
 Page 1

First Steps With Visual FlagShip 8 for Linux

1. Requirements ..1
2. Download FlagShip ...1
3. Installing FlagShip ...3
3.a Updating FlagShip ...5

4. Uninstalling FlagShip ...5
5. License Types, Support ...5
6. Using FlagShip ..6
6.1 Invoking the FlagShip compiler ...6
6.2 Create your first program ..7
6.3 Compile your program ...7
6.4 Execute your first program ...8
6.5 Compile and execute supplied examples ...9
6.6 Debugging and testing ... 10
6.7 Other tools ... 12

7. The FlagShip Manual... 13

1. Requirements

This instruction applies for FlagShip 8 port for Linux by using tar installation.
The minimal requirements are:

¶ Linux kernel 3.8 or 4.x and gcc 4.x or newer

¶ 512 MB RAM (more is recommended for performance)

¶ 300 MB free hard disk space

¶ Installed “Development system” package (gcc compiler and tools).

For other Linux system, refer to www.fship.com/linux.html page. FlagShip for
Windows is available at www.fship.com/windows.html.

FlagShip 8 (VFS8) supports both 64bit and 32bit Linux systems and creates
native 64bit or 32bit executables by using the -64 or -32 compiler switch. The
default is the used Linux version. See more in chapter 6.3 below.

http://www.fship.com/linux.html
http://www.fship.com/windows.html

 Page 2

2. Download FlagShip

In your preferred Web-Browser, open
www.fship.com/linux.html and download the
Visual FlagShip setup media for tar installa-
ton (gzip-ed tar file) and save it to any folder
of your choice (the Linux default is
/home/yourName/Downloads directory or
~/Downloads).

Alternatively, you may download FlagShip by
FTP (link on the above page), where you may
cross-check the authenticity and correct
download checksum by md5sum tool.

3. Installing FlagShip

There are only few steps required to install FlagShip. In Linux, open the Ter-
minal-Console, cd to your download directory and un-tar the downloaded
media there, e.g.

cd ~/Downloads

tar x zf fs8linux* - nonrpm.tgz

You will get installing instruction and the
FlagShip-8*.tgz installation file. Read
the instruction and license by invoking

less INSTALL README \

 CHANGES.txt LICENSE.txt

(Note: donôt type the backslash, but enter
all four file names behind the less
command. Scroll the view by PgDwn and
PgUp keys, select next file by :n and exit

this less viewer by :q)

The following installation sequence requires log-in as super user (su) or root.
An alternative (used e.g. in Ubuntu) is the restricted sudo command:

cd /usr/local

sudo tar xzf /home/<yourname> /Downloads /FlagShip - 8*.tgz

or
sudo - i -or- su

tar xzf /home/<yourname> /Downloads/FlagShip - 8*.tgz

http://www.fship.com/linux.html

 Page 3

Check the activation key you got from
multisoft or your distributor, if for Visual
FlagShip 8 (abbreviated below by VFS8).
If so, activate your FlagShip by

cd /usr/local/FlagShip8

sudo make

and follow the displayed instruction.

If you are upgrading from previous
FlagShip versions like FS4, VFS5, VFS6 or
VFS7, you will be prompted whether you
wish to un-install older FlagShip, or install
VFS8 parallel to.

The installer script reports **ok** for
successful serializing, otherwise check
for typos (both the serial number and
activation key are 15 characters long, the
dot is a part of the entry; you may use
lower or uppercase). The licensee name
is mandatory, the company name op-
tional.

If you have purchased also the additional
FS2 Toolbox for your VFS8, say “y” and
activate also this library now, otherwise
enter “n” at the corresponding prompt.

From your entries and paths, the installer
creates now un-install script named
FS8uninstall and creates some

symbolic links to /usr/bin and /usr/lib
(which are removed at un-installing).

The installer also checks for require-
ments and displays corresponding warn-
ings if anything is missing. In some
cases, you may need to post-install the
corresponding package of your Linux
distribution.

Note: the displayed messages are available also in a log file named
/var/log/FlagShip.log

mailto:sales@multisoft.de

 Page 4

3.a Updating FlagShip

FlagShip is permanently maintained and often extended with new features.
Check frequently the http://ww.fship.com/whatsnew.html page for updates. If
you already have VFS8 installed, and wish to update to newer sub-release,
download the new fs8inux*.tgz file, uninstall current version (see step 4 below)
and install according to step 3.

