element of the list. This is generally
used for commands, when results should be separately stringified, for example:

#command MYCMD <arg,...> => myfun (<"arg">)
#command SET FILTER TO <expr> => ;

DBSETFILTER (<{expr}>, <"expr">)

MYCMD abc // myfun ('abc')
MYCMD abc, def, ghi // myfun ('abc','xyz','ghi')
SET FILT TO zip > 1234

// DBSETFILTER ({|| zip>1234}, 'zip > 1234')

- Conditional stringified result variable <(var)> is similar to <"var"> but it
stringifies text only if the input <var> text is not enclosed in quotes or
parentheses or is not any form of macro. If no input text matched, it writes
nothing to the resulting text. If the input is a list <var,...>, every element of the
list is stringified by this conditional rule. It is usually used for commands which
can be specified as a literal or a parenthesed expression, e.g. the standard
commands USE, SET INDEX etc.

#command MYCMD <arg> => myfun (<(arg)>, .T.)
MYCMD abc // myfun ('abc', .T.)
MYCMD "abc" // myfun ('abc', .T.)
MYCMD (var + "xyz") // myfun (var + 'xyz', .T.)

- Conditional blockified result variable <{var}> writes the matched input <var>
text as a code block without any arguments to the resulting text, provided it is
not already a code block. In the latter case, no additional blockifying is done. If
no input text is matched, it writes nothing to the resulting text. If the input is a list

PRE 13

<var,...>, every element of the list is blockified by this rule.

It is usually used in conjunction with the regular match variable <var> to create
a code block from the <var> input text. Using code blocks instead of macros
may speed up the application significantly. In the std.fh file, blockifying is often
used for database commands and for the FOR/WHILE conditions. Look out for
the scope and visibility of variables in code blocks, as described in section
LNG.2.3.3.

#command MYCMD <arg> => myfun (<{arg}>, <"arg">)
#command SET FILTER TO <expr> ;

=> DBSETFILTER (<{expr}>, <"expr">)

MYCMD abc // myfun ({|| abcd}, 'abc')
MYCMD var == "xx"

// myfun ({|| var=='xx'}, 'var=="xx"')
SET FILTER TO TRIM(country) $ "USA,CND,D"

// DBSETFILTER ({|| TRIM(country) $ "USA,CND,D"}, ;
// 'TRIM(country)$"USA,CND,D"')

- Logified result variable <.var.> writes .T. to the resulting text if the input
<var> text is matched; otherwise nothing or .F. . It is usually used with the one-
of-list variable to write TRUE to the resulting text if an optional clause is
specified, or FALSE otherwise.

#command MYCMD [<arg:ON,SET>][OFF][UNSET] ;
=> myfun (<.arg.>)

#command SET ALTERNATE [<what: ON>][OFF] [<how: NEW>] ;
=> SET (18, <.what.> , <.how.>)

MYCMD SET // myfun (.T.)
MYCMD ON // myfun (.T.)
MYCMD OFF // myfun (.F.)
MYCMD // myfun (.F.)
SET ALTER On // SET (18, .T., .F.)
Set Altern Off New // SET (18, .F., .T.)

3. Repeating result clauses are enclosed in square brackets [...] and instruct the
preprocessor to write the text of <var> in the resulting text as many times as it
has matches in the input text for any result variables within the clause. If there
is no matching input text, the repeating clause is not written to the result.
Repeating clauses cannot be nested. They are often used for commands which
support repeating clauses, e.g.

#command MYSAVE <x1> TO <v1> [, <xN> TO <vN>] ;
=> REPLACE <v1> WITH <x1> [, <vN> WITH <xN>]

#command STORE <value> TO <var1> [, <varN>] ;
=> <var1> := [<varN> :=] <value>

MYSAVE 25 TO idnum

PRE 14

// REPLACE idnum WITH 25
MYSAVE "Smith" TO name, "Peter" TO first, 1 to num

// REPLACE name WITH "Smith", ;
// first WITH "Peter", num WITH 1

STORE 1234 TO var1, var2, abcd
// var1 := var2 := abcd := 1234

4. To create multi-command statements, separate each command with a
semicolon (;) which will be written to the result as a literal. As a semicolon at the
line ending is used to continue the statement into the following line, use two
semicolons in this case.

#command XIF <cond>, <true_res>, <false_res> ;
=> IF <cond> ; <true_res> ;;

ELSE ; <false_res> ; ENDIF
XIF a > 0, x := a, x := 0

// IF a > 0 ; x := a ; ELSE ; x := 0 ; ENDIF
* which is equivalent to:

// IF a > 0
// x := a
// ELSE
// x := 0
// ENDIF

Example:
See examples given above and study the std.fh file.

Compatibility:
Available in FS4 and C5 only. In Clipper 5.0 and 5.2, variable names <var> of the
result pattern are case-sensitive, as opposed to the case-insensivity of all other
syntax parts. In FlagShip, the whole syntax is not case-sensitive.

Related:
std.fh, #define, #translate, #xtranslate

PRE 15

#comments, #nocomments
Syntax:

#comments
Syntax:

#nocomments
Purpose:

Enables or disables the transfer of full-line comments into the .c code produced.
The default is #comments.

Arguments:
none.

Description:
Normally, FlagShip transfers all full-line comments (*, NOTE, // or && at line
beginning and the entire line or multiline /*..*/ comments) into the .bp and C code
produced for better orientation.

When the comments are not required, e.g. to avoid comments from the #include
file, specify the #nocomments directive. To enable the transfer again, use the
#comments directive. See also the <FlagShip_dir>/include/std.fh file.

Also, when more than five subsequent empty lines occur in the .prg source, they will
be not transferred to the .bp and .c files. The synchronization of the .prg line
number is then maintained by the FlagShip #line pragma.

Example:
#nocomments
* this comment line is not transferred to C
x = 5
#comments
// this comment line is transferred to C
y = x

Compatibility:
Available in FlagShip only.

Related:
CMD.NOTE, * comments

PRE 16

#debug_off #debug_on
Syntax:

#debug_off
Syntax:

#debug_on
Purpose:

Temporarily disables and enables debugger. Considered only if the debugger is
active, i.e. if not the -nd or -nl switches was given. Should always apply as a pair
#debug_off ... #debug_on within the same source file.

Arguments:
none.

Description:
This directive is useful and should be used in sources inserted by the #include
directive. This is because the GUI debugger does not consider the included sources
and hence may then report or stop on an incorrect line number.

The directives may also be used to automatically skip a large part of already tested
application.

The #DEBUG_OFF directive disables debugger information so the debugger will
continue execution and ignore breaks until the debugger information is enabled
again via the #DEBUG_ON directive. If the debugger info is not active at all (e.g.
when -nd or -nl compiler switches are used), these directives are ignored.

Example:
? "hello world"
#debug_off
#include "mysource.prg"
#debug_on
? "continuing"

Compatibility:
Available in FlagShip5 only.

Related:
compiler switches FSC.1.3, debugger FSC.5

PRE 17

#define, #undef
Syntax:

#define <identifier> [<constant>]
#define <identifier>([<args>]) [<constant>]

Syntax:
#undef <identifier>

Purpose:
Define or remove a manifest constant or pseudo-function.

Arguments:
<identifier> is a case-sensitive name, which conforms to the FlagShip naming
convention, i.e. the <identifier> can contain any combination of letters (A..Z, a..z),
numbers (0..9) and underscore character ("_"). Special characters like -, /, $, :,
umlauts, etc. are not allowed. The <identifier> name is significant in full length and
is case sensitive. As a convention, identifiers are usually specified in uppercase to
distinguish them from other identifiers (variables, function names etc.) used within a
program. Pre-defined manifests are available in <FlagShip_dir>/include/*.fh files
(see e.g. set.fh, inkey.fh, error.fh, box.fh, etc.) which are assigned to current source
file by the #include directive.

<identifier>() is a case-sensitive name of a pseudo-function without arguments.
The parentheses must immediately follow the identifier.

<identifier>(<args>) is a case-sensitive name of a pseudo-function with a comma-
separated argument list. The parentheses must immediately follow the identifier.
The arguments <args> are case- sensitive, since the syntax is only a special case
of the regular #define directive. The argument names used are visible only for the
#define declaration.