4. Uninstalling FlagShip

You may completely remove the FlagShip installation by invoking

 su ; FS8uninstall ; exit

or
 sudo FS8uninstall

5. License Types, Support

There are three different license types available, see additional details and
prices on http://www.fship.com/price.html :

¶ The free Test/Evaluation license is fully functional, and lets you test Flag-
Ship with your applications without any risk. The only limitation is the
evaluation period of 30 days and the requirement of using the created
executables on the same computer where FlagShip is installed. On the
registration page http://www.fship.com/eval.html you may select FlagShip
and FS2 Toolbox for your used environment. Once satisfied with testing,
purchase the Personal or Pro license.

¶ The Personal FlagShip (and FS2 Tools) license is intended as a low-cost
Starter Kit for personal, company internal/in-house and software developer
use, as well as the presentation of applications. Its only limitation is the
requirement of using the created executables on the same computer
where FlagShip is installed, it allows access to the same shared database
by two different users (or processes) simultaneously. You may not
pass/sell the created applications (executables) to third parties.

¶ The FlagShip (and FS2 Tools) Pro license does not have any limitation. It
is intended as the regular license kit for software developers who will resell
their executables, and for large in-house systems, accessed si-
multaneously by any number of users. You also may pass/sell/distribute
the by FlagShip created applications (executables) to anybody else.

http://ww.fship.com/whatsnew.html
http://www.fship.com/price.html
http://www.fship.com/eval.html

 Page 5

There are generally no run-time fees, nor hidden cost. The development
package is licensed to you/your company and may not be passed to any third
party, but the executables created by the Pro license may freely be sold or
passed to anybody. Refer to the License Agreement http://www.fship.com/
license.html for full details.

Multisoft (or its distributor) grants free technical support for up to 6 months
after purchasing the package, see details on http://ww.fship.com/support.html
The common support e-mail address is support@multisoft.de

6. Using FlagShip

The FlagShip development package contains full compiler, libraries, tools and
examples. All are located per default in the /usr/local/FlagShip8 folder and its
sub-directories. In addition to, the setup script or makefile (see 3) creates for
your convenience some symbolic links to /usr/bin and /usr/lib (documented in
/var/log/FlagShip.log and removed by the FS8uninstall script).

As with any compiler, the application program is based on source file, which is
usual text file (with .prg extension) created by any editor, e.g. vi, emacs, Nedit,
JEdit, gedit, kedit and similar program editors. Do not use MS-Word,
OpenOffice or similar text processing software, since it often adds special
formatting code into the text, which may create you headaches later.

If you are familiar with interpreters like dBase, Foxbase or FoxPro, the dif-
ference is that FlagShip compiles the .prg files into native executable instead
of interpreting the source, hence you don’t need any run-time modules nor
need to distribute your sources.

From the same source, FlagShip will create either GUI or textual oriented or
basic i/o application. We will learn here in short all of them.

6.1 Invoking the FlagShip compiler

In the Terminal-Console, simply
enter

 FlagShip ïversion

which displays information about
the current FlagShip version.

Other FlagShip options may specify the name of source file (or files) and
optional compiler switches, described in detail in the on-line manual “fsman”

http://www.fship.com/%20license.html
http://www.fship.com/%20license.html
http://ww.fship.com/support.html
mailto:support@multisoft.de%20%20%0d

 Page 6

section FSC, see chapter 7 below for details. You will get short summary of
switches by FlagShip - h

6.2 Create your first program

Invoke your editor, e.g. “gedit mytest.prg” or
ñvi mytest.prg” etc, enter there

? òHello worldò
wait

and save it. You alternatively may use the
available example

 cp /usr/local/FlagShip8/examples/hello.prg mytest.prg

6.3 Compile your program

Enter
 FlagShip mytest.prg

or
 FlagShip ïv mytest.prg

This simple command will first
compile the .prg file to .c, then
creates object file .o and invokes the
linker to link it with the library into
final, native executable. In our case,
the default Linux executable is
named a.out - you however may
specify another name by the ñïo
exename” option, as described in the
manual section FSC, e.g.

 FlagShip mytest.prg - o mytest

Note: if your application consists of more than one .prg file, you may compile
all together by

 FlagShip mymain.prg myadd1.prg myadd2.prg ïo myapplic

where the first file is your main and the executable should be named “myapplic”,
or by using wildcards, e.g.

 FlagShip my*.prg ïMmymain ïo myapplic

 Page 7

where the –M... option says that the program starts in module (procedure,

function, source file) named here mymain. You optionally may use also .c and .o
files. Of course, compiling via the make utility is supported too. All these
features are described in detail in the on-line manual “fsman” section FSC, see
also chapter 7 below.