<constant> is the replacement literal text or expression to substitute the
<identifier> whenever it is encountered. When an expression is used, enclose it in
parentheses to guarantee the precedence of later evaluation. At least one white
space character (blank or tab) separates the <identifier> from the <constant> part.

Description:
The #define directive defines an identifier and, optionally, associates a text
replacement to it. If the <constant> text is specified, its contents will replace all
subsequent occurrences of the <identifier> within the source file (similar to
performing a search/replace in a text editor), except for the replacements in string
constants.

If the <constant> is not specified, all occurrences of <identifier> are removed by the
preprocessor. The #define directive also influences the contents of other
preprocessor directives, but you cannot change the directive name itself (like
#define define undef).

PRE 18

The #undef directive removes a previously declared <identifier> from the internal
preprocessor stack. All subsequent program lines which include the <identifier>
remain unchanged. To prevent a compiler warning which occurs when an existing
identifier is redefined, use #undef to remove an identifier before you redefine it with
#define.

Using a manifest constant instead of the constant itself increases program
readability and reduces maintenance time. Although there is some similarity
between #define-ing manifest constant and assigning the constant to a variable,
using the #define directive decreases run-time overhead and the code size required
for the variable handling.

Since the <identifier> is case-sensitive, it is a general convention to define and use
it in uppercase to distinguish it from other identifiers and variables used within a
program. Additionally, in the standard FlagShip #include files, the #define identifiers
are prefixed with a group of unique letters (e.g. K_ for keys, B_ for boxes, _SET_
for settings, DBS_ for database structures, F_ for files, etc.) to distinguish them
from other identifiers.

Pseudo-Functions
By using the <identifier>([<args>]) syntax, you can also define pseudo-functions
which are resolved at compile time. Pseudo-functions differ from manifest constants
in that they support arguments.

Whenever the preprocessor scans a source line and encounters a function call that
matches the pseudo-function definition, it substitutes the function call with the
replacement expression along with its arguments. In the program text, the argument
count need not exactly match the number of arguments in the #define directive.

The advantage of the pseudo-function is increased program readability, as a result
of reducing the maintenance time and the run-time overhead compared to invoking
the regular function.

You may also use the similar #xtranslate directive to avoid the case-sensitivity of
the identifier and to use optional arguments.

Compiler define's
When starting the compiler, you may also define an <identifier> and optionally the
<constant> by the -Didentifier or -Didentifier="constant" switch (see section FSC),
which is equivalent to #define directives in all the compiled programs.

Specifying the #define directive in the std.fh file has a similar effect, but affect all
.prg programs as well as subsequent compilations.

#define FlagShip
The FlagShip preprocessor automatically issues the #define FlagShip FLAGSHIP
directive (note the upper/lower case letters) at the beginning of each .prg file, similar
to the compiler switch -DFlagShip=FLAGSHIP. You may therefore distinguish
between FlagShip and Clipper source lines simply by using the #ifdef FlagShip
directive.

PRE 19

Example:
#ifdef FlagShip // true on UNIX
#nocomments
#include "inkey.fh" // INKEY() codes, e.g. K_ESC
#define MYPATH /usr/data // comments are possible
#define K_ABORT_TEXT "Ctrl-K"

#else // code for DOS follows
#include "INKEY.CH"
#define MYPATH \usr\data
#define K_ABORT_TEXT "Alt-D"

#endif
#define myMAX(arg1, Arg2) (IF(arg1 > Arg2, arg1, Arg2))
SET Path To MYPATH // SET PATH TO /usr/data
? "text including MYPATH" // ? "text including MYPATH"
WAIT "to abort the program, use " + K_ABORT_TEXT
IF LASTKEY() == K_ESC // IF LASTKEY() == 27

QUIT
ENDIF
? myMAX(2,3) // ? (IF(2 > 3, 2, 3)) --> 3
a = b * myMAX(a,5) // a = b * (IF(a > 5, a, 5))

Note: do not use pre/post-increment or pre/post-decrement of
arguments in the pseudo-functions, since they will be evaluated
twice, e.g.

a := 5 ; ? myMAX (a++, 0), a // 6 7
a := 5 ; ? MAX (a++, 0), a // 5 6 (std. function)

Compatibility:
Available in FS4 and C5 only.

Related:
#ifdef, #ifndef, #translate, #xtranslate

PRE 20

#error
Syntax:

#error [<text>]
Purpose:

Generates a compiler error and displays a message on the terminal.

Options:
<text> is the literal string of the message to be displayed. Do not enclose the
message <text> in quotations unless you want them to appear as part of the
display.

Description:
The #error directive causes the compiler to terminate compilation with return code
1. If the optional <text> is specified, an error message is displayed to stderr.

Example:
#ifndef FlagShip
#error This program is developed for UNIX only.
#endif

#ifdef FINAL
#ifdef TEST
#error Remove #define TEST for the final compilation

#endif
#endif

Compatibility:
Available in FS4 and C5 only.

Related:
#stdout, #ifdef, #ifndef

PRE 21

#ifdef, #ifndef ... #else ... #endif
Syntax:

#ifdef <identifier>
any valid statement ...

[#else
any valid statement ...]

#endif
Syntax:

#ifndef <identifier>
any valid statement ...

[#else
any valid statement ...]

#endif
Purpose:

Compiles a section of code if an identifier is defined or not defined.

Arguments:
<identifier> is the case-sensitive name of a definition whose existence is being
verified.

Description:
#ifdef...#endif performs conditional compilation when the identifier is defined by
using the #define directive or the -D compiler switch. The optional #else directive
specifies the code to be compiled if the <identifier> is not defined.

#ifndef...#endif performs a conditional compilation when the identifier is not defined.
The optional #else directive specifies the code to compile if <identifier> is defined.

The #endif directive ends the conditional compilation block.

Conditional compilation is particularly useful when maintaining many different
versions of the same program.

To create portable programs for DOS and UNIX, the #ifdef FlagShip directive is the
most comfortable way of observing the slight differences between these two
systems.

PRE 22

Example:
*** test.prg
#ifdef FlagShip

#include "fspreset.fh"
#include "inkey.fh"
#stdout Compiling UNIX specific

#else
#include "INKEY.CH"
#stdout Compiling DOS specific

#endif
#define TEST // or use: FlagShip test.prg -DTEST
// later

#ifdef FlagShip
RUN ("ls -l * | pg")
REFRESH

#else
RUN ("DIR *.*")

#endif
#ifdef TEST

? "The current directory is", CURDIR()
password = "MyTest"
? "The test password is", password
WAIT
#stdout The test option IS ACTIVE now

#else
#stdout Compiling w/o test option

#endif
CLEAR SCREEN
#ifndef TEST

ACCEPT "Please enter your password:" TO password
IF EMPTY(password)

QUIT
ENDIF

#endif

Compatibility:
Available in FS4 and C5 only.

Related:
#define, section FSC

PRE 23

#include
Syntax:

#include "<filename>"
Purpose:

Includes a source or header file into the current source file.

Arguments:
<filename> specifies the name (optionally preceded by a path) of another source or
header file to be inserted at the current position in the source file. The <filename>
must be enclosed in quotation marks ".." or '..'.

FlagShip will try to infer the #include "filename" if it is not able to find it as given,
using the following search algorithm:

1. Look for the file name as given (by e.g. #include "File.Ext") in the:
a. current directory,
b. path given by the -I switch (if specified),
c. /usr/include directory.

2. Repeat step 1.a to c with "file.ext" (in lowercase),
3. Repeat step 1.a to c with "FILE.EXT" (in uppercase)

Note: The FS_SET("lower", "pathlower") etc. has no effect on the preprocessor,
since the FS_SET() function is an executable statement invoked at run-time.

Description:
#include inserts the contents of the specified file in place of the directive in the
source file. In FlagShip the convention is that header files with .fh extensions should
contain only preprocessor directives and external declarations.

Header files often contain general purpose constants, such as the manifests for key
values in "inkey.fh", file attributes in "fileio.fh" or user-defined #define(s). Including
these header files in the .prg source makes their definitions automatically available
in it.

The scope of directives from the included header file is the current .prg program file.