The created executable is either 64bit or 32bit based, depending on the cur-
rently used Linux system, check by “file a.out ” or “file myapplic ”. If

you wish to create executable for other system, use the - 32 or - 64 compiler

switch, see help “FlagShip - h“ and the on-line manual (fsman) section

FSC.1 or the corresponding /usr/local/FlagShip8/manual/pdf/FSC.pdf file.

By default, the application is linked dynamically using *.so libraries (64bit or
32bit based). If you wish to link statically, use the - stat compiler switch. This

requires availability of static libs (*.a) for some system libraries, see also the
manual section FSC.1.7 and the /usr/local/FlagShip8/etc/FS8config* file.

Note: when compiling Foxbase or FoxPro sources, use the ïfox compiler

switch (see FSC.1.3) and study the /usr/local/FlagShip8/system/foxpro_api.prg
as well as the /usr/local/FlagShip8/include/stdfoxpro.fh files. The most of
FoxPro (vers. 2.5 and 2.6) commands are supported, see additional details
above and in the manual section APP.

 Page 8

6.4 Execute your first program

Now, invoke your application by

 ./a.out

or
 ./mytest (when ïo mytest was specified at compiling stage)

This starts the application (executable) in GUI mode, displays the given output
text, and waits for Enter key to terminate.

Instead of running it in GUI mode, you
may force the execution in Textual (aka
Terminal) mode, known e.g. from
Clipper or dBase, by

 ./mytest ïio=t

or better (for correct color and key
translation) by

 newfswin ./mytest

or in the simplified Basic i/o mode by

 ./mytest ïio=b

see details about different i/o modes in manual sections LNG.1.2 and LNG.9.7.
These switches may be specified also directly at the compiling stage, refer to
manual sect. FSC.1.3.

Note: when the above invocation of
newfswin script reports error (could
not locate xterm or tcsh), you need to
install these standard tools from your
Linux distribution; they are sometimes
not installed per default.

Note for Linux beginners: all file names in Linux/Unix are case sensitive. As
opposite to DOS/Windows, Linux (and Unix) do not search in the current
directory by default (security reason). You therefore need to specify the path
of your executable (./ is the current directory), or add this search path to the

PATH environment variable by export PATH=$PATH:. which remains valid

until next reboot. Alternatively, you may add this line in the .bashrc file

located in your home directory, to set it at next log-in automatically.

 Page 9

6.5 Compile and execute supplied examples

More interesting programs are available in the
/examples directory located in the main
FlagShip folder. Invoke

 cd /usr/local/FlagShip8/examples

to select this directory, then start the standard
Make utility

 make

to compile and execute all files there, by using
the default template named Makefile (de-
scribed in the manual section FSC.2).

You will get e.g.

where the above also shows a prompt
when aborting the execution by click
on the [X] button at top right (or top left
in Gnome).

To run the same applications in textual
instead of GUI mode, invoke

 make terminal

You of course may compile and/or
execute each program separately, ac-
cording to 6.3 and 6.4 above, the
instruction is also given in the header
of each source file. When you wish to modify some of these examples, best to
copy the source to your working directory first.

 Page 10

6.6 Debugging and testing

Nearly none of newly developed application is free of typos, syntax and logical
errors. Fortunately, most of the problems are detected already at compile and
link stage (see manual section FSC.1.8). When using prototyping of variables
and the ïw compiler switch (see manual LNG.2.6.6 and FSC.1.3), also the most

misspelled variables are detected at compile-time as well. But neither the
compiler nor the linker can detect errors in the program logic.

If your program does not behave as expected, you may

¶ either use the (common, old fashioned) output of the variable data in inter-
est, e.g. ?# procstack(), “myvar=“, myvar to display the content of

your variable named “myvar” on separate console window incl. the
program location and call stack (you may redirect this output to file by e.g.
“myapplic ïio=t 2>myapplic .log ” or ”newfswin myapplic

2\ >myapplic.log ”),

¶ or compile and run the application with FlagShip source-code debugger
(see details in manual FSC.5 and below), which gives you all the required
information at any program stage.

To avoid large typing here, we will use one of the standard examples to
demonstrate the use of FlagShip debugger:

a. Select your working directory

b. Copy the available source and database

 cp /usr/local/FlagShip8/examples/dbfstru.prg .

 cp /usr/local/FlagShip8/examples/tdbedit.dbf .

c. Compile the application with debugger

 FlagShip ïd dbfstru.prg ïo dbfstru

d. Invoke the application

 ./dbfstru

The debugger-window pop-

ups together with the appli-

cation, and stops at the first

executable statement of your

main program (here in

line#15 of dbfstru.prg).

You may now set break-
points (where the application
should stop before executing
the statement) by a click on
the line number, e.g. on
line#39 and line#91.