The #include directives may be nested up to a depth of 512 levels. That means, one
#include file may include another one, which includes other file, etc. It is a good
programming practice to omit files already included by using the #define and #ifdef
directives in order to avoid infinite include loops.

std.fh, set.fh
When the compiler switch -nI is not used, FlagShip automatically includes the
"std.fh" file at the beginning of each .prg program. These standard header files (by
default located in <FlagShip_dir>/ include) contain the definitions of all FlagShip
commands and standard functions. It also automatically includes the "set.fh" and
"inkey.fh" files, if they are not yet included.

PRE 24

If changes of the std.fh or set.fh file contents' are desired, you have two basic
choices:

a. Create an additional header file, e.g. "stdadd.fh" containing all changes and
additions required and insert the line #include "stdadd.fh" at the end of the
default std.fh file. Since directives specified later have higher priority, they will
override standard directives given in std.fh and set.fh.

b. Copy the <FlagShip_dir>/include/std.fh file to a new name (e.g. mystd.fh), make
the changes and compile with the -nI=mystd.fh option.

The first is the better solution, since your additions will not be affected by the likely
changes to the standard header files in a new FlagShip release.

Standard header files
In addition to the std.fh and set.fh described above, FlagShip provides a number of
header files containing manifest constants for common operations. Refer to
sections GEN, CMD, FUN and look out for *.fh files in the default installation
directory <FlagShip_dir>/include (e.g. ls -l /usr/local/Flag*/include/*.fh).

Example:
*** test.prg
#include "inkey.fh"
#ifndef _MY_INCLUDED

#include "myinclude.fh"
#define _MY_INCLUDED

#endif
LOCAL key, ok

displaymenu ()
key = INKEY()
ok = perform_menu (key)

FUNCTION perform_menu (key)
DO CASE
CASE key == K_ESC // Escape key, 27

QUIT
CASE key == K_PGUP // PgUp key, 18

SKIP -1
CASE key == K_PGDN // PgDn key, 3

SKIP 1
CASE // other keys
OTHERWISE

RETURN .F.
ENDCASE
RETURN .T.

PRE 25

Compatibility:
Available in FS4 and C5 only. To use the Clipper extensions for FlagShip *.fh files
in an unmodified source code, make a link e.g.

ln –s <FlagShip_dir>/include/inkey.fh inkey.ch

In extreme cases, you may use the original CA/Clipper *.CH include files by copying
them to your UNIX directory, with the exception of "STD.CH","FILEIO.CH" and
"ERROR.CH". You must use "std.fh", "fileio.fh" and "error.fh" which are FlagShip
specific, but are backward compatible to Clipper.

Related:
#define, section FSC

PRE 26

#stdout
Syntax:

#stdout [<text>]
Purpose:

Displays a message on the terminal.

Options:
<text> is the literal string of the message to be displayed. Do not enclose the
message <text> in quotations unless you want them to appear as part of the
display.

Description:
The #stdout directive causes the preprocessor to display a message on stderr, the
default device for compiler messages.

If the compiler stderr output is re-routed to a file, e.g.

FlagShip my*.prg -q -Mmymain 2>protocoll.txt

the #stdout message is also printed to that file.

Example:
** test.prg
#ifdef FlagShip
#stdout Compiling on UNIX using FlagShip
#endif

#ifdef TEST_ONLY
#stdout "TEST_ONLY" directive is used

#endif

Compatibility:
Available in FS4 and C5 only.

Related:
#error, #define, #ifdef, #ifndef

PRE 27

#translate, #xtranslate
Syntax:

#translate <pattern> => <result>
#xtranslate <pattern> => <result>

Purpose:
Specifies a user defined translation directive.

Arguments:
<pattern> is the input which the text should match. The <pattern> consists of literal
symbols (keywords, clauses, etc.) and optional variables, enclosed in angle
brackets, e.g. <var>, confirming to the FlagShip variables naming convention. The
entire entry is not case-sensitive.

=> This equals sign immediately followed by a greater than sign is a literal part of
the syntax and separates the <pattern> from the <result>.

<result> is the text to be produced if a portion of the input text matches the
<pattern>. It may include literal constants, clauses and result variables <var>
enclosed in angle brackets. The whole <result> part of the syntax is optional, the
resulting expression must comply with a valid FlagShip syntax. If no <result> is
specified, an empty line is produced.