 Page 11

(or F11, F10), or continue the execution by You may step thru by
(or F9) until next breakpoint is reached. The first step button steps over
procedure or function, whilst the second steps into (but only if the procedure is
available in source code).

The application prompts you now for the database name. Just hit RETURN to
see what happens: the debugger stops on the breakpoint at line#39. To observe
your used variables, click on the [+] sign for “Local” or “Private” or “Public”
variables. You alternatively may enter len(trim(cfilename)) in the com-
mand window, which reports 0 in this case (the string is empty). By F11 or click

on the Ý button, you will step thru back to line#21 etc. Continue by F9 and enter
now tdbedit for the file name. The debugger stops again at line#39; you may
observe variables anew and/or step thru. Then disable this breakpoint by click
on line#39 (the red mark disables), and press F9 to continue. The database
structure is displayed in browser, press ESC to exit the browser.

When pressing F2 key in the entry field for database name, the debugger stops
at line#91 in function listdbf(). You may see the call-stack in the top left
debugger window (or by procstack() in command window), where item#0 is
the current procedure or function. Item#1 shows here the internal representa-
tion of code block, double click on this item#1 shows where it was created (set
key…to…). Step thru or continue by F9, you will see a list of available data-
bases in the current directory to be displayed, select one by Up/Down and
ENTER key, or by mouse click.

When setting breakpoint on line#62, you may observe in debugger also the (or
all open) database structure(s) and data by a click on [+] Databases.

To save breakpoints for the next run, either select File ­ Save Status, and at

begin of the next execution select File ­ Restore Status of the debugger, or
specify export FSDEBUG_AUTO=ON in your console (or in ~/.bashrc) to

save/restore breakpoints automatically. ESC in the database entry field will
terminate the program.

 Page 12

6.7 Other tools

There are additional tools available in the folder /usr/local/FlagShip8/tools in-
cluding short textual description and full source code. Some of them are also
documented in the manual section FSC.6. Here only some, the most interesting
tools:

¶ fsmake creates semi-automatically template for the Make utility for all (or
selected) sources of your project(s)

¶ dbu is a database manipulation utility to create and/or manage database
structure and data

¶ fsi is a simple interpreter, slightly comparable to dBase or Foxbase. It
allows you quick data manipulation or syntax checking etc.

¶ indexdump may help you on problems with indices

¶ webtools provides source for the web*() functions in the standard library

Best to copy the source of interest into your working directory, and compile it
there according to the description and header of the source.

In the /usr/local/FlagShip8/system directory, there are sources and APIs to
modify the default behavior of many standard functions or classes. On re-
quirement, copy the source into your working directory, compile there
according to header in the source file and link with your application. Use it with
care and only if you really know what you are doing.

Many examples are also available in the reference section (CMD, FUN, OBJ) of
the FlagShip manual.

 Page 13

7. The FlagShip Manual

This first, short overview of FlagShip cannot and will not replace the full manual.
In any FlagShip distribution, there are two complete manuals available:

¶ the manual in .pdf format (requires e.g. Acrobat reader, or other pdf reader
like mupdf, evince etc) which can also be printed (caution: more than 2.600
pages), available in the /usr/local/FlagShip8/manual/pdf directory, and

¶ the on-line manual (named fsman) is available in /usr/local/FlagShip8/bin/
as a symbolic link to fsman_32 or fsman_64 (set at installation, corre-
sponding to your Linux version) and as symbolic link in /usr/bin/fsman

Both are equivalent in content, however the on-line manual is updated more
frequently (on each sub-release), whilst the .pdf manual is updated on main
release only. The on-line manual includes Release Notes for the used oper-
ating system (Linux, Windows etc), this file is available for printing in text form
in the file /usr/local/FlagShip8/manual/relnotes.asc

In your terminal console, simply enter
 fsman

to invoke the on-line manual, here displayed
in GUI mode. If you haven’t X11 running, you
may use the textual counterpart by
 newfscons fsterm

Select the required section by click on the top
menu (see Manual Contents for overview of
sections), then select the chapter in the pop-
up window to display the corresponding
description. Browse the page(s) by PgDn or
PgUp key. The most important sections
(displayed at top) are LNG, REL, FSC, CMD and
FUN.

Press the ESC key to close the manual
description and/or the pop-up window. To exit
fsman, press ESC in the main window, or

select File ­ Exit, or click on the [X] top right
button.

To search for specific text, use the “Search” section. You may enter there either
single word, or word sentence, or words combined by AND or OR, optionally
case sensitive. In the pop-up window, select the found page and then press “s”
to skip directly to the found word (see also F1 help there).

And now, enjoy FlagShip!