Description:
The #[x]translate directive provides a way to re-define a part of a program
statement. #[x]translate is similar to #[x]command, but it also matches input text that
is not a complete statement, while #[x]command matches only if input text is a
complete statement. In general, #[x]command is used for most user-defined-
commands, while #[x]translate for special cases. #[x]translate is also similar to the
#define directive, but is more powerful and not case- sensitive.

The #translate directive supports the abbreviation of the matching pattern (keyword
and clauses) with up to four characters, while #xtranslate only translates patterns
exactly as given. All other rules apply to both directives.

Pattern: Result:
Since all the rules of #[x]command also apply to #[x]translate, refer to section
#command for a description of the <pattern> and <result> parts.

PRE 28

Example:
#translate AllTrim(<arg>) => LTRIM(RTRIM(<arg>))
#translate MYMAX (<max>, <min>) ;
=> (IF (<max> >= <min>, <max>, <min>))

#translate MYMIN (<max>, <min>) ;
=> (IF (<min> <= <max>, <min>, <max>))

#translate MAXunknown (<max>, <min>) ;
=> (IF ((VALTYPE(<max>)+VALTYPE(<min>))=="NN", ;

MAX (<max>, <min>), ;
IF (VALTYPE(<max>)=="N", <max>, <min>)))

#translate MAX3 (<arg1>, <arg2>, <arg3>) ;
=> (IF (<arg1> >= <arg2>, MAX (<arg1>,<arg3>), ;

MAX (<arg2>,<arg3>)))

LOCAL a, b, c
a = VAL (alltr (" 1234 ")) // 1234
b = MAXU (a, c) // 1234, no RTE
c = myMAX (a, -b) +1 // 1235
c = myMIN (a, -b) // -1234
d = MAX3 (a, c, b) // 1235

Note: do not use pre/post-increment or pre/post-decrement of
arguments in these pseudo-functions, since they will be evaluated
twice, e.g.

a := 5 ; ? myMAX (a++, 0), a // 6 7
a := 5 ; ? MAX (a++, 0), a // 5 6 (std. function)

Compatibility:
Available in FS4 and C5 only. In Clipper 5.0 and 5.2, variable names <var> of the
result pattern are case-sensitive, as opposed to the case-insensitivity of all other
syntax parts. In FlagShip, the whole syntax is not case-sensitive.

Related:
std.fh, #define, #command, #xcommand

PRE 29

Index

#

#Cinline ...PRE-7
#commandPRE-8
#commentsPRE-15
#debug_on/offPRE-16
#define ..PRE-17
#else..PRE-21
#endCinlinePRE-7
#endif ..PRE-21
#error...PRE-20
#ifdef ...PRE-21
#ifndef ...PRE-21
#include...PRE-23
#nocommentsPRE-15
#stdout ..PRE-26
#translatePRE-27
#undef ...PRE-17
#xcommandPRE-8
#xtranslatePRE-27

.

.bp file ...PRE-2

C

Clipper
- difference

-- preprocessorPRE-6

F

FlagShip
- preprocessor

-- directivesPRE-2

-- translation.............................PRE-2

M

Manifest constant..........................PRE-17

P

Preprocessor
- directivesPRE-2

-- #CinlinePRE-7
-- #command............................PRE-8
-- #comments.........................PRE-15
-- #debug_on/offPRE-16
-- #define................................PRE-17
-- #else...................................PRE-21
-- #endCinlinePRE-7
-- #endif..................................PRE-21
-- #error..................................PRE-20
-- #ifdef...................................PRE-21
-- #ifndef.................................PRE-21
-- #includePRE-23
-- #nocomments.....................PRE-15
-- #stdout................................PRE-26
-- #translate............................PRE-27
-- #undefPRE-17
-- #xcommand..........................PRE-8
-- #xtranslate..........................PRE-27
-- difference to ClipperPRE-6

Pseudo-functionPRE-17

S

std.fh file..PRE-2
stdfoxpro.fh file................................PRE-2

PRE 30

PRE 31

PRE 32

